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ON THE STRUCTURE OF CERTAIN VALUED FIELDS

JUNGUK LEE AND WAN LEE

ABSTRACT. In this article, we study the structure of finitely ramified mixed
characteristic valued fields. For any two complete discrete valued fields K
and K2 of mixed characteristic with perfect residue fields, we show that if
the n-th residue rings are isomorphic for each n > 1, then K; and K> are
isometric and isomorphic. More generally, for n; > 1, there is na depending
only on the ramification indices of K7 and K3 such that any homomorphism
from the n1-th residue ring of K1 to the na-th residue ring of Ko can be lifted
to a homomorphism between the valuation rings. Moreover, we get a functor
from the category of certain principal Artinian local rings of length n to the
category of certain complete discrete valuation rings of mixed characteristic
with perfect residue fields, which naturally generalizes the functorial property
of unramified complete discrete valuation rings. Our lifting result improves
Basarab’s relative completeness theorem for finitely ramified henselian valued
fields, which solves a question posed by Basarab, in the case of perfect residue
fields.

1. INTRODUCTION

In this paper, we are interested in finitely ramified mixed characteristic valued
fields (see Definition 23)). In model theory of valued fields, one of the most im-
portant theorems is the AKE-principle, proved by Ax and Kochen in [II 2], and
independently by Ershov in [7, [§]. The AKE-principle says that the theory of an
unramified henselian valued field of characteristic 0 is determined by the theory of
the residue field and the theory of the value group.

Fact 1.1 (The Ax-Kochen-Ershov principle). [I 2, [7, 8] Let (K, k;,T';) be an
unramified henselian valued field of characteristic zero, where k; is the residue field
and T'; is the valuation group respectively, for i =1,2.

Ky = Ky if and only if k1 = ko and T'y = T's.

Basarab in [4] generalized the AKE-principle to the finitely ramified case. Actually,
he showed that the theory of a finitely ramified henselian valued fields of mixed

2010 Mathematics Subject Classification. 11U09 (primary) 13L05 (secondary) .

Key words and phrases. finitely ramified valued fields, functorial property of the ring of Witt
vectors, Krasner’s lemma, lifting number, Ax-Kochen-Ershov prinicple.

The first author was supported by Samsung Science Technology Foundation under Project

Number SSTF-BA1301-03. The second author was supported by the Yonsei University Research
Fund (Post Doc. Researcher Supporting Program) of 2017 (project no: 2017-12-0026). He was
also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea
government (MSIT) (No. 2019R1A2C1088609).
The authors thank the anonymous referee for valuable comments and suggestions, which were very
helpful to reorganize our paper more effectively. The authors thank Piotr Kowalski for helpful
comments. Most of all, the authors thank Thomas Scanlon for detailed and valuable suggestions
and comments, which encouraged us to keep writing this article.

1


http://arxiv.org/abs/1608.07656v5

2 J. LEE AND W. LEE

characteristic is determiend by the theory of each n-th residue ring (see Definition
2.8)), the quotient of the valuation ring by the n-th power of the maximal ideal and
the theory of the valuation group.

Fact 1.2. [] Let (K;, R; (n), ;) be finitely ramified henselian valued fields of mived
characteristic, where R; () is the n-th residue ring and T'; is the valuation group
respectively for i = 1,2. The following are equivalent:

(1) Kl = Kg.

(2) Ri,(n) = Ro (n) for eachn >1 and I'y = T'y.

Motivated by Fact [[L2] we ask the following related question on isomorphisms.

Question 1.3. Given two complete discrete valued fields K1 and Ko of mized
characteristic with perfect residue fields, if the n-th residue rings of K1 and Ko are
isomorphic for each n > 1, then are K1 and Ko isomorphic? Moreover, is there
N > 0 such that K1 and Ko are isomorphic if the N-th residue rings of K1 and Ks
are isomorphic?

We give a comment on Question[[.3l Macintyre in [16] raised the following question
on the problem of lifting of homomorphisms of the n-th residue rings for more
general rings.

Question 1.4. Are two complete local noetherian rings A and B isomorphic if the
n-th residue rings of A and B are isomorphic for each n > 17

In [I6], van den Dries gave a positive answer to Question [[4] in the case that the
residue fields are algebraic over their prime fields. Furthermore, given complete
local noetherian rings A and B, it is enough to check whether the N-th residue
rings of A and B are isomorphic for some N = N(A, B) depending on A and B.
Note that van den Dries showed the existence of a non explicit bound NV, and in
general, there is a counter example by Gabber in [16] for Question 4

Next we recall the following well-known fact on unramified complete discrete
valuation rings.

Fact 1.5. [15]

(1) Let k be a perfect field of characteristic p. Then there exists a complete
discrete valuation ring of characteristic 0 which is unramified and has k as
its residue field. Such a ring is unique up to isomorphism. This unique
ring is called the ring of Witt vectors of k, denoted by W (k).

(2) Let Ry and Rz be complete discrete valuation rings of mized characteristic
with perfect residue fields ki and ko respectively. Suppose Ry is unrami-
fied. Then for every homomorphism ¢ : ki — ko, there exists a unique
homomorphism g : Ry — Ro making the following diagram commutative:

R1 L>]'%2

Prl,ll Prz,ll

kl L kz,

where two vertical maps are the canonical epimorphisms.

In categorical setting, Fact is equivalent to the following statement.
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Fact 1.6. Let C, be the category of complete unramified discrete valuation rings of
mized characteristic (0, p) with perfect residue fields and R, the category of perfect
fields of characteristic p. Then C, is equivalent to R,. More precisely, there is a
functor L' : R, — C, which satisfies:
e Prol/ is equivalent to the identity functor Idr, where Pr: Cp — R, is
the natural projection functor.
e L' oPr is equivalent to Ide, .

Based on Question [[L3] and Fact [[LG, we ask the following generalized questions for
the finitely ramified case.

Question 1.7. (1) For a principal Artinian local ring R of length n with a per-
fect residue field, is there a unique complete discrete valuation ring R which
has R as its n-th residue ring? Moreover, if it has a positive answer, can a
lower bound for such n be effectively computed in terms of the ramification
index of R?

(2) Given complete discrete valuation rings Ry and Re of mized characteristic
with perfect residue fields, let Ry () and Ry (y,,) be the ni-th residue ring
of R1 and the na-th residue ring of Ra respectively. If ni and no are large
enough, is there a unique lifting homomorphism g : Ry — Ro such that
g induces a given homomorphism ¢ : Ry (n,) — Ra (n,)? Moreover, can
such lower bounds on ny and no be effectively computed in terms of the
ramification indices of R1 and Ro?

Question 1.8. Let C,. be the category of complete discrete valuation rings of
mized characteristic (0,p) with perfect residue fields and ramification index e. For
n > e, let Ry . be the category of principal Artinian local rings of length n having
ramification index e and perfect residue fields (see at the beginning of SectionH for
the precise definition). Let Pry, : Cp. — R} . be the natural projection functor. Is
there a lifting functor L : Ry . — Cp, o which satisfies:

e Pr,, oL is equivalent to IdR; .-
e LoPr, is equivalent to Idc, ..

In general, the answer for Question [[71(2) is not positive, that is, there is a homo-
morphism ¢ : Ry ,, — Ra 5, such that no homomorphism from R; into s induces
¢ (see Example BI). Instead of finding a ‘usual’ lifting in the sense of Question
[8 we will show that for sufficiently large no, if there is a given homomorphism
¢ Ry (n,) — Ra,(n,), then there is an ‘approximate’ lifting g : Ry — Ry of ¢
(see Definition B.4)).

Let us come back to the question of elementary equivalence. In [4], Basarab
posed the following question (see [4 page 23-24]):

Question 1.9. For a finitely ramified henselian valued field K of ramification index
e, is there a finite integer N' > 1 depending on K such that any finitely ramified
henselian valued field of the same ramification index e is elementarily equivalent to
K if their N'-th residue rings are elementarily equivalent and their value groups
are elementarily equivalent?

Given a finitely ramified henselian valued field K, Basarab in [4] denoted the min-
imal number N’; which satisfies the condition in Question [L9 by A(T) for the
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complete theory T of K. He showed that A\(T") for a local field K is finite but did
not give any explicit value of \(T).

The goal of this paper is to answer these questions when the residue fields are
perfect. Its organization is as follows. In Section Bl we recall basic definitions
and facts. In Section Bl we answer Question positively for the perfect residue
field case in Theorem B7 Our main result shows that if ny is sufficiently large,
then for a given homomorphism ¢ : Ry (,,) — Ra (n,), there is a homomorphism
L(¢) : Ry — R satisfying a lifting property similar to that of the unramified
case. This provides an answer for Question Also, the lifting map L provides
an answer for Question [[7(2) and Question [[71(1). In Section [ we concentrate
on Question [[L8 We can show that L is compatible with the composition of ho-
momorphisms between residue rings. More precisely, L(¢2 o ¢1) = L(¢2) o L(¢1)
for any ¢1 : Ry (n,) — Ro,(ny) and ¢2 : Ry (5,) — R3 (n,)- This defines a functor
L: Ry . — Cpe for sufficiently large n. We prove that a lower bound for n depends
only on the ramification index e and the prime number p. Even though L does not
give an equivalence between Ry . and Cp ., it turns out that L satisfies a similar
functorial property to that of L' : R, — C,. This provides an answer for Ques-
tion In Section Bl we reduce the problem on elementary equivalence between
finitely ramified henselian valued fields of mixed characteristic to the problem on
isometricity between complete discrete valued fields of mixed characteristic. Using
results in Section Bl we improve Basarab’s result on the AKE-principle which gives
a positive answer to Question[[.9 when the residue fields are perfect. Under certain
conditions, we calculate A(T') explicitly for the tame case and get a lower bound
for A\(T) for the wild case. Surprisingly we show that A(7") can be 1 even when K
is not unramified. As a special case, we conclude that A(T) is 1 or e + 1 if p 1 e,
and \(T) > e+ 1if p | e when K is a finitely ramified henselian subfield of C, with
the ramification index e.

2. PRELIMINARIES

In this section, we introduce basic notations, terminologies, and several prelim-
inary facts which will be used in this paper. We denote a valued field by a tuple
(K,R,m,v, k,T) consisting of the following data : K is the underlying field, R is
the valuation ring, m is the maximal ideal of R, v is the valuation, k is the residue
field, and T is the value group. Hereafter, the full tuple (K, R,m,v, k,T') will be
abbreviated in accordance with the situational need for the components. For any
field L, L9 denotes a fixed algebraic closure of L.

Notation 2.1. Let (L,v) be a valued field of mized characteristic (0,p) whose
value group is contained in R. We define a normalized valuation T on L of v by
the property U(p) = 1, that is, v(p)U = v. We denote an extended valuation of U
on L% by . Note that U is unique when L is henselian.

Definition 2.2. Let (K,v, k,T) be a valued field of characteristic zero. We say
(K,v) is unramified if char(k) = 0, or char(k) = p and v(p) is the minimal
positive element in T' for p > 0. We say (K,v) is ramified if it is not unramified.

Definition 2.3. Let (K, R,v,k,T') be a valued field whose residue field has prime
characteristic p.
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(1) We say (K, R,v,k,T) is finitely ramified if K is ramified and the set {y €
Tl 0 <~y <vw(p)} is finite. Forxz € R, we write e,(x) :=[{y €T 0 <y <
v(x)}|. If there is no confusion, we write e(x) for e,(x). The number e, (p),
which is the cardinality of {y € T| 0 <~ <wv(p)}, is called the ramification
index of (K,v).

(2) Let (K,R,v,k,T) be finitely ramified. If p does not divide e,(p), we say
(K,v) is tamely ramified. Otherwise, we say (K,v) is wildly ramified.

Note that if a valued field of mixed characteristic has a finite ramification index,
then its value group has a minimum positive element.

Definition 2.4. Let (R,v, k) be a complete discrete valuation ring of mized char-
acteristic with a perfect residue field. Let (R',v', k') be a finite extension of R. Let
K and K’ be fraction fields of R and R’ respectively. If k = k', we say that R’ is a
totally ramified extension of R, or K’ is a totally ramified extension of K.

Definition 2.5. Let (Ki,v1) and (Ks,v2) be valued fields. Let R} and R be
subrings of K1 and Ko respectively. Let f : R} — R, be an injective ring homo-
morphism. We say f is an isometry if for a,b € RY,

vi(a) > vi(b) & vo(f(a)) > va(f(b)).

Fact 2.6. Let (Ry,11) and (Ra,va) be finitely ramified valuation rings of mized
characteristic (0,p) whose value groups are isomorphic to Z. Let f: Ry — Ra be a
ring homomorphism. Then we have the following.
(1) f: Ry — Ry is an isometry.
(2) Let K1 and Ky be the fraction fields of Ry and Ry respectively. Then the
homomorphism K1 — Ko induced by f is an isometry.
(3) If both of valuation groups of Ry and Ra are contained in a common ordered
abelian group and v1(p) = va(p), then vi(x) = vo(f(x)) for any x € R;.

Proof. (1) We have f(n) = n for all n € Z. Take a € R;y. Since f sends units to
units, vo(f(a)) = 0 if v1(a) = 0. To show that f is an isometry, it is enough to
show that vo(f(a)) > 0 if v1(a) > 0. Suppose vi(a) > 0. Then there is k € R;
such that ka™ = p™ for some n, m > 0 since R; is finitely ramified. Since f(p) = p,
we have that p™ = f(p™) = f(k)f(a)™. Therefore, we have that

m m
n(@) = Zor(p), valf(a)) = Ta) (4
and f is injective. Thus, f is an isometry.

(2) This follows directly from (1).
(3) This follows from (x). O

Fact 2.7. Let (K1,11) and (Ka,v2) be valued fields whose value groups are con-
tained in R. Let f : Ki — Ky be an isometry. Suppose Ki is henselian. Let
f: Kfl‘q — K;l‘q be an extended homomorphism of f. Then f is an isometry.

Proof. There are two valuations on f(K9), 770 f~* and Va|f(gatoy where va| 5 geatay
1 1

is the restriction of 7 to f(K ). Since f is an isometry, the restrictions of 77 o f~*

and V~2|f~(Kazg) to f(K1) are equivalent, in fact, they are equal since (71 0 f~1)(p) =
1 o~
172|]—;(Kazg)(p) = 1. Since Kj is henselian, f(K;) is Henselian. Hence, vy o f~1 is
1

equal to 1| ) by the henselian property. This shows that fis an isometry. [
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Definition 2.8. For a local ring R with mazimal ideal m, we denote R/m" by Ry,
and we call R,) the n-th residue ring of R. In particular, Ry is the residue field
of R. For each m > n, we write pr,, : R — R,y and pr} : R(y,) — R(y) for the
canonical epimorphisms respectively.

For R-algebras S7 and Ss, we denote the set of R-algebra homomorphisms from Sy
to S by Hompg(S1, S2), and we write Hom(S, S2) for Homy(S1, S2).

We recall some facts on the structure of finite extensions of unramified complete
valued fields.

Fact 2.9. Let (R,v) be a complete discrete valuation ring of mized characteristic
(0,p) with perfect residue field k whose valuation group is Z. Then W (k) can be
embedded as a subring of R and R is a free W (k)-module of rank v(p). Moreover,
R is a W (k)-algebra generated by 7, denoted by W (k)[r], where 7 is a uniformizer
of R.

Proof. Chapter 2, Section 5 of [15] O

Fact 2.10. Let A be a ring that is Hausdorff and complete for a topology defined
by a decreasing sequence a1 DO as D ... of ideals such that a, - ay C Apym. Assume
that the residue ring A1 = A/ay is a perfect field of characteristic p. Then:

(1) There exists a unique system of representatives h : Ay — A which com-
mute with p-th powers: h(NP) = h(X\)P. This system of representatives is
called the set of Teichmiiller representatives.

(2) In order for a € A to belong to S = h(A1), it is necessary and sufficient
that a be a p™-th power for all n > 0.

(3) This system of representatives is multiplicative which means

h(Ap) = h(A)h(p)
for all \,p € Ay.

(4) S contains 0 and 1.
(5) S\ {0} is a subgroup of the unit group of A.

Proof. (1)(2)(3): Chapter 2, Section 4 of [I5]
(4): 0 and 1 satisfy (2).
(5): (3) and (4) show that S\ {0} is a subgroup of the unit group of A. O

Remark 2.11. Let (R, m) be a complete discrete valuation ring of mized character-
istic (0,p) with perfect residue field. By Fact[Z10, R and R(,) have the sets S and
Sy of Teichmiiller representatives respectively. Then, we have that pr,(S) = Sy,.

Proof. It is clear that pr, (S) C S,,. Since each of S,, and S bijectively corresponds
to R/m by Fact 20 the inclusion must be equality. O

Remark 2.12. Let (R, v) be a complete discrete valuation ring of mized character-
istic (0,p) with perfect residue field. Let S be the set of Teichmiiller representatives
and let  be a uniformizer. Then, for any x € R, there is a unique infinite sequence
(Xi)i>o of elements in S such that x =", P

Proof. Fix x € R. By Fact 210 we inductively choose A;’s in S such that v(x —
St o Aim™) > v(™) for each n > 0. Then, we have that z = Y, \;w*. It remains
to show that such a sequence is unique. Let ()\}) be a sequence of elements in S
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such that z = Y, Xjw*. Suppose that \; # X} for some i. Let iy be the smallest
index such that A\;, # \; . Then, we have that

T —
pry (/\io) = Py

. T — Zi<ig )‘/ﬂri
e U e

= prl()\éo)v
which implies that A\;; = A, , a contradiction. Thus, (A\;) = (\}). O

107

The following facts are useful to effectively compute N in Question[[.3] (see Theorem
B and Theorem B.10).

Fact 2.13 (Krasner’s lemma). Let (K, v) be a henselian valued field and let a,b €
K9, Suppose a is separable over K(b). Suppose that for all embeddings o(# id)
of K(a) over K, we have

v(b—a)>v(o(a) —a).
Then K (a) C K(b).
Proof. See Chapter 2 of [12] or Theorem 4.1.7 of [6]. O

Fact 2.14. Let (R,mp) C (S,mg) be discrete valuation rings. Suppose S = R[q]
for some o € S and S is a finitely generated R-module so that mgS = mg for a
positive integer e. Suppose the residue fields of R and S are of characteristic p > 0.
Let f(z) in R[z] be a monic irreducible polynomial of a over R.
(1) The different Dg/r of S/R is a principal ideal generated by f'(c)
(2) Letvg be the valuation corresponding to S. Let s be the power which satisfies
mg = Dg/r. Then one has

s=e—1, if S is tamely ramified over R, that is, pte;
e<s<e—1+wvg(e), ifS iswildly ramified over R, that is, p | e.
Proof. Chapter 3, Section 2 of [I3]. O

For model theory of valued fields, we take the language of valued fields with
three types of sorts for valuation fields, residue fields, and value groups. Let Lx =
{+,—,+0,1;|} be a ring language with a binary relation | for valued fields, where
we interpret the binary relation | as a | b if v(a) < v(b) for a,b € K, L}, =
{+,—',;0",1'} be the ring language for residue fields, and Lr = {+*;0*; <} be
the ordered group language for valuation groups. The language of valued fields is the
language L4 = Lx ULy UL equipped with function symbols pr;, and prp, where
pr; and prp are interpreted as the canonical surjctive maps from the valuation ring
to the residue field and from the valued field to the valuation group respectively.
Next, we consider an extended language of L, by adding the ring languages for
the n-th residue rings and function symbols pr,, and pr}}, for n > m, where pr,,
and pr)y, are interpreted as the canonical epimorphisms from the valuation ring
to the m-th residue ring and from the n-th residue ring to the m-th residue ring
respectively. For each n > 1, let ER(n) = {+n, —n, n;O0n, 1n} be the ring language
for the n-th residue ring. For n = 1, we identify Lg,, = L. We get an extended
language Lyair = Lya U Un21 Lp,, for valued fields. Let (K1,v1,k1,T1) and
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(K2,v9,ko,T'2) be valued fields, and let Ry (,) and Ry () be the n-th residue rings
of (K1,v1) and (K2, 19) respectively. We say (K7,v1) and (Ka,vs) are elementarily
equivalent if they are elementarily equivalent in Lx. If (K1,v1) and (Ks,1v2) are
elementarily equivalent, then

e Ly and ko are elementarily equivalent in Lg;
e ['; and 'y are elementarily equivalent in Lr; and
® Ry (n) and Ry () are elementarily equivalent in Lp,, for each n > 1.

Remark 2.15. Let (K1,11,T1) and (Ka,v2,T2) be valued fields. Suppose
® Ry (n) = Ra (n) as rings in the language Lg,,, for eachn > 1;
o I'y =19 as ordered abelian groups in the language Lr.

Then there are Ny-saturated elementary extensions (Ki,vy,T}) and (K5, v5,T%) of
K1 and Ko such that

° R/l,(n) = R’27(n) forn >1;
. TV Ty,
where Rll,(n) and R'Q)(n) are the n-th residue rings of K| and K/ respectively.

Proof. 1t is easily deduced from the the Keisler-Shelah isomorphism theorem. [J
Next, we review coarse valuations. For the coarse valuations, we refer to [I1J, [14].

Remark/Definition 2.16. [14, page 25-27] Suppose (K, v, k,T') is finitely rami-
fied. Let w be a uniformizer so that v(w) is the smallest positive element in T'. Let
T° be the convexr subgroup of T generated by v(mw) and v : K\ {0} — T'/T° be a
map sending x(# 0) € K to v(x) +T° € T'/T°. The map v is a valuation, called
the coarse valuation. The residue field K° of (K,v), called the core field of (K,v),
forms a valued field equipped with a valuation v°, whose value group is I'°. More
precisely, the valuation v° is defined as follows: Let pr;, : R, — K° be the canon-
ical epimorphism and let x € Ry. If 2° :=pry(z) € K°\ {0}, then v°(z°) := v(z).
And 2° =0 € K° if and only if v(z) >~ for all v € T°.

Remark 2.17. (1) Let R,, Ry, and R,o be the valuation rings of (K,v),

(K,v), and (K°,v°) respectively. Then (pr;) ' (Rye) = R,.

(2) Let R,y and R, be the n-th residue rings of (K,v) and (K°,v°) respec-
tively. Then there is a canonical isomorphism 0, : R,y — R("n) such that
pr¥” o(pr, |r,) = Onopr,, where pr,, : R, — Ry and pr¥ : Rye — R,
are the canonical epimorphisms.

(3) If (K,v) is henselian, then (K,v) is henselian.

(4) If (K,v) is Ny-saturated, then (K°,v°) is complete.

Proof. (1) Note that R, := {z € K| v(z) > 0} = {z € K| v(z) > ~ for some v €
I'°}. Let € Ry be such that pr,(x) =: 2° € Rye, that is, v°(z°)(e I'°) > 0. If
2°=0,v(x) >~y forally €I'° and z € R,. If 2° # 0, then v°(2°) = v(z) > 0 in
I'°, and hence v(z) > 0 in I'. Thus = € R,. Therefore, for x € R;, € R, if and
only if x° € Ryo.

(2) Note that each 6, is induced from pr, |g, : R, — Ryo. It is easy to see
that each 6,, is surjective. To show that 6, is injective, it is enough to show that
v(z) > n if and only if v°(2°) > n for x € R,. It clearly comes from the definition
of v° in (1).

(3)-(4) Section 5 of [I1]. O

>
:L,O
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Remark 2.18. By combining Fact [T, Remark 215 and Remark 217, we reduce
the problem on elementary equivalence between finitely ramified henselian valued
fields of mixed characteristic to the problem on isometricity between complete dis-
crete valued fields of mized characteristic whose n-th residue rings are isomorphic
for each n > 1. To our knowledge, this strategy first appeared in [I1].

3. LIFTING HOMOMORPHISMS

From now on, if there is no comment, we consider only complete
discrete valued fields of mixed characteristic (0,p) with perfect residue
fields, and we assume that valuation groups are Z so that for a valued
field (L, R,v), v(z) = e,(x) for € R. Let (R, v, k) be a valuation ring. Let m be
a uniformizer of R. Let L and K be the fraction fields of R and W (k) respectively.

Definition 3.1. If L is ramified, we denote the maximal value
max {7 (1 — o(r)) : 0 € Homg (L, L“lg) , o(m) # 7}
by M(R)r or M(L)x.

Lemma 3.2. Let (R;,m;,v;, k;) be a valuation ring and let 7w; be a uniformizer of
R; fori=1,2. Let S; be the set of Teichmiiller representatives of R; for 1 =1,2.

(1) For any homomorphism ¢ : Ry (5,) — Ro (n,), #(S1 +mi") is contained
in So + my2. Similarly, for any homomorphism g : R — Ra, g(S1) is
contained in Ss.

(2) For any homomorphism ¢ : Ry (n,) — Ra(ny), ¢ (W (k1) +mi")/mi")
is contained in (W(ke) + m3?)/m52.  Similarly, for any homomorphism
g:R1 — Ra, g(W(ky)) is contained in W (kz).

Proof. (1) This comes from Fact and Remark 2111

(2) Since W (k;)/pW (k;) = R;/m; = k;, S; is contained in W (k;) by Fact
Since any element a in W (k1) can be uniquely written as a = - ; A,p"” where A, is
in S1, we have that ¢ (W (k1) +m7")/m]") C (W (k) +m5?)/m5? and g(W (k1)) C
W (kz2) by Lemma B.21(1). O

Lemma 3.3. Let L; and K; be the fraction fields of R; and W (k;) respectively for
i=1,2.

(1) Let a be a uniformizer of Ry. Then M(Ry)r, = M(R1)s. We write
M(R)», = M(Ry).

(2) Suppose [Ly : K1] = [L2 : Ka] = e, that is, v1(p) = v2(p) = e. Suppose
there is an isometry g : Ly — Lo. Then M(Ry) = M(R2).

Proof. (1) By Remark 212 we can write v = Y~ A, where A, is a Teichmiiller
representative of Ry for each r and A\ # 0. Since Ry/mq = k1, A, is in W(k;) for
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each r by Fact For any o in Homg, (L1, K'9),
a—o(a) —Z)\ T — 0o (Z)\Tw{>
r=1 r=1
Z ( -0 771))
— (ﬂ'l — 0(W1)> Z/\T Zﬂz_l_J
r=1

=0

and 71 (a — o(a)) = v1(m — o(m1)) because

i/\r Z?TT =i =0.
r=1

So, we have M (R1)r, = M(R1)a-

(2) By Lemma[B21(2), g(K1) is contained in Ks. Let fi be the monic irreducible
polynomial of 1 over W (ky). Since g is an isometry, we have 75(g(m)) = 71(m) =
1/e, and hence, g(m) is a uniformizer of Ly. Let g : LY —s L3 be an extended
homomorphism of g. If we write f; = 2° + - 4+ a12 + ag, we have that

9(f1) = 2+ -+ g(ar)z + g(ao)

is the monic irreducible polynomial of g(m;) over Ko since g(K;) is contained in
K. Then by Lemma B3 (1) and Fact 27 we get

M(Rz) = max{vz (9(m1) —n) : g(f1)(n) = 0, n # g(m)}
= max {72 (g(m) — g(m1)) : fi(my) =0, m # m}
=max{v; (m — 7)) : fi(m]) =0, © #m}
= M(Ry),
which finishes the proof. O

Now we introduce the notion of lifting maps.

Definition 3.4. Let R; and Ra be complete discrete valuation rings of character-
istic 0 with perfect residue fields k1 and ko of characteristic p respectively. Let m;
be the mazimal ideal of R; for i = 1,2. Let L; and K; be the fraction fields of R;
and W (k;) for i = 1,2 respectively. For any homomorphism ¢ : Ry () — Ra (ny),
we say that a homomorphism g : Ry — Ra is a (ny, ne)-lifting of ¢ if g satisfies
the following:
e For any x in Ry, there exists a representative B, of ¢(x + mi*) which
satisfies
v2(g(x) — Bz) > M(Ry)
® Pred1 OPry g = pra; °g where ¢rea,1 @ k1 — ko denotes the natural re-
duction map of ¢ and pr;, : Ry — k; is the canonical epimorphism for
i=1,2. '
When such g is unique, we denote g by Ly, n,(¢). When Ly, n,(¢) exists for all
¢ 2 Ryny) — Ra(ny), we write L, n, : Hom(Ry (5, Ra, (n,)) — Hom(Ry, Ra).
When n1 = ng = n, we denote Ly, », by L, and say that L,, is an n-lifting.
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The following example explains why we need our ‘approximate’ lifting map for the
ramified case.

Example 3.5. If we take Ry = Ry = Z3[\/3] and ny = ny = 2n, then Ry (2n) =
Ry (on) = (Z3/3"Zs)[x]/(2* — 3). Then ¢ : a+bx — a+ (143" 1)ba = ¢(a + bx)
defines an isomorphism between Ry (2n) and Rg (2n). But when n > 1, there is
no homomorphism g : Ri — Ra which induces ¢ since the Galois conjugates of
V3 are £v/3. This shows that we can not guarantee that the following diagram is

commutative:

Rl Lnl,ng (¢) R2

! !

[
Ryny)y —— Ramy)

We introduce a weaker condition of lifting map, which will turn out to be equiv-
alent to Definition B4l (see Proposition [3.6]). This weaker notion is useful to show
the functoriality of lifting maps (see Proposition [L.3)).

Proposition 3.6. For a homomorphism ¢ : Ry (n,) — Ra (n,), suppose that a
homomorphism g : R — Rs satisfies the following:

o There exists a representaive 8 of ¢p(m + my*t) which satisfies
vz (g(m) — B) > max {2 (o (g(m1)) = B) 1 o (g(m1)) # g(m1)}

where o runs through all of Homg, (Lg, L3").
® ($red,1 ©Pryq = DPryq0g where Grean @ ki — ko is the natural reduction
map of ¢.
(1) We have that

m;ix{ﬁz (o (g9(m1)) = B) o (9(m)) # g(m)} = M(Ry).

(2) For any x in Ry, there exists a representative By of ¢(x + mi') which
satisfies

V2 (g(x) — Ba) > M(R1)
so that g is a (n1,ne)-lifting of ¢.
Proof. (1) For o € Homp, (La, L3") with o(g(m1)) # g(m1), we have
)= B+ B—g(m))
g9(m)) —B), v2(g(m) — B)}
v (0 (9(m)) = B)

where the second equality follows from the ultrametric inequality and the assump-

tion v2(g(m1) — B) > v2(o(g(m1)) — B).
This shows

M(Ry) = max {1 (11 — o' (m)) : 0'(m1) # ™}
= max {3 (¢(m) — o (9(m))) : 0 (9(m1)) # g(m1)}
= mgx{ﬁg (o (g(m)) —PB) : o (g(m)) # g(m)}

vz (0 (g9(m)) — g(m)) = 2 (0 (g(m

= min {3 (o

o~ —
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where ¢’ runs through all of Homg, (L1, L?9). The second equality follows from
Lemma [331(2) because [K2(g(m1)) : Ka] is equal to [Ly : K] and g(m) is a uni-

formizer of Ky(g(m)) by Fact

(2) For any z in Ry, we can write = )2/ A,w] where A, is in Sy for each r.

Then
p(z+mit) = ¢ ((Z m;) + m’1“> = <Z nﬂ’”) +mjp?
r=0 r=0

where 7, is a representative of ¢(\, +m7?) contained in Se which is guaranteed by
Lemma [3:21(1). In particular )2 7,3" is a representative of ¢(x + m}*), say f,.
By Lemma B2 (1) again, we have g(\,) = 7, and hence,

g(x) =g <Z Aﬂff) => 7g(m)"
r=0 r=0

We obtain
172(g($) - ﬂx) =1 <Z Trg(Trl)T - ZTTﬂT>
r=0 r=0
[e%s) r—1
=12 (9(”1) - ﬁ) o | D am) s
r=1 7=0
> M(Rl)
because

vz (g(m) — B) > max {2 (o (9(m1)) — B) 1 o (g(m1)) # g(m1)}
= M(Ry).
So g is a (n1, ng)-lifting of ¢. O

The following theorem shows that there is a unique lifting if we enlarge the
lengths of residue rings.

Theorem 3.7. Suppose ny > M(Ry)vi(p)ve(p) and Hom(Ry (n,), R2 (n,)) s not
empty. Then there exists a unique (n1,n2)-lifting L, n, : Hom(Ry (n,), R2 (ny)) —
Hom(Ry, Rz). Also, L, ny (@) is an isomorphism when ¢ : Ry () — Ra (ny) 18
an isomorphism.

Proof. Let ¢ be a homomorphism from Ry (,,) to Ry (5,). By LemmaB3.21(2), let
W (k1) +mi* R W (ka) + my?

¢7‘es : 1 2
my my

be the restrition map of ¢. For an element a = > >~  A\p" in W (k;), we define
Gres - W(kl) — W(kQ) by the rule

Gres : W(k1) — Wi(kz2), a = gres(a) = ZTrpT
r=0

where 7, is a unique representative of ¢p.s(A, + mj*) which is contained in Ss,
the set of Teichmiiller representatives of Rs. Then, by the proof of Fact [ (2)
(c.f. the proof of [I5] Proposition 10]), gres is & homomorphism and g,.s induces
Ores. By Fact 29 Ly = Ki(«) is totally ramified of degree vq(p) over Ky, that
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is, [L1 : Ki] = v1(p), where @ = 71 is a uniformizer of Ry. Let f be the monic
irreducible polynomial of « over K;. The ring homomorphism g,..s induces a field
homomorphism from K7 into K5. We still denote the fraction field homomorphism
by gres if there is no confusion. Then g,.s : K1 — K> is an isometry by Fact
Let Gres : K7 g Ky '9 he an extended field homomorphism of Jres, which is also
an isometry by Fact 271 Write
f :Il’l(p) + e +alx+a’0
=(@—a1) (2 —ay )
where a@ = o1, and put
gres(f) :xyl(p) + -+ Jres (al)JJ + gres(aO)
= (@ = gres(a1)) -+ (& = Gres(w, () -

We have that [K2(gres(a)) : K] < [Ki(a) : K1] = vi(p) and that 03(gres(a)) =
v1(a) = 1/v1(p) because gres is an isometry. Therefore g,..s(f) is the monic irre-

ducible polynomial of g es(c) over Ks. Let 3 be any representative of ¢(a + mj?).
Since gres induces @5, we can write

0+my® = ¢(f(a) +my?)
= g(a+mi) W 4o 4 dlar +mi)g(a + mi) + $lag + my”)
= gres(f)(B) + m3>.
This shows that gres(f)(8) is in m5? and

V2 (Gres(f)(B)) = n2 > M (Rq1)vi(p)va(p).

We claim that there exists an index ig satisfying v2(f — gres(ai,)) > M(Ry). If
U2(B = gres(ai)) < M(Ry) for all 4, then

V2 (gres()(B)) = 12 <H (8- g/T\/eS(o‘i))> < M(R1)wni(p).

This shows
na S 1] (gres(f)(ﬁ)) = V2(p)ﬁ2 (gres(f)(ﬁ)) S M(RI)VI (p)y2(p)u

which is impossible. Thus there is an index iy satisfying

U2 (B = gres(aiy)) > M(R1) = max {75 (gres(a1) — gres(aj)) 1 § = 2, .., v1(p)}
where the equality follows from the fact that g,.s is an isometry. Hence, by Fact
ZI3 Ko(gres(i,)) € Ka2(B8) C La. We define an extended homomorphism g :
Ly — Ly of gpes : K1 — Ko by the rule w1 — g(71) = gres(@i,). Then, g induces
the restricted homomorphism from R; to Ry which is still denoted by g. Also, g is
a (n1,nz)-lifting of ¢ because grcs induces ¢,s and

M(Ry) = mgx{ﬁg (0 (g(m)) = B) 2o (g(m)) # g(m)}

by Lemma 3.6l

Suppose that g1 : Ry — Rs is an (n1,ng)-lifting of ¢ other than g. We note
that the restriction g|s, of g to Sy is equal to ¢1]s, by Fact From Remark Z.12]
and gls, = g1ls,, it follows that g1|w (,) = glw ). Since Ry = W (k1)[m1], g = 91
if g(m1) = g1(m). So, g(m1) # g1(m1), and by Proposition B.Gl

Vs (g1(m1) — ) > mjx{ﬁz (0 (g1(m1)) = B) 10 (g1 (m1)) # g1(m1)} .
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Since g1 |w k) = 9w (k)> 9(m1) and g1 (m1) have the same minimal polynomial over
W (k2) and

{7(nm)): 0 € Hompes(La. 151} = {0 g(m) 50 € Homue, (L2, £5)}

In particular gi(m1) = o(g(m)) for some o € Homp,(Ly, L3"). Since g (m) #
g(m), we have the inequalities 7 (g (1) — #) > 72(g(m) — 8) and 7 (g (1) — ) <
v2(g(m1) — B) simultaneously by the first bullet point of Proposition 3.6l This gives
a contradiction, and hence, we obtain the uniqueness of the lifting.

When ¢ is an isomorphism, so are ¢y..s and g,.s. We obtain [Ls : Ko] = [L7 : K]
from the assumption that no > M (R1)v1(p)va(p), and hence, Ly, ,,(¢) is also an
isomorphism. 0

We note that the proof of TheoremB.7works for any representative 8 of ¢(my+m7'*).
Example 3.8. Let Ry = Z3[V/3] and Ry = Z3[\/=3]. There is no homomorphism

between Ry and Ra by Kummer theory. But there is an isomorphism

¢: Ry 2) = Zy[V3) — Ry (o) = 7Z3[\/_3]
AN 3Zs[v/—3)
given by the rule a + b\/3 — a + by/=3. Since v1(3) = 11(3) = 2 and M(R;) =
(V3 — (=V3)) = 1/2, we obtain M(Ry)vi(3)v2(3) = 2. Hence the lower bound
for my in Theorem B.7 is the best possible in this case. This phenomenon will be
generalized in Proposition L5

We give a generalized version of Fact [L5 (1) for the ramified case. We first give
a useful upper bound for M (R).

Lemma 3.9. Let (R,v, k) be a valuation ring and let w be a uniformizer of R. Let
L and K be fraction fields of R and W (k) respectively. Then,

L+ v(v(p))
v(p)

Proof. Let f be the monic irreducible polynomical of 7 over K, which is of degree
e:=v(p). Let m (:=7),...,m be the distinct zeros of f. We have v(r) = 1/e and
hence v(m; —7;) > 1/e for all i and j. Furthermore, by definition of M (R), we have
that for some 2 < ig < e,

e M(R)>D(r) =1; and

[ M(R) = /ﬁ(ﬂ'l — 7Ti0).

Consider the differentiation

M(R) <

f/:Z f

= (@ —m)

There are two cases.

e Tame case: Suppose L/K is tamely ramified. Hence, v(v(p)) = v(e) = 0.
It follows from Fact 214] that
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Since v(m; — ;) > 1/e , v(m —m;) = 1/e = M(R) for j # 1. Hence, we
have that
M(R) = 1_ L’/(e),

€ €

e Wild case: Suppose L/K is wildly ramified. Noting that v(m; — ;) > 1/e,
we have that

M(R) <v(m —mip) + ) (ﬁ(m —mi) - é)

2<i#ip<e
e (e=2) e—2
=7 [ TIm = m) | === = o) - &
i#1

<e—1—|—1/(e) e—2  1+4wv(e)
B e e N e

by Fact 214 again.

Therefore we get the desired result. 0

Theorem 3.10. Let R be a principal Artinian local ring of length n with perfect
residue field k of characteristic p and mazximal ideal W, that is, M = 0 and M" " #
0. Suppose that R has no finite subfield as a subring. For any positive integer a, if
a generates a monzero ideal @, we denote k by v(a). Suppose

v(p)R # 0 and n > v(p) +v(p)v(v(p)).

Then there exists a complete discrete valuation ring of characteristic 0 which has
R as its n-th residue ring. Also such a ring is unique up to isomorphism.

Proof. Any principal Artinian local ring is a homomorphic image of a discrete
valuation ring. This can be proved by Cohen structure theorem for complete local
rings (c.f. [I0]) or, more directly, by the property of CPU-rings (c.f. [9]). Since the
completion of a discrete valuation ring R has the same n-th residue ring as that of
R, we may assume that there are complete discrete valuation rings Ry and Ra such
that Ry (,) and Ry (,,) are isomorphic to R. We note that R; is of characteristic 0 for
i =1,2 because R has no finite subfield as a subring. Let L; and K be the fraction
fields of R; and W(k;) for i = 1,2 respectively. Then by Fact B9 L; = Ki(«)
where @ = 71 is a uniformizer of R;. By Lemma [3.9] we have that

M(Ri)vi(p)ra(p) < va(p)(1 +v1(vi(p))) = v(p)(1 + v(v(p)).

Note that v(v(p)) and v(p) are well-defined since v(p)R # 0 and R has no finite
subfield. The desired result follows from Theorem B.7 O

Note that the notation v(p) in Theorem is compatible with the previously
defined valuation. Suppose that a discrete valuation ring R with valuation v and
maximal ideal m has R as its residue ring. Then v(p) is equal to a power of the
maximal ideal generated by p, that is, pR = m”(®) as we noted in the proof of
Theorem [3.101
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4. FUNCTORIALITY

The main purpose of this section is to give a generalized version of Fact for
the ramified case. For a prime number p and a positive integer e, let C, . be a
category consisting of the following data:

e Ob(Cp,.) is the family of complete discrete valuation rings of mixed charac-
teristic having perfect residue fields of characteristic p and the ramification
index e; and

e Morc, . (R1, Ry) := Hom(Ry, Ry) for Ry and Ry in Ob(Cp..).

Let R} . be a category consisting of the following data:

e For n < e, Ob(R},) is the family of principal Artinian local rings R of
length n with perfect residue fields of characteristic p, and for n > e,
Ob(R}.) is the family of principal Artinian local rings R of length n with

e+1

perfect residue fields of characteristic p such that p € m®\ m“"" where m is

the maximal ideal of R; and
o MorRZ,C(R_l, Rj) := Hom(Ry, Ry) for Ry and Ry in Ob(R7, ),
Note that for ej, e > 1 and for n < eq, es, two categories R;yel, RZ& are the same.
For each m > n, let Pr, : C,. — R, and Pr;' : R}'. — R} . be the canonical
functors respectively.

Definition 4.1. Fiz a prime number p and a positive integer e.
(1) We say that the category Cp . is n-liftable if there is a functor L : R} . —
Cp,e which satisfies the following:
e (Pr,oL)(R) = R for each R in Ob(R,.).
e PryoL is equivalent to PrY.
e LoPr, is equivalent to Idc, ., the identity functor.
We say that L is a n-th lifting functor of Cp .
(2) The lifting number for Cp . is the smallest positive integer n such that Cp, .
s n-liftable. If there is no such n, we define the lifting number for Cp . to
be co.

We note that the condition (Pr, o L)(R) = R in the first bullet point in Definition
[£11(1) is weaker than the condition that Pr, o L is equivalent to Idng .- By Example
B3 Pr, oL is not equivalent to Idgy  in general.

Remark 4.2. (1) Suppose that there is a n-th lifting functor L : Ry . — Cpc.
For any R in Ob(R,..), L(R) is the unique (up to isomorphism) object in
Ob(Cp,e) which has R as its n-th residue ring. Indeed, suppose that R in
Ob(Cp.e) has R as its n-th residue ring. Since Lo Pr, is equivalent to the
identity functorIde, ., R =1de, . (R) is isomorphic to (Lo Pry,)(R) = L(R).

(2) The lifting number for C, is 1 by Fact [L.Al We will see that the lifting
number for Cp.. is always larger than e whenever e > 1 in Corollary 111

(8) Forn > e, a functor L1 := Ly, o Pr"! is a (n41)-th lifting functor of Cp.e
for any n-th lifting functor Ly, : Ry . — Cpe. The proof is as follows: For R
in Ob(Ryth), there exists a ring R in Ob(Cp ) which satisfies Pry1(R) =
R as noted in the proof of Theorem B.I0. Since there is a unique object in
Ob(Cp.e) which has Pr,(R) as its n-th residue ring by Remark L21(1), we
have that

(Prpt10Lyt1) (R) = Proyi o (L, oPr ™) (R) = Prp(R) = R.
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Also, Pry oLy, 41 = (PrioLy,)o PrzJrl is equivalent to Pr} o PrzJrl = Pr?Jrl
and
Lpt10Prpi = (Lyo PrZ‘H) oPrp+1 =L, 0oPr,

is equivalent to Idcg,, , .

Proposition 4.3. For 1 < i < 3, let (R;,m;,v;) be a complete discrete valua-
tion ring of mized characteristic (0,p) with a perfect residue field and let 7; be a
uniformizer of R;. For ¢b? : Ry (ny) —> Ra(n,) and »*3 Ry (ny)y — B3,(ny);
suppose that there are liftings g"2 : Ry — Ro and ¢*> : Ry — R3 of ¢ and
&% respectively.

If v1(p) = va(p), then g = g*3 o g+2 is a lifting of ¢*3 o 12, Moreover g is the
unique lifting of ¢*3 o ¢%2 when nz > M (Ra)va(p)vs(p).

Proof. By Fact[Z6l the liftings g''? and g2 are isometries. Also, since both 75 and
v3 are normalized, we have v3(g%3(z)) = va(z) for any € Ry. By Lemma B3
M(R1) = M(R3), say M. Since g>? is a lifting of ¢1:2, there is a representative 3;
of "2 (w1 +m7*) such that vz(g"2(m1) — B1) > M. We note that 31 is a uniformizer
of Ry. Since g2 is a lifting of ¢%3, there is a representative 3y of

(6% 0 612)(m1 +mi") = 6*%(By + m}?)

such that v3(g*3(81) — B2) > M.
If we write g12(m1) = 81 + xas where vp(xpr) > M, then

g(m) = ¢**(g"*(m)) = > (B1 +am).
Since 73(g*3(81) — B2) > M and v3(g*3(znr)) = v2(zp) > M,
U3(g(m1) — B2) = 3 (9> (B1) — B2 + 9> (zm)) > M.
The equality (¢*® 0 ¢"?),eq,1 0Py = pry; og follows directly from g = g*3 o g'-2.
By Proposition .6} ¢ is a lifting of ¢23 o ¢'+2.
When n3g > M(Rq)v2(p)vs(p) = M(R1)vi(p)rs(p), g is the unique lifting of
%3 o 12 by Theorem 3.7 O

Theorem 4.4. The lifting number for C, . is finite. More precisely, Cp. is (e +
ev(e) + 1)-liftable. Here v(e) denotes the exponent n such that e generates an ideal
m” of R in Ob(Cp..) where m denotes the mazimal ideal of R. The value v(e)
depends only on the prime number p and the ramification index e, in particular

v(e) is independent of the choice of R in Ob(Cp.).

Proof. Suppose n is bigger than e + ev(e). For any R, Ry and Ry in Ob(R; ), by
Theorem BI0, we define L, (R) to be a unique ring R in Ob(C, ) which satisfies
Pr,(R) = R. By Lemma B9 e + ev(e) > M(R)e?. By Theorem B.7 for any
¢ : Ry — Ry, there exists a unique n-th lifting map L(¢) : L(R;) — L(Rz), and
hence we obtain a lifting functor L, : R} . — Cp . by Proposition [4.3] O

Example can be generalized as follows.

Proposition 4.5. Let Ry/W (k) and Rs/W (k) be totally ramified extensions of
degree e. Then Ry () is isomorphic to Ry (o) as W (k)-algebras.

Proof. Let m; be a uniformizer of R; and let v; be the valuation corresponding to
R; for i = 1,2. By the theory of totally ramified extensions (see Chapter 2 of [12]
for example), the monic irreducible polynomial f; of m; over W (k) is an Eisenstein
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polynomial for ¢ = 1,2. If we write f; = 2¢ + aiye,lxe’l + -+ a;12 + a0, then
vi(p) = vi(aio) = e and v;(a; ;) > efori=1,2and j =1,2,...,e — 1. This shows

Wk)m] o W(k)z]

B0 =" = e
_ klz]
(z¢+ -+ ai1x + a;0)
_ kfz]
()’
and hence, Ry (. is isomorphic to Ry (o) as W (k)-algebras. O

For the tame case, we can calculate the lifting number. We denote a primitive
n-th root of unity by (,.

Lemma 4.6. Let k be a perfect field of characteristic p and let K be the fraction
field of W (k). Let e be a positive integer prime to p. Suppose that there is a prime
divisor | of e such that (in is in k* and (n+1 is not in k* for some n > 0. Then
there are two totally ramified extensions L1 and Lo of degree e over K which are
not isomorphic over Q.

Proof. We have (jn is in W(k)* by Hensel’s lemma, and (n+1 is not in W(k)*.
Then L; = K(¢/p) and Ly = K(3/p(n) are totally ramified extensions of degree
e over K. Suppose that there is an isomorphism o : Ly — L;. Since Galois
conjugates of /p and (g over Q are of the form \6/13(; and ¢/,. respectively for
some i and j with (j,e) =1,

o (\/%) =0 (/Plen) = /DChn

for some k prime to [. In particular, L; contains both /p and {/ﬁ(fln, and hence,
(n+1 is in Ly. This is a contradiction because L;/K is totally ramified. O

Corollary 4.7. Suppose that p does not divide e and e > 1. Then e + 1 is the
lifting number for Cp, ..

Proof. Since v(p) =0, e+ev(e)+1=e+1. By Theorem[d4 C, . is (e+ 1)-liftable.
Let IF, be the prime field of p elements. Let K be the fraction field of the Witt ring
W (k) of k =TF,((.). By Lemma L6 there are two totally ramified extensions L
and Lo of degree e over K such that there is no isomorphism between L; and L.
If Cp.c is e-liftable, Ly and Lo are isomorphic over K by Proposition .5l and it is a
contradiction. (]

Remark 4.8. Proposition 0] and Corollary B show the difference between the
unramified case and the tamely ramified case. We can regard the unramified valued
fields of mized characteristic as the tamely ramified valued fields having the ram-
ification index e = 1. If we apply Corollary 1 to Cp, the lifting number for Cp,
should be 1 + 1 = 2. However the argument in the proof of Corollary 1 does not
work for C,. For an unramified complete discrete valued field K, there is a unique
totally ramified extension of degree 1 over K, that is, K itself. Hence the fact that
the lifting number for Cp, is 1 does not contradict Corollary E.1
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For the wild case, we have the following example. Let Ry = Zy[v/2] and Ry =
Z5[v/10]. There is no homomorphism between R; and Ry by Kummer theory. But
there is an isomorphism between R; ) and Ry ) because

 LalV2] [ s

1,(6) = =
(6) (ﬁﬁ) (22 —2,8)
_ Z2 [:v] ~ Zg[\/ﬁ]
(x2 —10,8) (\/56)
Note that the last equality holds because (v/10)5Z5[v/10] = (v/2)%Z3[v/10]. This
shows that the lifting number for Ca2 is 2 4+ 2v(2) + 1 = 7 by Theorem 4 In
general, we have a lower bound e 4 1 of the lifting number for the wild case. To
prove this, we need the following lemma.

= 2,(6)

Lemma 4.9. Let k be a perfect field of characteristic p and let K be the fraction
field of the Witt ring W (k) of k. Let e be a positive integer divisible by p. Then
there are two totally ramified extensions L1 and Lo of degree e over K which are
not isomorphic over Q.

Proof. We write e = sp” for some positive integers s and r where s is prime to p.
Let Qo0 /Q be the cyclotomic Z,-extension, in particular Gal(Qs /Q) = Z,,. Let M,
be a unique subfield of Q. such that [M, : Q] = p". By the theory of cyclotomic
fields (c.f. [13, Chapter 1]), the Galois extension M, /Q is totally ramified at the
place above p. Let a be a uniformizer of M, corresponding to the place above p.
Since M, /Q is a Galois extension, M, = Q(a) = Q(c(a)) for any embedding o.
We fix an embedding Q9 ¢ K9,

Let L1 = K(p'/¢) = K(p'/*,p*/?") and Ly = K(p'/*, ). Then Ly and Ly are
totally ramified extensions of degree e over K. If there is an isomorphism o : Ly —
Ly, Ly contains both o(a) and p'/?". Since Q(a) = Q(o(a)), K(o(a)) = K(a) is
contained in L;. We note that [K(p'/?", a) : K(p'/?")] divides [K(a) : K] = p"
because K (a)/K is a Galois extension. Since

s = {Ll K (pl/pr)} = {Ll K (pl/pr,a)} [K (pl/pr,oz) :K(pl/pT)} ,
[K(p'/P",a) : K(p*/?")] divides s. Hence we obtain [K(p'/?",a) : K(p'/?")] =
ged(s,p”) = 1. This shows K (p'/?") = K (a) because [K (p*/?") : K] = [K(a) : K].
This is a contradiction, and hence, L; and Lo are not isomorphic. ]

Proposition 4.10. Let p be a prime number and let e be a positive integer divisible
by p. Then the lifting number for C, . is bigger than e.

Proof. By Lemmal4.9] there are two totally ramified extensions Ly and Ly of degree
e over Q, such that there is no isomorphism over Q, between L; and Lq. If C,
is e-liftable, L; and Ly are isomorphic over QQ, by Proposition and it is a
contradiction. Hence, the lifting number for C, . is bigger than e. (]

Corollary 4.11. The lifting number for C, . is bigger than e whenever e > 1.

Although we have the lower bound e + 1 and the upper bound e + ev(e) 4+ 1 of the
lifting number for C, ., we have no clue to calculate the lifting number explicitly
for the wild case.

Question 4.12. What is the lifting number for the wild case?
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5. AX-KOCHEN-ERSHOV PRINCIPLE FOR FINITELY RAMIFIED VALUED FIELDS

Our main goal in this section is to strengthen Basarab’s result on relative com-
pleteness for finitely ramified henselian valued fields of mixed characteristic with
perfect residue fields. In this section, we drop the restriction that a valu-
ation group is Z so that a valuation group can be an arbitrary ordered
abelian group. Recall that for a valued field (K, R,v,T), e,(z) is the number of
the positive elements of T" less than or equal to v(z) for z € R.

Remark 5.1. Let (K1,11) and (Ko, v2) be finitely ramified valued fields of mized
characteristic (0,p). Suppose Ry, = Ra,, for some n > min{e,, (p), ev, (p)}, where
Ry (ny and Ry () are the n-th residue rings of Ki and K» respectively. Then,

€uy (p) = Cuy (p)

Proof. Without loss of generality, we may assume that e; :=e,, (p) < ez := e, (p).
By the Keisler-Shelah isomorphism theorem, we may assume that R ,) and Ry ()
are isomorphic. Since n > e;, we have that pR; ) = m{* # 0 where m; is the
maximal ideals of Ry (). Since Ry () and Ry () are isomorphic, 0 # pRy () = m5?,
where my is the maximal ideal of Ry (,,), and e; = es.

Theorem 5.2. Let (K1,v1,T1) and (Ka,v2,T9) be finitely ramified henselian valued
fields of mized characteristic (0,p) with perfect residue fields. Let ng > ey, (p)(1 +
v, (ev, (p))). Then, the following are equivalent:

(1) K1 = KQ,’

(2) T'1 =T2 and Ry () = Ry (n) for each n > 1; and

(3) Fl = FQ and Rl,(no) = R2,(n0)-

Proof. Tt is easy to check (1) = (2) = (3). We show (3) = (1). Suppose Ry (n,) =
Ry (ny) and Ty = T'y. By Remark 215 we may assume that Ry (,,,) = Ra (ng)
and I'y = I'y, and that (K3,v1,') and (Ko,19,I'3) are Ny-saturated. Consider
the coarse valuations 7 and ©» of v; and 1o respectively and the valued fields
(K1,01,T1/T%) and (K3, 09, '3/T3), where I'S is the convex subgroup of I'; gener-
ated by the minimum positive element in T'; for ¢ = 1,2. Since (K1, v1) and (K2, v2)
are Nj-saturated, by Remark 217 (4), the core fields (K7,v7) and (K5,v5) are
complete discrete valued fields, where v{ and v§ are the valuations induced from
vy and vy respectively. Since the ng-th residue rings of (Ki,v1) and (Ks,vs) are
isomorphic, by Remark 2I7(2), the no-th residue rings of (K7,v7) and (K3, vs)
are isomorphic.

By Theorem B, K7 and K3 are isomorphic. Since I'y 2 T'y, T'y /T = T'y/TS.
Furthermore, (K1,11, (K{,17)) = (Ka, 12, (K3,15)) because Fact [L1] holds after
adding structure on residue fields. To get that (K1,v1) = (Ka,12), it is enough to
show that (K1, R,,) = (K2, Ry,) in the ring language with a unary predicate. By
Remark[ZT7 (1), the valuation rings R,, and R,, are definable by the same formula
in (Kl, I./l, (Kf, I/f)) and (KQ, I./Q, (Kg, I/g)) so that (Kl, Ryl) = (KQ, Rl,2). [l

We give several corollaries of Theorem First, we improve the result in [3]
on a decidability of finitely ramified henselian valued fields in the case of perfect
residue field.

Corollary 5.3. Let (K,v,T') be a finitely ramified henselian valued field of mized
characteristic with a perfect residue field. Let ng > e, (p)(1 + ey(e,(p)). Let
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Th(K,v) be the theory of (K,v), Th(I') the theory of ', and Th(R,) the the-
ory of Ry. The following are equivalent:

(1) Th(K,v) is decidable.

(2) Th(T") is decidable, and Th(R,)) is decidable for each n > 1.

(3) Th(T") is decidable, and Th(R,,)) is decidable.

Note that the lower bound of ng depends only on e and p.

Proof. (1) < (2) This was already given by Basarab in [3].

(1) & (3) Let e(:= e,(p)) be the ramification index of (K,v). Consider the
following theory 7}, . consisting of the following statements, which can be expressed
by the first order logic;

e (K,v) is a henselian valued field of characteristic zero;

e [ is an abelian ordered group having the minimum positive element;

e [k is a perfect field of characteristic p > 0;

e (K,v) has the ramification index e.
By Theorem 5.2 the theory T}, . U Th(I') U Th(R,,)) is complete. Thus Th(kK,v)
is decidable if and only if Th(I') and Th(R,,)) are decidable. O

Next we recall the following definition introduced in [4]:

Definition 5.4. [4] Let T be the theory of a finitely ramified henselian valued field
(K,v,T) of mized characteristic. Let \(T) € NU {oco} be defined as the smallest
positive integer n (if such a number exists) such that for every finitely ramified
henselian valued field (K',v',T") of mized characteristic having the same ramifica-
tion index of (K,v,T'), the following are equivalent:

(1) (K", VT ET.

(2) T =T and the n-th residue rings of (K,v) and (K',v') are elementarily

equivalent.

Otherwise, \(T') = co.

Basarab in [4] showed that A(T") is finite if T" is the theory of a local field of mixed
characteristic. In general, for the perfect residue field case, we prove that Basarab’s
invariant A(7T') is always finite and smaller than or equal to the lifting number.

Corollary 5.5. Let (K,v) be a finitely ramified henselian valued field of mized
characteristic (0,p) having finite ramification index e = e, (p) with a perfect residue
field. Let T be the theory of (K,v). Then

(1) X(T) is smaller than or equal to the lifting number for Cp .

(2) MT) < eu(p)(1 +eu(en(p)) + 1.

Next, we compute explicitly A\(T) for the theories T of some tamely ramified valued
fields. We say that an abelian group G is e-divisible when the multiplication by e
map, ¢ : G — G is surjective. We denote the unit group of a ring R by R*.

Lemma 5.6. Let (K, W(k),m, k) be an unramified complete discrete valued field of
mized characteristic (0,p) with a perfect residue field. Suppose that k* is e-divisible
for a positive integer e prime to p.
(1) If ¢ is contained in W (k), then there exists a unique totally ramified ex-
tension L of degree e over K.
(2) If (. is not contained in W (k), then there exists a unique totally ramified
extension L of degree e over K up to K-isomorphism.
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Proof. Let S be the set of Teichmiiller representatives of W (k). By Hensel’s lemma,
1+ m is e-divisible, and so is W (k)* = S\ {0} x (1 +m) because k* = S\ {0} is
e-divisible.

For a totally tamely ramified extension L of degree e over K, there is u in
W (k)* such that L = K(¢/pu) by the theory of tamely ramified extensions (c.f.
[12, Chapter 2]). Since W (k)* is e-divisible, there is v in W (k)* such that v® = u.
Hence, /pu = /pv¢. for some i. This shows that L = K(ypu) = K(¢/p¢l) is
isomorphic to K (¢/p) over K because the irreducible polynomial of ¢/p over K is
x¢ — p. Furthermore, L = K({/p) when (. is contained in W (k). O

Proposition 5.7. Let (K,v,T,k) be a finitely tamely ramified henselian valued
field of mized characteristic (0,p) with a perfect residue field. Let e > 2 be the
ramification index of (K,v). Let T be the theory of (K,v).
(1) If k> is e-divisible, then \(T) = 1.
(2) If there is a prime divisor 1 of e such that (jn € k™ and (n+1 ¢ k™ for some
n, then \(T) = e+ 1.

Proof. (1) Suppose k* is e-divisible. Let (K’,7',T", k') be a henselian valued field
of mixed characteristic having ramification index e. Suppose k = k¥’ and T = I".
By Remark 218 we may assume that k = k', ' 2 I, and both K and K’ are N;-
saturated. Consider the core fields (K°,v° k°) and ((K')°, (v)°, (k')°) of (K,v)
and (K, V') respectively. Since k* is e-divisible, so is (k°)*. Then by Lemma [5.6]
(K°,v°) = ((K")°, (v')°). By the proof of Theorem 52 we have (K,v) = (K',/).
Thus A(T) = 1.

(2) Suppose there is a prime divisor [ of e and a natural number n such that
Gn € kX and (nir ¢ k. Let T), . be the theory introduced in the proof of Corollary
Set Ty = Tp,. U Th(R,). Consider the following theories:

o It =ToUu{Fz(z* —p=0)};

o Th =TyU {E:Ey((;ve —py=0)AP;n(y) = O)},
where & (X) € Z[X] is the ["-th cyclotomic polynomial. By the proof of Lemma
46l we have

e T UT5 is inconsistent;
e T and T, are consistent.

So, there are at least two different complete theories containing 7y, and we have
AMT) > e+ 1. By Corollary B8 we conclude that A(T) = e + 1. O

For some wild cases, we have a lower bound for A(T).

Proposition 5.8. Let p be a prime number and let e be a positive integer divisible by
p. Let (K,v,T, k) be a finitely ramified henselian valued field of mized characteristic
(0,p) with a perfect residue field having the ramification index e > 2. Then \(T') >
e+ 1 for the theory T of (K,v).

Proof. The proof is similar to the proof of Proposition 5.7 Let T}, . and Ty be the
theory introduced in the proof of Proposition 5.7 We write ¢ = sp” for positive
integers s and r where s is prime to p. Let a € Q%9 be as in the proof of Lemma
4.9l In particular, « is a uniformizer of M, corresponding to the place above p
where M, = Q(«) is the r-th subfield of the cyclotomic Z,-extension Qo of degree
p" over Q. Let f(X) be the minimal polynomial of « over Q. Consider the following
theories:
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o TN =ToU{Jx(z* —p=0)};

o Th =ToU{Ix(z®* —p=0), Jx(f(z) =0)}.
By the proof of Lemma [£3], we have

e T} UT5 is not consistent;

e T and T5 are consistent.

So, there are at least two different complete theories containing Ty, we have \(T') >
e+ 1 g

We list some special cases of Proposition [5.7] and Proposition (see Corollary
[EI0). For a positive integer s, we say that s°° divides [k : F,] if there is a subfield
ky, of k such that [k, : F,] is finite and s™ divides [k, : F,] for each n > 1. For
m > 1, let pu, be the group generated by (,, and let pipe =, fhmn-

Remark 5.9. Let k be an algebraic extension of F),. Let e > 1 be coprime to p,
and let s be the order of the group pe Nk*. Suppose s divides [k : F,|. Then, k*
is e-divisible.

Proof. Note that (k%9)* 2 @, where ¢ runs through all primes not equal to p.
To show that k* is e-divisible, it is enough to show that k> is r-divisible for each
prime factor r of e.

Case 1 s. k™ is contained in @gxp rftgeo. Since pign is r-divisible for each ¢ # r,
k> is r-divisible.

Case r | s. Note that > divides [k : F,| because s> divides [k : Fp]. It is
enough to show that p,.« C k*. Clearly, we have that (, € k. By Kummer theory,
for any positive integer n, we have [Fp,((m+1) : Fp] = rn[Fp(¢,) @ Fp] for some
d,, < n. Since > divides [k : F,], there is a subfield k;,, of k with [k, , : Fp] ="
so that [k, n(¢) @ Fp] = v [Fp(¢r) : Fpl. So, Fp(Geni1) C krn(Gr) C k. Therefore,
we conclude that p,.~ C k. (]

Corollary 5.10. Let (K,v,T',k) be a finitely ramified henselian valued field of
mized characteristic (0,p) with a perfect residue field. Let e be the ramification
index of K and let s be the order of the group p. N k* where pe is the group
generated by (.. For the theory T of (K,v),

Case pte.
o \(T) =1 when k = k9;

o \T) =1 when K is a subfield of C, and s> divides [k : F,|;

o \T)=e+1 when K is a subfield of C, and s> does not divide [k : Fp).
Case ple.

o \T)>e+1 when K is a subfield of C,,.

Propositon 571 (1) shows that Basarab’s invariant A(T") can be strictly smaller than
the bound in Corollary for the tame case. In the following example, the same
thing can happen for the wild case.

Example 5.11. Let (K, R,v) = (Q3(¥/3), Z3[V/3],v), f(x) = 2° -3 and oy = /3,
as = V/3(, and az = V/3¢2. Since f(x) = (x — V/3)(x — V/3()(x — V/3¢3) =
(z — a1)(z — az)(z — a3) and [Q3(V/3,(5) : Qs(V3)] = 2,

L2 (o= V) (- VBG) = (0 a3) (- )

o
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is irreducible over Q3(3/3), that is, ao and oz are conjugate each other over Qs(+/3).
It follows that V(o — ag) = (o — a3). By Fact[2:.17)

v(3) —1+v(v(3))

v(f'(a1)) = v((a — az)(ar — az)) = 2v(a1 — az) <

v(3)
Hence we have the following bound
M(R) = max {v(oy — o) : j # 1}

= 5(041 — 042) = ;(O&l — 063) = M

- v(3)—14+v(v3)  3-1+v(3)

- 2v(3) N 6

5

=5
So we have

9 5.5 15
M(R)v(3)" < 63 =5 <8< v(3)+rB)rr(3) =3+3v(3) =12.

Thus, Theorem Bl shows that Basarab’s invariant \(T) for K is smaller than or
equal to 8, which is strictly smaller than v(3)(1 +v(v(3))) + 1 = 12.

(1]
2]

(10]
11]
(12]
(13]
(14]
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[16]
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