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ON THE STRUCTURE OF BOREL IDEALS IN-BETWEEN THE

IDEALS ED AND Fin ⊗ Fin IN THE KATĚTOV ORDER

PRATULANANDA DAS, RAFA L FILIPÓW, SZYMON G LA̧B, AND JACEK TRYBA

Abstract. For a family F ⊆ ωω we define the ideal I(F) on ω× ω to be the
ideal generated by the family

{A ⊆ ω × ω : ∃f ∈ F ∀∞n (|{k : (n, k) ∈ A}| ≤ f(n))}.

Using ideals of the form I(F), we show that the structure of Borel ideals
in-between two well known Borel ideals

ED = {A ⊆ ω × ω : ∃m∀∞n (|{k : (n, k) ∈ A}| < m))}

and
Fin ⊗ Fin = {A ⊆ ω × ω : ∀∞n (|{k : (n, k) ∈ A}| < ℵ0))}

in the Katětov order is fairly complicated. Namely, there is a copy of P(ω)/Fin
in-between ED and Fin ⊗ Fin, and consequently there are increasing and de-
creasing chains of length b and antichains of size c.
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1. Introduction

All the notions and notations used in the introduction are defined in Section 2.
Ideals (and the dual notion – filters) have traditionally been of much interest in

set theory and on the other hand had interesting applications and usages in various
parts of set theory, topology, real analysis and so on (see e.g. [1, 2, 4, 5, 9, 10, 12,
13, 18, 19, 23, 25, 26, 32, 36] to mention only a few recent publications).

Ideals can play an important role in characterizing other objects. For instance,
Laczkovich and Rec law [25], and independently Debs and Saint Raymond [12],
used the ideal Fin⊗ Fin to characterize the family of all functions of Baire class 1,
whereas Hrušák [18] used the ideal ED to characterize selective ultrafilters. These
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dinal characteristics of an ideal, cardinal characteristics of the continuum.
1

http://arxiv.org/abs/2011.03777v3


2 PRATULANANDA DAS, RAFA L FILIPÓW, SZYMON G LA̧B, AND JACEK TRYBA

characterizations are expressed in terms of the Katětov order. Namely, in the first
case, Fin ⊗ Fin 6≤K I ⇐⇒ I-limits of sequences of continuous functions are of
the Baire class one, whereas, in the second case, ED 6≤K U∗ ⇐⇒ U is a selective
ultrafilter.

Taking these into account, it should not come as a surprise that a lot of work
has been done to examine the structures of ideals in the Katětov order so far (see
e.g. [20, 29, 31, 16, 21, 15, 34]).

The purpose of this paper is to show that the structure of ideals in-between the
ideals ED and Fin⊗Fin in the Katětov order is quite complicated. Namely, we show
that there is a copy of P(ω)/Fin in-between ED and Fin ⊗ Fin, and consequently
there are increasing and decreasing chains of length b and antichains of size c.

In order to obtain these results, we introduced a new class of ideals I(F)
(parametrized by F ⊆ ωω) generated by the family

{A ⊆ ω × ω : ∃f ∈ F ∀∞n (|{k : (n, k) ∈ A}| ≤ f(n))}.

Beside the main results about the Katětov order, we also check other properties of
the ideals of the form I(F). For instance, we examine the so called additive proper-
ties which can be utilized in the study of ideal convergence of double sequences and
we also calculate the values of some well known cardinal characteristics for ideals
of the form I(F).

2. Preliminaries

In the sequel we use ω to denote the set of all natural numbers, and we identify
n ∈ ω with the set {0, 1, . . . , n− 1} (in particular, A \ n = A \ {0, 1, . . . , n− 1}).

By 1A we denote the characteristic function of a set A. In the sequel we assume
that 2ω = {0, 1}ω and ωω are equipped with the product topology with the discrete
topology on {0, 1} and ω, respectively. By identifying sets of natural numbers with
their characteristic functions, we equip P(ω) with the topology of the space 2ω.

For a formula φ(x) and a set X we write ∀∞x ∈ X (φ(x)) (or simply ∀∞x (φ(x)))
to abbreviate that φ(x) holds for all but finitely many x ∈ X , and ∃∞x ∈ X (φ(x))
(or simply ∃∞x ∈ X (φ(x))) to abbreviate that φ(x) holds for infinitely many x ∈ X .
For f, g ∈ ωω, we write f ≤∗ g if ∀∞n (f(n) ≤ g(n)). For F ,G ⊆ ωω, we say that
F is cofinal (σ-cofinal, resp.) in G if for every g ∈ G (for every g0, g1, · · · ∈ G, resp.)
there is f ∈ F such that g ≤∗ f (gn ≤∗ f for each n, resp.). By b we denote the
bounding number i.e. the smallest cardinality of an unbounded subset in (ωω,≤∗).
By d we denote the dominating number i.e. the smallest cardinality of a cofinal
subset in (ωω,≤∗). By non(M) we denote the smallest cardinality of non-meager
sets in ωω, whereas cov(M) denotes the smallest cardinality of families F of meager
sets in ωω such that

⋃

F = ωω.
We write A ⊆∗ B if A \ B is finite. For a set A and n ∈ ω, we define [A]n =

{B ⊆ A : |B| = n}, [A]<ω = {B ⊆ A : |B| < ℵ0} and [A]ω = {B ⊆ A : |B| = ℵ0}.
For F ⊆ ωω, we define FS(F) = {f0 + · · · + fn : f0, . . . , fn ∈ F ∧ n ∈ ω}. For
A ⊆ P(ω), we define FA = {f · 1A : A ∈ A ∧ f ∈ ωω}.

2.1. Ideals. A family I ⊆ P(X) is called an ideal on X if it satisfies the following
conditions:

(1) if A,B ∈ I then A ∪B ∈ I,
(2) if A ⊆ B and B ∈ I then A ∈ I,
(3) I contains all finite subsets of X ,
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(4) X /∈ I.

For an ideal I on X , we write I∗ = {X \A : A ∈ I} and call it the filter dual to I.
The ideal of all finite subsets of an infinite set X is denoted by Fin(X) (or Fin for
short).

For ideals I,J on X and Y respectively, we write

(1) I ≈ J if there is a bijection f : X → Y such that A ∈ I if and only if
f [A] ∈ J for every A ⊆ X (we say that I and J are isomorphic in this
case);

(2) I ≤RK J if there is a function f : X → Y such that A ∈ I if and only if
f [A] ∈ J for every A ⊆ X (≤RK is called the Rudin-Keisler order);

(3) I ≤K J if there is a function f : Y → X such that f−1[A] ∈ J for every
A ∈ I (≤K is called the Katětov order);

(4) I ≤KB J if there is a finite to one function f : Y → X such that f−1[A] ∈
J for every A ∈ I (≤KB is called the Katětov-Blass order);

(5) I ⊑ J if there is a bijection f : Y → X such that f−1[A] ∈ J for every
A ∈ I (in this case J contains an ideal isomorphic to I).

For an ideal I on ω and A ⊆ ω we define I ↾ A = {B ∩A : B ∈ I}. It is easy to
see that I ↾ A is an ideal on A if and only if A /∈ I.

An ideal I on X is

(1) tall if for every infinite A ⊆ X there is an infinite B ∈ I such that B ⊆ A
(some authors use the name dense ideal in this case);

(2) nowhere tall if I ↾ A is not tall for every A /∈ I;
(3) a P-ideal (or satisfies the condition (AP)) if for every countable family

A ⊆ I there is B ∈ I such that A \B is finite for every A ∈ A;
(4) a Q-ideal if for every countable partition F of X into finite sets there is

S /∈ I such that |F ∩ S| ≤ 1 for each F ∈ F .

2.2. Ideals on ω×ω. As this paper is about ideals on ω×ω, before proceeding to
introduce our ideals, let us have a quick look into some examples already existing
in the literature.

For A ⊆ ω×ω and n ∈ ω, we write A(n) = {k ∈ ω : (n, k) ∈ A} and A(n) = {k ∈

ω : (k, n) ∈ A} i.e. A(n) and A(n) are the vertical and horizontal (resp.) sections of
A at the point n.

Example 2.1 ([27]). The ideal

I2 =
{

A ⊆ ω × ω : ∃k ∀∞n
(

A(n) ∪ A(n) ⊆ k
)}

is called the Pringsheim’s ideal.

A double sequence x = (xm,n) of real numbers is said to be convergent in Pring-
sheim’s sense to L ∈ R if for any ε > 0, there exists N ∈ ω such that |xm,n − L| < ε
whenever m,n ≥ N ([33]). It is easy to see that the convergence in Pringsheim’s
sense is equivalent to I2-convergence (i.e. ideal convergence with respect to the
ideal I2) ([27]).

An ideal I on ω × ω satisfies the condition (AP2) if for every countable family
A ⊆ I there is B ∈ I such that A \B ∈ I2 for each A ∈ A ([11]).

It is known ([22]) that I-convergence of a double sequence (xn,m) can be reduced
to the ordinary convergence of a subsequence (xn,m)(n,m)∈F with some F ∈ I∗ if
and only if the ideal I satisfies the condition (AP). Moreover, one can show ([11, 27])
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that I-convergence of a double sequence (xn,m) can be reduced to the convergence
in Pringsheim’s sense of a subsequence (xn,m)(n,m)∈F with some F ∈ I∗ if and only
if I satisfies the condition (AP2).

Example 2.2 ([30]). For a set A ⊆ ω × ω we write

δ2(A) = lim
m,n→∞

|A ∩ (m× n)|

mn

if the considered limit exists in the Pringsheim’s sense, and then we say that δ2(A)
is the double natural density of A. The ideal Iδ2 = {A ⊆ ω × ω : δ2(A) = 0} is
called the ideal of sets of the double natural density zero.

Example 2.3. The following families are ideals on ω × ω (see e.g. [18]).

(1) {∅} ⊗ Fin = {A ⊆ ω × ω : ∀n (|A(n)| < ℵ0)}.
(2) Fin ⊗ Fin = {A ⊆ ω × ω : ∀∞n (|A(n)| < ℵ0)}.
(3) Fin ⊗ {∅} = {A ⊆ ω × ω : ∀∞n (A(n) = ∅)}.
(4) ED = {A ⊆ ω × ω : ∃m ∀∞n (|A(n)| < m)}.

It is easy to see that all but the last ideals from Example 2.3 can also be defined
using the following general notion. The Fubini product of families B, C ⊆ P(ω) is
defined by B ⊗ C = {A ⊆ ω × ω : {n ∈ ω : A(n) /∈ C} ∈ B}.

3. Ideals defined with the aid of infinite sequences of integers

3.1. Definition and basic properties. We first introduce our main object for
investigation.

Definition 3.1. For a nonempty family F ⊆ ωω we define the ideal I(F) on ω×ω
to be the ideal generated by the family

A =
{

A ⊆ ω × ω : ∃f ∈ F ∀∞n (|A(n)| ≤ f(n))
}

i.e. A ∈ I(F) ⇐⇒ A ⊆ A1 ∪ . . . ∪ An for some A1, . . . , An ∈ A.

It is easy to see that

Fin ⊗ {∅} ⊆ I(F) ⊆ Fin ⊗ Fin

for every nonempty family F . Moreover, some well known ideals on ω×ω are of the
form I(F), namely, Fin ⊗ {∅} = I({〈0, 0, . . . 〉}), ED = I({f ∈ ωω : f is constant})
and Fin ⊗ Fin = I(ωω).

It is easy to see that the Pringsheim’s ideal I2 is not equal to any ideal of the
form I(F), though there are some inclusions (for instance Fin ⊗ {∅} ⊆ I2 ⊆ ED).

The ideal Iδ2 of sets of the double natural density zero is not equal to (even not
contained in) any ideal of the form I(F) as it is not difficult to see that Iδ2 contains
a set having infinite number of infinite vertical sections (for instance A = {(m3, n) :
m,n ∈ ω} ∈ Iδ2). On the other hand, it happens that ideals of the form I(F) are
contained in Iδ2 (for instance Fin ⊗ {∅} ⊆ Iδ2), but not all of them (for instance
Fin ⊗ Fin 6⊆ Iδ2 as B = {(m,n) : n ≤ m} ∈ Fin ⊗ Fin but evidently δ2(B) > 0).

Proposition 3.2. The following conditions are equivalent.

(1) The family A =
{

A ⊆ ω × ω : ∃f ∈ F ∀∞n (|A(n)| ≤ f(n))
}

is an ideal on
ω × ω (equivalently A = I(F)).

(2) ∀f, g ∈ F ∃h ∈ F (f + g ≤∗ h).



THE KATĚTOV ORDER IN-BETWEEN ED AND Fin ⊗ Fin 5

Proof. (1) =⇒ (2) Let f, g ∈ F . Let A = {(n, k) : k ≤ f(n)} and B = {(n, k) :
f(n) < k ≤ f(n) + g(n)}. Since A,B ∈ A, we get A∪B ∈ A. Hence there is h ∈ F
such that |(A ∪ B)(n)| ≤ h(n) for all but finitely many n. Since |(A ∪ B)(n)| =
|A(n)| + |B(n)| in this case, we obtain f + g ≤∗ h.

(2) =⇒ (1) First note that it is obvious that ∅ ∈ A, ω × ω /∈ A and A contains
all finite subsets of ω × ω.

Let A ∈ A and B ⊆ A. Let f ∈ F be such that |A(n)| ≤ f(n) for all but finitely
many n. Since |B(n)| ≤ |A(n)| for all n, we have B ∈ A.

Let A,B ∈ A. Let f, g ∈ F be such that |A(n)| ≤ f(n) and |B(n)| ≤ g(n)
for all but finitely many n. Take h ∈ F with f + g ≤∗ h. Then |(A ∪ B)(n)| ≤
|A(n)| + |B(n)| ≤ h(n) for all but finitely many n and h ∈ F , so A ∪B ∈ A. �

Proposition 3.3.

I(F) = I(FS(F)) =
{

A ⊆ ω × ω : ∃f ∈ FS(F)∀∞n (|A(n)| ≤ f(n))
}

,

where FS(F) = {f0 + · · · + fn : f0, . . . , fn ∈ F ∧ n ∈ ω}.

Proof. The second equality follows from Proposition 3.2. The inclusion I(F) ⊆
I(FS(F)) follows from F ⊆ FS(F). To show I(F) ⊇ I(FS(F)), we take A ∈
I(FS(F)) and, using the second equality, choose f ∈ FS(F) such that |A(n)| ≤ f(n)
for all but finitely many n. Let f1, . . . , fm ∈ F be such that f = f1 + · · · + fm.
We partition the set A into sets B1, . . . , Bm such that |(Bi)(n)| ≤ fi(n) for all but
finitely many n and all i = 1, . . . ,m. Then B1, . . . , Bm ∈ I(F), so A = B1∪· · ·∪Bm

belongs to the ideal I(F). �

The following easy proposition provides a characterization (in terms of F) show-
ing when some well known ideals on ω × ω are of the form I(F).

Proposition 3.4.

(1) I(F) = Fin ⊗ Fin ⇐⇒ FS(F) is cofinal in ωω.
(2) I(F) = Fin ⊗ {∅} ⇐⇒ ∀f ∈ F ∀∞n (f(n) = 0).
(3) ED ⊆ I(F) ⇐⇒ ∃f ∈ FS(F)∀∞n (f(n) 6= 0).
(4) I(F) = ED ⇐⇒

(a) ∀f ∈ F ∃k ∀∞n (f(n) ≤ k),
(b) ∃f ∈ FS(F)∀∞n (f(n) 6= 0).

3.2. Additive properties.

Proposition 3.5. The ideal I(F) is not a P-ideal (i.e. does not satisfy the condi-
tion (AP)).

Proof. Let An = {n} × ω and note that An ∈ I(F) for every n. Let B ⊆ ω × ω
be such that An \ B is finite for every n. Then B(n) is infinite for every n, hence
B /∈ I(F). �

Proposition 3.6. If FS(F) is σ-cofinal in FS(F), then the ideal I(F) satisfies the
condition (AP2).

Proof. Let A0, A1, · · · ∈ I(F). Let fi ∈ FS(F) and Ki ∈ ω be such that |(Ai)(n)| ≤
fi(n) for all n > Ki.

Since FS(F) is σ-cofinal in FS(F), there is f ∈ FS(F) such that for each i ∈ ω
there is Li ∈ ω with f0(n) + · · · + fi(n) ≤ f(n) for each n > Li.

Let Mi ∈ ω be such that M0 < M1 < . . . and Mi > max(Ki, Li) for each i ∈ ω.
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Let

B =
⋃

i∈ω

Ai \ (Mi × ω).

Then B ∈ I(F) as |B(n)| ≤ f0(n) + · · · + fi(n) ≤ f(n) for each Mi ≤ n < Mi+1

and i ∈ ω. Moreover, Ai \B ⊆ Mi × ω ∈ I2 for each i ∈ ω. �

The ideal Fin⊗Fin = I(ωω) satisfies the condition (AP2), as the family F = ωω

is σ-cofinal in FS(ωω). On the other hand, ED is an ideal of the form I(F) that
does not satisfy the condition (AP2). Indeed, for each n ∈ ω take An = {(k, nk) :
k ∈ ω} ∈ ED. Then for every B ∈ ED, there exist M ∈ ω such that for all but
finitely many k we have |B(k)| ≤ M . Now, one can notice that since An are pairwise
disjoint, there are at most M sets An such that An \B is finite, thus there exists n
such that An \ B is infinite. However, any infinite subset of {(k, nk) : k ∈ ω} does
not belong to I2, hence An \B 6∈ I2.

3.3. Tallness.

Proposition 3.7. The ideal I(F) is tall ⇐⇒ ∀A ∈ [ω]ω ∃B ∈ [A]ω ∃f ∈ F ∀n ∈
B (f(n) > 0).

Proof. ( =⇒ ) Let A ∈ [ω]ω. Since C = A × {0} is infinite, there is an infinite set
D ∈ I(F) such that D ⊆ C. Let f ∈ FS(F) and n0 ∈ ω be such that |D(n)| ≤ f(n)
for every n ≥ n0. Then B = {n ≥ n0 : (n, 0) ∈ D} is infinite and B ⊆ A.
Moreover, f(n) ≥ |D(n)| = 1 > 0 for every n ∈ B. Since f = f1 + . . .+ fk for some
f1, . . . , fk ∈ F , there is i ≤ k such that fi(n) ≥ 1 for infinitely many n ∈ B.

( ⇐= ) Let C ⊆ ω × ω be infinite. If there is n such that C(n) is infinite then
D = {n} × C(n) ∈ I(F) and D ⊆ C. Assume now that C(n) is finite for every n.
Since C is infinite, the set A = {n : C(n) 6= ∅} is infinite. Let B ∈ [A]ω and f ∈ F
be such that f(n) > 0 for every n ∈ B. Then for every n ∈ B there is kn such that
(n, kn) ∈ C. Observe that D = {(n, kn) : n ∈ B} is infinite, belongs to I(F) and
D ⊆ C. �

Corollary 3.8. If there exists f ∈ FS(F) such that f(n) 6= 0 for all but finitely
many n, then the ideal I(F) is tall.

Proposition 3.9. The following conditions are equivalent.

(1) I(F) is nowhere tall (i.e. I(F) ↾ B is not a tall ideal for any B /∈ I(F)).
(2) I(F) ↾ (A× ω) is not a tall ideal for any A ∈ [ω]ω.
(3) I(F) = Fin ⊗ {∅}.

Proof. (1) =⇒ (2) If A ∈ [ω]ω, then B = A × ω /∈ I(F). Thus I(F) ↾ (A × ω) is
not tall.

(2) =⇒ (3) By Proposition 3.4(2) it is enough to show that for every f ∈ F we
have f(n) = 0 for all but finitely many n. Suppose, to the contrary, that C = {n :
f(n) 6= 0} is infinite for some f ∈ F . Then, by Proposition 3.7, I(F) ↾ (C × ω) is
tall, a contradiction.

(3) =⇒ (1) Let B /∈ I(F) = Fin ⊗ {∅}. Let A = {n : B(n) 6= ∅} and kn ∈ B(n)

for every n ∈ A. Let C = {(n, kn) : n ∈ A}. Then C ⊆ B and I(F) ↾ C = Fin.
Hence there is no infinite subset of C that belongs to I(F) ↾ B. �



THE KATĚTOV ORDER IN-BETWEEN ED AND Fin ⊗ Fin 7

4. Topological complexity

4.1. Baire property.

Proposition 4.1. The ideal I(F) has the Baire property.

Proof. For every i ∈ ω we define Fi = {(n, k) ∈ ω×ω : n+k = i}. Then {Fi : i ∈ ω}
is a partition of ω × ω into finite sets. Moreover, it is not difficult to see that if
A ⊆ ω×ω contains infinitely many sets Fi then all vertical sections of A are infinite,
so A /∈ I(F). Thus, by Talagrand characterization [37, Théorème 21] (see also [3,
Theorem 4.1.2]), the ideal I(F) has the Baire property. �

Proposition 4.1 shows that even if F does not have the Baire property in ωω,
the ideal I(F) has the Baire property. A natural question arises whether there is a
set F without the Baire property such that F is cofinal in FS(F). Below we show
that the answer is positive.

Let X be a topological space. A set B ⊆ X is a Bernstein set if both B and
X \ B are totally imperfect (i.e. neither B nor X \ B contain a nonempty perfect
set). It is known that Bernstein sets exist in the space ωω and they do not have
the Baire property (see e.g. [7, Theorem 7.20 and 7.22]).

Proposition 4.2. Every Bernstein set B ⊆ ωω is cofinal in ωω. In particular, B
is cofinal in FS(B).

Proof. Let f ∈ ωω. Let An = {f(n) + 1, f(n) + 2} for every n. Since P =
∏

n∈ω An

is a nonempty and perfect subset of ωω, B ∩ P 6= ∅. Moreover, f ≤ g for any
g ∈ B ∩ P . �

Now a natural question arises whether there is a set F without the Baire property
such that F is cofinal in FS(F) but F is not cofinal in ωω. Below we show that the
answer is positive.

Lemma 4.3. Let φ : ωω × P(ω) → ωω be given by φ(f,A) = (f + 1) · 1A.

(1) φ[ωω ×A] = FA (recall that FA = {f · 1A : A ∈ A ∧ f ∈ ωω}).
(2) φ is continuous.
(3) The inverse images under φ of nowhere dense sets are nowhere dense.
(4) The inverse images under φ of sets with the Baire property have the Baire

property.

Proof. (1) Let f ∈ FA. Take A = ω \ f−1[0], g(n) = f(n) − 1 for n ∈ A and
g(n) = 0 otherwise. Then A ∈ A and φ(g,A) = f .

(2) Continuity of φ easily follows from the following simple observation. If
(f,A), (g,B) ∈ ωω × P(ω) are such that f ↾ n = g ↾ n and A ∩ n = B ∩ n for
some n ∈ ω, then φ(f,A) ↾ n = φ(g,B) ↾ n.

(3) Let U ⊆ ωω be open and dense. Then φ−1[U ] is open as φ is continuous. If
we show that φ−1[U ] is also dense, the proof will be finished.

Let V = {(f,A) ∈ ωω × P(ω) : s = f ↾ n ∧ t = A ∩ n} with s ∈ ωn, t ∈ [ω]n

and n ∈ ω be a basic open set. Take any (f,A) ∈ V . Since U is dense, there is
g ∈ U ∩ {h ∈ ωω : ((f + 1) · 1A) ↾ n = h ↾ n}.

Let C = {i ≥ n : g(i) 6= 0} and D = {i ≥ n : g(i) = 0}.
We define B = (A ∩ n) ∪ C and h = (f ↾ n) ∪ ((g − 1) ↾ C) ∪ (g ↾ D). Then

(h,B) ∈ V and φ(h,B) = (h + 1) · 1B = g ∈ U . Thus V ∩ φ−1[U ] 6= ∅.
(4) It follows from (2) and (3) as every set with the Baire property is a symmetric

difference of an open set and a countable union of nowhere dense sets. �
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Proposition 4.4. Let A ⊆ P(ω) be an ideal on ω.

(1) FS(FA) = FA. In particular, FA is cofinal in FS(FA).
(2) FA is not cofinal in ωω.
(3) I(FA) = (Fin ⊗ Fin) ∩ (A⊗ {∅}).
(4) If A is a nonmeager ideal, then FA does not have the Baire property.

Proof. (1) easily follows from the fact that A is closed under taking finite unions of
its elements. (2) easily follows from the fact that A does not contain any cofinite
subsets of ω. (3) is straightforward. (Note that ideals defined as an intersection of
this form were used in [24].)

(4) Suppose, to the contrary, that FA has the Baire property. Let φ : ωω ×
P(ω) → ωω be given by φ(f,A) = (f + 1) · 1A. Then, by Lemma 4.3, φ−1[FA] has
the Baire property. Since φ−1[FA] = ωω ×A, by using Kuratowski-Ulam theorem
(a topological counterpart of Fubini’s theorem) we obtain that A has the Baire
property. But A is a nonmeager ideal, so it does not have the Baire property (see
e.g. [3, Theorem 4.1.1]), a contradiction. �

Corollary 4.5. There is a set F ⊆ ωω without the Baire property such that F is
cofinal in FS(F), but F is not cofinal in ωω.

4.2. Borel complexity.

Proposition 4.6.

(1) If F is σ-compact, then I(F) is a σ-compact (hence, Fσ) ideal.
(2) If F is countable, then I(F) is an Fσ ideal.
(3) If F is bounded in (ωω,≤∗), then I(F) is contained in a σ-compact (hence,

Fσ) ideal.
(4) If F is of cardinality less than b, then I(F) is contained in an Fσ ideal.
(5) If F is a Borel (or even analytic) set, then I(F) is an analytic ideal.

Proof. First observe that the set

B = {(A, f) ∈ P(ω × ω) × ωω : ∀∞n ∈ ω |A(n)| ≤ f(n)}

is Fσ, because B =
⋃

m∈ω

⋂

n>m Bn, where Bn = {(A, f) ∈ P(ω×ω)×ωω : |A(n)| ≤
f(n)} are closed. Second observe that I(F) is equal to the the projection of the
set X = (P(ω × ω) × FS(F)) ∩B onto the first coordinate.

(1) If F is σ-compact, then X is σ-compact (as the intersection of the σ-compact
set P(ω × ω) × FS(F) and the Fσ set B). Consequently I(F) is σ-compact as a
continuous image of X .

(2) It follows from (1) because every countable family is σ-compact.
(3) It follows from (1) as every bounded set in (ωω,≤∗) is contained in a σ-

compact set.
(4) It follows from (3) because every family of cardinality less than b is bounded

in (ωω,≤∗).
(5) If F is analytic, then X is analytic as the intersection of the analytic set

P(ω × ω) × FS(F) and the Fσ set B. �

Lemma 4.7. Let Φ : P(ω) → P(ω × ω) be given by Φ(A) = A× {0}.

(1) Φ is continuous.
(2) If A ⊆ P(ω) is an ideal on ω, then Φ−1[I(FA)] = A.
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Proof. Since continuity of Φ is straightforward, we only verify (2).
(⊆) Let B ∈ Φ−1[I(FA)]. Then Φ(B) ∈ I(FA), so there is A ∈ A and f ∈ ωω

such that |(Φ(B))(n)| ≤ f · 1A(n) for all but finitely many n. On the other hand,
|(Φ(B))(n)| = |(B × {0})(n)| = 1B(n) for every n. Thus, 1B(n) ≤ 1A(n) for all but
finitely many n. Hence B ⊆∗ A. Since A ∈ A and A is an ideal, B ∈ A.

(⊇) Let A ∈ A. Then |(Φ(A))(n)| = |(A × {0})(n)| = 1A(n) for every n and
1A ∈ FA. Thus Φ(A) ∈ I(FA). �

Proposition 4.8. Let A ⊆ P(ω) be an ideal on ω.

(1) If A is a Borel ideal, then I(FA) is a Borel ideal.
(2) There are Borel ideals of the form I(F) of arbitrarily high Borel complexity

i.e. for every α < ω1 there exists F ⊆ ωω such that the ideal I(F) is Borel
but not in Σ0

α.
(3) There exists F ⊆ ωω such that the ideal I(F) is not Borel.

Proof. (1) Since A ∈ Σ0
α for some α < ω1 and {∅} ∈ Π0

1, we obtain A⊗{∅} ∈ Σ0
1+α

(see e.g. [28, Proposition 1.6.16]). Since Fin ⊗ Fin ∈ Σ0
4, we have I(FA) = (Fin ⊗

Fin)∩ (A⊗{∅}) ∈ Σ0
β, where β = max{4, 1 +α}. All in all, I(FA) is a Borel ideal.

(2) Let α < ω1. Let A be a Borel ideal on ω such that A /∈ Σ0
α (for the existence

of such ideals see e.g. [8], [39] or [38]). By (1), I(FA) is a Borel ideal, but Lemma 4.7
implies that I(FA) /∈ Σ0

α.
(3) If A ⊆ P(ω) is an ideal which is not Borel (for instance a maximal ideal),

then I(FA) is not Borel by Lemma 4.7. �

5. How many ideals are there?

Lemma 5.1. Let A and B be ideals on ω.

(1) If I(FB) ≤K I(FA), then B ≤KB A.
(2) If B ≤KB A, then I(FB) ≤KB I(FA).
(3) If B ≤K A and A is a P-ideal, then I(FB) ≤KB I(FA).
(4) I(FB) ≤K I(FA) if and only if I(FB) ≤KB I(FA).

Proof. (1) Let Φ : ω×ω → ω×ω be a function such that Φ−1[B] ∈ I(FA) for every
B ∈ I(FB). Below we define a function Ψ : ω → ω which will witness B ≤KB A.

Let i0 = 0 and define m0 = min{m ∈ ω : Φ[{i0} × ω] ∩ ({m} × ω) 6= ∅}. Since
Φ−1[{m0} × ω] ∈ I(FA), the set F0 = {i0} ∪ {i ∈ ω : Φ[{i} × ω] ⊆ {m0} × ω} is
finite. For every i ∈ F0, we define Ψ(i) = m0.

We proceed inductively. Let in = min
(

ω \
⋃

k<n Fk

)

and define

mn = min {m ∈ ω \ {mk : k < n} : Φ [{in} × ω] ∩ ({m} × ω) 6= ∅} .

Since Φ−1[{G} × ω] ∈ I(FA) for every finite set G ⊆ ω, the set

Fn = {in} ∪

{

i ∈ ω \
⋃

k<n

Fk : Φ[{i} × ω] ⊆ {mk : k ≤ n} × ω

}

is finite. For every i ∈ Fn, we define Ψ(i) = mn.
Clearly, Ψ is a finite-to-one function. Once we show that Ψ−1[B] ∈ A for every

B ∈ B, the proof will be finished.
Take B ∈ B. For every i ∈ Fn, n ∈ ω, we pick (mn, ci) ∈ Φ[{i}×ω]∩({mn}×ω).

Let C = {(mn, ci) : n ∈ ω, i ∈ Fn} ∩ (B × ω). Since C(m) is finite for every m ∈ B
and empty for each m ∈ ω \ B, there exists a function f ∈ ωω such that |C(m)| ≤
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(f ·1B)(m) for every m ∈ ω. Thus, C ∈ I(FB), so Φ−1[C] ∈ I(FA). It follows that
there is a function g ∈ ωω and a set A ∈ A such that |(Φ−1[C])(i)| ≤ (g · 1A)(i) for
all but finitely many i ∈ ω. Then it is not difficult to see that

Ψ−1[B] =
⋃

mn∈B

Fn = {i ∈ ω : (Φ−1[C])(i) 6= ∅} ⊆∗ A,

so Ψ−1[B] ∈ A.
(2) Let Ψ : ω → ω be a finite-to-one function such that Ψ−1[B] ∈ A for every

B ∈ B. Below we define a function Φ : ω×ω → ω×ω which will witness I(FB) ≤KB

I(FA).
Let ran(Ψ) = {mn : n ∈ ω} and Fn = Ψ−1[{mn}] for n ∈ ω.
Let Φ : ω×ω → ω×ω be a one-to-one function such that Φ[Fn×ω] = {mn}×ω

for each n ∈ ω.
Let C ∈ I(FB), and take B ∈ B, f ∈ ωω and M ∈ ω such that |(C)(m)| ≤

(f · 1B)(m) for all m ≥ M .
Let A =

⋃

{Fn : mn ∈ B \ M} = Ψ−1[B \ M ] ∈ A and F =
⋃

{Fn : mn ∈
B ∩M} ∈ Fin.

Since (Φ−1[C])(i) is finite for all i ∈ A and (Φ−1[C])(i) = ∅ for all i ∈ ω \ (A∪F ),

there is g ∈ ωω with |(Φ−1[C])(i)| ≤ (g · 1A) for all i ∈ ω \ F , and consequently

Φ−1[C] ∈ I(FA).
(3) It follows from (2) and the fact that if A is a P-ideal, then B ≤K A implies

B ≤KB A.
(4) It follows from (1) and (2). �

From the above lemma we easily obtain the following theorem which says, in
particular, that the structure of the Katětov-Blass order among the ideals of the
form I(F) is as complicated as the structure of the Katětov-Blass order among all
ideals on ω.

Theorem 5.2. If A and B are ideals on ω, then

B ≤KB A ⇐⇒ I(FB) ≤KB I(FA)

i.e. there is an order embedding of the family of all ideals, ordered by the Katětov-
Blass order, into the family of ideals of the form I(F), ordered by the Katětov-Blass
order.

Using the above theorem we prove the following theorem which says, among
others, that there are as many as possible pairwise nonisomorphic ideals of the
form I(F).

Theorem 5.3. There are 2c pairwise ≤K-incomparable ideals of the form I(F)
(i.e. there is ≤K-antichain of cardinality 2c of ideals of the form I(F)). In partic-
ular, there are 2c pairwise nonisomorphic ideals of the form I(F).

Proof. First, we notice that if A and B are ≤RK-incomparable maximal ideals,
then I(FA) and I(FB) are ≤K-incomparable. Indeed, suppose that I(FA) and
I(FB) are ≤K-comparable i.e. I(FA) ≤K I(FB) or I(FB) ≤K I(FA). Then, by
Lemma 5.1, A ≤KB B or B ≤KB A. Now, using maximality of A and B, it is easy
to see that A ≤RK B or B ≤RK A, so A and B are ≤RK-comparable.

Second, we take 2c pairwise ≤RK-incomparable maximal ideals (see [35]) and
obtain 2c pairwise ≤K-incomparable ideals of the form I(FA). �
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5.1. Borel ideals.

Lemma 5.4. If A is an ideal on ω which is not a Q-ideal, then ED ⊑ I(FA) (in
particular, ED ≤KB I(FA)).

Proof. Since A is not a Q-ideal, there is a partition {Fn : n ∈ ω} of ω into finite
sets such that for every S /∈ A there is n ∈ ω with |Fn ∩ S| ≥ 2.

Let G : ω× ω → ω× ω be a bijection such that G[Fn ×ω] = {n}×ω for each n.
We claim that G witnesses ED ⊑ I(FA) i.e. G−1[B] ∈ I(FA) for every B ∈ ED.
Since the ideal ED is generated by vertical lines {n} × ω and functions f ∈ ωω

it is enough to check that G−1[{n} × ω] ∈ I(FA) and G−1[f ] ∈ I(FA) for every
n ∈ ω and f ∈ ωω.

For any n ∈ ω, we have G−1[{n} × ω] = Fn × ω ∈ I(FA).
Take any f ∈ ωω. Let A be the projection of the set G−1[f ] onto the first

coordinate. Then it is not difficult to see that |A ∩ Fn| = 1 for each n ∈ ω, so
A ∈ A. Since |(G−1[f ])(n)| ≤ 1A(n) for each n, we get G−1[f ] ∈ I(FA) �

Theorem 5.5. There is an order embedding of P(ω)/Fin, ordered by ⊆∗, into the
family of Borel (in fact Σ0

4) ideals of the form I(F) which are in-between the ideals
ED and Fin⊗Fin, ordered by the Katětov (or equivalently Katětov-Blass) order. In
particular,

(1) there is a ≤K-antichain of cardinality c of Borel ideals of the form I(F)
(in particular, there are c pairwise nonisomorphic Borel ideals of the form
I(F));

(2) there are increasing and decreasing ≤KB-chains of length b of Borel ideals
of the form I(F).

Proof. In [16, 31], the authors proved that there is an order embedding of P(ω)/Fin,
ordered by ⊆∗, into the family of tall Fσ P-ideals, ordered by the Katětov order.
Since I ≤K J ⇐⇒ I ≤KB J for P-ideals, we see that there is also an order
embedding of P(ω)/Fin, ordered by ⊆∗, into the family of tall Fσ P-ideals, ordered
by the Katětov-Blass order. Now using Theorem 5.2, we obtain an order embedding
of P(ω)/Fin, ordered by ⊆∗, into the family of ideals of the form I(F), ordered by
the Katětov-Blass order. Since the Katětov order is equivalent to the Katětov-Blass
order in the realm of ideals of the form I(F) (see Lemma 5.1(4)), we also obtain
an order embedding of P(ω)/Fin, ordered by ⊆∗, into the family of ideals of the
form I(F), ordered by the Katětov order.

If A is an Fσ-ideal, then by Proposition 4.8 the ideal I(FA) is Borel (from the
proof of Proposition 4.8 it follows that the ideal I(FA) is in fact Σ0

4).
All ideals of the form I(F) are contained in Fin ⊗ Fin, so they are ≤KB-below

Fin ⊗ Fin.
In [14], the authors proved that if A is a tall Fσ-ideal, then A is not a Q-ideal,

so Lemma 5.4 gives ED ≤KB I(FA).
(1) It follows from the fact that there are ⊆∗-antichains of cardinality c in

P(ω)/Fin.
(2) It follows from the fact that there are increasing and decreasing ⊆∗-chains

of length b in P(ω)/Fin. �

5.2. Fσ-ideals. For f ∈ ωω we write Ff = {k · f : k ∈ ω}. By Proposition 4.6(2),
the ideal I(Ff ) is Fσ for any f ∈ ωω.
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Lemma 5.6. Let f, g ∈ ωω. If g 6=∗ 0 and

∀M ∃N ∀n, k > N

(

f(n)

g(k)
> M ∨

g(k)

f(n)
> M

)

,

then I(Fg) and I(Ff ) are not isomorphic.

Proof. Suppose for the sake of contradiction that I(Fg) and I(Ff ) are isomorphic.
Let Φ : ω × ω → ω × ω be a bijection such that B ∈ I(Fg) ⇐⇒ Φ−1[B] ∈ I(Ff ).

Claim. Φ[{i} × ω] ∈ Fin ⊗ {∅} for all but finitely many i ∈ ω.

Proof of Claim. Suppose for the sake of contradiction that Φ[{i} × ω] /∈ Fin ⊗ {∅}
for infinitely many i. Let i1 < i2 < . . . be such that Φ[{in} × ω] /∈ Fin ⊗ {∅} for
each n. Now, we inductively pick, using the diagonal argument, pairwise distinct
elements ank and some bnk for n, k ∈ ω such that (ank , b

n
k) ∈ Φ[{in} × ω].

If B = {(ank , b
n
k ) : n, k ∈ ω}, then |B(i)| ≤ 1 ≤ g(i) for all but finitely many i.

Thus B ∈ I(Fg), and consequently Φ−1[B] ∈ I(Ff ).
On the other hand, Φ−1[{(ank , b

n
k ) : k ∈ ω}] ⊆ {in}×ω for each n, so (Φ−1[B])(in)

is infinite for each n. This means that Φ−1[B] /∈ I(Ff ), a contradiction. �

Claim. There are a0 < a1 < . . . and b0 < b1 < . . . such that (Φ[{an} × ω])(bn) is
infinite for each n ∈ ω.

Proof of Claim. By the previous Claim, there is a0 such that Φ[{a}×ω] ∈ Fin⊗{∅}
for each a ≥ a0. Take b0 such that (Φ[{a0} × ω])(b0) is infinite.

There is a1 > a0 such that Φ[{a} × ω] \ {0, 1, . . . , b0} × ω is infinite for each
a ≥ a1 (otherwise the set (Φ−1[{0, 1, . . . , b0}×ω])(a) would be cofinite for infinitely

many a ≥ a0, and consequently Φ−1[{0, 1, . . . , b0} × ω] /∈ I(Ff ), a contradiction).
Take b1 > b0 such that (Φ[{a1} × ω])(b1) is infinite.

It is not difficult to see that proceeding by induction we obtain the required
sequences (an) and (bn) �

Now, we are ready to finish the proof of the lemma. Let (an) and (bn) be as in
the last Claim, and take a sequence k1 < k2 < . . . such that either

lim
n→∞

f(akn
)

g(bkn
)

= ∞ or lim
n→∞

g(bkn
)

f(akn
)

= ∞.

In the former case, we pick a set A ⊆ {akn
: n ∈ ω} × ω such that |A(akn )| =

|(Φ[A])(bkn )| = f(akn
) for each n. Then A ∈ I(Ff ) and consequently Φ[A] ∈

I(Fg), so there is k with |(Φ[A])(i)| ≤ k · g(i) for all but finitely many i. It
means that f(akn

) ≤ k · g(bkn
) for all but finitely many n, a contradiction with

limn f(akn
)/g(bkn

) = ∞.
In the latter case, we pick a set B ⊆ {bkn

: n ∈ ω} × ω such that |B(bkn )| =

|(Φ−1[B])(akn )| = g(bkn
) for each n. Then B ∈ I(Fg) and consequently Φ−1[B] ∈

I(Ff ), so there is k with |(Φ−1[B])(i)| ≤ k · f(i) for all but finitely many i. It
means that g(bkn

) ≤ k · f(akn
) for all but finitely many n, a contradiction with

limn g(bkn
)/f(akn

) = ∞. �

Theorem 5.7. There are c pairwise nonisomorphic Fσ ideals of the form I(F).

Proof. Let A be a family of c pairwise almost disjoint infinite subsets of ω. Let
cA0 < cA1 < . . . be the increasing enumeration of A ∈ A.

For each A ∈ A we define fA : ω → ω by fA(n) = (cAn )! for each n.
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If we show that for distinct A,B ∈ A the functions f = fA and g = fB satisfy
the assumption from Lemma 5.6, the proof of the theorem will be finished.

Let M be fixed. Since A ∩ B is finite, there is N > M such that cAn 6= cBk for
each n, k > N . Taking n, k > N we have either cAn < cBk or cAn > cBk , so either

fB(k)

fA(n)
=

(cBk )!

(cAn )!
≥ cBk ≥ k > N > M or

fA(n)

fB(k)
=

(cAn )!

(cBk )!
≥ cAn ≥ n > N > M.

�

Question 1. Is there an order embedding of P(ω)/Fin, ordered by ⊆∗, into the
family of Fσ ideals of the form I(F), ordered by the Katětov order? Are there
uncountable increasing (decreasing, resp.) ≤K-chains of Fσ ideals of the form
I(F)? Are there uncountable ≤K-antichains of Fσ ideals of the form I(F)?

6. Cardinal characteristics of ideals

Some properties of ideals can be described by cardinal characteristics associ-
ated with them. There are four well known cardinal characteristics called ad-
ditivity, covering, uniformity and cofinality defined in the following way for an
ideal I on X (see e.g. [3]): add(I) = min {|A| : A ⊆ I ∧

⋃

A /∈ I}, cov(I) =
min {|A| : A ⊆ I ∧

⋃

A = X}, non(I) = min{|A| : A /∈ I}, cof(I) = min{|A| :
A ⊆ I ∧ ∀B ∈ I ∃A ∈ A (B ⊆ A)}. These characteristics are useful in the case of
ideals on an uncountable set X (for instance in the case of the σ-ideal of all meager
sets and the σ-ideal of all Lebesgue null sets). However, they are (but cof) useless
in the case of ideals on ω, since add(I) = cov(I) = non(I) = ℵ0 for every ideal I
on ω. Fortunately, Hernández and Hrušák introduced in [17] (see also [18]) certain
versions of these characteristics more suitable for tall ideals on ω. Namely, for each
tall ideal I they define:

add*(I) = min{|A| : A ⊆ I ∧ ¬∃B ∈ I ∀A ∈ A (A ⊆∗ B)},

cov*(I) = min{|A| : A ⊆ I ∧ ¬∃B ∈ P(ω) \ Fin∗ ∀A ∈ A (A ⊆∗ B)},

non*(I) = min{|A| : A ⊆ P(ω) \ Fin∗ ∧ ∀B ∈ I ∃A ∈ A (B ⊆∗ A)},

cof*(I) = min{|A| : A ⊆ I ∧ ∀B ∈ I ∃A ∈ A (B ⊆∗ A)}.

If U is a free ultrafilter on ω and I = U∗ is the dual ideal, the above mentioned
characteristics were earlier introduced by Brendle and Shelah in [6] were the authors

used the notations p(I), πp(I), πχ(I) and χ(I) for add*(I), cov*(I), non*(I) and

cof*(I) respectively.
If an ideal I is not tall then cov*(I) is not well-defined (as the min would be

taken from the empty set) and non*(I) = 1.
There are some inequalities holding among these characteristics for all tall ideals

(see e.g. [18, p. 578]), namely: ℵ0 ≤ add*(I) ≤ cov*(I) ≤ cof*(I) ≤ c and ℵ0 ≤

add*(I) ≤ non*(I) ≤ cof*(I) ≤ c.

It is easy to check (see [28, Theorems 1.6.4 and 1.6.19]) that add*(ED) =

add*(Fin ⊗ Fin) = ℵ0, non*(ED) = non*(Fin ⊗ Fin) = ℵ0. Using almost the
same argument one can easily show the following.

Proposition 6.1. add*(I(F)) = ℵ0 and non*(I(F)) = ℵ0 for all tall ideals I(F).
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6.1. Cofinality. It is known that cof*(Fin ⊗ Fin) = d (see [28, Theorem 1.6.19]).

Below we show that d is a lower bound of the cardinal cof* for every ideal of the
form I(F) but Fin ⊗ {∅}.

Proposition 6.2. cof*(I(F)) ≥ d if and only if I(F) 6= Fin ⊗ {∅}.

Proof. ( =⇒ ) It follows from the easy fact that cof*(Fin ⊗ {∅}) = ℵ0 < d.
( ⇐= ) By Proposition 3.4(2) there is f ∈ F such that the set A = {n ∈ ω :

f(n) 6= 0} is infinite. Suppose, to the contrary, that there is B ⊆ I(F) such that
|B| < d and for each A ∈ I(F) there is B ∈ B with A ⊆∗ B. Let D ⊆ ωω be cofinal
in ωω and |D| = d.

For each g ∈ D we put Ag = {(n, g(n)) : n ∈ A}. Since |(Ag)(n)| ≤ f(n) for
every n ∈ ω, Ag ∈ I(F). Hence there is Bg ∈ B with Ag ⊆ Bg. Let ng ∈ ω be such
that (Bg)(n) is finite for all n ≥ ng. We define hg : A → ω by hg(n) = max((Bg)(n))
for n ≥ ng and hg(n) = 0 otherwise.

Let H = {hg : g ∈ D}. Since H is cofinal in D ↾ A = {g ↾ A : g ∈ D} and
D ↾ A is cofinal in ωA, H is cofinal in ωA. Thus, |H| ≥ d. On the other hand,
|H| ≤ |B| < d, a contradiction. �

It is known (see e.g. [18, Proposition 6.13]) that cof*(I) ≥ cov(M) for analytic
ideals I that are not countably generated. Since cov(M) ≤ d, Proposition 6.2 gives

a better bound for cof*(I(F)) in the case of analytic ideals of the form I(F).

It is known that cof*(ED) = c (see [28, Theorem 1.6.4]). Below we show that
the same holds for ideals “generated” by one essentially nonzero function.

Recall that Ff = {k · f : k ∈ ω} for f ∈ ωω.

Theorem 6.3. cof*(I(Ff )) = c for each f ∈ ωω such that f 6=∗ 0.

Proof. Suppose, to the contrary, that cof*(I(Ff )) < c. Then there is B ⊆ I(Ff )
such that |B| < c and for every A ∈ I(Ff ) there is B ∈ B with A ⊆ B.

We define In,0 = {k ∈ ω : 0 ≤ k < f(n)} and In,i = {k ∈ ω : f(n) · i ≤ k <
f(n) · (i + 1)} for every n, i ∈ ω, i ≥ 1.

Let A = {Aα : α < c} be an almost disjoint family on ω (i.e. Aα ∩ Aβ is finite
for α 6= β and Aα ∈ [ω]ω).

By φα : ω → Aα we denote the increasing enumeration of the set Aα.
For every α < c, we define

Cα =
⋃

n∈ω

{n} × In,φα(n)

and note that Cα ∈ I(Ff ) for every α < c.
Now for every B ∈ B let CB = {α < c : Cα ⊆ B}. Since Cα ∈ I(Ff ),

⋃

B∈B CB = c.
If we show that CB is finite for every B ∈ B then |

⋃

B∈B CB | ≤ ω · |B| < c and
we obtain a contradiction that finishes the proof.

Let B ∈ B and k ∈ ω be such that |B(n)| ≤ kf(n) for all but finitely many

n. Then |CB| ≤ k. Indeed, if |CB | > k then there is D ∈ [c]k+1 such that
Cα ⊆ B for every α ∈ D. Since {Aα : α ∈ D} is almost disjoint, the elements
φα(n), where α ∈ D, are pairwise distinct for all but finitely many n. Then the
sets (Cα)n where α ∈ D are pairwise disjoint for all but finitely many n. Hence
|B(n)| ≥ |D| · |(Cα)(n)| = (k + 1) · f(n) for all but finitely many n.
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Since f(n) 6= 0 for infinitely many n, there are infinitely many n with |B(n)| >
kf(n), a contradiction. �

Question 2. Does cof*(I(F)) = c for each countable family F such that I(F) 6=
Fin ⊗ {∅}?

6.2. Covering. It is known that cov*(Fin ⊗ Fin) = b and cov*(ED) = non(M)
(see [28, Theorems 1.6.19 and 1.6.4]). Below we observe that b is a lower bound
and non(M) is an upper bound of the cardinal cov* for every tall ideal of the form
I(F). In the proofs we will use the following lemma.

Lemma 6.4 ([17, Proposition 3.1]). Let I,J be tall ideals on ω.

(1) If I ≤K J then cov*(I) ≥ cov*(J ).
(2) If I ⊆ J then cov*(I) ≥ cov*(J ).
(3) If X /∈ I then cov*(I) ≥ cov*(I ↾ X).

Proposition 6.5. b ≤ cov*(I(F)) ≤ non(M) for each tall ideal I(F).

Proof. Using the inclusion I(F) ⊆ Fin ⊗ Fin and Proposition 6.4(2) we obtain
cov*(I(F)) ≥ cov*(Fin ⊗ Fin) = b.

Since I(F) is tall, there is B ∈ [ω]ω and f ∈ F such that f(n) 6= 0 for every
n ∈ B (see Proposition 3.7). Then X = B × ω /∈ I(F) and by Proposition 3.4(3)
we have ED ↾ X ⊆ I(F) ↾ X .

Since ED ↾ X and ED are isomorphic, cov*(ED ↾ X) = cov*(ED) = non(M).
By Lemma 6.4(2) we have non(M) = cov*(ED ↾ X) ≥ cov*(I(F) ↾ X) and

by Lemma 6.4(3) we have cov*(I(F) ↾ X) ≥ cov*(I(F)). Thus, cov*(I(F)) ≤
non(M). �

It is easy to see that cov*(I) ≥ p for every tall ideal I, where p is the pseudo-
intersection number. Since p ≤ b, Proposition 6.5 gives a better lower bound for
cov*(I(F)) in the case of tall ideals of the form I(F).

In the sequel we will use the following characterization of the cardinal non(M).

Lemma 6.6 (see e.g. [3, Lemma 2.4.8]).

non(M) = min{|S| : S ⊆ C ∧ ∀f ∈ ωω ∃S ∈ S ∃∞n ∈ ω (f(n) ∈ S(n))},

where

C =

{

S ∈
(

[ω]<ω
)ω

:
∑

n∈ω

|S(n)|

(n + 1)2
< ∞

}

.

Proposition 6.7. Let I(F) be a tall ideal. If there is an increasing sequence
n0 < n1 < . . . such that

∑

i∈ω

f(i)

(ni + 1)2
< ∞

for every f ∈ F then cov*(I(F)) = non(M).

Proof. (≤) It follows from Proposition 6.5.
(≥) Let A ⊆ I(F) be a family of cardinality less than non(M). For every A ∈ A

there is a function fA ∈ F and nA ∈ ω such that |A(n)| ≤ fA(n) for every n ≥ nA.
For every A ∈ A we define the function SA : ω → [ω]<ω by

SA(n) =

{

A(i) for n = ni ∧ i ≥ nA,

∅ otherwise.
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Note that
∑

n∈ω

|S(n)|

(n + 1)2
=

∑

i≥nA

|S(ni)|

(ni + 1)2
=

∑

i≥nA

|A(i)|

(ni + 1)2
≤

∑

i≥nA

fA(i)

(ni + 1)2
< ∞

and |{SA : A ∈ A}| ≤ |A| < non(M). By Lemma 6.6 there is g ∈ ωω such that for
every A ∈ A and almost all n ∈ ω we have g(n) 6∈ SA(n).

Let h : ω → ω be given by h(k) = g(nk) for every k ∈ ω.
Then B = (ω×ω)\h ∈ P(ω×ω)\Fin∗ and for every A ∈ A we have A ⊆∗ B. �

Proposition 6.8. Let I(F) be a tall ideal. If |F| < b, then cov*(I(F)) = non(M).

Proof. It is not difficult to see that for every f ∈ F there is an increasing sequence

〈nf
i 〉 such that

∑

i∈ω f(i)/(nf
i + 1)2 < ∞. Since |F| < b, there is an increasing

sequence 〈ni〉 such that 〈nf
i 〉 ≤∗ (ni) for every f ∈ F . Let nf ∈ ω be such that

nf
i ≤ ni for every i ≥ nf . Then

∑

i∈ω

f(i)

(ni + 1)2
≤

∑

i<nf

f(i)

(ni + 1)2
+

∑

i≥nf

f(i)

(nf
i + 1)2

< ∞,

so Proposition 6.7 finishes the proof. �
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ideals, Ann. Pure Appl. Logic 168 (2017), no. 11, 2022–2049. MR 3692233
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Sci. Math. 64 (2016), no. 1, 21–28. MR 3550610
32. Tomasz Natkaniec and Piotr Szuca, On the ideal convergence of sequences of quasi-continuous

functions, Fund. Math. 232 (2016), no. 3, 269–280. MR 3453774
33. Alfred Pringsheim, Zur Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53

(1900), no. 3, 289–321. MR 1511092
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Email address: Rafal.Filipow@ug.edu.pl

URL: http://mat.ug.edu.pl/~rfilipow

(Sz. G la̧b) Institute of Mathematics,  Lódź University of Technology, Wólczańska
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