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BANACH-STONE-LIKE RESULTS FOR COMBINATORIAL BANACH SPACES

C. BRECH AND C. PIÑA

Abstract. We show that under a certain topological assumption on two compact hereditary families
F and G on some infinite cardinal κ, the corresponding combinatorial spaces XF and XG are
isometric if and only if there is a permutation of κ inducing a homeomorphism between F and G.
We also prove that two different regular families F and G on ω cannot be permuted one to the other.
Both these results strengthen the main result of [4].

The classical Banach-Stone theorem states that, given two compact spaces K and L, C(K) and

C(L) are isometric Banach spaces if and only if K and L are homeomorphic (see e.g. [12, Theorem

7.8.4]). Our main purpose in this paper is to prove versions of this result in the context of combinatorial

Banach spaces.

Given a family F of finite subsets of an infinite cardinal κ, it can be seen as a topological subspace

of 2κ. If F contains all singletons of κ and is closed under subsets, the combinatorial Banach space

XF (also called the generalized Schreier space) is the completion of c00(κ), the vector space of finitely

supported scalar sequences, with respect to the norm:

‖x‖ = sup

{

∑

α∈s

|x(α)| : s ∈ F

}

.

Notice that the sequence of unit vectors (eα) forms a (long) Schauder basis of XF , which is considered

to be the canonical one and is 1-unconditional. Moreover, if F is compact, the canonical basis is

shrinking.

Both spaces XF and C(F) can be seen as Banach spaces counterparts of the family F and they

share some properties: for instance, both contain homeomorphic copies of F in the dual unit sphere

equiped with the weak∗ topology. Banach-Stone theorem guarantees that the isometric structure of

C(F) carries exactly the topological structure of F . In Section 2 we prove our first main result,

Theorem 7, and give in Corollary 14 sufficient topological assumptions on two families F and G,

so that XF and XG are isometric if and only if F and G are π-homeomorphic (that is, there is a

homeomorphism between F and G which is induced by a permutation of κ, see Section 1). Hence,

the isometric structure of XF carries more than the topological structure of F .

Isometries between combinatorial spaces have been recently analysed in [1, 4]. In [1, Theorem 5.1],

the authors prove that any isometry of the real combinatorial space of a Schreier family of finite order
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is determined by a change of signs of the elements of the canonical basis. This has been generalized

in [4] to real and complex combinatorial spaces of regular families on the set of the integers ω (see

Definition 10). Our proof follows similar lines as theirs, but we extracted a sufficient topological

condition which made it possible to enlarge the class of families for which any isometry between two

combinatorial spaces is given by a signed permutation of the canonical bases: it includes now families

on ω which are not spreading, as well as families on uncountable cardinals κ. Moreover, Arens and

Kelley [2] gave a simple proof of the Banach-Stone theorem using the fact that isometries take extreme

points to extreme points. It was improved to a noncommutative version for C∗-algebras by Kadison

[7]. Our proof also uses this fact, as does that of [4].

Theorem 7 states that any isometry between XF and XG is induced by a permutation of κ and a

sequence of signs for a class of families. If we take F to be the family of singletons of ω, we get that

XF = c, the Banach space of convergent sequences of scalars, with the supremum norm. Taking F to

be the family of all finite subsets of κ makes XF to be ℓ1(κ). Hence, similarly to what is mentioned in

[4], our results can be compared to the fact that isometries of the spaces c0 or ℓp, 1 ≤ p < ∞, p 6= 2,

are all signed permutations of the canonical unit basis (see e.g. [8, Theorem 2.f.14]).

Our second main result, Theorem 13, states that two different regular families on ω are not π-

homeomorphic. A permutation of ω which takes F onto G and a sequence of signs induce an isometry

between XF and XG . [4, Theorem 10] shows that the converse is also true for regular families F and

G: any isometry between XF and XG is induced by a permutation of ω and a sequence of signs. Our

Theorem 13 shows that under any of these two equivalent assumptions - G being the image of F under

a permutation of ω or XF and XG being isometric - F and G are just the same family. Meaning that

these morphisms preserve not only the structure of the family, but the family itself.

The crucial difference between the hypotheses of theorems 7 and 13 is the assumption that the

families are spreading (see Definition 10). A compact family can only happen to be spreading for

families on ω. The properties of being compact or hereditary are preserved under permutations of

κ, as a permutation induces a homeomorphism between a family and its image. However, this is not

the case for spreading. This lead us to suspect that being spreading is a strong assumption for the

classification of the isometries between combinatorial spaces obtained in [4] and this is indeed the

case, as guarantees Theorem 13.

Another implication of a family being spreading is that the Cantor-Bendixson index of the singletons

{n} is a monotone nondecreasing sequence of ordinals. This fact is explored in more detail in the

last section, where we also give further examples and remarks related to both the countable and the

general setting.

The paper is organized as follows. In Section 1 we introduce definitions, notations and basic facts to

be used in the following ones. In Section 2 we present Theorem 7, which characterizes the isometries
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on combinatorial spaces of families in a broader class than the class of regular families, including

families on uncountable cardinals. In Section 3, we show that two different regular families cannot be

permuted one to the other: this is Theorem 13 and its proof is purely combinatorial. We finish the

paper exploring more about the topology and giving examples and remarks presented in Section 4.

1. Preliminaries

Given an infinite cardinal κ, we will denote by [κ]<ω the set of all finite subsets of κ. Given n ∈ ω

and M ⊆ κ, we denote by [M ]n the collection of all subsets of M of size n, by [M ]<n the collection

of all subsets of M of size less than n, and by [M ]≤n the union [M ]n ∪ [M ]<n. If s ∈ [κ]n, we write

s = {α1, . . . , αn}< to indicate that the enumeration is strictly increasing.

We introduce now some notions about families:

Definition 1. A family F on κ is a set F ⊆ [κ]<ω and we will always assume that [κ]≤1 ⊆ F .

• We say that a family F is hereditary if it is closed under subsets: s ∈ F whenever t ∈ F and

s ⊆ t.

• A family F on κ is a topological space when endowed with the subspace topology inherited

from 2κ, where each s ∈ F is identified with its characteristic function and 2κ has the product

topology.

• Any topological assumption about F refers to this topology. For instance, F is compact if it

is a closed subspace of 2κ.

Given a family F , let FMAX denote the set of maximal elements of F with respect to the inclusion

and F
⊆

denote its downwards closure, that is:

FMAX = {s ∈ F : ∄t ∈ F such that s ( t} and F
⊆
= {s : ∃t ∈ F such that s ⊆ t}.

A permutation of κ is simply a bijection π : κ −→ κ and if s ⊆ κ, then π[s] = {π(α) : α ∈ s}. Any

permutation π of κ induces a homeomorphism π̂ : 2κ −→ 2κ, defined by π̂(x)(α) = x(π−1(α)). We

chose to use here π−1 instead of π so that we have the following: if π[F ] denotes the image of F by

π̂, then it coincides with {π[s] : s ∈ F}. We say that two families F and G on κ are π-homeomorphic

if there is a permutation π of κ such that G = π[F ].

By an isometry between Banach spaces we mean a linear bijective operator which preserves the

norm. If X is a Banach space, X∗ denotes its topological dual, BX is the unit ball and BX∗ is the

dual unit ball.

Throughout the paper we will be concerned about conditions on two families F and G which

guarantee that all or some of the following statements are equivalent and examples to show when

they are not:

(i) F = G.
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(ii) F and G are π-homeomorphic.

(iii) XF and XG are isometric.

(iv) X∗
F and X∗

G are isometric.

Notice that these statements are decreasing in strength. (i) clearly implies (ii) and if π is a

permutation of κ witnessing (ii), then, given any sequence (θα) of scalars such that |θα| = 1, there

is an isometry T : XF → XG satisfying T (eα) = θαeπ(α) for all α ∈ κ, so that (ii) implies (iii). (iii)

implies (iv) easily, as the adjoint operator of any isometry between two Banach spaces is an isometry

between their dual spaces. Moreover, in case T is such that T (eα) = θαeπ(α) for every α ∈ κ, some

sequence of scalars (θα) and a permutation π, then clearly T ∗(e∗α) = θαe
∗
π−1(α) for all α ∈ κ.

Also, we will be mostly working with hereditary families, so that conditions (i) and (ii) are clearly

equivalent to conditions (i’) and (ii’) below, and we will use them interchangeably:

(i’) FMAX = GMAX .

(ii’) FMAX and GMAX are π-homeomorphic.

2. Isometries between combinatorial spaces

The purpose of this section is to (essentially) improve the results of [4] by getting that two families

are π-homeomorphic from weaker assumptions on them. Our first purpose was to replace the spreading

condition by some condition which does not take the order into account. This lead us to a much

more general version, for compact and hereditary families, on any infinite cardinal κ, satisfying some

topological condition. The existence of nontrivial compact and hereditary families on uncountable

cardinals was already known in [9], and much more complex families were explored in [5]. We recall

some of these examples and discuss these briefly in Section 4.

Our proof follows the path of the proof of Theorem 10 of [4]. In particular, we will also make use

of extreme points in our proof. Given a Banach space X , recall that x is an extreme point of a convex

set B ⊆ X if there are no x1 6= x2 in B such that x = αx1 + (1 − α)x2 for some 0 < α < 1. Let

Ext(BX∗) be the set of extreme points of BX∗ .

We will use the characterization of the extreme points of BX∗
F
stated in [6], and proved and used in

[1] and [4] in more particular cases. Actually, despite being stated for regular families in [4, Proposition

5], a careful analysis of its proof shows that the characterization holds for any compact and hereditary

family F . For completeness purposes, we reproduce their proof here with the required adaptations.

Let K be the field of scalars R or C. Given a Banach space X , we say that a subset N ⊆ BX∗

is norming if ‖x‖ = sup{|x∗(x)| : x∗ ∈ N} for every x ∈ X , and N is sign invariant if for any sign

θ ∈ K, we have θN = N . The following classical lemma was stated as Lemma 4 of [4]:

Lemma 2. Let X be a Banach space over K, and let N ⊆ BX∗ be a sign invariant norming set for

X. Then BX∗ = conv(N)
w∗

.
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To prove the characterization of the extreme points in our more general setting, we replace weak∗

convergence of sequences by the following auxiliary lemma:

Lemma 3. Let F be a compact and hereditary family on κ. Then

{
∑

ξ∈s

θξe
∗
ξ : s ∈ F and (θξ)ξ∈s is a sequence of scalars with |θξ| = 1}

is weak∗-closed.

Proof. Let

M = {
∑

ξ∈s

θξe
∗
ξ : s ∈ F and (θξ)ξ∈s is a sequence of scalars with |θξ| = 1}

and let x∗ ∈ M
w∗

. For each ξ ∈ κ, notice that

|x∗(eξ)| ∈ {|y∗(eξ)| : y∗ ∈ M)} = {0, 1}.

Hence, there is s ⊆ κ and a sequence (θξ)ξ∈s in K with |θξ| = 1 such that x∗ =
∑

ξ∈s θξe
∗
ξ. It remains

to prove that s ∈ F .

Let us show that [s]<ω ⊆ F . For each finite t ⊆ s, there is y∗t ∈ M such that |x∗(eξ)− y∗t (eξ)| <
1
2

for every ξ ∈ t. In particular, this implies that |y∗t (eξ)| = 1 for every ξ ∈ t, so that t ⊆ supp y∗t ∈ F .

Since F is hereditary, we get that t ∈ F .

Finally, s has to be finite since F is compact. In particular, s ∈ F . �

We are now ready to reproduce the proof given in [4, Proposition 5] of the following characterization:

Proposition 4. If F is a compact and hereditary family on an infinite cardinal κ, then

Ext(BX∗
F
) =

{

∑

α∈s

θαe
∗
α : s ∈ FMAX and (θα)α∈s is a sequence of scalars with |θα| = 1

}

.

Proof. Take N := {
∑

α∈s θαe
∗
α : s ∈ FMAX , |θα| = 1} and M := {

∑

α∈s θαe
∗
α : s ∈ F , |θα| = 1}. M

is clearly norming for XF and sign invariant. It follows from Lemma 2 that BX∗
F
= conv(M)

w∗

. By

Lemma 3, M is w∗-closed, so that both M and BX∗
F
= conv(M)

w∗
are compact in the locally convex

space (X∗
F , w

∗). It follows from Milman’s theorem (see [11], Theorem 3.25) that every extreme point of

BX∗
F
lies in M . Also, (M \N)∩Ext(BX∗

F
) = ∅, as any x ∈ M \N can be written as x =

(x+e∗
α
)+(x−e∗

α
)

2 ,

where suppx ∪ {α} ∈ F . Since N ⊆ Ext(BX∗
F
) we conclude that Ext(BX∗

F
) = N . �

We prove another auxiliary lemma before getting our improved version of [4, Proposition 10]

Lemma 5. Let F be a compact and hereditary family on κ. Given α ∈ κ, if {α} ∈ FMAX , then

e∗α ∈ Ext(BX∗
F
)
w∗

.
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Proof. Fix α ∈ κ such that {α} ∈ FMAX and let ε > 0 and x1, . . . , xn ∈ XF . We have to show that

there is x∗ ∈ Ext(BX∗
F
) such that |e∗α(xi)− x∗(xi)| < ε for all 1 ≤ i ≤ n.

Take y1, . . . , yn ∈ c00(κ) such that ‖yi − xi‖ < ε
2 for every 1 ≤ i ≤ n and take F =

⋃

{supp yi : 1 ≤

i ≤ n}. Since F is finite and {α} ∈ FMAX , there is s ∈ FMAX such that α ∈ s and s ∩ F ⊆ {α}.

Let x∗ =
∑

ξ∈s e
∗
ξ and notice that x∗ ∈ Ext(BX∗

F
) by Proposition 4. Also, for every 1 ≤ i ≤ n,

since supp yi ∩ s ⊆ {α}, we have that

|e∗α(yi)− x∗(yi)| = |
∑

ξ∈s\{α}

e∗ξ(yi)| = 0.

Finally, since ‖e∗α‖ = 1 and ‖x∗‖ = 1, we conclude that

|e∗α(xi)− x∗(xi)| ≤ |e∗α(xi)− e∗α(yi)|+ |e∗α(yi)− x∗(yi)|+ |x∗(yi)− x∗(xi)|
≤ ‖e∗α‖ · ‖xi − yi‖+ ‖x∗‖ · ‖xi − yi‖ < ε,

and this concludes the proof that e∗α ∈ Ext(BX∗
F
)
w∗

. �

Proposition 6. Let F and G be compact and hereditary families on an infinite cardinal κ with the

additional property that [κ]1 ⊆ FMAX . If T : X∗
F → X∗

G is weak∗-weak∗ continuous and preserves

extreme points, then for every α ∈ κ there is sα ∈ G and a sequence (θαξ )ξ∈sα with |θαξ | = 1 such that

T (e∗α) =
∑

ξ∈sα
θαξ e

∗
ξ .

Proof. Fix α ∈ κ and since {α} ∈ FMAX , then by Proposition 4 and Lemma 5,

e∗α ∈ Ext(BX∗
F
)
w∗

⊆ BX∗
F

w∗

= BX∗
F
.

Since T is weak∗-weak∗-continuous and takes extreme points to extreme points, we get that:

T (e∗α) ∈ T [Ext(BX∗
F
)
w∗

] ⊆ T [Ext(BX∗
F
)]
w∗

⊆ Ext(BX∗
G
)
w∗

.

By Lemma 3 for G we get that there is sα ∈ G and a sequence (θαξ )ξ∈sα with |θαξ | = 1 such that

T (e∗α) =
∑

ξ∈sα
θαξ e

∗
ξ . �

We can now establish the main result of this section:

Theorem 7. Let F and G be compact and hereditary families on κ with the additional property that

[κ]1 ⊆ FMAX ∩ GMAX .

If T : XF → XG is an isometry, then there exists a permutation π of κ and a sequence of signs (θα)α

such that Teα = θαeπ(α) for all α ∈ κ.

Proof. Given an isometry T : XF → XG , the adjoint operator T ∗ : X∗
G → X∗

F is weak∗-weak∗

continuous and is also an isometry, so that T ∗ takes the extreme points of BX∗
G
to the extreme points

of BX∗
F
. By Proposition 6, for each α ∈ κ, there is sα ∈ F and a sequence (θαξ )ξ∈sα such that |θαξ | = 1

and T ∗(e∗α) =
∑

ξ∈sα
θαξ e

∗
ξ . The conclusion now follows similarly as Theorem 10 of [4]. �
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Let us now compare the results of this section to those of [4]. Notice that both in the previous

Theorem 7 and Proposition 6, we have a weaker assumption on the families F and G: they suppose

them to be regular families and we replace the spreading condition by the strictly weaker topological

condition that the FMAX and GMAX contain the singletons. On the other hand, we start with a

slightly stronger assumption on the operator: in case of Proposition 6 we ask T : X∗
F → X∗

G to be

weak∗-weak∗ continuous and to preserve extreme points, while in [4] they require only the latter. As

a consequence, we start in Theorem 7 from an isometry T : XF → XG , while they start from an

isometry T : X∗
F → X∗

G .

Given two compact and hereditary families F and G such that [κ]1 ⊆ FMAX ∩ GMAX , we do not

know the answer to the following question:

Question 8. Is every isometry T : X∗
F → X∗

G weak∗-weak∗ continuous? Or, equivalently, is every

isometry T : X∗
F → X∗

G the adjoint operator of an isometry S : XG → XF?

If the answer to these questions is positive, we could get a full version of Corollary 12 of [4] with the

weaker assumption on the families. Nevertheless, given a π-homeomorphism between two hereditary

families F and G induced by a permutation π of κ, the unique linear continuous operator taking eα

to eπ(α) is clearly an isometry between XF and XG . Hence, we have the following corollary from our

previous results:

Corollary 9. Let F and G be compact and hereditary families on κ such that [κ]1 ⊆ FMAX ∩GMAX .

Then TFAE:

(ii) F and G are π-homeomorphic.

(iii) XF and XG are isometric.

3. Uniqueness of regular families under permutations

In the previous section we improved the results of [4] by getting weaker assumptions on families

which are sufficient to guarantee that the combinatorial spaces are isometric iff the families are π-

homeomorphic. In this section we deal with families on the countable infinite cardinal ω and improve

their results in another direction. We show that two π-homeomorphic regular families are actually

the same. Let us consider the following definitions:

Definition 10. Given s, t ∈ [ω]<ω, we say that t is a spread of s if there is an injective mapping

σ : s −→ ω such that σ(i) ≥ i for every i ∈ s, and σ[s] = t; we will abbreviate this fact by saying that

σ[s] is a spread of s.

We call a family F spreading if σ[t] ∈ F for every t ∈ F and every spread σ[t] of t; and we say

that a family F is regular if it is compact, hereditary and spreading.
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The main purpose of this section is to show Theorem 13, which states that hereditary and spreading

families on ω are invariable under permutations. In particular, different regular families on ω cannot

be permuted one to the other. As a consequence of Theorem 10 of [4], we get that the combinatorial

spaces of two different regular families are not isometric.

We start with the following two simple lemmas, which will be used in the proof.

Lemma 11. Given s ∈ [ω]<ω and a spread σ[s] of s, there is a spread σ′[s] of s such that σ′[s] = σ[s]

and σ′(i) = i for every i ∈ s ∩ σ[s].

Proof. Let s ∈ [ω]<ω and let σ[s] be a spread of s. Define ∆ = s ∩ σ[s] and notice that, since

|s| = |σ[s]|, we have that |s\∆| = |σ[s]\∆|. Let s\∆ = {m1, . . . ,mk}< and σ[s]\∆ = {n1, . . . , nk}<.

Now notice that if there was 1 ≤ j < k such that mj < nj < nj+1 < mj+1, then σ[s] would not be

a spread of s. Hence, mj < nj for every 1 ≤ j ≤ k.

Define σ′ : s −→ ω by σ′(i) = i if i ∈ ∆ and σ′(mj) = nj if 1 ≤ j ≤ k. Notice that σ′[s] =

∆ ∪ {n1, . . . , nk} = σ[s], as wanted. �

Lemma 12. If F ⊆ [ω]<ω is a spreading family, then so is F
⊆
.

Proof. Let F ⊆ [ω]<ω be a spreading family, s ∈ F
⊆

and σ[s] a spread of s. We must show that

σ[s] ∈ F
⊆
.

Let t ∈ F be such that s ⊆ t and let t \ s = {m1,m2, . . . ,mk}<. Then, consider integers nk >

· · · > n2 > n1 > max(t ∪ σ[s]) and define σ′ : t −→ ω by σ′(j) = σ(j) if j ∈ s; and σ′(mi) = ni for

1 ≤ i ≤ k. It follows that σ′[t] is a spread of t and that σ[s] = σ′[s] ⊆ σ′[t]. By being F spreading,

we get that σ′[t] ∈ F and, therefore, σ[s] ∈ F
⊆
. �

We are now ready to prove our main result:

Theorem 13. If F and G are hereditary, spreading and π-homeomorphic families1 on ω, then F = G.

Proof. We prove, by induction on n, that for any two hereditary and spreading families F and G, if

there is a permutation π : ω → ω such that G = π[F ], then F ∩ [ω]≤n = G ∩ [ω]≤n.

For n = 1, let

I = {i ∈ ω : {i} /∈ F} and J = {i ∈ ω : {i} /∈ G}.

Notice that, from spreading, I and J are initial segments of ω. Moreover, i ∈ I iff π(i) ∈ J , so that

|I| = |J |. It follows that I = J and, therefore, F ∩ [ω]1 = {{i} : i /∈ I} = {{i} : i /∈ J} = G ∩ [ω]1.

Assume that the statement holds for n and let us prove it for n+ 1. Given s ∈ F ∩ [ω]n, let

Is = {i ∈ ω : {i} ∪ s /∈ F}.

1In this result we do not actually need to assume that F and G contain all singletons. If they contain, the proof for
n = 1 in the induction would be simpler, but we opted to present a proof which makes sense both under this assumption
or without it.
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Let us prove some properties of Is. It is easy to see, from spreading, that Is is an initial segment of

ω \ s. Moreover, we have the following:

Claim. If s ∈ F ∩ [ω]n and t ∈ [ω]n is a spread of s (in particular, t ∈ F), then |It| ≤ |Is|.

Proof of the claim. First notice that

It \ s = It \ (s ∪ t) ⊆ Is \ (s ∪ t) = Is \ t,

where the two equalities follow from the fact that Is ∩ s = It ∩ t = ∅ and the inclusion follows from

spreading of F .

Second, let us show that |It ∩ s| ≤ |Is ∩ t|. Indeed, by Lemma 11, consider σ : s → t a bijection

such that σ(i) ≥ i for every i ∈ s and, additionally, σ(i) = i for every i ∈ s ∩ t. We show that if

j ∈ It ∩ s, then σ(j) ∈ Is ∩ t. Indeed, fix j ∈ It ∩ s and let σ′ : {σ(j)} ∪ s → {j} ∪ t be defined by

σ′(i) = σ(i) for i ∈ s \ {j, σ(j)}, σ′(j) = j and σ′(σ(j)) = σ(j). σ′ is well-defined (since σ(i) = i for

i ∈ s ∩ t) and it witnesses that {j} ∪ t is a spread of {σ(j)} ∪ s.

Since j ∈ It, then σ′[{σ(j)} ∪ s] = {j} ∪ t /∈ F . Also, F is spreading, so that {σ(j)} ∪ s /∈ F , that

is, σ(j) ∈ Is. Hence, σ(j) ∈ Is ∩ t and we conclude that |It ∩ s| ≤ |Is ∩ t|. Summing up we get that

|It| ≤ |Is| and this concludes the proof of the claim. �

Now, for each k ∈ ω, let

Fn,k = {s ∈ F ∩ [ω]n : |Is| ≤ k}.

It follows from the claim that Fn,k is a spreading family, for each k ∈ ω.

For each t ∈ G ∩ [ω]n and each k ∈ ω, define

Jt = {i ∈ ω : {i} ∪ t /∈ G} and Gn,k = {t ∈ G ∩ [ω]n : |Jt| ≤ k},

and get similar properties as for Is and Fn,k. In particular, Gn,k is a spreading family for every k ∈ ω.

Since both Fn,k and Gn,k are spreading and Gn,k = π[Fn,k], then by Lemma 12, the downward

closures F
⊆

n,k and G
⊆

n,k are hereditary and spreading families, and G
⊆

n,k = π[F
⊆

n,k]. It follows from the

inductive hypothesis that Gn,k = G
⊆

n,k ∩ [ω]n = F
⊆

n,k ∩ [ω]n = Fn,k, for every k ∈ ω.

Finally,

F ∩ [ω]n+1 = {{i} ∪ s : i /∈ s and ∃k ∈ ω, s ∈ Fn,k \ Fn,k−1 and i /∈ τk(ω \ s)}
= {{i} ∪ s : i /∈ s and ∃k ∈ ω, s ∈ Gn,k \ Gn,k−1 and i /∈ τk(ω \ s)} = G ∩ [ω]n+1,

where τk : ℘(ω) → [ω]k associates to any set X its initial segment τk(X) of size k. �

The following corollary follows immediately from [4, Corollary 12] and Theorem 13 above, our

crucial contribution being the equivalence between (i) and (ii).

Corollary 14. If F and G are regular families on ω, then TFAE:

(i) F = G.
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(ii) F and G are π-homeomorphic

(iii) XF and XG are isometric.

(iv) X∗
F and X∗

G are isometric.

4. Examples and further remarks

The purpose of this section is to give some examples and prove several facts which put our main

results into a bigger picture. In particular, a topological approach is useful.

For most of the results in this section we will use the Cantor-Bendixson rank. We recall that if X

is a topological space, then X ′ = {x ∈ X : x is not isolated in X} and given an ordinal α, the α−th

Cantor-Bendixson derivative of X is defined recursively by:

X(0) = X

X(β+1) = (X(β))′

X(λ) =
⋂

β<λ X
(β), if λ > 0 is a limit ordinal.

The Cantor-Bendixson rank of X is the minimal ordinal such that X(α) = X(α+1) and it is denoted

by rk(X).

If F ⊆ [κ]<ω is a compact family, then its Cantor-Bendixson index is the smallest ordinal α such

that F (α) = ∅ and it is therefore a successor ordinal. Moreover, rk(F) < κ+.

4.1. Injective Cantor-Bendixson index. Given a compact family F ⊆ [κ]<ω, we can define a

function rkF : F → κ+ which associates to s ∈ F the biggest ordinal β for which s ∈ F (β). Notice

that the rank of a point coincides with the rank of its image under a homeomorphism between two

topological spaces. So, in particular, the rank of a singleton coincides with the rank of its image under

a π-homeomorphism between two families.

When a compact family F on ω is spreading, the corresponding function rkF : [ω]1 → ω1 is

nondecreasing. In particular, for the Schreier family

S := {s ∈ [ω]<ω : |s| ≤ min(s) + 1} ∪ {∅}

(known to be regular) rkS({n}) = n for every n ∈ ω, so that rkS ↾ [ω]1 is injective. This imposes

restrictions on which permutations induce a homeomorphism of a given family:

Remark 15. If F is a compact family on κ such that rkF ↾ [κ]1 is injective, then the only permutation

π of κ such that π[F ] = F is the identity map.

If follows from this remark and Theorem 7 that if, moreover, [κ]1 ⊆ FMAX , then every isometry

of XF is given by a change of signs of the elements of its basis. This generalizes [4, Theorem 15].

Also, for families which have stricly increasing rank function, we can easily get the conclusion of

Theorem 13:
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Proposition 16. If F and G are π-homeomorphic compact families on κ such that rkF is strictly

increasing and rkG is nondecreasing, then the only permutation of κ inducing an homeomorphism

between them is the identity map. In particular, F = G.

Proof. Let F and G be as in the hypothesis, and let π be a permutation of κ such that G = π[F ]. We

will prove that π is increasing and since it is a permutation, it has to be the identity map. Assume

towards a contradiction that there are α < β < κ such that π(α) ≥ π(β). Then

rkF ({α}) = rkG({π(α)}) ≥ rkG({π(β)}) = rkF ({β}),

contradicting the fact that rkF is strictly increasing. �

As an application, we get an example of distinct compact and hereditary families which are π-

homeomorphic. It guarantees that Theorem 13 cannot be improved by dropping the spreading con-

dition:

Example 17. Let π 6= Id be any permutation of ω and F = π[S]. From Remark 15 we get that

F 6= S. Since F is π-homeomorphic to S, F is also compact and hereditary and it follows from

Corollary 9 that XS and XF are isometric.

4.2. More on spreading families. In the context of compact spreading families on ω, the hypothe-

ses of Proposition 16 are almost complete, the only missing one being that the rank of one of the

families has to be not only nondecreasing, but strictly increasing. The next example shows that

Proposition 16 does not necessarily hold when rkF is not strictly increasing. It also shows that two

families may be π-homeomorphic with only one of them being spreading.

Example 18. Consider F = [ω]≤2 \
{

{2, 3}
}

and G = [ω]≤2 \
{

{1, 2}
}

. It is clear that F is compact,

that rkF ({n}) = 1 for every n ∈ ω, and that G is spreading. The permutation π : ω −→ ω given by

π(1) = 3, π(2) = 1, π(3) = 2, and π(n) = n for every n > 3 witnesses that G = π[F ]. Nevertheless,

F 6= G.

It is well known that for every limit ordinal α < ω1 there is a compact family F on ω with rank

α + 1 such that rkF is strictly increasing; for example, the Schreier families (see [3]) or the closure

of an α-uniform front (introduced in [10]). We should also mention the existence of a non hereditary

and non spreading compact family F on ω with strictly increasing rank: let for example

F = {s ∈ S : {n, n+ 1} is not an initial segment of s, for every n ∈ ω};

then F is not hereditary nor spreading since {3, 5, 6} ∈ F but {5, 6}, {4, 5, 6} /∈ F . Thus, although

we cannot apply Theorem 13 here to conclude that any spreading family π-homeomorphic to F is F

itself, we can instead get that conclusion from Proposition 16.
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As a consequence of Theorem 13, if F and G are two different hereditary and spreading families,

they are not π-homeomorphic. A natural question to ask is whether F and G turn out to be π-

homeomorphic if in addition we ask them to be homeomorphic. The following example answers

negatively this question.

Example 19. Let F = [ω]≤1 ∪ [ω \ {1}]2 and G = [ω]≤2. Consider the mapping ϕ : F −→ G given

by ϕ(∅) = ∅, ϕ({1}) = {1, 2}, ϕ({n}) = {n − 1} if n > 1, ϕ({2,m}) = {1,m} for m > 2, and

ϕ({n,m}<) = {n− 1,m− 1} for every n > 2. It is clear that ϕ is a homeomorphism. Nevertheless,

there is no permutation π : ω −→ ω such that G = {π[s] : s ∈ F}. Indeed, if such a permutation π

exists, then π({1}) should be an isolated point in G with size 1, which is impossible. Hence, F and

G are homeomorphic regular families which are not π-homeomorphic. In particular, XF and XG are

not isometric.

Since each regular family determines a class of compact and hereditary families on ω which have

isometric combinatorial spaces, it would be nice if every compact and hereditary family on ω would

be π-homeomorphic to a regular one, so that regular families would classify all isometric-types of

separable combinatorial spaces. However, this is not the case, as shows the following example.

Example 20. Consider F = [N]≤2 \
{

{n, n+1} : n ∈ N
}

which is clearly compact, hereditary and not

spreading. We claim that F is not π-homeomorphic to any regular family. Indeed, assume towards

a contradiction that there is a regular family G and a permutation of ω such that G = π[F ]. Then,

{π(n), π(n+ 1)} /∈ G for every n < ω.

We will now see that π(n) and π(n+1) is one the successor of the other, for every n < ω. Indeed, if

there are n, k < ω such that π(n) < k < π(n+1), let p < ω be such that π(p) = k. Since p 6= n, n+1,

then {n, p} ∈ F and {π(n), k} ∈ G. By being G spreading, we have that {π(n), π(n + 1)} ∈ G, which

is a contradiction. Analogously, we see that there are not n, k < ω such that π(n+ 1) < k < π(n).

Let m < ω be such that π(m) = 1. Then, π(m + 1) = 2 as it is the successor of π(m). It follows

that π[{m,m+ 1,m+2, ...}] = ω. Thus, π is the identity map, contradicting that F is not spreading.

4.3. Examples in the uncountable setting. Our purpose now is to explore some examples of

families on a given uncountable cardinal κ which satisfy the hypotheses of Theorem 7. It is clear that

F = [κ]≤n is such a family, but we consider this to be somewhat trivial, as the norm looks very much

like the supremum norm and any permutation of κ fixes F .

On the other hand, if we assume F on some uncountable cardinal κ not to be contained in any

[κ]≤n, then it cannot be spreading: let (sn)n ⊆ F with |sn| ≥ n and fix α ∈ κ such sn ⊆ α for every

n ∈ ω. Spreading and hereditary would imply that the intervals [α, α + n] ∈ F . In turn, this would

contradict compactness, since this sequence converges to [α, α + ω), which is infinite and does not

belong to F .
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Example 21. Given a cardinal κ, let S(κ) be the family formed by copies of the Schreier family S

in each interval of the form [λ, λ + ω), where λ < κ is a limit ordinal (or zero). Formally,

S(κ) = {s ∈ [κ]<ω : s ⊆ [λ, λ+ω) for some limit ordinal λ < κ and |s| ≤ min{n ∈ ω : λ+n ∈ s}+1}.

Notice that S(κ) is a compact hereditary family such that {α} ∈ S(κ)MAX for each α ∈ κ, so that

it satisfies the hypothesis of Theorem 7. Moreover, S(κ) contains arbitrarily large (finite) elements.

The corresponding combinatorial space XS(κ) is isometric to an ℓ∞-sum of κ many copies of XS .

To get an example which is a bit more involving we use trees. A tree is a partially ordered set

(T,≤) such that for every f ∈ T , the set {g ∈ T : g ≤ f} is well-ordered. Hence, we can define the

height htT (f) of f in T as the only ordinal which is order-isomorphic to {g ∈ T : g ≤ f}. The height

ht(T ) of T is the supremum of all htT (f), f ∈ T . A chain in T is a chain with respect to ≤, that is, a

subset C ⊆ T such that for every f, g ∈ C, either f ≤ g or g ≤ f . A branch in T is a maximal chain

in T .

Finally, we have the following proposition, which is implicit in [5, Lemma 2.32]:

Proposition 22. Let κ be an infinite cardinal and let T be a tree of height κ. If there is a compact

and hereditary family F on κ such that [κ]1 ⊆ FMAX , then there is such a family on λ = |T |.

Proof. First notice that the existence of a compact and hereditary family on some cardinal κ is

equivalent to the existence of a compact and hereditary family on some index set I of cardinality κ,

since being compact and hereditary doesn’t depend on the order.

Hence, without loss of generality, we may assume that F is a compact and hereditary family on

κ+ 1 (instead of κ) such that [κ+ 1]1 ⊆ FMAX . We define

G = {C ⊆ T : C is a chain and {htT (f) : f ∈ C} ∈ F}.

It is easy to see that G is a compact and hereditary family on T . Given f ∈ T , we fix a branch C which

contains f and, given (sn)n ⊆ FMAX converging to {htT (f)}, it is easy to built (tn)n converging to

{f}, where each tn ⊆ C and {htT (g) : g ∈ tn} = sn. Clearly each tn ∈ GMAX , which concludes the

proof that [T ]1 ⊆ GMAX . From the first paragraph of the proof, it follows that the desired family on

λ = |T | exists. �

Example 21 can be seen as a particular case of a family given by Proposition 22, taking T to be

κ-many incomparable copies of ω. Also, if we have a family on κ, we get a family on 2κ, by taking

T the complete binary tree of height κ. This way we get more interesting families for every cardinal

below the first inaccessible cardinal.

Motivated by Remark 15 and Proposition 16, we asked ourselves if there is a compact hereditary

family F on ω1 such that rk({α}) = α for every α < ω1. The following example answers this question

positively:
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Example 23. Given α < ω1, consider Fα a compact and hereditary family on ω with rk(Fα) = α+1

(the existence of these families is guaranteed, for example, in [3]).

Given a limit ordinal λ < ω1, and s ∈ [ω1]
<ω such that s ⊆ [λ, λ + ω), we will denote by s− λ the

set {γ − λ : γ ∈ s} which belongs to [ω]<ω. In a similar way as we have defined S(κ) in Example 21,

we now define the families Fα(κ), for κ a tail of ω1 and α < ω1, by

Fα(κ) = {s ∈ [κ]<ω : there is λ < κ a limit ordinal or zero such that s ⊆ [λ, λ+ ω) and s− λ ∈ Fα}.

Notice that Fα(κ) is a compact and hereditary family on κ with rk(Fα(κ)) = α+ 1. Consider

F := S ∪
⋃

ω≤α<ω1

{

{α} ∪ s : s ∈ Fα(ω1 \ α), and α < γ for every γ ∈ s
}

.

It is clear that F is a compact and hereditary family on ω1. Moreover, notice that rkF ({α}) =

rkFα(ω1\α)(∅) = rk(Fα(ω1 \ α))− 1 = α, for every ω ≤ α < ω1.
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