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Abstract. We introduce the class of unshreddable theories, which contains

the simple and NIP theories, and prove that such theories have exactly satu-
rated models in singular cardinals, satisfying certain set-theoretic hypotheses.

We also give criteria for a theory to have singular compactness.
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1. Introduction

The construction of saturated models of a theory T is sensitive to the combinato-
rial properties of sets definable in T . Consequently, properties of saturated models
and their constructions are often reflected in model-theoretic dividing lines, defined
in terms of synactic properties of a formula. For example, it is well known that a
stable theory has a saturated model in every cardinal in which it is stable [11, The-
orem III.3.12]. In a similar vein, the third-named author characterized the simple
theories in terms of the saturation spectrum of a theory, namely, the set of car-
dinal pairs (λ, κ) with λ ≥ κ and every model of size λ extends to a κ-saturated
model of the same size [10, Theorem 4.10]. Subsequent work on transferring satu-
ration, Keisler’s order, and the interpretability order all suggest that comparisons
between saturated models and their constructions yield meaningful measures of
model-theoretic complexity [1, 4, 8].

A theory T is said to have exact saturation at the cardinal κ if there is a κ-
saturated model of T which is not κ+-saturated. If κ is regular and > |T |, every
theory has models with exact saturation at κ [7, Theorem 2.4, Fact 2.5], but for
singular κ, this property connects with notions from classification theory. The
simplest example of a theory without exact saturation at singular κ is the theory of
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dense linear orders. Given a singular cardinal κ and a κ-saturated dense linear order
I and given any subsets A < B from I with |A| = |B| = κ, there are cofinal and
coinitial subsets A0 and B0 of A and B respectively with |A0| = |B0| < κ. It follows
from the κ-saturation of I that there is some c ∈ I with a < c < b for all a ∈ A0

and b ∈ B0, hence for all a ∈ A and b ∈ B. By quantifier elimination for the theory
of dense linear orders, it follows that I is κ+-saturated. This example suggests that
failures of exact saturation are related to the presence of orders. Indeed, it was
shown in [7, Theorem 4.10] that an NIP theory T has exact saturation at a singular
cardinal κ if and only if T is not distal (assuming 2κ = κ+ and κ > |T |).

Additionally, [7, Theorem 3.3] showed that if T is simple then T has exactly
µ-saturated models for singular µ of cofinality greater than |T | (again assuming
2µ = µ+ and, additionally, �µ). In the unstable case, this argument started from a
witness ϕ(x; y) to the independence property along an indiscernible sequence I of
length κ and inductively constructed a model M containing I so that every type
over fewer than µ parameters is realized and also so that, for every tuple c from M ,
there is an interval from the indiscernible sequence that is indiscernible over c. This
ensures that the model is both µ-saturated yet omits the type {ϕ(x; ai)

i even : i ∈ I}.
Simplicity theory, via the independence theorem and the forking calculus, played
an important role in that argument.

Here, we are interested in both finding criteria for exact saturation in broader
model-theoretic contexts but also understanding the reach of the argument of [7],
which was tailored to simple theories. We introduce shredding, a notion that re-
fines forking and exactly captures the obstacle to ensuring that one can realize a
formula such that a large interval of a given indiscernible sequence is additionally
indiscernible over the realization. This notion is defined with exact saturation in
mind, but it appears to be a fairly fundamental notion and may have uses beyond
the context explored here. We use shredding to define the class of unshreddable the-
ories, which are roughly the theories with a bound on the number of times a type
can shred, and observe that both NIP and simple theories are unshreddable. Our
main theorem is that one may construct exactly saturated models of unshreddable
theories with the independence property for singular cardinals satisfying certain
set-theoretic hypotheses. We follow the rough outline of the argument of [7] but, in
contrast to the approach taken there, which faced considerable technical issues in
adapting the tools of simplicity theory for the construction of an exactly saturated
model, our proof, in addition to being more general, is considerably simpler and
more direct.

In section 4, we focus on the way that the class of unshreddable theories compares
to other classes from classification theory. We show that there is an unshreddable
theory with SOP3, which suggests that the class of unshreddable theories is sub-
stantially broader than the simple theories. However, we show subsequently that
neither NSOP1 nor NTP2 imply that a theory is unshreddable.

In section 5, we consider the dual problem of which conditions on a theory imply
the inability to construct exactly saturated models, which we call singular com-
pactness. We formulate one such criterion and show that this condition entails
a considerable amount of complexity: theories that meet our condition for every
formula has TP2 and SOPn for all n. Nonetheless, we show that our condition
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restricted to a fixed finite set of formulas implies a local version of singular com-
pactness. For this local variant, we show that there is an example which satisfies
the condition for a fixed finite set of formulas which is NSOP4.

2. Shredding

2.1. Basic definitions. From now on, T will denote a complete first-order theory
with monster model M. Our model-theoretic notation and terminology is standard.
Following standard model-theoretic usage, we say the A-indiscernible sequence I is
extracted from J if I realizes the EM-type of I over A. The existence of such a
sequence follows by Ramsey and compactness. In this subsection, we will describe
shredding and show that it can be given a finitary characterization.

Definition 2.1. Let A be a set of parameters and λ an infinite cardinal.

(1) We say that ϕ(x; a) λ-shreds over A when there is b such that:
(a) b = 〈bα : α < λ〉 is an indiscernible sequence over A.
(b) For no α < λ and c ∈ ϕ(M, a) is b≥α an indiscernible sequence over

Ac.
(2) We say a type λ-shreds over A if it implies a formula that λ-shreds over A,

respectively.
(3) We say p ∈ S(B) λ-shreds over A with a built-in witness if A ⊆ B and an

indiscernible sequence witnessing λ-shredding is contained in B.
(4) For the above notions, we may omit λ when λ = (|T |+ |A|)+.
(5) We define κmshred(T ) to be the minimal regular cardinal κ such that there is

no increasing continuous sequence of models 〈Mi : i ≤ κ〉 and p ∈ Sm(Mκ)
so that p � Mi+1 shreds over Mi with a built-in witness, if such a cardinal
exists (where continuous means Mδ =

⋃
i<δMi for limit δ). Otherwise, we

set κmshred(T ) =∞. The cardinal κshred(T ) = supm κ
m
shred(T ).

(6) We say T is unshreddable if κshred(T ) <∞.

Remark 2.2. Though we do not use it, it is natural to additionally introduce an asso-
ciated notion of forking: say ϕ(x; a) λ-shred-forks over A if ϕ(x; a) `

∨
i<k ψi(x; ai)

where each ψi(x; ai) λ-shreds over A. This satisfies extension, by the same argu-
ment as for forking. Note that, if ϕ(x; a) λ-shreds over A, then, unless ϕ(x; a) is
inconsistent, we know a is not contained in A.

The following lemma gives a finitary equivalent to λ-shredding.

Lemma 2.3. Assume λ = cf(λ) > |T |+ |A|. The following are equivalent:

(1) The formula ϕ(x; a) λ-shreds over A.
(2) There are n, b, η, and ψ satisfying:

(a) b = 〈bα : α < λ〉 is an A-indiscernible sequence.
(b) η = 〈ηi : i < k〉 is a finite sequence of increasing functions in n(2n).
(c) ψ = 〈ψl(x; y0, . . . , yn−1; a′l) : l < k〉 is a sequence of formulas with

a′l ∈ A.
(d) For every δ < λ divisible by 2n (or just for every limit δ < λ), we have

ϕ(x; a) `
∨
l<k

[
ψl(x; bδ, . . . , bδ+n−1, a

′
l)↔ ¬ψl(x; bδ+ηl(0), . . . , bδ+ηl(n−1), a

′
l)
]
.

Proof. (2) =⇒ (1) is clear by definition of λ-shredding.
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(1) =⇒ (2). Suppose ϕ(x; a) λ-shreds over A witnessed by the indiscernible
sequence b = 〈bα : α < λ〉. Then for each δ < λ consider the set of formulas Γδ(x)
containing ϕ(x; a) and every formula of the form

χ(x; bδ, . . . , bδ+m−1)↔ χ(x; bδ+ν(0), . . . , bδ+ν(m−1))

for every m < ω,χ ∈ L(A), and increasing function ν ∈ mλ. Note that if c |= Γδ(x),
then b≥δ is Ac-indiscernible so Γδ(x) is inconsistent for all δ < λ by the definition
of λ-shredding. It follows by compactness that, for each δ < λ, there is a finite
sequence χδ = 〈χδl (x; yδ) : l < kδ〉 with each χδl (x; yδ) ∈ L(A), and (after adding
dummy variables to ensure all formulas in χ have the same parameter variables)
there are mδ < ω and a sequence of increasing functions νδ = 〈νδ,l : l < kδ〉 from
mδλ such that

ϕ(x; a) `
∨
l<kδ

χδl (x; bδ, . . . , bδ+mδ−1)↔ ¬χδl (x; bδ+νδ,l(0), . . . , bδ+νδ,l(mδ−1)).

Let uδ = {i : i < mδ} ∪ {νδ,l(i) : i < mδ, l < kδ}. Let nδ be the least natural
number such that |uδ| < nδ.

By the pigeonhole principle and the regularity of λ, there is a subset of limit
ordinals X ⊆ λ of size λ, n,m < ω and χ = 〈χl : l < k〉 so that δ ∈ X implies
nδ = n, kδ = k, mδ = m, and χδ = χ. Further refining X, we may assume δ < δ′

from X implies δ + i < δ′ for all i ∈ uδ. Let Y = {δ + i : δ ∈ X, i ∈ uδ} ⊆ λ.
Let 〈αi : i < λ〉 be an increasing enumeration of a subset of λ containing Y so
that 〈α(2n)·i : i < λ〉 enumerates X (which is possible by the choice of n). Then if
δ = α(2n)·j ∈ X, we can find for each l < k an increasing function ηδ,l ∈ n(2n) so
that

δ + νδ,l(i) = α(2n)·j+ηδ,l(i),

for all i < m (we do not place any constraints on ηδ,l(i) for m ≤ i < n other
than the requirement that ηδ,l is an increasing function—note that α(2n)·j+ηδ,l(i) <
α(2n)(j+1), which is the next ordinal in X after δ). Write ηδ for this sequence of
functions. By one last application of the pigeonhole principle, we can find X ′ ⊆ X
of size λ and η so that δ ∈ X ′ implies η = ηδ and let 〈α′i : i < λ〉 be an increasing

enumeration of {αi+j : αi ∈ X ′, j < 2n}. Write b
′

= 〈b′i : i < λ〉 for the subsequence

of b defined by b′i = bα′i . Note that if δ is divisible by 2n, then α′δ ∈ X ′.
Unravelling definitions, we see that

ϕ(x; a) `
∨
l<k

χl(x; b′δ, . . . , b
′
δ+m−1)↔ ¬χl(x; b′δ+ηl(0), . . . , b

′
δ+ηl(m−1)),

for all δ < λ divisible by 2n. Because m < n, by adding dummy variables to each
χl, we obtain formulas ψl so that

ϕ(x; a) `
∨
l<k

ψl(x; b′δ, . . . , b
′
δ+n−1)↔ ¬ψl(x; b′δ+ηl(0), . . . , b

′
δ+ηl(n−1)),

as desired. �

Remark 2.4. The proof shows, in fact, that any sequence witnessing that ϕ(x; a)
λ-shreds over A gives rise to a sequence b as in (2) by restricting to a subsequence.

Corollary 2.5. Assume λ = cf(λ) > |T |+ |A| and ϕ(x; a) λ-shreds over A. Then
there is an A-indiscernible sequence 〈bα : α < λ〉 and m < ω so that

• 〈(bm·α, bm·α+1, . . . , bm·α+m−1) : α < λ〉 is Aa-indiscernible.
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• 〈bα : α < λ〉 witnesses that ϕ(x; a) λ-shreds over A and, additionally, for ev-
ery c ∈ ϕ(M, a) and α < λ, the finite sequence (bm·α, bm·α+1, . . . , bm·α+m−1)
is not Ac-indiscernible.

Proof. Suppose ϕ(x; a) λ-shreds over A. By Lemma 2.3, there is an A-indiscernible
sequence 〈cα : α < λ〉, a number n < ω, a sequence of L(A)-formulas ψ =
〈ψl(x; y0, . . . , yn−1) : l < k〉, and a sequence η = 〈ηl : l < k〉 with each ηl ∈ n(2n)
an increasing function, such that, for every δ < λ divisible by 2n,

ϕ(x; a) `
∨
l<k

[
ψl(x; cδ, . . . , cδ+n−1)↔ ¬ψl(x; cδ+ηl(0), . . . , cδ+ηl(n−1))

]
.

Letm = 2n and extract anAa-indiscernible sequence 〈(bm·α, bm·α+1, . . . , bm·α+m−1) :
α < λ〉 from 〈(cm·α, cm·α+1, . . . , cm·α+m−1) : α < λ〉. Then for all δ < λ divisible
by 2n,

ϕ(x; a) `
∨
l<k

[
ψl(x; bδ, . . . , bδ+n−1)↔ ¬ψl(x; bδ+ηl(0), . . . , bδ+ηl(n−1))

]
.

and 〈bα : α < λ〉 is an A-indiscernible sequence, so we are done. �

From Lemma 2.3, we obtain a variant of shredding that is somewhat more cum-
bersome and less natural, but will be useful in the arguments below.

Definition 2.6. For an infinite cardinal λ, we say ϕ(x; a) explicitly λ-shreds over
A if there are n, b, η, and ψ satisfying:

(1) b = 〈bα : α < λ〉 is an A-indiscernible sequence.
(2) η = 〈ηl : l < k〉 is a finite sequence of increasing functions in n(2n).
(3) ψ = 〈ψl(x; y0, . . . , yn−1; a′l) : l < k〉 is a sequence of formulas with a′l ∈ A.
(4) For every δ < λ divisible by 2n, we have

ϕ(x; a) `
∨
l<k

[
ψl(x; bδ, . . . , bδ+n−1, a

′
l)↔ ¬ψl(x; bδ+ηl(0), . . . , bδ+ηl(n−1), a

′
l)
]
.

We will often say that the tuple (b, n, η, ψ) witnesses that ϕ(x; a) explicitly λ-shreds
over A. We say ϕ(x; a) explicitly shreds over A if it explicitly λ-shreds over A for
some λ. As before, we will say that a type p over B ⊇ A explicitly shreds over A
if it implies some formula that does, and it explicitly shreds over A with a built-in
witness if the witnessing A-indiscernible sequence b may be chosen to be contained
in B.

The point of introducing this definition is that explicit shredding is a notion that
lends itself to compactness arguments, as in the following easy lemma:

Lemma 2.7. The following are equivalent:

(1) The formula ϕ(x; a) shreds over A.
(2) The formula ϕ(x; a) explicitly shreds over A.
(3) The formula ϕ(x; a) explicitly ℵ0-shreds over A.
(4) The formula ϕ(x; a) explicitly λ-shreds over A for all infinite cardinals λ.

Proof. (1) =⇒ (2) is Lemma 2.3, and (2) =⇒ (3) is immediate, by restricting the
witnessing indiscernible sequence to an initial segment of length ω. (4) =⇒ (1)
is also immediate, taking any λ ≥ (|A| + |T |)+, since explicit shredding implies
shredding.
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(3) =⇒ (4) Let λ be any uncountable cardinal and suppose ϕ(x; a) explic-
itly ℵ0-shreds, witnessed by (b, n, η, ψ), where b = 〈bi : i < ω〉. Define b′i =
(b2n·i, . . . , b2n·i+2n−1) for all i < ω. The sequence 〈b′i : i < ω〉 is also A-indiscernible
and, without loss of generality, by (the proof of) Corollary 2.5, we may assume
further that it is Aa-indiscernible. Then applying compactness, we can stretch it

to b
′

= 〈b′i : i < λ〉 with b′i = (b2n·i, . . . , b2n·i+2n−1) for all i < λ. Then the sequence

〈bi : i < λ〉 is A-indiscernible and, together with n, η, and ψ witnesses that ϕ(x; a)
explicitly λ-shreds. This shows (4). �

Lemma 2.8. Suppose A is a set of parameters and B ⊆ A. The following are
equivalent:

(1) ϕ(x; a) shreds over A.
(2) There is an A-indiscernible sequence b = 〈bi : i < λ〉 for λ = (|A| + |T |)+

such that for no c ∈ ϕ(M; a) and for no α < λ is b≥α indiscernible over
Bc.

(3) ϕ(x; a) explicitly shreds over A witnessed by a tuple (b, n, η, ψ), where the
formulas ψ have no parameters (i.e. are over the empty set).

Proof. (2) =⇒ (1) is clear by the definition of shredding, since in particular (2)
entails that for no c ∈ ϕ(M; a) and α < λ is b≥α indiscernible over Ac.

(3) =⇒ (2) since, if b = 〈bα : α < λ〉, then, for all δ < λ divisible by 2n, we have
the implication

ϕ(x; a) `
∨
l<k

[
ψl(x; bδ, . . . , bδ+n−1)↔ ¬ψl(x; bδ+ηl(0), . . . , bδ+ηl(n−1))

]
.

which implies that no end segment of b can be indiscernible over a realization of
ϕ(x; a) (with no additional parameters). A fortiori, no end segment of b can be
indiscernible over a set consisting of B and a realization of ϕ(x; a).

To prove (1) =⇒ (3), we know, by Lemma 2.7, ϕ(x; a) explicitly shreds over A,
witnessed by the tuple (b, n, η, ψ). Let c be a tuple enumerating the parameters
occuring in the ψ and let d be the sequence d = 〈dα : α < λ〉 = 〈(bα, c) : α < λ〉,
which is A-indiscernible since b was assumed to be A-indiscernible and c comes from
A. Then it is easily seen that by merely adding dummy variables to the formulas

ψ, we get ψ
′

= 〈ψ′l : l < k〉 such that for every δ < λ divisible by 2n, we have

ϕ(x; a) `
∨
l<k

[
ψ′l(x; dδ, . . . , dδ+n−1)↔ ¬ψ′l(x; dδ+ηl(0), . . . , dδ+ηl(n−1))

]
.

Then ϕ(x; a) explicitly shreds, witnessed by the tuple (d, n, η, ψ
′
), where the for-

mulas ψ
′

have no parameters. �

The direction (1) =⇒ (2) of Lemma 2.8 gives base monotonicity for shredding:

Corollary 2.9. Suppose B ⊆ A and ϕ(x; a) shreds over A, then ϕ(x; a) shreds over
B.

Proposition 2.10. Suppose κ is a regular cardinal and m < ω. The following are
equivalent:

(1) There is an increasing sequence A = 〈Ai : i ≤ κ〉 with Aκ =
⋃
i<κAi and

p ∈ Sm(Aκ) such that p (explicitly) shreds over Ai for all i < κ.
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(2) There is an increasing continuous sequence of models M = 〈Mi : i ≤ κ〉
with Mκ =

⋃
i<κMi and some p ∈ Sm(Mκ) such that p �Mi+1 shreds over

Mi with a built-in witness.

Proof. The direction (2) =⇒ (1) is immediate by Lemma 2.7, taking Ai = Mi for
all i ≤ κ.

(1) =⇒ (2): for each i < κ, fix a formula ϕi(x; ai) ∈ p that explicitly shreds over
Ai, witnessed by (bi, ni, ηi, ψi). By Lemma 2.8, we may assume that bi and ψi have
been chosen so that the formulas in ψi have no parameters. By the regularity of
κ, after replacing the sequence with a subsequence, we may assume ϕi(x; ai) ∈ p �
Ai+1. Moreover, without loss of generality, we may assume bi = 〈bi,j : j < ω〉 for
all i < κ.

Our assumption that ψi contains no parameters entails that ϕi(x; ai) explicitly
shreds over any subset of Ai and, in particular, that ϕi(x; ai) shreds over a<i.
Therefore we may replace Ai by a<i and p by p � a<κ and, hence, without loss of
generality, the sequence 〈Ai : i < κ〉 is increasing and continuous.

Let λ = 〈λi : i < κ〉 be an increasing and continuous sequence of cardinals
≥ |T | with λi ≥ |Ai| and λi+1 regular for all i < κ. Denote limi<κ λi by µ. Let
y = 〈yj : j < µ〉 be a sequence of variables of length µ and denote by yi the
restriction 〈yj : j < λi〉 to the first λi variables.

Let Γ(y, zi : i < κ) be a partial type over Aκ such that the variables zi = 〈zi,j :
j < λi+1〉 have length λi+1, and which naturally expresses the following, for all
i < κ:

(1) The sequence yi enumerates a model containing Ai.
(2) The sequence zi is indiscernible over yi, realizes the same EM-type over Ai

as bi, and is contained in yi+1.

(3) The formula ϕi(x; ai) explicitly shreds over yi, witnessed by (zi, ni, ηi, ψi).

It suffices to show that this partial type is consistent, as to conclude we may take any
complete type over the union of models realizing the yi containing {ϕ(x; ai) : i < κ}.
By compactness, it suffices to show this for κ finite. By induction on κ < ω, we
will show that we can find models and sequences satisfying the conditions in the
partial type above. Suppose this has been shown for κ = l. By induction, we know
there are models 〈Mj : j < l〉 and sequences 〈cj : j < l〉 satisfying the requirements.
Choose an arbitrary model M of size λl containing AlMl−1cl−1. Extract an M -

indiscernible sequence b
′
l from bl. Then b

′
l ≡Al bl so there is an automorphism

σ ∈ Aut(M/Al) with σ(b
′
l) = bl. For each j < l, define M ′j = σ(Mj) and c′j = σ(cj),

and then put M ′l = σ(M).
Finally, let m = nl and consider the sequence 〈(bl,2m·i, . . . , bl,2m·i+2m−1) : i < ω〉.

Let b
′′
l = 〈(b′′2m·i, . . . , b′′2m·i+2m−1) : i < λl+1〉 be an M ′lal-indiscernible sequence

realizing the same EM-type over Ml−1Alal as 〈(bl,2m·i, . . . , bl,2m·i+2m−1) : i < ω〉.
Then defining c′l = 〈b′′i : i < λl+1〉, we have that c′l is an M ′l -indiscernible sequence

and ϕl(x; al) explicitly shreds over M ′l , witnessed by (c′l, nl, ηl, ψl). It follows that
〈M ′j : j < l + 1〉 and 〈c′j : j < l + 1〉 satisfy the requirements, completing the
induction and the proof. �

Remark 2.11. Note that, in the course of the proof Proposition 2.10, we were able
to replace each Ai with a<i, in which case we clearly have |Ai|+ ℵ0 = |i|+ ℵ0 (in
fact, for finite i we have |Ai| = l(a0)i and for infinite i we have |Ai| = |i|).
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It follows, then, that if κ is a regular cardinal and κmshred(T ) ≥ κ+, then we can
find a witness of the form 〈Mi : i ≤ κ〉 and p ∈ Sm(Mκ) with |M0| an arbitrary
regular cardinal ≥ |T |, 〈|Mi| : i < κ〉 an increasing and continuous sequence of
cardinals, and with |Mi+1| a regular cardinal for all i < κ.

2.2. Shredding and classification theory. Here we establish some preliminary
connections between the concepts of shredding and unshreddable theories with NIP
and simplicity.

Definition 2.12. Recall that the formula ϕ(x; y) has the independence property if
for every n, there are a0, . . . , an−1 and tuples bw for every w ⊆ {0, . . . , n − 1} so
that

|= ϕ(ai, bw) ⇐⇒ i ∈ w.
A theory is said to have the independence property if some formula does modulo
T , otherwise T is NIP.

Equivalently, the formula ϕ(x; y) has the independence property if there is an
indiscernible sequence 〈ai : i < ω〉 and b so that |= ϕ(ai, b) if and only if i is even
(see, e.g., [13, Lemma 2.7]).

Proposition 2.13. If λ = cf(λ) > |T | + |A| and some consistent formula ϕ(x; a)
λ-shreds over A, then T has the independence property.

Proof. Suppose ϕ(x; a) λ-shreds over A. Then by Lemma 2.7, it explicitly λ-shreds
so we may fix k, n, ψ, η, and b = 〈bα : α < λ〉 as in the definition of explicit
shredding. Let c be an arbitrary element of ϕ(M; a). By the pigeonhole principle,
there is a subset X ⊆ λ of size λ, l < k, and t ∈ {0, 1} so that

|= ψl(c; bω·α, . . . , bω·α+n−1, a
′
l)
t ∧ ψl(c; bω·α+ηl(0), . . . , bω·α+ηl(n−1), a

′
l)

1−t

for all α ∈ X. Let 〈αi : i < λ〉 be an increasing enumeration of X. For i < λ
even, we define di = (bω·αi , . . . , bω·αi+n−1) and for i < λ odd, we define di =
(bω·αi+ηl(0), . . . , bω·αi+ηl(n−1)). Then 〈di : i < λ〉 is an A-indiscernible sequence, by

the A-indiscernibility of b, and we have

c |= {ψl(x, di, a′l)t : i < λ even} ∪ {ψl(x; di, a
′
l)

1−t : i < λ odd},
which shows χ(x, z; y) = ψl(x, y, z) has the independence property. �

Recall that a formula ϕ(x; a0) divides over a set A if there is an A-indiscernible
sequence 〈ai : i < ω〉 such that {ϕ(x; ai) : i < ω} is inconsistent. A formula ϕ(x; b)
forks over A if ϕ(x; b) `

∨
i<κ ψ(x; ai) where each ψi(x; ai) divides over A. A type

divides or forks over A if it implies a formula that respectively divides or forks over
A. A theory is called simple if there is a cardinal κ such that, whenever p is a type
(in finitely many variables) over A, there is B ⊆ A over which p does not fork with
|B| < κ. The least such cardinal κ is called κ(T ) and the least such regular cardinal
is called κr(T ).

Proposition 2.14. If ϕ(x; a) shreds over A then ϕ(x; a) forks over A.

Proof. Suppose λ = (|T | + |A|)+ and, by Lemma 2.7, we know ϕ(x; a) explicitly
λ-shreds over A. Hence, there are is an A-indiscernible sequence b = 〈bi : i < λ〉
such that that there is a sequence of L(A)-formulas 〈ψl(x; y0, . . . , yn−1) : l < k〉
and a sequence 〈ηl : l < k〉 with the property that that

(∗) ϕ(x; a) `
∨
l<k ψl(x; bδ, . . . , bδ+n−1)↔ ¬ψl(x; bδ+ηl(0), . . . , bδ+ηl(n−1))
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for all δ < λ divisible by 2n. Given α < λ, let bα = 〈bω·α+i : i < ω〉. By the proof
of Corollary 2.5, we can moreover assume that 〈bα : α < λ〉 is an Aa-indiscernible
sequence. We will choose (aα)α<λ so that

(1) For all α < λ, aα |= tp(a/Ab<α).
(2) For all α < λ, bα is an aαA-indiscernible sequence.

Given (aβ)β<α, to choose aα, first apply Ramsey and compactness to extract from

bα a sequence b
∗
α = 〈b∗ω·α+i : i < ω〉 which is Aab<α-indiscernible. Then as bα ≡Ab<α

b
∗
α, we can choose aα so that aαbα ≡Ab<α ab

∗
α. The sequence (aα)α<λ satisfies both

(1) and (2) by construction. By Ramsey, compactness, and automorphism, we may
moreover assume the sequence 〈(aα, bα) : α < λ〉 is an A-indiscernible sequence.

By the finite Ramsey theorem, there is n∗ so that n∗ → (2n)n2k . Let Λ = {ν ∈
2n(n∗) : ν increasing} and for ν ∈ Λ, let bα,ν = (bω·α+ν(i))i<2n. Let ϕ′(x; bα,ν)
(suppressing parameters from A) denote the formula∧

l<k

ψl(x; bω·α+ν(0), . . . , bω·α+ν(n−1))↔ ψl(x; bω·α+ν(ηl(0)), . . . , bω·α+ν(ηl(n−1))).

Let ϕ∗(x; aα, bα,ν) denote the formula ϕ(x; aα) ∧ ϕ′(x; bα,ν).

Claim 1: ϕ(x; a0) `
∨
ν∈Λ ϕ∗(x; a0, b0,ν).

Proof of claim: This proof is purely combinatorial and will not make use of (1),
(2), or (*). Let c be any tuple with M |= ϕ(c; a0). Given any increasing ξ ∈ n(n∗),
define χ(ξ) = {l < k : M |= ψl(c; bξ(0), . . . , bξ(n−1), a

′
l)}. This defines a coloring

with 2k possible colors. As n∗ → (2n)n2k , there is ν ∈ Λ so that ν is an increasing
enumeration of a homogeneous subset of n∗ of size 2n. For each l < k, by homo-
geneity, both (ν(0), . . . , ν(n− 1)) and (ν(ηl(0)), . . . , ν(ηl(n− 1))) take on the same
value with respect to the coloring χ, hence

M |=
∧
l<k

ψl(c; bν(0), . . . , bν(n−1))↔ ψl(c; bν(ηl(0)), . . . , bν(ηl(n−1))).

This shows M |= ϕ∗(x; a0, b0,ν), proving the claim. �

Claim 2: For each ν ∈ Λ, ϕ∗(x; a0, b0,ν) divides over A.

Proof of claim: Let ν∗ = (0, . . . , 2n − 1). We will first show that ϕ∗(x; a0, b0,ν∗)
divides over A. By (∗),

ϕ(x; a) ` ¬
∧
l<k

ψl(x; bω·α, . . . , bω·α+n−1)↔ ψl(x; bω·α+ηl(0), . . . , bω·α+ηl(n−1)),

and therefore ϕ(x; a) ` ¬ϕ′(x; bα,ν∗) for all α < λ. For all α, we have aα ≡Ab<α a,

so if β < α, then ϕ(x; aα) ` ¬ϕ′(x; bβ,ν∗). Therefore, when β < α, we have

ϕ∗(x; aα, bα,ν∗) ` ¬ϕ∗(x; aβ , bβ,ν∗),

from which it follows that {ϕ∗(x; aα, bα,ν∗) : α < λ} is 2-inconsistent. Since

〈(aα, bα,ν∗) : α < λ〉 is an A-indiscernible sequence, we have shown ϕ∗(x; a0, b0,ν∗)
divides over A.
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Finally, as b0 is an Aa0-indiscernible sequence, we have b0,ν ≡Aa0 b0,ν∗ for all

ν ∈ Λ. It follows that ϕ∗(x; a0, b0,ν) divides over A for all ν ∈ Λ. This proves the
claim and therefore proves the proposition, by Claim 1. �

As a corollary, we obtain the following:

Proposition 2.15. If T is simple, then κshred(T ) ≤ κr(T ).

Proof. Suppose not, so κr(T ) < κshred(T ). Let κ = cf(κ) ≥ κr(T ) with κ <
κshred(T ). Then we have the following:

• 〈Mi : i ≤ κ〉 is an increasing sequence of models of T .
• p(x) = {ϕ(x; ai) : i < κ} is a consistent partial type.
• ϕ(x; ai) shreds over Mi.
• ai ∈Mi+1.

Then by Proposition 2.14, p forks over Mi for all i < κ. Let Mκ =
⋃
i<κMi. As T

is simple, there is subset A ⊆Mκ with |A| < κr(T ) such that p does not fork over
A. As κ is regular, there is some i < κ so that A ⊆Mi, from which it follows that
p does not fork over Mi as well, a contradiction to the definition of κr(T ). �

Corollary 2.16. The class of unshreddable theories contains the NIP and simple
theories.

Proof. This follows immediately from Proposition 2.13 and Proposition 2.15. �

3. Respect and exact saturation

3.1. Respect. For the entirety of this subsection, we fix a singular cardinal µ.
Writing cf(µ) = κ, we will assume there is an increasing and continuous sequence of
cardinals λ = 〈λi : i ≤ κ〉 such that λ0 > κ, λi+1 is regular for all i < κ, and λκ = µ.
We will assume we have fixed for each i < κ a sequence ai = 〈ai,j : j < λi+1〉,
which is a<i-indiscernible. Additionally, we will assume that T is a theory with
κ1

shred(T ) ≤ κ.

Definition 3.1. Suppose i < κ and A is a set of parameters.

(1) We say that A respects ai when for any finite subset C ⊆ A, there is
α < λi+1 such that ai,≥α is C-indiscernible.

(2) We say p ∈ S<ω(A) respects ai when, for every c |= p, the set Ac respects
ai.

Remark 3.2. In Definition 3.1(1), by the regularity of λi+1, we could have equiva-
lently asked for the existence of such an α < λi+1 for any C ⊆ A with |C| < λi+1,
since there are fewer than λi+1 finite subsets of any such C.

Definition 3.3. We define K to be the class of A such that:

(1) A = 〈Ai : i ≤ κ〉 is increasing continuous.
(2) |Ai| = λi for all i < κ.
(3) ai ⊆ Ai+1 for all i < κ.
(4) Ai respects ai for all i < κ, i.e. there is some α < λi+1 such that ai,≥α is

Ai-indiscernible, using Remark 3.2.

Given A,B ∈ K, we say A ≤K B if Aj ⊆ Bj for all j < κ. We say A ≤K,i B if

Aj ⊆ Bj for all j satisfying i ≤ j < κ and A ≤K,∗ B if A ≤K,i B for some i < κ.
We may omit the K subscript when it is clear from context.
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Lemma 3.4. Suppose p is a partial 1-type over Aκ with |dom(p)| ≤ λi for some
i < κ. Then there are i′ with i ≤ i′ < κ and p′ ⊇ p with |dom(p′)| ≤ λi′ such that,
if q is a type over Aκ extending p′, then q does not shred over Ai′ .

Proof. Suppose not. Then we will construct an increasing sequence of types 〈pj :
j < κ〉 extending p and an increasing sequence of ordinals 〈ij : j < κ〉 such that
|dom(pj)| = λij and pj shreds over Aij for all j < κ. To begin, we set i0 = i and
use our assumption to find some p0 ⊇ p such that p0 shreds over Ai0 . We may
assume dom(p0) contains Ai0 and has cardinality λi0 . Given any 〈pj : j < α〉 and
〈ij : j < α〉 for α ≥ 1, we put p′ =

⋃
j<α pj and i′ = supj<α ij (here we make use of

the fact that κ is regular). Then |dom(p′)| = λi′ and p′ extends p. Let iα = i′ + 1.
As iα ≥ i, by hypothesis, there is some type pα ⊇ p′ such that pα shreds over Ai′+1.
As this will be witnessed by a single formula, we may assume dom(pα) contains
Aiα and |dom(pα)| = λiα , completing the induction.

Let p∗ =
⋃
j<κ pj . Then, by construction, we have p∗ shreds over Aij for all

j < κ. By Proposition 2.10, this contradicts κ1
shred(T ) ≤ κ. �

Lemma 3.5. If A ∈ K and p is a 1-type over Aκ with |dom(p)| < µ, then there is

A
′ ∈ K such that A ≤K A

′
and some c ∈ A′κ realizes p(x).

Proof. By Lemma 3.4 and the choice of µ, we may extend p to a type p′ such that,
for some i < κ, |dom(p′)| ≤ λi and no type extending p′ over Aκ shreds over Ai,
and hence does not shred over Ai′ for any i′ ≥ i by base monotonicity. Without
loss of generality, we may assume p = p′.

By induction on j ∈ [i, κ], we will define types pj ∈ S1(Aj) so that

(1) The types pj are increasing with j.
(2) For all j ∈ [i, κ), pj ∪ p is consistent.
(3) For all j ∈ [i, κ), if c |= pj+1, then for some α < λj+1, aj,≥α is Ajc-

indiscernible.

Let pi ∈ S1(Ai) be any type consistent with p. Given pj , we note that p ∪ pj
extends p and therefore does not explicitly shred over Aj . Because |p∪ pj | < λj+1,
by compactness and the fact that Aj respects aj , there is a realization c |= p ∪ pj
and α < λj+1 such that aj,≥α is Ajc-indiscernible. We put pj+1 = tp(c/Aj+1).
Finally, given 〈pj : j ∈ [i, δ)〉 for δ limit > i, we set pδ =

⋃
j∈[i,δ) pj .

Define pκ =
⋃
j∈[i,κ) pj . Let c realize pκ and define A∗ by A∗j = Aj for all j < i+1

and A∗j = Ajc for all j ≥ i+1. For all j ∈ [i, κ), as c realizes pj+1, we know there is

α < λj+1 such that aj,≥α is cAj-indiscernible. It follows that A∗ ∈ K, completing
the proof. �

3.2. A one variable theorem.

Theorem 3.6. For all m, we have κmshred(T ) = κ1
shred(T ).

Proof. The inequality κmshred(T ) ≥ κ1
shred(T ) is clear, so it suffices to show κ1

shred(T ) ≥
κmshred(T ). Suppose κ ≥ κ1

shred(T ) is a regular cardinal, 〈λi : i < κ〉 is an increasing
continuous sequence of cardinals with λ0 > κ + |T | and λi+1 regular for all i < κ.
Let µ = supi<κ λi. Note µ > κ.

We will prove by induction on m that, if κ < κmshred(T ), there is an increasing and
continuous sequence of sets 〈Bi : i ≤ κ〉 and q(y) ∈ S1(Bκ) such that q � Bi+1 shreds
over Bi. This contradictions our assumption that κ ≥ κ1

shred(T ), by Proposition
2.10.
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When m = 1, we immediately have a contradiction since κ1
shred(T ) ≤ κ <

κ1
shred(T ).

Suppose it has been proven for m and suppose 〈Ai : i ≤ κ〉 is an increasing
continuous sequence of models with |Ai| = λi and p(x0, . . . , xm) ∈ Sm+1(Aκ) is a
type such that p � Ai+1 shreds over Ai with a built-in witness bi, witnessed by the
formula ϕi(x0, . . . , xm; ai) ∈ p � Ai+1. Then because bi is Ai-indiscernible, we have
〈Ai : i ≤ κ〉 ∈ K in the notation of Subsection 3.1 with the bi playing the role of ai.

Let p′(x0, . . . , xm) = {ϕ(x0, . . . , xm; ai) : i < κ} and let p′′(xm) be defined by

p′′(xm) = (∃x0, . . . , xm−1)
∧
p′(x0, . . . , xm)

= {(∃x0, . . . , xm−1)
∧
ϕ∈w

ϕ(x0, . . . , xm−1) : w ⊆ p′ finite}.

Note that |p′′| = κ < µ. By Lemma 3.5, there is B = 〈Bi : i ≤ κ〉 ∈ K such A ≤K B
and such that p′′ is realized by some c ∈ Bκ. By the definition of K, for each i < κ,
there is some αi < λi+1 such that bi,≥αi is Bi-indiscernible. Let i∗ be minimal such
that c ∈ Bi∗ and let q(x0, . . . , xm−1) = p′(x0, . . . , xm−1, c). Let q′ ∈ S(Bκ) be any
completion of q. Then for all i ≥ i∗, we have that q′ � Bi+1 shreds over Bi with
the built-in witness bi,≥αi . Reindexing by setting B′i = Bi∗+i and ai,j = bi,αi+j for
all i < κ and j < λi+1, we may apply the induction hypothesis to complete the
proof. �

3.3. Exact saturation. As in Subsection 3.1, we fix a singular cardinal µ. Writing
cf(µ) = κ, we will assume there is an increasing and continuous sequence of cardinals
λ = 〈λi : i ≤ κ〉 such that λ0 > κ, λi+1 is regular for all i < κ, and λκ = µ.

We write I to denote {(i, α) : i < κ, α < λi+1} ordered lexicographically. We
write Ii,≥β = {(j, α) : j = i and α ≥ β} and we write Ii for Ii,≥0. We also fix an
indiscernible sequence a = 〈at : t ∈ I〉. We similarly write ai,≥β for 〈at : t ∈ Ii,≥β〉
and ai for 〈at : t ∈ Ii〉. If i < κ, and α < β < λi+1, we write ai,α,β for the sequence
〈aj,γ : j = i, γ ∈ [α, β)〉. Note that, in particular, we have ai is a<i-indiscernible.

In this subsection, we will write K to refer to the class of A as in Definition 3.3
with respect to the sequences ai described above.

Additionally, we will assume that T is a theory with κ1
shred(T ) ≤ κ = cf(µ)

and with the independence property witnessed by the formula ϕ(x; y) along the
sequence 〈ai : i ∈ I〉—that is, for all X ⊆ I, we have that {ϕ(x; ai)

(ifi∈X) : i ∈ I}
is consistent.

We will construct a model containing 〈ai : i ∈ I〉 that is µ-saturated but every
finite tuple from this model has the property that there are intervals from our fixed
indiscernible sequence 〈ai : i ∈ I〉 which are indiscernible over it. Because we as-
sume T has the independence property, witnessed along this indiscernible sequence,
it will follow that {ϕ(x; ai) : i even}∪{¬ϕ(x; ai) : i odd} is an omitted type, which
means that the model produced by our construction is not µ+-saturated. Our proof
pursues the same strategy as the construction of an exactly satured model of a sim-
ple theory from [7, Theorem 3.3], but with κshred(T ) <∞ replacing the assumption
of simplicity.

In order to organize the construction, we will use the following combinatorial
principle:
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Definition 3.7. Suppose κ is an uncountable cardinal. For a club C, we write
Lim(C) for the set {α ∈ C : sup(C ∩ α) = α}. We write �κ for the following
assertion: there is a sequence 〈Cα : α ∈ Lim(κ+)〉 such that

(1) Cα ⊆ α is club.
(2) If β ∈ Lim(Cα) then Cβ = Cα ∩ β.
(3) If cf(α) < κ, then |Cα| < κ.

We call such a sequence a square sequence (for κ).

The following remark was noted in [7, Remark 3.2] —it will play a similar role
in our deduction of the main theorem.

Remark 3.8. Suppose 〈Cα : α ∈ Lim(κ+)〉 is a square sequence and C ′α = Lim(Cα).
Then we have the following:

(1) If C ′α 6= ∅ and sup(C ′α) 6= α then C ′α has a last element and cf(α) = ω. If
C ′α = ∅ then cf(α) = ω.

(2) For all β ∈ C ′α, C ′β = C ′α ∩ β.

(3) If cf(α) < κ, then |C ′α| < κ.

The following is the main theorem of the section. The proof follows [7, Theorem
3.3].

Theorem 3.9. If T has the independence property and κshred(T ) <∞, then T has
an exactly µ-saturated model for any singular µ > |T | of cofinality κ ≥ κshred(T )
such that �µ and 2µ = µ+.

Proof. Let 〈Cα : α ∈ Lim(µ+)〉 be a sequence as in Remark 3.8. Note that, for all
α ∈ Lim(µ+), we have that |Cα| < µ by condition (3) of Remark 3.8, as α < µ+ and
hence cf(α) < µ, as µ is singular. Partition µ+ into {Sα : α < µ+} so that each Sα
has size µ+. By induction, we will construct a sequence of pairs 〈(Aα, pα) : α < µ+〉
such that

(1) Aα = 〈Aα,i : i < κ〉 ∈ K.
(2) pα = 〈pα,β : β ∈ Sα \ α〉 is an enumeration of all complete 1-types over

subsets of
⋃
iAα,i of size < µ (using |T | < µ and 2µ = µ+).

(3) If β < α, then Aβ ≤∗ Aα.

(4) If α ∈ Sγ and γ < α, then Aα+1 contains a realization of pγ,α.
(5) If α is a limit, then for any i < κ such that |Cα| < λi and β ∈ Cα, then we

have that Aβ ≤i Aα.

At stage 0, we define A0 to be the minimal sequence in K—that is, A0,i =
⋃
a<i

for all i < κ. For the successor case, use Lemma 3.5.
Now we handle the limit cases.
Case 1: sup(Cα) = α. Let i0 = min{i < κ : |Cα| < λi} which is necessarily a

successor ordinal. For i < i0, we define Aα,i = a<i and for i ≥ i0 successor, we let
Aα,i =

⋃
β∈Cα Aβ,i. Note that |Aβ,i| ≤ λi for all i < κ, and for i limit we define

Aα,i by continuity, setting

Aα,i =
⋃
j<i

j successor

Aα,j .

Note that it follows, then, that for i limit, we also have Aα,i =
⋃
β∈Cα Aβ,i.

We have to check (1),(3), and (5). First we show that Aα ∈ K. The only thing
to check is that i ≥ i0 implies Aα,i respects ai. Now if w ⊆ Aα,i is a finite set, for
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each e ∈ w, there is some βe ∈ Cα so that e ∈ Aβe,i. Let β = max{βe : e ∈ w}.
Then Cα∩β = Cβ . By (5), the fact that |Cβ | < λi0 , and induction, we have βe < β

implies βe ∈ Cβ and Aβe ≤i0 Aβ so Aβe,i ⊆ Aβ,i. It follows that w ⊆ Aβ,i. As

Aβ ∈ K, we know Aβ,i respects ai, so there is some δ < λi+1 such that ai,≥δ is w-
indiscernible. As w ⊆ Aα,i is arbitrary, this shows Aα,i respects ai and, therefore,

Aα ∈ K. Next, if β < α, then, because sup(Cα) = α, there is β′ ∈ Cα such that
β < β′. By induction, Aβ ≤∗ Aβ′ and, by construction, Aβ′ ≤i0 Aα, from which it

follows that Aβ ≤∗ Aα, which shows (3). Finally (5) is by construction.
Case 2: sup(Cα) < α. We know in this case Cα has a maximum element γ and

cf(α) = ω. Choose an increasing cofinal sequence 〈βn : n < ω〉 in α with β0 = γ.
Then, by induction, we may choose an increasing sequence of successor ordinals
〈in : n < ω〉 so that Aβn ≤in Aβn+1

. Setting i−1 = 0 and i = sup{in : n < ω},
we define Aα as follows: for successor j ∈ [in−1, in), we put Aα,j = Aβn,j and for
successor j ≥ i, we put Aα,j =

⋃
n<ω Aβn,j . For limit ordinals j, Aα,j is defined by

continuity. It is easy to see that this satisfies (1) and (3), so we check (5).
First, observe that Aγ ≤ Aα. To see this, it suffices to show by induction on n,

that if j ≥ in−1, then Aγ,j ⊆ Aβn,j . For n = 0 this is by definition. Assuming it is

true for n, we can consider an arbitrary j > in. Then by choice of in, Aβn ≤in Aβn+1

so Aβn,j ⊆ Aβn+1,j . As the sequence 〈in : n < ω〉 is increasing, we have also j > in−1

so, by the inductive hypothesis, Aγ,j ⊆ Aβn,j so, by transitivity, Aγ,j ⊆ Aβn+1,j as
desired.

Now suppose i < κ, |Cα| < λi, and β ∈ Cα. Then β ≤ γ and as Aγ ≤ Aα we have

in particular that Aγ ≤i Aα, so we may assume β < γ. Then β ∈ Cα ∩ γ = Cγ and

|Cγ | = |Cα ∩ γ| < λi so it follows by induction that Aβ ≤i Aγ ≤ Aα so Aβ ≤i Aα.
To conclude, we define a model M by

M =
⋃

α<µ+

i<κ

Aα,i.

By (4), the model M is µ-saturated. Moreover M is not µ+-saturated, as the partial
type

{ϕ(x; ai,α) : i < κ, α even} ∪ {¬ϕ(x; ai,α) : i < κ, α odd}
is omitted by (1). �

Question 3.10. Suppose T is NTP2 and has the independence property, and as-
sume µ is a singular cardinal such that cf(µ) > |T |, 2µ = µ+, and �µ. Does T
have an exactly µ-saturated model?

4. Examples

4.1. Standard examples for the SOPn hierarchy. Recall the definition of the
SOPn heirarchy:

Definition 4.1. Suppose n ≥ 3. The theory T has the nth strong order property
(SOPn) if there is a formula ϕ(x; y) and a sequence of tuples 〈ai : i < ω〉 so that

(1) |= ϕ(ai; aj) if and only if i < j.
(2) {ϕ(xi, xi+1) : i < n− 1} ∪ {ϕ(xn−1, x0)} is inconsistent.

If T does not have SOPn, we say T is NSOPn.
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Note that SOPn+1 =⇒ SOPn for all n ≥ 3 [12, Claim 2.6].
By a directed graph we mean a set with a binary relation that is assymetric and

irreflexive. Given a natural number n ≥ 3, we let Ln = {R1(x, y)} ∪ {Sl(x, y) :
1 ≤ l < n} be a language with n binary relations. The theory T 0

n is the Ln-theory
of directed graphs with no cycle of length ≤ n, where R1(x, y) is the (assymetric)
edge relation and Sl(x, y) means that there is no directed path in the graph R1 of
length ≤ l from x to y. More precisely, T 0

n consists of the following axioms:

• R1(x, y) is an irreflexive assymetric relation:

(∀x, y)[R1(x, y)→ ¬R1(y, x)].

• There are no directed loops of length ≤ n. That is, for all k with 1 ≤ k ≤ n,
we have

¬(∃z0, . . . , zk−1)

[ ∧
i<k−1

R1(zi, zi+1) ∧R1(zk−1, z0)

]
.

• The relation Sl(x, y) implies that there is no directed path of positive length
≤ l from x to y:

(∀x, y)

[
Sl(x, y)→ ¬(∃z0, . . . , zl)

[
z0 = x ∧ zl = y ∧

∧
i<l

R1(zi, zi+1) ∨ zi = zi+1

]]
.

• Paths satisfy the triangle inequality: if l + l′ < n, then

(∀x, y, z) [¬Sl(x, y) ∧ ¬Sl′(y, z)→ ¬Sl+l′(x, z)] ,
and, because there are no loops of size ≤ n, for all 1 ≤ l < n′ ≤ n

(∀x, y, z) [¬Sl(x, y)→ Sn′−l(y, x)] .

This is a universal theory and the model completion of T 0
n is denoted Tn—it elim-

inates quantifiers. Note that R1(x, y) is equivalent to ¬S1(x, y). We will write
Rl(x, y) for ¬Sl(x, y), which indicates there is a directed path of length ≤ l from x
to y. We will write Mn |= Tn for the monster model of Tn. The existence of the
model completion is proved in [12, Claim 2.8(3)], where it is also shown that Tn is
SOPn and NSOPn+1.

Proposition 4.2. If n ≥ 4, then κshred(Tn) =∞.

Proof. Let κ be an arbitrary infinite regular cardinal. Define a directed graph G
with domain {bi,α : i < κ, α < ω} ∪ {ai,j : i < κ, j < 2} and interpret the edge
relation R1 in G by

RG1 = {(ai,0, bi,α) : i < κ, α < ω even} ∪ {(bi,α, αi,1) : i < κ, α < ω odd},
and then interpret SGl and hence RGl for 1 ≤ l < n according to the axioms. This
clearly defines a model of T 0

n so there is an Ln-embedding of G into the monster
model Mn |= Tn. Therefore, we may identify G with an Ln-substructure of M.
Define Ai = a≤ib≤i, for all i < κ.

Let ϕ(x; y, z) = R1(x, y)∧R1(z, x) and define a partial type p by p = {ϕ(x; ai,0, ai,1) :
i < κ}. It is clear from the construction of G that any vertex satisfying this collec-
tion of formulas would not create a cycle, hence in particular, it will not create a
cycle of length ≤ n and, therefore, p is a consistent set of formulas.

Fix i < κ. By quantifier-elimination, we have bi+1 = (bi+1,α)α<ω isAi-indiscernible.
Let c realize ϕ(x; ai+1,0, ai+1,1). Then we have
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(1) R2(c, bi+1,α) for α < ω even.
(2) R2(bi+1,α, c) for α < ω odd.
(3) {R2(x, bi+1,α), R2(bi+1,α, x)} is inconsistent for all α, because n ≥ 4.

It follows that no end-segment of bi+1 can be c-indiscernible, and therefore cannot
be Aic-indiscernible. In fact, ϕ(x; ai+1,0, ai+1,1) ` R2(x; bi+1,α)↔ ¬R2(x; bi+1,α+1)
for all even α < ω, which shows that ϕ(x; ai+1,0, ai+1,1) explicitly shreds over Ai.
It follows that κshred(T ) > κ and, as κ was arbitrary, we have κshred(T ) =∞. �

Now we analyze T3:

Lemma 4.3. In T3, if b = 〈bi : i < λ〉 is indiscernible over A, then for any tuple a,
if c is a tuple disjoint from Aa, then there is c′ ≡Aa c so that b is Ac′-indiscernible.

Proof. Note that T3 eliminates quantifiers in the language containing only R1, since
R2(x, y) is definable by the formula x 6= y∧¬R1(y, x). For simplicity, we will write
R for R1. Because algebraic closure in T3 is trivial, by replacing c by something
with the same type over Aa, we may assume c is disjoint from Aab. Define a model
M |= T 0

3 as follows with underlying set Aabc by defining

RM = RM3 � Aab ∪RM3 � Aac.

We claim that M |= T 0
3 . To see this, suppose not and there are distinct d0, d1, d2 ∈

M so that RM (d0, d1), RM (d1, d2), and RM (d2, d0). Since M3 has no directed
cycles of length 3, it is impossible for d0, d1, d2 to be all contained in Aab or all
contained in Aac. Therefore, without loss of generality, d0 ∈ Aab \ Aac. But then
since RM (d2, d0) and RM (d0, d1), we have d1, d2 ∈ Aab, by the definition of RM , a
contradiction. This shows M has no directed cycle of length 3 so M |= T 0

3 .
Embed M into M3 over Aab and let c′ be the image of c. By quantifier elim-

ination, we have c′ ≡Aa c and, because c′ is disjoint from Aab, we have b is Ac′-
indiscernible. �

Proposition 4.4. κshred(T3) = ℵ0.

Proof. By Theorem 3.6, it suffices to show κ1
shred(T3) ≤ ℵ0, and, in fact, we will

show there is no shredding chain in a single free variable of length 2. Towards
contradiction, suppose A is a set of parameters, ϕ0(x; a0) shreds over A witnessed
by b0, ϕ1(x; a1) shreds over Aa0 witnessed by b1, and {ϕ0(x; a0), ϕ1(x; a1)} is con-
sistent, with x a single free variable. Because ϕ0(x; a0) has no realization c such
that b0 is indiscernible over Ac, it follows by Lemma 4.3 that any realization of
ϕ0(x; a0) is contained in Aa0. Then let c |= {ϕ0(x; a0), ϕ1(x; a1)}. Because c is an
element of Aa0, it follows that b1 is Aa0c-indiscernible, contradicting the fact that
b1 witnesses that ϕ1(x; a1) shreds over Aa0. This completes the proof. �

4.2. NSOP1 and unshreddability. There is a theory of independence for NSOP1

theories that indicates this class of theories may be considered quite close to the
class of simple theories (see, e.g., [6]). In the next two examples, however, we show
that unshreddability is independent of NSOP1 and, in particular, that within the
class of NSOP1 theories, it is still possible that κshred(T ) =∞. Recall the definition
of SOP1:

Definition 4.5. A formula ϕ(x; y) is said to have SOP1 if there is a tree of tuples
(aη)η∈2<ω satisfying the following:

(1) For all η ∈ 2ω, {ϕ(x; aη|α) : α < ω} is consistent.
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(2) For all η ⊥ ν in 2<ω, if (η ∧ ν) _ 0 E η and (η ∧ ν) _ 1 = ν, then
{ϕ(x; aη), ϕ(x; aν)} is inconsistent.

A theory T is said to have SOP1 if some ϕ(x; y) has SOP1 modulo T , otherwise T
is NSOP1.

First, we describe an NSOP1 example of a theory T ∗1 with κshred(T ∗1 ) = ℵ0. This
theory was studied in detail in [6, Subsection 9.2]. The language L1 consists of
unary predicates F and O, a binary relation E, and a binary function eval. The
theory T1 consists of the following axioms:

(1) F and O partition the universe.
(2) E ⊆ O2 is an equivalence relation.
(3) eval : F ×O → O is a selector function:

(a) (∀x ∈ F )(∀y ∈ O) [E(y, eval(x, y))].
(b) (∀x ∈ F )(∀y, z ∈ O) [E(y, z)→ eval(x, y) = eval(x, z)].

It was shown in [6, Subsection 9.2] that T1 has a model-completion T ∗1 , which
is the theory of the Fräıssé limit of finite models of T1, which is ℵ0-categorical
with elimination of quantifiers. It is additionally shown that algebraic closure and
definable closure of a set coincide with the structure generated by the set, and that
the theory is non-simple NSOP1.

Example 4.6. Suppose c ∈ O and 〈bi : i < λ〉 is an indiscernible sequence such
that bi ∈ F for all i < λ and eval(bi, c) = c if i is even and the eval(bi, c) pairwise
distinct and different from c for i odd. Then the formula E(x; c) implies eval(bi, x) =
eval(bi, c) for all i, thus E(x, c) shreds over ∅, since for any even α < λ and d with
|= E(d, c), eval(bα, d) = eval(bα+2, d) and eval(bα, d) 6= eval(bα+1, d).

We show that, in a sense made precise by the following lemma, all instances of
shredding in the theory T ∗1 resemble the previous example.

Lemma 4.7. Suppose ϕ(x; a) is a non-algebraic formula with l(x) = 1 that shreds
over A. Then there is some c ∈ Aa, E-equivalent to no element of A, such that
ϕ(x; a) ` E(x, c). In particular ϕ(x; a) ` x ∈ O.

Proof. Suppose ϕ(x; a) is a non-algebraic formula with l(x) = 1 and |= ϕ(f ; a) with
¬E(f, c) for every c ∈ Aa in an E-equivalence class disjoint from A. We must show
ϕ(x; a) does not shred over A. As a formula shreds over A only if it shreds over
some finite subset of A (i.e. the parameters appearing in the formulas witnessing
that it explicitly shreds over A), by Lemma 2.8, we may assume A is finite and that
a enumerates the structure generated by A and a.

Fix an A-indiscernible sequence b = (bi)i<λ for λ = (|T | + |A|)+ where bi =
(bi,0, . . . , bi,n−1) for all i < λ. Additionally, as a is a finite tuple, we can find some
ordinal α such that, for each j < n, either there is an equivalence class represented
by an element of a such that bi,j is in this equivalence class for all i ≥ α, or bi,j
is not equivalent to any element of a for all i ≥ α; and additionally, either there
is an element of a such that bi,j is equal to this element of a i ≥ α, or bi,j is not
equivalent to any element of a for all j ≥ α (in other words, we may find some α
such that b≥α is Aa-indiscernible in the stable reduct (F,O,E), where we forget
the function eval).

Let B = 〈ab≥α〉 and C = 〈af〉 be the structures generated by ab≥α and af in
M, respectively. By the assumption that ϕ(x; a) is not algebraic, we may assume
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f 6∈ B. By our assumption that ¬E(f, c) for every c ∈ Aa in an E-equivalence class
disjoint from A, we have the following three cases:

Case 1: f ∈ O and f is not E-equivalent in M to any element of 〈a〉.
In this case, we define a structure D whose underlying set is B ∪ C = B ∪ [f ]CE ,

where [f ]CE denotes the E-class of f in C. We interpret FD = FB and OD =
OB ∪ [f ]CE , then we intepret ED to extend EB with [f ]CE forming a new equivalence

class (thus also extending EC). Then we define evalD to extend evalB and evalC

(which agree on their common domain) and set eval(g, f) = f for all g ∈ FB \ FC .
Case 2: f ∈ O and f is E-equivalent to some c ∈ O〈A〉.
In this case, we define a structure D whose underlying set is B ∪ C = B ∪ {f}.

We interpret FD = FB and OD = OB ∪ {f}, then we intepret ED to extend EB

and EC with [c]DE = [c]BE ∪ {f}. Then we define evalD to extend evalB by setting

evalD(g, f) = evalB(g, c) for all g ∈ FB . Note that this extends evalC as well.
Case 3: f ∈ F .
In this case, as before, we define a structureD whose underlying set isB∪C∪{∗x :

x ∈ (OB/E) \ (OC/E)} where each ∗x is a new formal element indexed by an
equivalence class of B which is not represented by any element of 〈a〉. We interpret
FD = FB ∪ FC = FB ∪ {f} and OD = OB ∪ OC ∪ {∗x : x ∈ (OB/E) \ (OC/E)},
then we intepret ED to be the equivalence relation generated by EB ∪ EC (which
extends both EB and EC) and the condition that ∗x is in the equivalence class x

for each x ∈ (OB/E) \ (OC/E). Then to define evalD, extending evalB and evalC ,

we must define evalD(f, c) for all c ∈ FB which are not ED-equivalent an element

of C. For any such c, we define evalD(f, c) = ∗[c]E .

In each case, D extends B and C and one can check and A-indiscernibility of b
that, in D, b≥α is quantifier-free indiscernible over C. We may embed D into M
over B, and then the image f ′ of f along this embedding satisfies |= ϕ(f ′; a) and
b≥α is Af ′ indiscernible. This shows that ϕ(x; a) does not shred over A. �

Proposition 4.8. The theory T ∗1 is a non-simple NSOP1 theory with κshred(T ∗1 ) =
ℵ0.

Proof. By Theorem 3.6, it suffices to show κ1
shred(T ∗1 ) = ℵ0. Note that if ϕ0(x; a0)

shreds over A and ϕ1(x; a1) shreds over Aa0 with l(x) = 1 and both ϕ0 and ϕ1 are
non-algebraic, then by Lemma 4.7, we must have both that ϕ0(x; a0) implies that
x is in an equivalence class represented by an element of a0 and ϕ1(x; a1) implies
x is in an equivalence class of an element of a1 not represented by an element of
Aa0. This implies {ϕ0(x; a0), ϕ1(x; a1)} is inconsistent.

Now suppose ϕi(x; ai) are formulas with l(x) = 1 for i = 0, 1, 2, such that
ϕi(x; ai) shreds over Aa<i for i = 0, 1, 2 and {ϕi(x; ai) : i < 2} is consistent. Then,
by the first paragraph, one of ϕ0(x; a0) and ϕ1(x; a1) must be algebraic. Hence if
f |= {ϕi(x; ai) : i < 2}, then f ∈ acl(Aa0a1). But any Aa0a1-indiscernible sequence
is automatically acl(Aa0a1)-indiscernible and therefore Aa0a1f -indiscernible. It fol-
lows that ϕ2(x; a2) cannot shred over Aa0a1, a contradiction. Therefore κ1

shred(T ) =
ℵ0. �

The following theory is a variation on the generic theory of selector functions
T ∗1 considered above. The language L for our example consists of unary predicates
F,O0, O1, and O, binary relations E,R0, and R1, and a binary function eval. The
theory T consists of the following axioms:
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(1) F , O0, and O1 partition the universe and O = O0 ∪O1.
(2) E ⊆ O2 is an equivalence relation.
(3) eval : F ×O → O0 is a selector function:

(a) (∀x ∈ F )(∀y ∈ O) [E(y, eval(x, y))].
(b) (∀x ∈ F )(∀y, z ∈ O) [E(y, z)→ eval(x, y) = eval(x, z)].

(4) The relations R0, R1 satisfy:
(a) R0 ⊆ O0 ×O1.
(b) R1 ⊆ F ×O1.
(c) (∀x ∈ F )(∀z ∈ O1) [R0(eval(x, z), z)↔ R1(x, z)].

Define K to be the class of finite models of T .

Lemma 4.9. The class K is a Fräıssé class. Moreover, it is uniformly locally finite.

Proof. HP is clear as the axioms of T are universal. The argument for JEP is
identical to that for SAP, so we show SAP. Suppose A,B,C ∈ K where A ⊆ B,C
and B ∩ C = A. It suffices to define a L-structure with domain D = B ∪ C,
extending both B and C. First, note that if FB is non-empty, then every EB-
class intersects OB0 , but if FB = ∅, it is possible that there are EB-equivalence
classes disjoint from OB0 . In this latter case, we can extend B to B′ so that each
equivalence class contains an element of O0: Let (Ki)i<l list the EB-classes K of B
such that OB0 ∩K = ∅. Let B′ be the L-structure with underlying set B∪{∗i : i < l}
where the ∗i are new formal elements. Consider B′ as an L-structure via the the
following interpretations: for the unary predicates, interpret FB

′
= FB = ∅, OB′0 =

OB0 ∪ {∗i : i < l}, OB′1 = OB1 , and OB
′

= OB
′

0 ∪ OB
′

1 . Let RB
′

0 = RB0 , RB
′

1 = RB1 ,

and let EB
′

be the equivalence relation generated by EB ∪ {(b, ∗i) : i < l, b ∈ Ki}.
As FB = FB

′
= ∅, we can only define evalB

′
: FB

′ × OB
′ → OB

′

0 to be the
empty function. It is clear that B′ is in K, extends B, and every equivalence class
not represented by an element of A contains an element of O0. By a symmetric
argument, we may also extend C to C ′ so that every EC-class not represented by
an element of A contains an element of OC

′

0 . Replacing B and C by B′ and C ′

respectively, we may assume that all classes of B and C are either represented by
an element of A or by an element of OB0 or OC0 respectively.

Now we describe the construction of D. Interpret OD0 , OD1 , and FD by ODi =
OBi ∪ OCi for i = 0, 1, OD = OD0 ∪ OD1 , and FD = FB ∪ FC . Let ED be the
equivalence relation generated by EB ∪ EC . It follows that if b ∈ B, c ∈ C and
(b, c) ∈ ED, then there is some a ∈ A so that (a, b) ∈ EB and (a, c) ∈ EC and,
moreover, (OD, ED) extends both (OB , EB) and (OC , EC) as equivalence relations.
Put RD0 = RB0 ∪RC0 .

Next we define the interpretation evalD. Let {ai : i < k0} enumerate a collection
of representatives for the EA-classes in A. Then let {bi : i < k1} and {ci : i < k2}
enumerate representatives for the EB- and EC-classes of elements not represented
by an element of A, respectively. By the remarks above, we may assume each bi
and ci are in OD0 . Then every element of OD is equivalent to a unique element of

X = {ai : i < k0} ∪ {bi : i < k1} ∪ {ci : i < k2}.

Suppose d ∈ X. If f ∈ FA, define evalD(f, d) = evalB(f, d) if d ∈ B and

evalD(f, d) = evalC(f, d) if d ∈ C, which is well-defined as A is a substructure

of both B and C. If f ∈ FB \ FA, define evalD(f, d) = evalB(f, d) if d ∈ B and

evalD(f, d) = d otherwise. Likewise, if f ∈ FC \ FA, put evalD(f, d) = evalC(f, d)
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if d ∈ C and evalC(f, c) = c otherwise. This defines eval on FD ×X. More gener-

ally, if f ∈ FD and e ∈ OD, define evalD(f, e) = evalD(f, d) for the unique d ∈ X
equivalent to e.

To complete the construction, we must describe the interpretation of RD1 . Put

RD1 = RB1 ∪RC1 ∪ {(f, d) ∈ FD ×OD1 : (evalD(f, d), d) ∈ RD0 }.
We check that this defines an extension of B and C. If b ∈ FB , b′ ∈ OB1 , and

(evalD(b, b′), b′) ∈ RD0 , then (evalD(b, b′), b′) ∈ RB0 and evalD(b, b′) = evalB(b, b′) so

(evalB(b, b′), b′) ∈ RB0 and therefore RB1 (b, b′). This shows RD1 � B = RB1 . Likewise
RD1 � C = RC1 . Therefore D extends B and C.

Now to conclude we must show D ∈ K. It is clear that D satisfies axioms (1)-(3),
so we are left with checking (4). Suppose (f, d) ∈ FD×OD1 \ (FB×OB1 ∪FC×OC1 )

and d′ = evalD(f, d). Then, by definition, if (d, d′) ∈ RD0 , then (f, d) ∈ RD1 . On the
other hand, if (f, d) ∈ RD1 then, because (f, d) 6∈ RB1 ∪ RC1 , we must have (d, d′) ∈
RD0 , again by the definition of RD1 . It is clear that if (f, d) ∈ FB ×OB1 ∪ FC ×OC1
then (f, d) ∈ RD0 if and only if (f, d) ∈ RD1 because D extends B and C which are
in K. Therefore D satisfies axiom (4) which shows D ∈ K. This shows K has the
amalgamation property.

Finally, note that a structure in K generated by k elements is obtained by ap-
plying ≤ k functions of the form eval(f,−) to ≤ k elements in O, so has cardinality
≤ k2 + k. This shows K is uniformly locally finite. �

Corollary 4.10. T has a model completion T ∗ which is the theory of the Fräıssé
limit of K. The theory T ∗ eliminates quantifiers and is ℵ0-categorical.

We will write M |= T ∗ for a monster model of T ∗. We will now show that T ∗ is
NSOP1 by appealing to the following criterion:

Fact 4.11. [3, Proposition 5.8] Assume there is an Aut(M)-invariant ternary rela-
tion |̂ on small subsets of M satisfying the following properties, for an arbitrary
M ≺M and arbitrary tuples from M:

(1) Strong finite character: if a 6 |̂
M
b, then there is a formula ϕ(x, b,m) ∈

tp(a/Mb) such that for any a′ |= ϕ(x, b,m), a′ 6 |̂
M
b.

(2) Existence over models: a |̂
M
M .

(3) Monotonicity: if aa′ |̂
M
bb′, then a |̂

M
b.

(4) Symmetry: if a |̂
M
b, then b |̂

M
a.

(5) The independence theorem: if a |̂
M
b, a′ |̂

M
c, b |̂

M
c and a ≡M a′,

then there exists a′′ with a′′ ≡Mb a, a′′ ≡Mc a
′, and a′′ |̂

M
bc.

Then T is NSOP1.

Definition 4.12. Define a ternary relation |̂ ∗ on small subsets of M by: a |̂ ∗
C
b

if and only if

(1) dcl(aC)/E ∩ dcl(bC)/E ⊆ dcl(C)/E.
(2) dcl(aC) ∩ dcl(bC) ⊆ dcl(C).

where X/E = {[x]E : x ∈ X} denotes the collection of E-classes represented by an
element of X.

Lemma 4.13. The relation |̂ ∗ satisfies the independence theorem over models: if

M |= T ∗, a ≡M a′, and, additionally, a |̂ ∗
M
B, a′ |̂ ∗

M
C and B |̂ ∗

M
C then there

is a′′ with a′′ ≡MB a, a′′ ≡MC a′, and a′′ |̂ ∗
M
BC.
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Proof. Without loss of generality, we may assume thatM ⊆ B,C, and that B and C
are definably closed. Write a = (d0, . . . , dk−1, e0, . . . , el−1, f0, . . . , fm−1) with di ∈
F , ej ∈ O0, fk ∈ O1, and likewise a′ = (d′0, . . . , d

′
k−1, e

′
0, . . . , e

′
l−1, f

′
0, . . . , f

′
m−1).

Fix an automorphism σ ∈ Aut(M/M) with σ(a) = a′. Let U = {ug : g ∈ dcl(aB) \
B} and V = {vg : g ∈ dcl(a′C) \ C} denote collection of new formal elements with
ug = vσ(g) for all g ∈ 〈aM〉 \B. Let, then, a∗ be defined as follows:

a∗ = (ud0 , . . . , udk−1
, ue0 , . . . , uel−1

, uf0 , . . . , ufm−1
)

= (vd′0 , . . . , vd′k−1
, ve′0 , . . . , ve′l−1

, vf ′0 , . . . , vf ′m−1
).

We will construct by hand an L-structure D extending 〈BC〉 with domain UV 〈BC〉
in which a∗ ≡B a, a∗ ≡C a′ and a∗ |̂ ∗M BC.

There is a bijection ι0 : dcl(aB) → BU given by ι0(b) = b for all b ∈ B and
ι0(g) = ug for all g ∈ dcl(aB)\B. Likewise, we have a bijection ι1 : dcl(a′C)→ CV
given by ι1(c) = c for all c ∈ C and ι1(g) = vg for all g ∈ dcl(a′C)\C. The union of
the images of these functions is the domain of the structure D to be constructed and
their intersection is ι0(〈aM〉) = ι1(〈a′M〉). ConsiderBU and CV as L-structures by
pushing forward the structure on dcl(aB) and dcl(a′C) along ι0 and ι1, respectively.
Note that ι0|〈aM〉 = (ι1 ◦ σ)|〈aM〉.

We are left to show that we can define an L-structure on UV 〈BC〉 extending
that of BU , CV , and 〈BC〉 in such a way as to obtain a model of T . To begin,

interpret the predicates by ODi = OBUi ∪OCVi ∪O〈BC〉i for i = 0, 1, OD = OD0 ∪OD1 ,

FD = FBU∪FCV ∪F 〈BC〉, and RD0 = RBU0 ∪RCV0 ∪R〈BC〉0 . Let ED be defined to be

the equivalence relation generated by EBU , ECV , and E〈BC〉. The interpretation
of the predicates defines extensions of the given structures since if g is an element
of ι0(〈aM〉) = ι1(〈a′M〉) then ι−1

0 (g) is in the predicate O if and only if ι−1
1 (g) is

as well, and, moreover, it is easy to check that our assumptions on a, a′, B,C entail
that no pair of inequivalent elements in BU , CV , or 〈BC〉 become equivalent in D.

Next we define the function evalD extending evalBU ∪evalCV ∪eval〈BC〉. We first

claim that evalBU ∪evalCV ∪eval〈BC〉 is a function. The intersection of the domains
of the first two functions is ι0(〈aM〉) = ι1(〈aM〉). If b, b′ are in this intersection,
we must show

evalBU (b, b′) = c ⇐⇒ evalCV (b, b′) = c.

Choose b0, b
′
0, c0 ∈ 〈aM〉 and b1, b

′
1, c1 ∈ 〈a′M〉 with ιi(bi, b

′
i, ci) = (b, b′, c) for

i = 0, 1. Then since ι0 = ι1 ◦ σ on 〈aM〉, we have

M |= eval(b0, b
′
0) = c0 ⇐⇒ M |= eval(σ(b0), σ(b′0)) = σ(c0)

⇐⇒ M |= eval(b1, b
′
1) = c1.

Since evalBU and evalCV are defined by pushing forward the structure on 〈aB〉
and 〈a′C〉 along ι0 and ι1, respectively, this shows that evalBU ∪ evalCV defines a
function. Now the intersection of 〈BC〉 with BU ∪CV is BC and, by construction,
all 3 functions agree on this set. So the union defines a function.

Note that because BU , CV , and 〈BC〉 all contain a model M and therefore have
non-empty F -sort, every ED class is represented by an element of OD0 . Choose a
complete set of ED-class representatives {di : i < α} so that if di represents an
ED-class that meets M then di ∈ M and di ∈ O0. If e ∈ OD is ED-equivalent to

some e′ and (f, e′) is in the domain of evalBU ∪evalCV ∪eval〈BC〉, define evalD(f, e)
to be the value that this function takes on (f, e′). On the other hand, if f ∈
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FD \ (FBU ∪ FCV ∪ F 〈BC〉) or e is not ED-equivalent to any element on which

evalD(f,−) has already been defined, put evalD(f, e) = di for the unique di which is

ED-equivalent to e. This now defines evalD on all of FD×OD and, by construction,
evalD(f,−) is a selector function for ED for all f ∈ FD.

To conclude, we must interpret R1 on D. In order to build a structure that
satisfies axiom (4), we are forced to interpret

RD1 = {(f, b) ∈ F ×O1 : (evalD(f, b), b) ∈ RD0 }.
In order to ensure that D is an extension of BU , CV , and 〈BC〉, we have show
that for all X ∈ {BU,CV, 〈BC〉}, RD1 � X = RX1 . Suppose we have f, a, b ∈ X with

evalX(f, b) = a. Then because X is a model of T , we have RX0 (a, b) ⇐⇒ RX1 (f, b)
and, by construction, RX0 (a, b) ⇐⇒ RD0 (a, b). By definition, RD1 (f, b) ⇐⇒
RD0 (a, b). This shows RD1 (f, b) ⇐⇒ RX1 (f, b), hence RD1 � X = RX1 .

We have already argued that BU and CV are substructures of D - it follows that
every ED-class represented by an element of a∗ can only be equivalent to an element
of B or C if it is equivalent to an element of M . Moreover, our construction has
guaranteed that 〈a∗M〉D ∩ 〈BC〉 ⊆ BU ∩ 〈BC〉D ⊆ B and, by similar reasoning,
〈a∗M〉 ∩ 〈BC〉 ⊆ C. This implies 〈a∗M〉D ∩ 〈BC〉B ∩ C ⊆ M , so a∗ |̂ ∗M BC.

Embedding D into M over 〈BC〉, we conclude. �

Corollary 4.14. The theory T ∗ is NSOP1.

Proof. The relation |̂ ∗ is easily seen to satisfy properties (1) through (4) from Fact
4.11 and the independence theorem is established in Lemma 4.13. This implies T ∗

is NSOP1. �

Remark 4.15. One may additionally show that |̂ ∗ = |̂ K over models. As we
won’t need Kim-independence in what follows, we omit the proof.

Proposition 4.16. κshred(T ∗) =∞.

Proof. Let κ be an arbitrary regular cardinal. Inductively, we may choose a se-
quence of elements 〈ai : i < κ〉 and a sequence of sequences 〈bi : i < κ〉 so that

(1) For all i < κ, ai ∈ O0.
(2) For all i < κ, bi = 〈bi,j : j < ω〉 is an a<ib<i-indiscernible sequence of

elements of O1 in the same E-class as ai, with R0(ai, bi,j) if and only if j
is even.

Let p(x) = {eval(x; ai) = ai : i < κ} and fix some i < κ. Because each bi,j
is E-equivalent to ai and eval(x,−) is a selector function, eval(x, ai) = ai implies
eval(x; bi,j) = ai. It follows from axiom 4(c) of T that eval(x, ai) = ai implies
R0(ai, bi,j) ↔ R1(x, bi,j) for all j. Therefore, eval(x, ai) = ai ` R1(x; bi,j) if j is
even and eval(x, ai) = ai ` ¬R1(x; bi,j) if j is odd. This shows eval(x; ai) = ai ∈
p � a<i+1 explicitly shreds over a<i. Since κ is arbitrary, we conclude κshred(T ∗) =
∞. �

4.3. An NTP2 example. In this subsection, we describe an NTP2 example with
κshred(T ) =∞. Recall the definition of NTP2 theories:

Definition 4.17. A formula ϕ(x; y) has the tree property of the second kind (TP2)
if there is an array of tuples (ai,j)i,j<ω and k < ω satisfying the following:

(1) For all f : ω → ω, {ϕ(x; ai,f(i)) : i < ω} is consistent.
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(2) For all i < ω, {ϕ(x; ai,j) : j < ω} is k-inconsistent.

A theory is said to have TP2 if some formula has TP2 modulo T and is otherwise
called NTP2.

The class of NTP2 contains both the NIP and simple theories, so it is natural to
ask if NTP2 implies κshred(T ) <∞ but we show this is not the case.

The following fact will be useful in checking that the theory we construct is
NTP2:

Fact 4.18. (1) If T has TP2, there is a formula ϕ(x; y) witnessing this with
l(x) = 1 [2, Corollary 2.9].

(2) If ϕ(x; y) has TP2, then this will be witnessed with respect to an array
of parameters (ai,j)i,j<ω that is mutually indiscernible—that is, ai is a6=i-
indiscernible for all i < ω [2, Lemma 2.2].

Let L a language consisting of two binary relations R,E, and a binary function
∧ and the sublanguage consisting of just E and ∧ is Ltr. The class K will consist
of finite L-structures (A,EA,∧A, RA) so that (A,EA,∧A) is a meet-tree where ∧A
is the meet function, and RA is a graph on A. Denote the class of finite ∧-trees
(A,EA,∧A) by K0. This is a Fräıssé class with the strong amalgamation property
(SAP) and the theory Ttr of its Fräıssé limit is dp-minimal [13, Exercise 2.50,
Example 4.28], which means given a mutually indiscernible array (ai,j)i<2,j<ω and
element c, there is some i < 2 such that ai is c-indiscernible.

Lemma 4.19. The class K is a Fräıssé class. Moreover, the reduct of the Fräıssé
limit of K to Ltr is the Fräıssé limit of K0.

Proof. HP is clear and JEP will follow from a similar argument to SAP, so we will
prove SAP. Fix Ã, B̃0, B̃1 ∈ K such that Ã is an L-substructure of both B̃0 and B̃1

and B̃0 ∩ B̃1 = Ã. Let A = Ã � Ltr and Bi = B̃i � Ltr for i = 0, 1. By SAP in K0,
there is D ∈ F extending both B0 and B1. We may expand D to an L-structure D̃

by setting RD̃ = RB̃0 ∪RB̃1 . This establishes SAP for K.
Next, suppose A,B ∈ K0 and π : A → B is an Ltr-embedding. If Ã ∈ K is

an expansion of A, then we can expand B to the L-structure B̃ in which RB̃ =

{(π(a), π(a′)) : (a, a′) ∈ RÃ}. Clearly we have B̃ ∈ K and π is also an L-embedding
so by [9, Lemma 2.8], the reduct of the Fräıssé limit of K is the Fräıssé limit of
K0. �

By Lemma 4.19, we know that K has a Fräıssé limit which is an ω-categorical
expansion of Ttr by a (random) graph. Let T denote its theory and let M and Mtr

denote the monster models of T and Ttr respectively.

Lemma 4.20. Suppose we are given an L-indiscernible sequence I = 〈ai : i ∈ Z〉
and an element b so that I is Ltr-indiscernible over b. Then there is b′ ≡La0 b so
that I is L-indiscernible over b′.

Proof. Let σ ∈ AutLtr
(M/b) be an automorphism so that σ(ai) = ai+1. Let B

denote the L-structure generated by 〈ai : i ∈ Z〉 and let A0 be the L-structure
generated by a0b. Now expand the Ltr-structure 〈b(ai)i∈Z〉Ltr to an L-structure M
by setting

RM = RB ∪
⋃
i∈Z

σi(RA0).
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Claim 1: If i ∈ Z and c, d ∈ B ∩ σi(A0), then (c, d) ∈ RB if and only if (c, d) ∈
σi(RA0).

Proof of claim: This is clear if i = 0, since RB = RM � B and RA0 = RM � A0.
In general, if c, d ∈ B ∩ σi(A0), there are Ltr-terms t, t′, s, s′ so that

c = t(a<i, ai, a>i) = t′(b, ai)

d = s(a<i, ai, a>i) = s′(b, ai).

By indiscernibility, it follows that if σi(c′, d′) = (c, d), then we have

c′ = t(a<0, a0, a>0) = t′(b, a0)

d′ = s(a<0, a0, a>0) = s′(b, a0),

and we know that (c′, d′) ∈ RB if and only if (c′, d′) ∈ RA0 , by the i = 0 case. By
indiscernibility, (c′, d′) ∈ RB if and only if (c, d) ∈ RB and hence (c, d) ∈ RB if and
only if (c, d) ∈ σi(RA0). �
Claim 2: If i > 0 and c, d ∈ A0 ∩ σi(A0) then (c, d) ∈ RA0 if and only if (c, d) ∈
σi(RA0).

Proof of claim: As in the proof of the previous claim, there are Ltr-terms t, t′, s,
and s′ so that we have the following equalities:

c = t(a0, b) = t′(ai, b)

d = s(a0, b) = s′(ai, b).

Then by Ltr-indiscernibility over b, we have also t(a0, b) = t′(ai+1, b) and t(a1, b) =
t′(ai+1, b), hence t(a0, b) = t(a1, b). Likewise, we have s(a0, b) = s(a1, b). In partic-
ular, this shows σ(c, d) = (c, d) so the claim follows. �

Now, by Claim 1, it follows that for all c, d ∈ B, we have (c, d) ∈ RM if and
only if (c, d) ∈ RB , so M extends B. Likewise, by Claim 2, M extends A0 and
σi induces an L-isomorphism of A0 and the structure generated by bai in M , for
all i ∈ Z. Embed M into M over B and let b′ be the image of b under this
embedding. Then by quantifier-elimination, a0b ≡ aib′ for all i ∈ Z. After applying
Ramsey, compactness, and an automorphism, we can find b′′ ≡a0 b′ so that I is
L-indiscernible over b′′, completing the proof. �

Corollary 4.21. The theory T is NTP2 (and is, in fact, inp-minimal).

Proof. If T has TP2, then, by Fact 4.18 and compactness, there is an L-formula
ϕ(x; y) with l(x) = 1 that witnesses TP2 with repect to the mutually indiscernible
array (ai,j)i<ω,j∈Z. Let b |= {ϕ(x; ai,0) : i < ω}. As Ttr is dp-minimal, there is a row
i = 0 or i = 1 so that 〈ai,j : j ∈ Z〉 is b-indiscernible in the language Ltr. By Lemma
4.20, there is b′ ≡Lai,0 b such that 〈ai,j : j ∈ Z〉 is b′-indiscernible in the language L.

Then b′ |= {ϕ(x; ai,j) : j ∈ Z}, contradicting the row-wise inconsistency required
for TP2. �

Proposition 4.22. κshred(T ) =∞.

Proof. Let κ be an arbitrary regular cardinal. Inductively, we may choose a se-
quence of elements 〈ai : i < κ〉 and a sequence of sequences 〈bi : i < κ〉 so that

(1) For all i < κ, bi = 〈bi,j : j < ω〉 is an a<ib<i-indiscernible sequence of
pairwise incomparable elements, incomparable with ai, with bi,j ∧ bi,j′ =
ai ∧ bi,j for all j 6= j′ and R(ai ∧ bi,j , bi,j) if and only if j is even.

(2) If i < i′ < κ, then ai C ai′ ∧ bi′,j for all j.
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There is no problem continuing the induction, since T is the generic ∧-tree with
a random graph.

Figure 1. Illustration of the choice of ai and bi

Let p(x) = {x D ai : i < κ}. Notice that if x D ai, then x ∧ bi,j = ai ∧ bi,j and
hence x D ai ` R(x ∧ bi,j , bi,j) if and only if j is even. It follows that the formula
xD ai explicitly shreds over a<i. As κ is arbitrary, κshred(T ) =∞. �

5. A criterion for singular compactness

In this section, we give a sufficient condition for having singular compactness,
which is the negation of exact saturation (Definition 5.1 below). If ∆ (x, y) is a
set of formulas over ∅, then a (partial) ∆-type is a consistent set of instances of
formulas from ∆. We may refer to a {ϕ}-type as a ϕ-type. It is important to note
that by a ϕ-type we mean a consistent set of positive instances of ϕ, and do not
include instances of ¬ϕ.

Definition 5.1. Suppose that T is a complete first order theory and ∆ is a set of
formulas over ∅. Say that T has singular compactness for ∆ if whenever M |= T
is µ-saturated for a singular cardinal µ > |T | then M is µ+,∆-saturated: for every
∆-type p over a set A ⊆M with |A| ≤ µ, p is realized in M .

Condition 5.2. For every formula ϕ (x, y) (perhaps in a fixed set of formulas ∆)
there is some formula θϕ (x, z) such that for any finite ϕ-type r (x) over M |= T
and every finite set A ⊆ Mx of realizations of r there is some b ∈ Mz such that
θϕ (A, b) holds (i.e., M |= θϕ (a, b) for all a ∈ A) and θϕ (x, b) ` r (x).

Lemma 5.3. Suppose that T is a complete first order theory and that Condition
5.2 holds for ∆ (x, y). Then T has singular compactness for ∆.

Proof. Let p be a ∆-type over a set A with |A| = µ and suppose A ⊆ M , a µ-
saturated model of T . Write A =

⋃
i<κAi with |Ai| < µ, κ < µ. For each i < κ

find bi ∈M such that bi |= p|Ai (exists by µ-saturation).
By compactness and Condition 5.2, for each ϕ ∈ ∆ find eϕi ∈ Mz such that

θϕ (bj , e
ϕ
i ) holds for all j ≥ i and θϕ (x, eϕi ) ` tp+

ϕ (bi/Ai), the (positive) ϕ-type

of bi over Ai. By µ-saturation, find dϕi ∈ M such that dϕi ≡Ai∪{bi:i<κ} e
ϕ
i . Then

{θϕ (x, dϕi ) : i < κ, ϕ ∈ ∆} is a type and hence realized in M . �

When does Condition 5.2 hold? If T is complicated enough, e.g., T = PA or
T = ZFC, then it holds since given ϕ (x, y), we can choose θϕ (x, z) = x ∈ z.
Indeed, this condition implies that the theory cannot be too tame.
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Proposition 5.4. Assume T has infinite models. If Condition 5.2 holds for every
formula with one variable x then T has TP2, and has SOPn for all n.

Proof. We start by showing that T has TP2. Let ϕ (x, z) be θx 6=y (x, z). Let
ψ (x,w) = θ¬ϕ (x,w). We will show that ξ (x, zw) = ϕ (x, z) ∧ ψ (x,w) witnesses
TP2. Let {ai : i < ω} be some infinite set in M. Suppose that F is an arbitrary
family of pairwise disjoint subsets of ω. It is enough to find some bs ∈ Mzw for
every s ∈ F such that ξ (ai, bs) holds whenever i ∈ s, and {ξ (x, bs) , ξ (x, bt)} is
inconsistent for all s 6= t from F (see [5, Lemma 2.19]). By compactness we may
assume that F is finite and consists of finite sets and replace ω by some n < ω.

By choice of ϕ (x, z) there are cs for s ∈ F such that ϕ (ai, cs) holds iff i ∈ s:
take the finite type rs = {x 6= ai : i /∈ s} and As = {ai : i ∈ s} and apply Condition
5.2. This already shows that T has the independence property so is not NIP.

We can similarly choose ds by applying Condition 5.2 for ϕ and taking rs =
{¬ϕ (x, ct) : t 6= s, t ∈ F} and As = {ai : i ∈ s}. Then obviously ξ (ai, csds) holds
if i ∈ s. Also, as ψ (x, ds) ` ¬ϕ (x, ct) for t 6= s, we are done.

Next we show that T has SOPn for all n < ω.
Let ϕ0 (x, y0) = θ 6= (x, y0), ϕ1 (x, y1) = θϕ0

(x, y1) and in general ϕn+1 (x, yn+1) =
θϕn (x, yn+1). Fix some n with 3 ≤ n < ω. Let χn (y0, . . . , yn−1, x0; z0, . . . , zn−1;x′0)
with |zi| = |yi| say that

(∀x)[ϕi+1 (x, yi+1)→ ϕi (x, zi)]

for all i < n − 1 and ϕn−1 (x0, yn−1) ∧ ¬ϕ0 (x′0, y0). We will show that χ = χn
witnesses SOPn for all n ≥ 3.

Let 〈at : t < ω〉 be some infinite sequence in M. For t < ω, i < n, let bit ∈ Myi

be such that ϕi
(
as, b

i
t

)
holds iff s ≤ t (i.e., witnessing that ϕi has the order prop-

erty) and (∀x)[ϕi+1

(
x, bi+1

t

)
→ ϕi

(
x, bit′

)
] for all t′ ≥ t. We may find such bit’s

by induction on i < n using Condition 5.2 and compactness as above. For k < ω,
let b̄k = b0k . . . b

n−1
k ak. We have that for k, l < ω, M |= χ

(
b̄k, b̄l

)
if and only if

k < l. However, it is impossible that {χ (x̄k, x̄k+1) : k < n − 1} ∪ {χ (x̄n−1, x̄0)}
is consistent, since if it were realized by c̄k = c0k . . . c

n−1
k dk for k < n, then

ϕn−1

(
d0, c

n−1
0

)
⇒ ϕn−2

(
d0, c

n−2
1

)
⇒ · · · ⇒ ϕ0

(
d0, c

0
n−1

)
but as χ (c̄n−1, c̄0) holds,

we have that ¬ϕ0

(
d0, c

0
n−1

)
holds as well which is a contradiction. �

We give an example where this criterion holds.

Example 5.5. Let L = {Pi : i < 3} ∪ {R0,1, R0,2, R1,2} where the Pis are unary
predicates and the Ri,js are binary relation symbols. Let T ∀ say that 〈Pi : i < 3〉
are disjoint and their union covers the universe, that Ri,j ⊆ Pi × Pj and that:

� If R1,2 (b, c) then (∀x) [R0,1 (x, b)→ R0,2 (x, c)].

Claim 5.6. T ∀ is universal, it has the amalgamation property (AP) and the joint
embedding property (JEP).

Proof. The fact that T ∀ is universal is clear.
JEP: suppose that M1,M2 |= T ∀ are disjoint. Let M be the following structure.

As a set it is M1 ∪M2. For every relation symbol Q ∈ L, let QM = QM1 ∪QM2 .
AP: suppose that M0,M1,M2 |= T ∀ and M0 ⊆ M1,M2 and M0 = M1 ∩M2.

Let M be the following structure. Its universe is just the union of the universes of
M1,M2. For i < 3, PMi = PM1

i ∪ PM2
i . RM0,1 = RM1

0,1 ∪ R
M2
0,1 and similarly define
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RM1,2 = RM1
1,2 ∪R

M2
1,2 . Let

RM0,2 = RM1
0,2 ∪R

M2
0,2

∪ {(a, b) : a ∈ PM1
0 \M0, b ∈ PM2

2 \M0}

∪ {(a, b) : a ∈ PM2
0 \M0, b ∈ PM1

2 \M0}.

Let us check that � holds. Suppose that M |= R1,2 (b, c). Then we may assume
that b, c ∈ M1 (for M2 it is the same argument). Suppose that M |= R0,1 (a, b).
Then if a ∈ M1 then M1 |= R0,2 (a, c). Otherwise a ∈ M2 and b ∈ M0. If c ∈ M0

as well, then M2 |= R1,2 (b, c) ∧ R0,1 (a, b) so M2 |= R0,2 (a, c) and we are done.
Otherwise c ∈M1\M0, in which case RM0,2 (a, c) holds by choice of RM0,2. �

Corollary 5.7. T ∀ has a model completion T which has quantifier elimination.

Proposition 5.8. T is NSOP4 and has SOP3.

Proof. We start by showing that T is NSOP4. Suppose that 〈ai : i < ω〉 is an
indiscernible sequence in some model M |= T which witnesses SOP4. Let Ai be ai
as a set. Let M0 = A2, M ′0 = A3, M1 = A1A2, M2 = A2A3 and M3 = A3A4 with
the induced structure from M . So all are models of T ∀. Let M ′ be the amalgam
of M1,M2 over M0 as defined in the proof of Claim 5.6, and similarly let M ′′ be
the amalgam of M2,M3 over M ′0. Note that both M ′ and M ′′ contain M2 as a
substructure and that the universe of M ′ is A1A2A3 and of M ′′ is A2A3A4, but
neither are necessarily substructures of M .

Now we can amalgamate M ′ and M ′′ over M2. Moreover,

• Any structure N whose universe is A1A2A3A4 which contains both M ′,
M ′′ as substructures and satisfies T ∀ except perhaps �, and such that
N � A1A4 |= T ∀ will be a model of T ∀ (i.e., � just follows).

To see this, suppose that N |= R1,2 (b, c) ∧ R0,1 (a, b). We have to show that N |=
R0,2 (a, c). Note that for every x ∈ N , if x ∈ Ai ∩ Aj for distinct i, j ∈ {1, . . . , 4},
x ∈

⋂4
i=1Ai by indiscernibility.

If a, b, c all belong to either A1A2A3, A2A3A4 or A1A4 then this is clear, so
assume this is not the case.

Suppose that b, c ∈ A1A2A3, a ∈ A4 (so a /∈ A1A2A3) and b /∈ A1. Then if
b ∈ A2\A3 then M ′′ |= ¬R0,1 (a, b) — contradiction, so b ∈ A3. Then it must be
that c ∈ A1\A2 and b ∈ A3\A2 so M ′ |= ¬R1,2 (b, c) — contradiction.

If b, c ∈ A1A2A3, a ∈ A4 and b ∈ A1 then c /∈ A1. If c ∈ A2\A3 then M ′′ |=
R0,2 (a, c) so we are done. Else, c ∈ A3 \ A2, so since b /∈ A2, M ′ |= ¬R1,2 (b, c) —
contradiction.

Suppose that b ∈ A1 and c ∈ A4. Then a ∈ A2A3. If a ∈ A2\A3 then
M ′′ |= R0,2 (a, c) so we are done. Otherwise, a ∈ A3\A2, so M ′ |= ¬R0,1 (a, b)
— contradiction.

The case where b ∈ A4 and c ∈ A1 is done similarly.
By symmetry, this covers all the cases so the bullet is proved.
Let σ : A1A4 → A1A4 be a bijection such that σ(a1) = a4 and σ(a4) = a1

as tuples (hence σ2 = id). Let N0 be an amalgam of M ′ and M ′′ over M2 with
domain A1A2A3A4. Now define N to be a structure with the same underlying set
and the same interpretation of the unary predicates, but with each Ri,j interpreted
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as follows:

RNi,j =
(
RN0
i,j \ (A1A4)2

)
∪ {(a, b) ∈ A1A4 : M |= Ri,j(σ(a), σ(b))}.

By indiscernibility, if a, b are either both in A1 or both in A4, then (a, b) ∈ RNi,j
if and only if (a, b) ∈ RMi,j . Then it is clear that N has underlying set A1A2A3A4

and extends both M ′ and M ′′, hence it satisfies the conditions in the bullet point
above. This shows N |= T ∀, and hence there is some N ′ |= T containing N .

But then, if ϕ (x, y) is any quantifier-free formula with M |= ϕ (a1, a2), then
N ′ |= ϕ (a1, a2) ∧ ϕ (a2, a3) ∧ ϕ (a3, a4) ∧ ϕ (a4, a1). By quantifier elimination, T is
NSOP4.

Next we show that T has SOP3. For this we will use the following criterion.

Fact 5.9. [12, Claim 2.19] For a theory T , having SOP3 is equivalent to finding
two formulas ϕ (x, y) , ψ (x, y) and a sequence 〈ai, bi : i < ω〉 in some M |= T such
that

• For all i < j, M |= ¬∃x (ϕ (x, aj) ∧ ψ (x, ai)).
• If i ≤ j then M |= ϕ (bj , ai) and if j < i then M |= ψ (bj , ai).

(The definition in [12] additionally requires that {ϕ(x; y), ψ(x; y)} is inconsistent,
but this added condition is unnecessary: given ϕ and ψ as above, one can replace
ϕ by ϕ′ = ϕ(x; y)∧¬ψ(x; y) and then ϕ′ and ψ will witness the above conditions).

Let ϕ (x, y′) = R0,1 (x, y′) and ψ (x, y′′) = ¬R0,2 (x, y′′). Let 〈a′i, a′′i , bi : i < ω〉
be a sequence such that R1,2

(
a′i, a

′′
j

)
iff i > j, R0,1 (bj , a

′
i) whenever i ≤ j and

¬R0,2 (bj , a
′′
i ) whenever i > j. This sequence exists in some model M |= T as

we can define a model of T ∀ which contains exactly those elements. Now letting
ai = (a′i, a

′′
i ), the first bullet follows from � and the second bullet by the choice of

a′i, a
′′
i and bi. �

Corollary 5.10. There is a theory T with NSOP4 having SOP3 such that Condition
5.2 holds with ∆ = {R0,2 (x, y)} and θϕ from there being R0,1. Thus T has ∆-
singular compactness by Lemma 5.3.

Proof. We only need to show that Condition 5.2 holds. Suppose that M |= T
and r is some finite ∆-type. Let A ⊆ M be a finite set of realizations. Now the
definition of T , we may find some b ∈ M with R1,2 (b, c) whenever R0,2 (x, c) ∈ r
and R0,1 (a, b) for all a ∈ A. This suffices. �
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