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HIGHER DIMENSIONAL CARDINAL CHARACTERISTICS FOR

SETS OF FUNCTIONS

COREY BACAL SWITZER

Abstract. Much recent work in cardinal characteristics has focused on general-
izing results about ω to uncountable cardinals by studying analogues of classical
cardinal characteristics on the generalized Baire and Cantor spaces κκ and 2κ. In
this note I look at generalizations to other function spaces, focusing particularly
on the space of functions f : ωω → ωω. By considering classical cardinal invariants
on Baire space in this setting I derive a number of “higher dimensional” analogues
of such cardinals, ultimately introducing 18 new cardinal invariants, alongside a
framework that allows for numerous others. These 18 form two separate diagrams
consisting of 6 and 12 cardinals respectively, each resembling versions of the Ci-
choń diagram. These ZFC-inequalities are the first main result of the paper. I
then consider other relations between these cardinals, as well as the cardinal c+

and show that these results rely on additional assumptions about cardinal charac-
teristics on ω. Finally, using variations of Cohen, Hechler, and localization forcing
I prove a number of consistency results for possible values of the new cardinals.

1. Introduction

Many cardinal characteristics on ωω arise as follows: fix some relation R ⊆ ω×ω
and let R∗ ⊆ ωω × ωω be defined by fR∗g if and only if for all but finitely many n
f(n)Rg(n). For instance, letting R be the the usual order on ω gives the eventual
domination ordering. Each such R then gives rise to two cardinal characteristics,
b(R∗), the least size of a set A ⊆ ωω with no R∗-bound and d(R∗) the least size
of a set D ⊆ ωω which is R∗-dominating. A natural generalization of this as is
follows: fix two sets X and Y , let I be an ideal on X and R ⊆ Y × Y be a binary
relation on Y . Let Y X be the set of functions f : X → Y and consider the relation
RI ⊆ Y X ×Y X given by fRIg if and only if for almost all x we have f(x)Rg(x) i.e.
{x ∈ X | ¬f(x)Rg(x)} ∈ I. Again we get two cardinal characteristics, this time
on the set Y X : b(RI), the least size of a set A ⊆ Y X which has no RI-bound and
d(RI), the least size of a set D ⊆ Y X which is dominating with respect to RI . Note
that letting X = Y = ω and I be the ideal of finite sets we recover the original
setting for cardinal characteristics on Baire space and letting Y = 2 we recover the
same for Cantor space.
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2 SWITZER

Recently, much work has been done on the case of X = κ and Y = κ or 2 for
arbitrary κ, thus generalizing cardinal characteristics to larger cardinals, see for
example the article [4] or the survey [9] for a list of open questions. In this case
the interesting ideals are the ideal of sets of size < κ, the non-stationary ideal, and,
if κ has a large cardinal property, then potentially some ideal related to this. See
[6], Theorems 6 and 8 for a particularly striking result relating cardinal invariants
modulo different ideals.

However, this framework is more flexible than just allowing one to study gener-
alized Baire space and Cantor space. Indeed it is easy to imagine numerous new
cardinal characteristics. In this article I consider a different generalization, based on
the function space (ωω)ω

ω

of functions f : ωω → ωω. Since Baire space comes with
ideals that are not easily defined on κκ we get further generalizations of cardinal
characteristics. Specifically I will consider the ideals N , M and K of null, meager
and (contained in) σ-compact sets respectively. The result is a “higher dimensional”
version of several well-known cardinal characteristics. While many different gener-
alizations are possible let me stick with the following three relations for simplicity:
≤∗, the relation of eventual domination, 6=∗, the relation of eventual non-equality
and ∈∗ the relation of eventual capture (these relations will be defined below). By
considering two cardinals for each of these three relations and three ideals I end up
with 18 new cardinals characteristics above the continuum. The first main theorem
of this article is to show that these “higher dimensional” cardinals behave, provably
under ZFC, similar to their Baire space analogues (the cardinals mentioned below
will be defined in detail in the next section).

Theorem 1.1. Interpreting → as ≤ the inequalities shown in Figures 1 and 2 are
all provable in ZFC.

b(∈∗
N )

b(≤∗
N )

b( 6=∗
N )

d( 6=∗
N )

d(≤∗
N )

d(∈∗
N )

Figure 1. Higher Dimensional Cardinal Characteristics Mod the
Null Ideal
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b(∈∗
M)

b(≤∗
M)

b( 6=∗
M)

d( 6=∗
M)

d(≤∗
M)

d(∈∗
M)

b(∈∗
K)

b(≤∗
K)

b( 6=∗
K)

d( 6=∗
K)

d(≤∗
K)

d(∈∗
K)

Figure 2. Higher Dimensional Cardinal Characteristics Mod the
Meager and σ-Compact Ideals

By contrast, the relation between these cardinals and the size of the continuum
is less clear. To show that these cardinals are at least c+, I need to assume certain
values of cardinal characteristics.

Theorem 1.2. Assume that add(N ) = c, then all of the cardinals in Figures 1 and
2 are at least c+.

Similarly, cardinal characteristics on ω play a role in relating the cardinals modulo
the different ideals. Specifically, assuming all the cardinals in Cichoń’s diagram are
equal, I prove that the cardinals obtained by modding out by the null and meager
ideals respectively are equal. This result is thematically similar to the aforemen-
tioned theorems from [6] relating [κ]<κ to NSκ.

Theorem 1.3. Assume cof(N ) = add(N ). Then for each R ∈ {∈∗,≤∗, 6=∗} we
have that b(RN ) = b(RM) and d(RN ) = d(RM).

Next I turn to consistency results and show the following.

Theorem 1.4. Let ℵ2 ≤ κ ≤ λ with κ and λ regular and I ∈ {N ,M,K}. Each of
the following inequalities are consistent.

(1) c
+ = b( 6=∗

I) < d( 6=∗
I) = κ = 2c.

(2) c
+ < b(≤∗

I) = d( 6=∗
I) = κ = 2c.

(3) c
+ < b(≤∗

I) = κ < d(≤∗
I) = λ = 2c.

(4) c
+ < b(∈∗

I) = κ = 2c.

Many other consistency results seem within grasp using standard techniques or
minor modifications and I list some open problems related to these at the end of
the paper.

In the rest of the introduction I introduce terminology that will be used through-
out. In the next section the cardinals b(RI) and d(RI) are introduced and basic
relations between them are shown. The third section investigates the relation be-
tween these higher dimensional cardinal characteristics and the standard cardinal
characteristics on ω. Section 4 contains a number of consistency results and intro-
duces three new forcing notions based on generalizations of Cohen, Hechler, and
localization forcing. In section 5 I list a number of open questions, as well as some
possible extensions.
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In what follows I use letters like x, y, z to denote elements of Baire space and letters
like f, g, h to denote functions from ωω to ωω (or, between uncountable Polish spaces
more generally). If I is an ideal, a set is I-positive if it’s not in I and is I-measure
one if its complement is in I. Note that in the case of the null ideal, non measurable
sets are I-positive. Otherwise the notation is standard conforming to that [10].
Also, I use the monograph [2] as the standard reference for cardinal characteristics
of the continuum and occasionally refer to the survey article [3] as well.

Let me recall the following vocabulary. Given any set X and a relation R on X
an element x ∈ X is an R-bound for a set A ⊆ X if for every a ∈ A we have that
aRx. A set is R-bounded if it has an R-bound. It’s R-unbounded otherwise. A set
D ⊆ X is R-dominating if for every y ∈ X there is a d ∈ D so that yRd. For any
such X and R I write b(R) for the least size of an R-unbounded set and d(R) for
the least size of an R-dominating set. If Q = (Q,≤Q) is a partially ordered set then
I also write b(Q) and d(Q) for b(≤Q) and d(≤Q) respectively.

I let µ denote the Lebesgue measure on ωω (or any other oft-encountered Polish
space under consideration). Recall that this is defined as follows. For a finite
sequence s ∈ ω<ω let Ns = {x ∈ ωω | s ⊆ x} be the basic open determined by s and
let µ(Ns) := Πi<length(s)2

−s(i)+1. The measure µ is then extended to all measurable
sets in the normal way.

The symbols N , M, K denote the null ideal, the meager ideal and the ideal
generated by σ-compact subsets of ωω respectively. In the case of K recall that it
is a well known result that A ∈ K if and only if A is ≤∗-bounded, see the proof of
Theorem 2.8 of [3]. The relevant properties that all three of these ideals share is
that they are non-trivial σ-ideals containing all countable subsets of ωω and have a
Borel base: every element of each ideal is covered by a Borel set in that ideal. In
the case N and M the fact that the underlying set is ωω, as opposed to any other
perfect Polish space is unimportant in this paper, however, it obviously matters for
K since many Polish spaces are themselves σ-compact and hence K on such a space
is trivial.

Recall that a function s : ω → [ω]<ω is called a slalom if |s(n)| ≤ n for all n. The
set of all slaloms is denoted S. Given the product topology of the discrete topology
on ω<ω the space S is homeomorphic to Baire space. Given an element x ∈ ωω let
x ∈∗ s if for all but finitely many n x(n) ∈ s(n). Using the terminology of the first
paragraph, recall the following well known theorem, due to Bartoszyński.

Fact 1.5 (Bartoszyński, see Theorem 2.3.9 of [2]). The following equalities are
provable in ZFC.

(1) b(∈∗) = add(N )
(2) d(∈∗) = cof(N )

A similar theorem due to Miller relates the meager ideal to the relation 6=∗.

Fact 1.6 (Miller [11], see Thereoms 2.4.1 and 2.4.7 of [2]). The following equalities
are provable in ZFC.

(1) b( 6=∗) = non(M)



HIGHER DIMENSIONAL CARDINAL CHARACTERISTICS FOR SETS OF FUNCTIONS 5

(2) d( 6=∗) = cov(M)

2. Higher Dimensional Variants of A Fragment of Cichoń’s Diagram

In this section I define the cardinals that will be studied for the rest of the paper.
The basic definition is given below.

Definition 2.1. Let I ∈ {N ,M,K} and R ∈ {≤∗, 6=∗,∈∗}.

(1) b(RI) is the least size of a set A of functions from ωω to ωω for which there
is no g : ωω → ωω (g : ωω → S in the case of R =∈∗) such that for all f ∈ A
the set {x ∈ ωω | ¬f(x)Rg(x)} is in I.

(2) d(RI) is the least size of a set A of functions from ωω to ωω (ωω to S in the
case of R =∈∗) so that for all g : ωω → ωω there is an f ∈ A for which the
set {x ∈ ωω | ¬g(x)Rf(x)} is in I.

By varying I and R this definition gives 18 new cardinals. For readability, let me
give the details below for the case of the null ideal. Similar statements hold for M
and K. First let’s see explicitly what each relation RI is. On the two lists below let
f, g : ωω → ωω and h : ωω → S.

(1) f 6=∗
N g if and only if for all but a measure zero set of x ∈ ωω we have that

f(x) 6=∗ g(x).
(2) f ≤∗

N g if and only if for all but a measure zero set of x ∈ ωω we have that
f(x) ≤∗ g(x).

(3) f ∈∗
N h if and only if for all but a measure zero set of x ∈ ωω we have that

f(x) ∈∗ h(x).

For the cardinals now we get the following. Note that ¬x 6=∗ y means ∃∞nx(n) =
y(n) and the same for the other relations.

(1) b( 6=∗
N ) is the least size of a 6=∗

N -unbounded set A ⊆ (ωω)ω
ω

i.e. A is such that
for each f : ωω → ωω there is a g ∈ A so that the set of {x | ∃∞n g(x)(n) =
f(x)(n)} is not measure zero.

(2) d( 6=∗
N ) is the least size of a 6=∗

N -dominating set A ⊆ (ωω)ω
ω

i.e. A is such that
for every f : ωω → ωω there is a g ∈ A so that µ({x | f(x) 6=∗ g(x)}) = 1.

(3) b(≤∗
N ) is the least size of a ≤∗

N -unbounded set A ⊆ (ωω)ω
ω

i.e. A is such that
for each f : ωω → ωω there is a g ∈ A so that the set of {x | ∃∞n f(x)(n) <
g(x)(n)} is not measure zero.

(4) d(≤∗
N ) is the least size of a ≤∗

N -dominating set A ⊆ (ωω)ω
ω

i.e. A is such that
for every f : ωω → ωω there is a g ∈ A so that µ({x | f(x) ≤∗ g(x)}) = 1.

(5) b(∈∗
N ) is the least size of a ∈∗

N -unbounded set A ⊆ (ωω)ω
ω

i.e. A is such that
for each f : ωω → S there is a g ∈ A so that the set of {x | ∃∞n g(x)(n) /∈
f(x)(n)} is not measure zero.

(6) d(∈∗
N ) is the least size of a ∈∗

N -dominating set A ⊆ (S)ω
ω

i.e. A is such that
for every f : ωω → ωω there is a g ∈ A so that µ({x | f(x) ∈∗ g(x)}) = 1.
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The first goal is to prove the following theorem, which shows that for each ideal
the six associated cardinals fit together as in the case of the corresponding fragment
of Cichoń’s diagram on ω, note not all cardinals in the ω case have analogues here.

Theorem 2.2 (The Higher Dimensional Cichoń diagram). For an ideal I ∈ {N ,M,K}
and interpreting → as “is ZFC-provably less than or equal to” the following all hold:

b(∈∗
I)

b(≤∗
I)

b( 6=∗
I)

d( 6=∗
I)

d(≤∗
I)

d(∈∗
I)

Proof. Most of these implications are easy, however two are more substantial. The
easy cases are shown below in Figure 3. The arguments for these are exactly identical
to those in the Cichoń case. For instance, if A is ≤∗

I-bounded, then of course it is not
≤∗

I-dominating hence b(≤∗
I) ≤ d(≤∗

I). Similarly, if A ⊆ (ωω)ω
ω

is a set so that there

is a function h : ωω → S so that for all f ∈ A f ∈∗
I h then ĥ(x)(n) = maxh(x)(n)+1

witnesses the ≤∗
I-bound of A. The other easy cases follow the same lines.

b(∈∗
I)

b(≤∗
I)

b( 6=∗
I)

d( 6=∗
I)

d(≤∗
I)

d(∈∗
I)

Figure 3. The easy cases

The two more substantial inequalities are b(∈∗
I) ≤ d( 6=∗

I) and b( 6=∗
I) ≤ d(∈∗

I), so I
turn my attention to these. For the rest of this section, fix an ideal I ∈ {N ,M,K}.

The proofs of the inequalities consist of “lifting” the proofs for the Cichoń diagram
to the higher dimensional case, particularly those in [1]. Fix finite, disjoint subsets
of ω which collectively cover ω, say J = {Jn,k | k < n}. Let Jn =

⋃
k<n Jn,k.

Let’s say that a J -function is a function x : ω → ω<ω so that for every n we have
that x(n) has domain Jn. Similarly a J -slalom is a function s : ω → [ω<ω]<ω so
that for each n |s(n)| ≤ n and if w ∈ s(n) then the domain of w is Jn. If x is a J
function and s a J -slalom then we let x ∈∗ s if and only if for all but finitely many n
x(n) ∈ s(n). Clearly via some simple coding we can find homeomorphisms/measure
isomorphisms between ωω and the set of J -functions (with the obvious topology)
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and S and the set of J -slaloms. It’s then routine to verify that b(∈∗
I) is the same

for ∈∗ defined on slaloms and elements of Baire space or their J -versions.

Lemma 2.3. b(∈∗
I) ≤ d( 6=∗

I)

Proof. I use the version of b(∈∗
I) defined in terms of J -slaloms as in the paragraph

before the statement of the lemma. Let κ < b(∈∗
I). I need to show that κ < d( 6=∗

I).
Fix a set A ⊆ (ωω)ω

ω

of size κ. Let’s see that A is not 6=∗
I-dominating. To be clear,

a set is 6=∗
I dominating if for every function f : ωω → ωω there is a g ∈ A so that

for all x save for a set in I f(x) 6=∗ g(x). Negating this, we need to find a function
f : ωω → ωω so that for all g ∈ A the set {x | ∃∞n g(x)(n) = f(x)(n)} is I-positive.
In fact, I will show that under the assumption, such an f can be found so that each
such set is I-measure one.

Given an element of Baire Space, x : ω → ω let x′ be the J -function defined by
x′(n) = x ↾ Jn. Note that since the Jn’s cover ω and are disjoint the function x 7→ x′

is a bijection. Given a function f : ωω → ωω let f ′ similarly be defined by letting
f ′(x) = f(x)′. Let A′ = {g′ | g ∈ A}. Since this set has size κ it is ∈∗

I-bounded
i.e. there is a function fA with domain the set of J -functions and range the set of
J -slaloms so that for all g′ ∈ A′ {x | g′(x) /∈∗ fA(x)} ∈ I. I need to transform fA
into a function f as advertized in the previous paragraph. The crux of the argument
is the following claim, which will also be used in Lemma 2.5 below as well.

Claim 2.4. Given a J -slalom s, there is a function xs : ω → ω so that for all
y : ω → ω if y′ ∈∗ s then there are infinitely many n < ω so that xs(n) = y(n).

Proof of Claim. Fix a J -slalom s. For each n let s(n) = {wn
0 , ..., w

n
n−1}. Define

xs : ω → ω by letting for each n and k < n and l ∈ Jn,k xs(l) = wn
k (l). Suppose now

that y : ω → ω is such that y′(n) ∈ s(n) for all but finitely many n < ω. Fix some
n so that y′(n) ∈ s(n), say, y′(n) = wn

k . Then for each l ∈ Jn,k y(l) = wn
k (l) = xs(l).

Since there are cofinitely many such n’s there are infinitely many such l’s so xs is
as needed. �

Now, returning to the proof of the lemma, let f : ωω → ωω be defined by letting
f(x) be the function xfA(x) in the terminology of the claim. In particular, if g :
ωω → ωω then for every x ∈ ωω if g′(x) ∈∗ fA(x) then there are infinitely many n
so that g(x)(n) = f(x)(n). In particular the set {x | g′(x) ∈∗ fA(x)} is contained in
the set {x | ∃∞n g(x)(n) = f(x)(n)}. For g ∈ A the former is I-measure one and so
the latter is as well. As a result f is as needed. �

By essentially dualizing the proof above we get as well the following.

Lemma 2.5. b( 6=∗
I) ≤ d(∈∗

I)

Proof. Suppose κ < b( 6=∗
I) and let A ⊆ (S)ω

ω

be of size κ. I need to show that there
is an f ∈ (ωω)ω

ω

so that for each h ∈ A the set of x so that f(x) /∈∗ h(x) does not have
I-measure one. For each h ∈ A let gh ∈ (ωω)ω

ω

be defined by letting, for each x ∈ ωω

gh(x) = xh(x) as defined in the claim of the previous lemma. In particular, for each x
note that if f(x) ∈∗ h(x) then ∃∞n gh(x)(n) = f(x)(n). Now let Ā = {gh | h ∈ A}.
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This set has size at most κ so there is a 6=∗
I-bound by assumption, say f . This means

that for each gh ∈ Ā we have that {x | gh(x) 6=∗ f(x)} is I-measure one. But now
the lemma is proved since for every x so that gh(x) 6=∗ f(x) by the contrapositive
of the implication defining gh we have that f(x) /∈∗ h(x). �

Combining the easy cases shown in Figure 3 with the proofs of the above two
lemmas then completes the proof of Theorem 2.2. �

Using the fact that every set in K is meager, we get the following relation between
the diagrams for M and K.

Proposition 2.6. The following inequalities are provable in ZFC:

b(∈∗
M)

b(≤∗
M)

b( 6=∗
M)

d( 6=∗
M)

d(≤∗
M)

d(∈∗
M)

b(∈∗
K)

b(≤∗
K)

b( 6=∗
K)

d( 6=∗
K)

d(≤∗
K)

d(∈∗
K)

Proof. Fix a relation R. To see that b(RK) ≤ b(RM) note that if A ⊆ (ωω)ω
ω

is
RK-bounded, then it means that there is a function f : ωω → ωω so that for each
g ∈ A the set {x | ¬g(x)Rf(x)} is ≤∗-bounded by some z ∈ ωω. But this means in
particular that it is meager and hence for each g ∈ A gRMf .

To see that d(RM) ≤ d(RK), suppose that A ⊆ (ωω)ω
ω

is not RM-dominating.
This means that there is some f : ωω → ωω so that for each g ∈ A the set
{x | f(x)Rg(x)} is not comeager. It follows that in particular it is not K-measure
one then (since each such set is comeager) and therefore no g ∈ A is a RK bound
on f , so A is not RK-dominating. �

3. Relations between the Higher Dimensional Cardinals and

Standard Cardinal Characteristics

This section concerns the relationship between provable inequalities between the
cardinals introduced previously and cardinal characteristics of the continuum. I look
first at the relationship between the higher dimensional cardinals and cardinal c+

and then I compare the diagrams for the null and meager ideals.
First let’s note that for the b(RI) cardinals there are easy ZFC lower and upper

bounds in terms of cardinal characteristics.

Proposition 3.1. For each I ∈ {N ,M,K} and R ∈ {∈∗,≤∗, 6=∗} we have b(R) ≤
b(RI) ≤ b(R)non(I).

Proof. Fix R and I. I start with the lower bound. Suppose κ < b(R) and let
A = {fα | α < κ} ⊆ (ωω)ω

ω

. Define g : ωω → ωω (or g : ωω → S in the case R =∈∗)
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by letting g(x) be an R-bound on the set {fα(x) | α < κ}. Such a bound exists by
assumption that κ < b(R). But in this case A is RI-bounded by g since for each
α < κ we have fα(x)Rg(x) for every x ∈ ωω, not just an I-measure one set.

For the upper bound, fix an R-unbounded family of minimal size B = {xα | α <
b(R)}. Let C = {yα | α < non(I)} be an I-positive set of minimal size. Let BC be
the set of functions from C to B. Note that this set has size b(R)non(I). Extend each
element arbitrarily to the whole space. We claim that in fact this set is unbounded.
Indeed, let f : ωω → ωω (or f : ωω → S in the case R =∈∗). We need to show
that f is not a bound. To see this, let h : C → B be defined by letting h(x) be
not R-bounded by f(x). Note that since B is an unbounded family this is well
defined. Extend h arbitrarily to some h̄. Now it can’t be the case that h̄RIf since
{x | ¬h̄(x)Rf(x)} contains C, which is not in I. �

I would like to argue that the standard diagonal arguments show that the cardinals
defined above are greater than or equal to c

+, however this is not the case in ZFC

alone. What I can show instead is that this holds under additional assumptions on
certain cardinal characteristics on ω. For the statement of the lemma below, recall
that non(K) = b, see Theorem 2.8 of [3].

Lemma 3.2. For each I ∈ {N ,M,K} and R ∈ {∈∗,≤∗, 6=∗}, if b(R) = non(I) = c

then c
+ ≤ b(RI). In particular, if add(N ) = c then all 18 cardinals introduced in

the previous section are greater than c.

Proof. This is essentially a generalization of the standard diagonal arguments used
to show that various cardinal characteristics are uncountable. The point is that in
that case, the relations (on ω) under consideration are always so that every finite
set has an upper bound and the ideal is always the ideal of finite sets. It is exactly
because arithmetic of cardinal characteristics is not so simple that the additional
hypotheses are needed.

Fix R and I and assume b(R) = non(I) = c. Let fα : ωω → ωω for each
α < c. We want to find a g : ωω → ωω (or g : ωω → S in the case of R =∈∗)
so that for all α fαRIg. This is done as follows. First, list the elements of ωω as
{xα | α < c}. Next, note that for each β < c, by the fact that non(I) = c we have
that {xα | α < β} ∈ I and, by the fact that b(R) = c we have that for each xγ ∈ ωω

the set {fα(xγ) | α < β} has an R-bound, say yγβ. Now define g so that g(xα) = yαα.
It follows that for all α if γ > α then fα(xγ)Rg(xγ) and since the set {xγ | γ > α}
is I-measure one we’re done. �

Since writing and submitting this paper, in ongoing joint work with J. Brendle we
have since shown that the cardinals of the form d(RI) are provably at least c+ but
the cardinals of the form b(RI) can be both consistently equal to and strictly less
than c, even ℵ1 with the continuum arbitrarily large. See [5, Main Theorem 1.1]1.

1The anonymous referee independently observed an instance of this, and I thank them for the
comment.
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Finally in this section let me compare the cardinals forM andN . Every argument
given so far has worked equally well for each of them, and the theorem below suggests
that this is not an accident.

Theorem 3.3. If add(N ) = cof(N ) then for every relation R ∈ {∈∗,≤∗, 6=∗} we
have that b(RN ) = b(RM) and d(RN ) = d(RM).

The proof of this theorem follows immediately from the following two lemmas,
the first of which is well known.

Lemma 3.4 (Theorem 2.1.8 of [2]). If add(N ) = cof(N ) then there is a bijection
f : ωω → ωω so that for all A ⊆ ωω f(A) ∈ N if and only if A ∈ M and f(A) ∈ M
if and only if A ∈ N .

Lemma 3.5. If there is a bijection f : ωω → ωω as in Lemma 3.4 then for every
relation R ∈ {∈∗,≤∗, 6=∗} we have that b(RN ) = b(RM) and d(RN ) = d(RM).

Proof. Fix a relation R ∈ {∈∗,≤∗, 6=∗} and let f : ωω → ωω be a bijection as
described in Lemma 3.4. First, suppose that κ < b(RN ) and let A ⊆ (ωω)ω

ω

be
a set of size κ. I claim that there is a function gA : ωω → ωω (gA : ωω → S
in the case R =∈∗) so that for all g ∈ A gRMgA and hence κ < b(RM). Let
Af = {g ◦ f | g ∈ A}. Since f is a bijection |Af | = κ. By the hypothesis, let
ḡ : ωω → ωω be an RN bound on Af . I claim that gA = ḡ ◦ f−1 is as needed.
We have that for every g ∈ A if f−1(x) = y is in the measure one set for which
g(f(y))Rḡ(y) is true then the following holds:

g(x) = g(f(f−1(x))Rḡ(f−1(x)) = gA(x)

Therefore f−1({x | ¬g(x)RgA(x)}) is contained in {x | ¬g(f(x))Rḡ(x)}, which
is null by assumption and so the former is null as well. Hence by the property of f
it follows that {x | ¬g(x)RgA(x)} is meager so gA is an RM-bound as needed.

This shows that b(RN ) ≤ b(RM) however an identical argument, flipping the roles
of the meager and null sets, shows the reverse inequality so we get that b(RN ) =
b(RM).

An essentially dual argument works to show that d(RN ) = d(RM). Let me sketch
it, though I leave out the details. Assuming that κ < d(RN ) we fix a set A ⊆ (ωω)ω

ω

of size κ, define Af as before and let ḡ be a function not dominated by any member
of Af . Then essentially the same argument shows that ḡ ◦ f−1 is a function not
dominated by any member of A and, again by symmetry we obtain the required
equality. �

J. Brendle and I in the above mentioned ongoing work have shown that without
additional assumptions both b(RM) < b(RN ) and b(RN ) < b(RM) are consistent
for every R ∈ {∈∗,≤∗, 6=∗}. However, d(RN ) = d(RM) in ZFC for every R, see [5,
Main Theorem 1.4].
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4. Consistency Results

In this section I consider consistent separations between the cardinals. For read-
ability, I focus on the case of I = N , however, it’s routine to check that the argu-
ments go through for I = M and I = K. Indeed the essential point will be simply
that N has a Borel base and contains the countable subsets of ωω. Also, I will only
be considering models of CH so by Theorem 3.3 any separation between nodes in
the N diagram will hold equally for the M diagram.

From now on assume GCH holds and fix an enumeration of ωω in order type ω1,
say {xα | α < ω1}. Also fix an enumeration of the Borel sets in N in order type
ω1, say {Nα | α < ω1}. Suppose we have some forcing notion P which does not add
reals. Note that in this case if B is a Borel set then P forces that the name for B is
equal to its evaluation in the ground model. Also, since P does not add reals, it does
not add any Borel sets either. This translates to the following idea, which is used
in several proofs. Suppose Ȧ is a P name for a subset of ωω. If for some condition
p ∈ P we have that p 
 µ(Ȧ) = 0̌, then we can always find a q ≤ p and a Borel null
set in the ground model N so that q 
 Ȧ ⊆ Ň .

The following simple lemma will be used in several proofs.

Lemma 4.1. Let ~N0 = 〈N0,α | α < ω1〉 and ~N1 = 〈N1,α | α < ω1〉 be two enumera-
tions of Borel null sets of ωω, possibly with repetitions, in order type ω1 so that for
each x ∈ ωω there are uncountably many α, β so that x /∈ N0,α ∪N1,β. Then there is
an enumeration in order type ω1, say 〈(N ′

0,α, N
′
1,α) | α < ω1〉 of the set of all pairs

(N0,β, N1,γ) so that for each α < ω1 we have xα /∈ N ′
0,α ∪N ′

1,α.

Proof. First fix any enumeration of ~N0 × ~N1, say 〈(N ′′
0,α, N

′′
1,α) | α < ω1〉 and define

inductively for each α (N ′
0,α, N

′
1,α) to be the least γ so that (N ′′

0,γ , N
′′
1,γ) has not yet

been enumerated and xα /∈ N ′′
0,γ ∪ N ′′

1,γ . Observe first that there is some such γ
since by assumption there are uncountably many pairs (N0,γ0 , N1,γ1) whose union
does not contain xα and only countably many from each list has appeared so far.
It remains to show that every (N ′′

0,γ, N
′′
1,γ) gets enumerated under this procedure.

Suppose not and let γ be least so that (N ′′
0,γ , N

′′
1,γ) is not enumerated. Since for

every β < γ the pair (N ′′
0,β, N

′′
1,β) was enumerated, there was some countable stage

by which this happened and so for cocountably many α it must have been the case
that xα ∈ N ′′

0,γ ∪N ′′
1,γ . But this is impossible since N ′′

0,γ ∪ N ′′
1,γ is measure zero and

hence cannot contain a cocountable set. �

4.1. Generalizing Cohen Forcing. The point of this subsection is to prove the
following theorem.

Theorem 4.2 (GCH). Let κ > ℵ2 be regular. There is a cofinality preserving forcing
notion Pκ so that if G ⊆ Pκ is V -generic then in V [G] we have c

+ = ℵ2 = b( 6=∗
N ) <

d( 6=∗
N ) = 2c = κ.

The proof will involve an iteration of length κ of a certain forcing notion, CN .
Let me begin by introducing this forcing notion and studying its properties.
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Definition 4.3. The N -Cohen forcing, denoted CN , is the set of all p : dom(p) ⊆
ωω → ωω so that graph(p) is Borel and dom(p) is measure zero. We let p ≤ q if and
only if p ⊇ q.

The following observations are easy but will be useful.

Proposition 4.4. The forcing CN is σ-closed and has size c, hence it has the c+-c.c.
In particular, under CH all cofinalities and hence cardinalities are preserved.

Proof. First let’s see that CN is σ-closed. Given a descending sequence p0 ≥ p1 ≥
p2... let p =

⋃
n<ω pn. Since the countable union of Borel sets is Borel it follows that

p has a Borel graph and since the countable union of null sets is null, it follows that
p has null domain. Thus p is a condition so it is a lower bound on the sequence of
pn’s.

To see that CN has size c it suffices to note that each condition is a Borel subset
of (ωω)2, of which there are only c many. �

Note that since CN adds no reals or Borel sets and every condition p ∈ CN is
a Borel set it follows that 
CN

ĊN = ČN and so in particular, the product and
iteration of CN are the same. Now, a straightforward density argument shows that
CN adds a function g : ωω → ωω, namely the union of the generic filter. Indeed it’s
easy to see that if p is any condition and N is any Borel null set then there is a
condition q ≤ p so that N ⊆ dom(q). I need to verify two properties of CN , given as
Lemmas 4.5 and 4.6 below. The first will imply that in an iterated extension d( 6=∗

N )
becomes large and the second will imply that b( 6=∗

N ) remains small in an iterated
extension.

Lemma 4.5. If G ⊆ CN is generic over V then in V [G] the set of f ∈ (ωω)ω
ω

∩ V
is not dominating with respect to the relation 6=∗

N .

Proof. In fact a stronger statement is true, namely if g =
⋃

G and ġ is the name
for g, then for any f : ωω → ωω in the ground model the set {x | f(x) = g(x)} is
not measure zero. To see this, suppose that for some condition p and ground model
function f we have that p 
 µ({x | f̌(x) = ġ(x)}) = 0̌. Since every null set is
contained in a Borel null set, there is a Borel Null set N , necessarily in the ground
model since CN is σ-closed, and a strengthening q ≤ p so that q 
 {x | f̌(x) =
ġ(x)} ⊆ Ň . But now let x /∈ N ∪dom(q) (this is possible since N ∪dom(q) ∈ N ). It
is straightforward to verify that q∗ = q ∪ {〈x, f(x)〉} is a condition extending q but
clearly q∗ 
 {x | f̌(x) = ġ(x)} * Ň , which is a contradiction. It follows in particular
that for every f ∈ V we have that on a non null set of x there are infinitely many
n < ω so that f(x)(n) = g(x)(n). This implies the lemma. �

Lemma 4.6. If G ⊆ ΠICN is generic over V for the countable support product of
CN over an index set I of size at most ℵ1 then in V [G] the set of f ∈ (ωω)ω

ω

∩ V
is unbounded with respect to the relation 6=∗

N .

Proof. I need to show that in V [G] there is no h : ωω → ωω so that for all f : ωω → ωω

in V the set of x for which f(x) 6=∗ h(x) is measure one. Thus suppose for a
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contradiction that there is a condition p and a name ḣ so that p 
 ḣ : ω̌ω → ω̌ω is
such a function. I need to define in V a function for which this fails.

Note that (under CH) ΠICN has size ℵ1. For each condition p ∈ ΠICN , let Np

be the union of the domains of the coodinate conditions. Since ΠICN has countable
support, it follows that Np is null. Now, using Lemma 4.1 fix an enumeration
〈(N0,α, pα) | α < ω1〉 of all pairs where N0,α ranges over the Borel null sets Nα and

pα is a condition in ΠICN , and xα /∈ N0,α∪Npα . For each α, let rα ≤ pα decide ḣ(xα).

Say that rα 
 ḣ(x̌α) = y̌α for some yα. Let h∗ : ωω → ωω be the function (defined
in V ) so that h∗(xα) = yα for all α. Suppose that there is some Borel null set N

and some condition p which forces that {x | ∃∞n ḣ(x)(n) = ȟ∗(x)(n)} ⊆ N . Let α

be such that (N, p) = (N0,α, pα). Then pα 
 {x | ∃∞n ḣ(x)(n) = ȟ∗(x)(n)} ⊆ N0,α.

But rα ≤ pα forces that ḣ(xα) = ȟ∗(xα) and by the choice of enumeration we had
that xα /∈ N0,α, which is a contradiction. �

I’m now ready to prove Theorem 4.2. In fact it follows from the following theorem,
which is just a more precise statement of what will be shown.

Theorem 4.7. Let κ be a regular cardinal greater than ℵ2 and let Pκ be the countable
support product of CN . Then Pκ preserves cofinalities and cardinals and if G ⊆ Pκ

is V -generic then in V [G] c+ = ℵ2 = b( 6=∗
N ) < d( 6=∗

N ) = 2c = κ.

Proof. Fix κ > ℵ2 regular, let P = Pκ be the countable support product of CN

of length κ. Clearly P is σ-closed and a straightforward ∆-system argument using
GCH shows that it has the ℵ2-c.c. It follows that all cardinals and cofinalities are
preserved.

Also, for each α the α-stage forcing Pα adds a new function gα : ωω → ωω so in
the extension 2c ≥ κ. A standard nice name counting argument, again using GCH

shows that in fact 2c = κ.
It remains to show that ℵ2 = b( 6=∗

N ) and d( 6=∗
N ) = κ. For the first of these, it

suffices to see that (ωω)ω
ω

∩ V is unbounded with respect to 6=∗
N . To see this, by

Lemma 4.6, it suffices to note that if ḟ is a name for a function in (ωω)ω
ω

then ḟ is
equivalent to a ΠICN for I an index set of size ℵ1. This latter statement is proved
as follows: let, for each x ∈ ωω Ax be an antichain of conditions deciding ḟ(x̌) and
note that the cardinality of the supports of the elements of

⋃
x∈ωω Ax has size ℵ1 by

CH using the countable support of the product.
Finally for d( 6=∗

N ) = κ, suppose that A ⊆ (ωω)ω
ω

of size < κ. It follows that A
must have been added by some initial stage of the iteration, the next stage of which
killed the possibility that it was dominating by Lemma 4.5. �

Let me reiterate that, defining CM and CK in the obvious way the proofs can
be repeated verbatim to obtain similar consistencies for the M and K ideals. The
same is true in the remaining subsections, though I won’t explicitly say this again.
An interesting open question though is the following.

Question 1. Are the forcing notions CN , CM and CK forcing equivalent?
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4.2. Generalizing Hechler Forcing. In this subsection I consider a generalization
of Hechler forcing called DN and look at two models obtained by iterating this
forcing. First I consider the countable support iteration of DN and then I look at a
non-linear iteration of DN . The use of non-linear iterations of Hechler forcing (for
ωω) originates in the work of Hechler in [8] and was generalized by Cummings and
Shelah in [6] to accomodate κκ. Here I follow the same expositional flow as used in
[6]. Using this forcing I obtain the following consistency result.

Theorem 4.8. Let ℵ2 < κ ≤ λ with κ and λ regular. Then there is a forcing notion
Pκ,λ which preserves cardinals and cofinalities such that if G ⊆ Pκ is generic then
in V [G] we have that b(≤∗

N ) = κ ≤ d(≤∗) = 2c = λ.

Similar to the last subsection I start by introducing the one step and studying its
properties. As before, I work with the null ideal for definiteness but it’s easy to see
that the proofs adapt to the case of the other ideals.

Definition 4.9. The N -Hechler forcing DN consists of the set of pairs (p,F) where
p ∈ CN and F is a countable set of functions f : ωω → ωω. We let (p,F) ≤ (q,G)
in case p ⊇ q, F ⊇ G and for all x ∈ dom(p) \ dom(q) and all g ∈ G g(x) ≤∗ p(x).

If d = (pd,Fd) ∈ DN , let me call pd the stem of the condition and Fd the side
part. The basic properties I will need for DN are as follows.

Proposition 4.10. DN is σ-closed and has the c
+-c.c., thus assuming CH, it pre-

serves cofinalities and cardinals. Also, if G ⊆ DN is V -generic then the union of G
is a function g : ωω → ωω so that for any f : ωω → ωω in the ground model the set
of x so that g(x) does not eventually dominate f(x) is null.

Proof. That DN is σ-closed is the same as the proof for CN . To see that it has the
c
+-c.c. it suffices to note that if two conditions have the same stem then they are
compatible.

Now to see that g is total is a simple density argument, noting that if d is some
condition and x /∈ dom(pd) then there is a y dominating all of the f(x) for f ∈
Fd since this set is countable and hence (pd ∪ {〈x, y〉},Fd) extends d as needed.
Moreover, if f : ωω → ωω is a function in the ground model and d is any condition
then clearly we can strengthen d, say to d′ so that f is included in the side part
d′. This strengthening forces, by the definition of the extension relation, that for all
x /∈ dom(pd′) f(x) ≤∗ ġ(x). Since the domain of pd′ was measure zero this proves
the second part. �

Remark 1. While it’s not used in any proof let me note that, unlike with CN it is not
the case that every condition in DN can be extended to include any Borel null set in
the domain of its stem. This is because given any uncountable Borel set, under CH
one can use a simple diagonal argument to build a function which is not dominated
by any Borel function on that set. What is true however, is that the stem of any
condition can be extended to include any countable set.
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Let me now show what happens in the generic extension by a countable support
iteration of DN .

Theorem 4.11. Let κ be regular and let Pκ be the countable support iteration of
DN . If G ⊆ Pκ is V -generic then in V [G] b(≤∗

N ) = d( 6=∗
N ) = κ = 2c.

Proof. Let κ > ℵ2 be regular and let Pκ be the countable support iteration of length
κ of Dκ. That cardinals and cofinalities are preserved follows as for CN . Also, every
set A ⊆ (ωω)ω

ω

of size less than κ is added by some initial stage, after which a
function bounding A was added so b(≤∗

N ) = κ. Moreover a nice name argument
easily gives that 2c = κ.

It remains to see that d( 6=∗
N ) = κ in this model. For this, I use the fact that

countable support iterations always add a generic for Add(ω1, 1) at limit stages of
cofinality ω1. Now, given any function f : ω1 → ω1 we can think of it as a function
f̂ from ωω to ωω by letting f̂(xα) = xβ just in case f(α) = β. Suppose A ⊆ (ωω)ω

ω

is a set of size less than κ. It must have been added by some initial stage of the
iteration Pκ and therefore there is a later stage which adds an Add(ω1, 1)-generic
function g : ω1 → ω1. By density, given any f : ωω → ωω in A and any Borel null
set N we can find an x /∈ N so that ĝ(x) = f(x) and therefore, for any f ∈ A
the set of x for which ĝ(x) = f(x) is not null. Therefore in particular A is not a
6=∗

N -dominating family. Thus d( 6=∗
N ) = κ. �

I’m now ready to prove Theorem 4.8. This uses a version of the iteration discussed
in Section 3 of [6], it being based on the original non-linear iteration of Hechler in
[8]. Let me recall the basics of what I need. Fix κ < λ regular cardinals greater
than ℵ2 and let Q = (Q,≤Q) be a well founded partial order so that b(Q) = κ and
d(Q) = λ. For example, under GCH, κ× [λ]<κ ordered by (α, τ) ≤ (β, σ) if and only
if α < β and τ ⊆ σ is such an order, see Lemma 2 of [6] for a proof. I need to define
a σ-closed, ℵ2-c.c. forcing notion D(Q) so that forcing with this partial order adds
a cofinal embedding of Q into ((ωω)ω

ω

,≤∗
N ). If I can do this, then by Lemmas 3

and 5 of [6] it follows that in the extension by this forcing notion b(≤∗
N ) = κ and

d(≤∗
N ) = λ. For completeness, here are the cited lemmas.

Lemma 4.12 (Lemma 3 of [6]). If P and Q are partially ordered sets and P embeds
cofinally into Q then b(P) = b(Q) and d(P) = d(Q).

Lemma 4.13 (Lemma 5 of [6]). Suppose P is a partial order with b(P) = β and
d(P) = δ.

(1) If V [G] is a generic extension of V so that every set of ordinals of size less
than β in V [G] is covered by a set of ordinals of size less than β in V then
V [G] |= b(P) = β.

(2) If V [G] is a generic extension of V so that every set of ordinals of size less
than δ in V [G] is covered by a set of ordinals of size less than δ in V then
V [G] |= d(P) = δ.
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Let me define the forcing notion I need. In what follows, if a ∈ Q let Q ↾ a =
{b ∈ Q | b < a}. Similarly if p is a function with domain contained in Q, let p ↾ a
be the restriction of p to Q ↾ a.

Definition 4.14. Let Qtop be Q with the addition of a top element, top, greater
than all other elements. For each a ∈ Qtop define inductively a forcing notion D(Q)a
to be the set of functions p with dom(p) ⊆ Q ↾ a countable and for each b ∈ dom(p)
p(b) is a D(Q)b-name for an element of DN of the form (p̌, Ḟ). Let p ≤D(Q)a q if and
only if p ⊇ q and for every b ∈ dom(q) we have that p ↾ b 
D(Q)b p(b) ≤DN

q(b).
Finally we let D(Q) = D(Q)top.

Remark 2. Below I show that D(Q)a is σ-closed for each a ∈ Q. It follows that there
is no loss in generality in insisting that for all b the name for the stem of p(b) is a
check name, since the latter is always coded by a real and hence the set of conditions
like this is dense.

Lemma 4.15. For every a ∈ Q, the partial order D(Q)a is σ-closed, and under
GCH, has the ℵ2-c.c..

Proof. Fix a ∈ Q. Suppose that p0 ≥ p1 ≥ ... ≥ pn ≥ ... is a decreasing sequence
of elements in D(Q)a. Let p be defined as the function whose domain is the union
of the domains of all of the pn’s and so that for each b ∈ dom(p) we let p(b) name
a lower bound on the set of {pn(b) | n < ω and b ∈ dom(pn)}. Since DN is σ-closed
such a name exists. Clearly p is a lower bound on the sequence so D(Q)a is σ-closed.

To see that D(Q)a has the ℵ2-c.c., suppose that A = {pα | α < ω2} is a set
of conditions. Applying the ∆-system lemma (by GCH) we can thin out A to a
∆-system so that any two conditions’ domains coincide on some countable set B ⊆
Q ↾ a. But now, since each name for the stem in p(b) is a check name, the set of all
possible sequences of stems on the coordinates in B has size ωω

1 = ω1 (using CH).
Thus A contains ω2 many conditions so that on B the stems agree, and each such
condition’s overlapping domains is B. But this means that those conditions are all
compatible. �

The next lemma is entirely straightforward to verify.

Lemma 4.16. Suppose a < b ∈ Qtop then D(Q)a completely embeds into D(Q)b and
the map π : D(Q)b → D(Q)a defined by π(p) = p ↾ a is a projection.

Now we get to the heart of the matter. Let G ⊆ D(Q) be generic over V . For each
a ∈ Q let fa

G : ωω → ωω be the DN -generic function added by the ath coordinate i.e.
fa
G =

⋃
p∈G{p(a)0}

Lemma 4.17. The map a 7→ fa
G is a cofinal mapping of Q into ((ωω)ω

ω

,≤∗
N ).

Proof. I need to show that for a, b ∈ Q, first of all that a < b if and only if fa
G ≤∗

N f b
G

and second of all that for each f ∈ (ωω)ω
ω

there is an a ∈ Q so that f ≤∗
N fa

G. First
suppose that a < b. By Lemma 4.16 for any p ∈ D(Q) we can find a strengthening
q so that q(b) forces that fa

G ≤∗
N f b

G since fa
G is added at an earlier stage.
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Now suppose that a and b are incomparable (the case where b < a is symmetric
to the above). Suppose for a contradiction that these is some condition p ∈ D(Q)

so that p 
 {x | ḟa
G(x̌) �

∗ ḟ b
G(x̌)} ⊆ Ň , so in particular p forces that fa

G ≤∗
N f b

G. By
strengthening if necessary we can assume that a, b ∈ dom(p). Now choose α so that
xα is not in N , dom(p(a)0) or dom(p(b)0). Since all three are null sets, their union
is null so there is such an xα. Now let qb ≤D(Q)b p ↾ b be a strengthening so that

if Ḟb is the name of the side part of p(b) then qb decides the check name values of

all countably many elements of {ḟ(x̌α) | ḟ ∈ Ḟb}, this is possible by the fact that
the forcing is σ-closed. Let pb be the condition obtained by letting pb(x) = p(x) if
x /∈ dom(q) and pb(x) = q(x) otherwise. Now let qa ≤ pb ↾ a strengthen pb to decide

the values {ḟ(x̌α) | ḟ ∈ Ḟa} for Ḟa the name of the side part of p(a). Finally let q
be the condition which agrees with qa on its domain and agrees with pb otherwise.
Note that since a and b are incomparable in Q neither a nor b is in the domains of
qa or qb and so q(a) = p(a) and q(b) = p(b) and q ≤ p. Now, let xb be a ≤∗-bound

on the set {ḟ(x̌α) | ḟ ∈ Ḟb} and let xa be such that xb + 1 ≤∗ xa and xa is a

≤∗-bound on the set {ḟ(x̌α) | ḟ ∈ Ḟa}. Finally let q∗ be the strengthening of q so
that the stem of q∗(a) includes (xα, xa) and the stem of q∗(b) includes (xα, xb). Then

q∗ 
 ḟ b
G(x̌α) + 1 ≤∗ ḟa

G(x̌α), but this contradicts the choice of p and N .
Finally to see that the mapping is cofinal, let f ∈ (ωω)ω

ω

. By the ℵ2-c.c. there

is some name ḟ so that ḟG = f and some X ⊆ Q of size ℵ1, and hence bounded so
that there is a b greater than every x ∈ X and so that ḟ is equivalent to a D(Q)b
name. But then f ≤∗

N f b
G so we’re done. �

Putting together these lemmas, the rest of the proof of Theorem 4.8 is relatively
straightforward. Let me record the details below.

Proof of Theorem 4.8. Fix G as in the lemma above. By Lemma 4.17 in V [G] there
is a cofinal embedding of Q into ((ωω)ω

ω

,≤∗
N ) and so b(≤∗

N ) = b(Q) and d(≤∗
N ) =

d(Q). By the fact that the forcing is σ-closed and has the ℵ2-c.c. it follows that in
V [G] b(≤∗) = κ and d(≤∗) = λ. Finally, assuming that |Q| = λ, like in the example
given above of Q = κ× [λ]<κ, we can apply a nice name counting argument to also
get that 2c = λ. �

Let me also observe that the proof of this theorem gives slightly more, in fact it
gives a weakened higher dimensional version of Hechler’s classical theorem on ≤∗,
see the remark preceding Theorem 2.5 of [3].

Corollary 4.18. Assume GCH and let Q be any well-founded partial order so that
ℵ2 < b(Q) ≤ d(Q) with b(Q) and d(Q) regular. Then it’s consistent that Q embeds
cofinally into ((ωω)ω

ω

,≤∗
N ).

J. Brendle has shown that under CH b(∈∗
N ) = b(≤∗

N ) so in the models constructed
in Theorems 4.8 and 4.11 b(∈∗

N ) increases over the iteration, see [5, Main Theorem
1.2]. However, these cardinals can be different, again shown in joint work with J.
Brendle, in fact this happens in the Laver Model (for I = K or I = M this happens
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in the Hechler model). These results, and many more appear in the sequel to the
present article, [5]. See in particular [5, Theorem 4.8 and Theorem 4.5] for proofs
of separation of b(∈∗

I) and b(≤∗
I) in the Laver and Hechler models respectively.

4.3. Generalizing LOC-Forcing. In the final subsection here I prove the con-
sistency of having all the cardinals in the diagram arbitrarily large. The relevant
forcing is a generalization of the LOC-forcing.

Definition 4.19. The N -LOC forcing, denoted LOCN , is the set of all pairs (p,F)
so that p : dom(p) ⊆ ωω → S is a partial function with a Borel graph and a Borel
domain which is measure zero and F ⊆ (ωω)ω

ω

is countable. We let (p,F) ≤ (q,G) if
and only if p ⊇ q, F ⊇ G and for all x ∈ dom(p) \dom(q) we have that g(x) ∈∗ p(x)
for every g ∈ G.

Using the same template as with DN it is straightforward to show the following.

Lemma 4.20. LOCN is σ-closed, has the c
+-c.c. and adds a function h : ωω → S

so that for every f ∈ (ωω)ω
ω

∩ V f ∈∗
N h.

As a result of this lemma, using the same ideas as before we get immediately.

Theorem 4.21. Let κ > ℵ2 be a regular cardinal and let Pκ be the countable support
iteration of LOCN . Then if G ⊆ Pκ is generic over V in V [G] we have b(∈∗

N ) =
κ = 2c.

5. Conclusion and Questions

The consistency results above barely hint at the possible constellations of the
18 cardinals considered. Many more splits between the cardinals are shown to be
consistent in [5] and yet there are still many more that remain open.

Question 2. How many of the above defined cardinals defined above can be simul-
taneously different?

Presumably this would involve developing analogues for well known forcing no-
tions on the reals such as Sacks, Laver etc as I have done for Cohen, Hechler and
LOC. I leave this project for future research.

Since writing this article, I have worked jointly on this extensively with J. Brendle
and we have computed the values of these cardinals in standard models of ¬CH such
as the Cohen model, the random model, the Sacks model etc. We have shown that
many interesting things happen to the b(RI) cardinals. In these models the d(RI)
cardinals all stay c

+ however in two step iterations where many Cohen subsets
are added to ω1 first (followed by Sacks, Laver etc) the d(RI) cardinals can be
manipulated too. See [5].

Finally let me conclude by noting that, as mentioned in the introduction, the
framework introduced is very flexible and many other generalizations are possible.
For instance, while I have been working with Baire space, a similar study could easily
be carried out for any other uncountable Polish space. One particularly interesting
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possibility, which I leave for future work, is to consider variations on a where [ω]ω

is replaced by the I-positive sets of some Polish space and “almost disjoint” means
that such sets have intersection in I. A generalization in this spirit for ideals on ω
has been considered in [7].
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