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INDIFFERENCE TO SYMMETRY IN HRUSHOVSKI’S AB

INITIO CONSTRUCTION

OMER MERMELSTEIN

Abstract. Denote Hrushovski’s non-collapsed ab initio construction for an
n-ary relation by M 6∼ and the analogous construction for a symmetric n-ary
relation by M∼. We show that M 6∼ is isomorphic to a proper reduct of M∼

and vice versa, and that the combinatorial pregeometries associated with both
structures are isomorphic.

1. Introduction

The source of pregeometries in model theory is the closure operation on real-
izations of a regular type, given by forking. The best known example of this, is
the algebraic closure operation on a strongly minimal set. In the early 1980s Boris
Zilber conjectured that, after naming some parameters, the geometry of a strongly
minimal set is isomorphic to that of a set, that of a vector space or that of an
algebraically closed field. This conjecture was refuted by a construction introduced
by Ehud Hrushovski in [Hru93], referred to as Hrushovski’s ab initio construction.

Hrushovski’s ab initio construction is a deep generalization of a Fräıssé limit fea-
turing a regular type whose forking geometry is non-disintegrated, yet prohibiting
the existence of an infinite definable group. By imposing restrictions on the class
from which the limit is constructed, one produces a strongly minimal structure not
falling within Zilber’s conjecture. Lifting these restrictions on the class produces
an ω-stable limit of Morley rank ω, whose unique type of rank ω is regular and of
the same geometrical flavor. The ω-stable version of the construction is often re-
ferred to as the non-collapsed version in contrast to the collapsed strongly minimal
version.

The innovative component of the construction, and the one that produces the
desired geometry in the limit, is a combinatorial predimension function defined
on the amalgamation class used, which determines the dimension function of the
non-forking geometry of the limit. This idea has been used since then to construct
many structures of a similar flavor. The purpose of this paper is to initiate a
discussion regarding reduction relations (in the sense of reducts) between structures
constructed using Hrushovski’s techniques, and their respective geometries. In the
algebraic “classic” strongly minimal structures, we know of strong ties between the
structure’s geometry and what the structure must interpret [Hru87, Rab93].

In addition to the ab initio constructions, using similar amalgamation methods,
Hrushovski introduced [Hru92] a way to fuse together strongly minimal theories
(with DMP) T1, T2 in disjoint languages L1, L2 into a strongly minimal L1 ∪ L2-
theory T ∗ whose every model has as reducts (in the obvious way) both a model of
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2 OMER MERMELSTEIN

T1 and a model of T2. In fact, if the languages L1 and L2 are known, T ∗ can be
characterized (up to a multiplicity function µ) by these reducts. Our results were
partially motivated by the resemblance of the ab initio construction to the fusion
construction, and the hope to shed light on what other reducts could appear in T ∗

due to the amalgamation process.

1.1. Structure and results. Prior to committing to any particular amalgamation
classes, we describe general procedures for lifting maps between free amalgamation
classes C1, C2 (arising from predimension functions) to relations between their
generic structures M1, M2. In particular, Assumption 2.16 provides a sufficient
condition for M2 to be isomorphic to a proper definable reduct of M1.

To state our main result, we recall that Hrushovski’s ab initio construction from
[Hru93] is in the language of a relation symbol R and consisting of a countable
structure such that any finite substructureA has at most |A|many distinct instances
of R. Two parameters that may be easily varied in the construction are n, the arity
of the relation R, and the amount of symmetry R admits. For a subgroup g ≤ Sn,
we let Mg be the generic model of Hrushovski’s non-collapsed n-ary construction
(see Section 3) where a single “instance” of R is a g-orbit of an n-tuple. For better
readability, we denote the subgroup Sn by ∼, and the subgroup {id} by 6∼. Hence,
in M 6∼ the relation R has no intrinsic symmetry, in M∼ the relation R is fully
symmetric, and for an arbitrary subgroup g, Mg is “in between” the two in terms
of symmetry. Theorem 3.15 shows in a direct manner that for h ⊆ g, the structure
Mg can naturally be seen as a reduct of Mh, i.e., a larger amount of symmetry
corresponds to a “coarser” reduct. It is a-priori unclear whether one can go in the
other direction — find a “coarser” reduct which is less symmetric.

Using the methods of Section 2, we obtain the main theorem, which essentially
states that—from the point of view of reduction and pregeometry—varying symme-
try is inconsequential. This is unlike the arity of the relation R, which does affect
the pregeometry of the resulting structure [EF11].

Theorem 3.9. For all g, h ≤ Sn, the pregeometries associated to Mg and Mh are
isomorphic, and Mh is isomorphic to a proper definable reduct of Mg.

The theorem, besides a proof-of-concept of the usefulness of the methods of Sec-
tion 2, is actually itself quite useful, from a technical point of view, for our future
endeavors. When attempting to prove or deny the existence of a reduct with a
certain property, one may choose the level of symmetry with which to work. For
example in [Mer13], where a given generic structure N (distinct from the structures
Mg discussed here) is shown to be isomorphic to the reduct of M∼ to a certain
formula ϕ, much of the effort revolves around making sure no “unintentional” real-
izations of ϕ are introduced due to the symmetry of the structure. When looking at
the reduct given by the same formula ϕ in M 6∼, the complexity vanishes and mere
straightforward investigation yields that the obtained reduct is indeed N . Thus, it
suffices to study M 6∼ in order to conclude that N is a reduct of M∼. Similarly, the
results of [HM19] (which also employs the methods developed here1), pertaining
to reducts of M 6∼ with non-disintegrated pregeometries distinct from that of M 6∼,
apply to any Mg.

1Though technically published at a later date, the results of the current paper precede the
inception of [HM19].
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Additionally, the discovery that M 6∼ is a proper reduct of M∼, and not only
the other way around, has an immediate consequence that, for arity strictly greater
than 2, there is an infinite descending chain of proper reducts with non-disintegrated
geometries, beginning with M∼. From this, we get the (weaker) result that there is
a strictly ascending chain of closed subgroups of S∞ beginning with the automor-
phism group of any Mg. Although not answering any specific asked question, this
result is in spirit with exploration of group-reducts of Hrushovski constructions.
In an unpublished work titled ”Some ‘group reducts’ of Hrushovski structures”
Ghadernezhad explores the number of group-reducts of various Hrushovski con-
structions, and in [KS16] Kaplan and Simon ask whether the automorphism group
of the geometry of a certain Hrushovski construction is maximal.

Although we believe this to be the case, we do not explore in this paper whether
analogues of our result hold for the strongly minimal version of Hrushovski’s ab
initio construction. Doing so would introduce a significant amount of technical
complication, which this paper already does not lack. This choice is further moti-
vated by Evans and Ferreira’s [EF12, Section 3] result that the pregeometry of the
non-collapsed construction is (under minor—for our purposes—technical assump-
tions) isomorphic to that of the collapsed strongly minimal construction.

2. Free amalgamation classes given by a predimension

We use calligraphic capital letters for first-order structures and their roman
counterpart for the universe of the structure, i.e., M is the universe of the structure
M. We denote the substructure induced by M on a subset X ⊆ M by M[X ]. For
an L-structure M and a symbol S ∈ L, we denote by SM the interpretation of S
in M. For an L-formula ϕ(x̄) (possibly with parameters from M), we denote the
set of realizations in M by ϕ(M) := {ā ∈ M : M |= ϕ(ā)}.

We write X ⊆fin Y to mean X is a finite subset (or substructure) of Y . When
listing sets and/or elements consecutively, we mean this as shorthand for union,
where elements are taken to be singletons. For example, ABx := A ∪B ∪ {x}.

Definition 2.1. In the context of some language L, for a class of finite relational
L-structures C0 closed under isomorphism and substructures, say that δ : C0 → Z
is a predimension function for C0 if

(1) δ is preserved under isomorphism
(2) δ(∅) = 0
(3) δ(A) ≤ |A|
(4) δ is submodular.

That is, for D ∈ C0, for every X,Y ⊆ D

δ(D[X ∪ Y ]) ≤ δ(D[X ]) + δ(D[Y ])− δ(D[X ∩ Y ]).

Notation 2.2. For any class C0 and a predimension δ as in the above definition,
D ∈ C0, and X,Y ⊆ D, we use the following shorthand notation:

• δD(X) = δ(D[X ])
• δD(Y/X) = δD(X ∪ Y )− δD(X).

Thus, the submodularity of δ can be restated as δD(Y/X) ≤ δD(Y/X ∩ Y ).
Additionally, with the addition of a bar, we denote the class of structures whose
every finite countable substructure is in C0, i.e.,

• C̄0 = {M : |M | ≤ ℵ0, {A : A ⊆fin M} ⊆ C0}.
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In particular, C0 ⊆ C̄0.

Remark 2.3. In this paper, every class C discussed will have a predimension
function associated with it. Similarly, each structure M will be seen as being in
the context of some such class, and therefore have a unique predimension function
associated with it, as well as with all its substructures. Thus, it will always make
sense to use δM(X) for a structure M and a subset X ⊆fin M , or any notions
derived from δM, such as those defined in definitions 2.4, 2.7 and 2.8.

A statement of the form M ∈ C or M ∈ C̄, for an established class C, encom-
passes that the predimension associated to M is the predimension of C, and so
disambiguates the meaning of δM. Later, we will vary languages so each of the
discussed classes is in a distinct language, preventing confusion in contextualizing
a structure.

Definitions 2.4–2.10 below depend on a choice of C0, a class of finite structures
closed under isomorphism and substructures, and δ, a predimension function for
C0. For the moment, fix such C0 and δ.

Definition 2.4. For M ∈ C̄0 and N ⊆ M, say that N is self-sufficient (or strong)
in M if for every X ⊆fin M , δM(X/X ∩ N) ≥ 0. Denote this by N 6M. Write
N 6M to mean N ⊆ M and M[N ] 6M.
A strong embedding is an embedding f : N → M such that f [N ] 6M.

Remark 2.5. We linger on the notation N 6 M (and N 6 M) introduced in
the definition above. There, N is a capital letter, representing a set, and M is
calligraphic letter, hence, representing a structure. This is in contrast with 6 being
defined above as a relation between two structures, and the meaning of 6 requiring
knowledge of some ambient δ.

The way the statement N 6M should be read is as information about a single
structureM, pertaining to how one of its subsets is situated. Recalling Remark 2.3,
M carries a predimension δM defined on every finite subset of its universe. With
δM well defined, there is no ambiguity in the definition of self-sufficiency within M.
Furthermore, there is no ambiguity regarding the structure on N , as we implicitly
imbue the set N with the structure and predimension induced on it by M.

Formally, as we will often work in the context of two distinct notions of self-
sufficiency, the specific interpretation of the 6 relation alluded to in the statement
N 6 M (or N 6 M) is inferred from δM. As further clarification, we will use
different notation for self-sufficiency associated to different classes, e.g., 6∗ for C∗.

As a rule, we are interested not in the full class C0, but only those structures
A ∈ C0 for which δA is hereditarily non-negative. Notationally, we mark this
restriction by removing the 0 subscript.

Definition 2.6. Define C = {A ∈ C0 : ∅ 6 A} and C̄ = {M ∈ C̄0 : ∅ 6M}.

A consequence of the submodularity of δ is that the relation 6 is transitive,
and the intersection of self-sufficient subsets is self-sufficient. This implies that
every subset X of a structure M ∈ C̄0 has a unique self-sufficient closure in M—
the intersection of all self-sufficient subsets of M containing X . If M ∈ C̄ (i.e.,
∅ 6M) and X is finite, then the self-sufficient closure of X is also finite.

Definition 2.7. For M ∈ C̄0 and X ⊆ M , define ΛM(X) =
⋂
{N 6M : N ⊇ X},

the self-sufficient closure of X in M.
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Prior to defining the dimension function associated to a structure M, we recall
that a combinatorial pregeometry (also known as a finitary matroid) is a set M
accompanied by a closure operator cl : P(M) → P(M) with the exchange property
(i.e. x ∈ cl(Ay) \ cl(A) =⇒ y ∈ cl(Ax)) where for every infinite X ⊆ M , the
closure of X is

⋃
{cl(X0) : X0 ⊆fin X}. A set X ⊆ M is closed in the pregeometry

if cl(X) = X . Every pregeometry has an associated dimension function d defined
by d(Y ) = min{|X | : Y ⊆ cl(X)}. The closure operator can be defined from d by
taking cl(X) = {a ∈ M : d(Xa) = d(X)} whenever X is finite. An isomorphism
of pregeometries is a dimension-preserving (or, equivalently, closure-preserving) bi-
jection between two pregeometries.

Definition 2.8. For a structure M ∈ C̄, for each X ⊆fin M define dM(X) =
min{δM(Y ) : X ⊆ Y ⊆fin M} or, equivalently, dM(X) = δ(ΛM(X)). For a
countably infinite N ⊆ M define dM(N) = sup{dM(X) : X ⊆fin N}.

The function dM in the above definition is the dimension function of a pregeom-
etry (M, clM), which we denote PG(M). We say that PG(M) is the pregeometry
naturally associated to M via δ.

Observation 2.9. The 6 relation can be characterized in terms of associated
pregeometries — whenever N ⊆ M ∈ C̄, the substructure N is self-sufficient in M
if and only if dN is a restriction of dM, i.e., PG(N ) ⊆ PG(M).

Definition 2.10. Given structures A,B1,B2 ∈ C̄0 such that A 6 B1 and A 6 B2,
say that D is an amalgam of B1 and B2 over A if there exist strong embeddings
fi : Bi → D such that f1|A = f2|A.

If, in addition, f1[B1] ∩ f2[B2] = f1[A], and the equality

δD(X/X ∩ f1[A]) = δD(X ∩ f1[B1]/X ∩ f1[A]) + δD(X ∩ f2[B2]/X ∩ f1[A])

holds whenever X ⊆fin D, we say that D is a free amalgam.
We say that (C, δ) is a free amalgamation class if whenever A,B1,B2 ∈ C, there

exists D ∈ C, a free amalgam of B1 and B2 over A.

Since ∅ ∈ C, by a considerable generalization of Fräıssé’s Theorem, if C is a free
amalgamation class, then there is a unique (up to isomorphism) countable generic
structure M ∈ C̄ such that

(∗) Whenever A 6 M and B ∈ C is such that A 6 B, there exists a strong
embedding f : B → M fixing A pointwise.

By a standard back and forth argument, every finite partial isomorphism between
self-sufficient subsets of countable generic structures for C extends to a full iso-
morphism. We unambiguously define the pregeometry associated to (C, δ) as the
pregeometry associated to its countable generic structure.

We can now explore connections between free amalgamation classes. For the
rest of this section, fix (C1, δ1) and (C2, δ2), free amalgamation classes with generic
structures M1 and M2, in languages L1 and L2. Structures will be declared as
being in the context of either (C1, δ1) or (C2, δ2) directly or indirectly, as described
in remarks 2.3 and 2.5. For a structure A, the objects δA, dA, PG(A), and clA are
defined with respect to the predimension function associated to A. Similarly, when
verbally referring to strong substructures or embeddings, the appropriate notion
of self-sufficiency is inferred from the structures involved. When explicitly using
mathematical notation, we use 6i to denote self-sufficiency with respect to δi.
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In the two subsections ahead, we will give sufficient criteria for showing that
PG(M1) ∼= PG(M2) and for showing that M2 is a definable reduct of M1. Our
usage of the term “reduct” is clarified in Definition 2.15.

2.1. Isomorphism of associated pregeometries. The following definition and
lemma are a slight strengthening of [EF12, Lemma 2.3].

Definition 2.11. Say that C1
∗
 C2 if, given structures Ai ∈ Ci such that

PG(A1) ∼= PG(A2),

• For every B1 ∈ C1 with A1 61 B1, there exist some D1 ∈ C1 with B1 61 D1,
and some D2 ∈ C2 with A2 62 D2, such that the isomorphism between
PG(A1) and PG(A2) can be extended to an isomorphism between PG(D1)
and PG(D2).

Lemma 2.12. Assume C1
∗
 C2 and C2

∗
 C1. Let f0 : PG(A1) → PG(A2) be

a finite isomorphism of pregeometries between some A1 61 M1 and A2 62 M2.
Then f0 extends to an isomorphism of pregeometries f : PG(M1) → PG(M2).

In particular, building on the empty isomorphism, PG(M1) ∼= PG(M2).

Proof. The proof is a standard back and forth between strong substructures. We
show the forward direction.

Choose arbitrarily some x ∈ M1 and let B1 = M1[ΛM1
(A1x)], the structure

induced on the self-sufficient closure of A1 ∪ {x} in M1. By C1
∗
 C2 there exist

some D1 ∈ C1 with B1 6 D1 and D2 ∈ C2 with A2 6 D2 such that f0 extends
to an isomorphism f ⊇ f0 between PG(D1) and PG(D2). Using genericity, embed
D1 strongly into M1 over B1. Similarly, embed D2 strongly into M2 over A2. By
renaming elements, we may assume Di 6Mi, hence PG(Di) ⊆ PG(Mi). Then we
have extended the isomorphism of pregeometries to include x in its domain. �

To facilitate the use of Lemma 2.12 down the road, we prove the following.

Lemma 2.13. Let B1 ∈ C1 and B2 ∈ C2 have the same universe B, and let
A ⊆ B be such that Ai 6i Bi, where Ai := Bi[A], for both i ∈ {1, 2}. Assume that
PG(A1) = PG(A2). Then:

(1) If Y ⊆ B is closed in PG(B1), then δB1
(Y ∩ A) = δB2

(Y ∩A)
(2) If Y ⊆ B is closed in PG(B1) and δB1

(Y/Y ∩A) ≥ δB2
(Y/Y ∩A), then for

any X ⊆ B such that clB1
(X) = Y , it holds that dB1

(X) ≥ dB2
(X).

(3) If δB1
(Y/Y ∩A) = δB2

(Y/Y ∩A) for every Y ⊆ B closed in either PG(B1)
or PG(B2), then PG(B1) = PG(B2).

Proof. Recall that Ai 6i Bi implies PG(Ai) ⊆ PG(Bi).

(1) If Y is closed in PG(B1), then Y ∩ A is closed in PG(A1). By assumption
PG(A1) = PG(A2), so Y ∩A is also closed in A2 and dA1

(Y ∩A) = dA2
(Y ∩

A). A closed set is self-sufficient, so dAi
(Y ∩A) = δAi

(Y ∩A) = δBi
(Y ∩A).

(2) Let X ⊆ Y be such that clB1
(X) = Y , then dB1

(X) = dB1
(Y ). Since Y is

closed in B1, it is self-sufficient in B1, so dB1
(Y ) = δB1

(Y ). By (1) and the
assumption δB1

(Y/Y ∩ A) ≥ δB2
(Y/Y ∩ A), we have δB1

(Y ) ≥ δB2
(Y ). By

definition of dimension and X ⊆ Y , we have δB2
(Y ) ≥ dB2

(Y ) ≥ dB2
(X).

(3) By the previous item, dB1
(X) = dB2

(X) for every X ⊆ B. �
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Remark 2.14. In the proof of (2) and (3) of Lemma 2.13 above, one may replace
the assumption that Ai 6 Bi by the consequence of (1). In particular, (2) and (3)
hold when δA1

= δA2
.

2.2. Reduction. In this paper, “definable reduct” will be used in the precise sense
of Definition 2.15. Intuitively, every definable set in the reduct Nr is definable in
the “original” structure N , but not necessarily vice versa.

Definition 2.15. Given two first-order languages L and Lr, for an L-structure N
and an Lr-structure Nr with the same universe as N , we say that Nr is a definable
reduct of N if for every symbol S ∈ Lr there is an L-formula ϕS (perhaps with
parameters from N ) such that ϕS(N ) = SNr . Given such a choice of formulas, we
say that Mr is the reduct of M to {ϕS : S ∈ L}.

If, in addition, N is not a definable reduct of Nr, we say that Nr is a proper
definable reduct of N .

Variations on the definition above include replacing ϕS with a type (type-definable
reduct), an infinite disjunction (

∨
-definable reduct), and so on.

We return to establishing a criterion for M2 being a (proper) definable reduct
of M1. As is apparent from the definition of a definable reduct, here C1 and C2 do
not play a symmetric role. Properties P1-P3 of the following assumption guarantee

that M2 is indeed the “reduct” of M1 given by M̂1 (defined therein), whereas P4
only matters to the irreversibility of the “reduction”.

Assumption 2.16. To each L1-structure A with universe A, associate an L2-

structure Â with the same universe, so that the association is invariant under

isomorphism, i.e., A ∼= B =⇒ Â ∼= B̂, under the same bijection.2

We assume the following properties of ,̂ C1, and C2:

P1. Whenever A 61 N ∈ C̄1 with A finite, then Â = N̂ [A].

P2. If A ∈ C1, then Â ∈ C2.

P3. Whenever A ∈ C1, B ∈ C2 are such that Â 62 B, then there exists some

E ∈ C1 with A 61 E and B 62 Ê .
P4. For any F ∈ C1, there exist A,B ∈ C1 with F 61 A,B, and f : A → B

fixing F pointwise such that f is an isomorphism between Â and B̂, but
not an isomorphism between A and B.

We will show with a series of short claims that these conditions are sufficient so
that M̂1

∼= M2 (i.e., M2 is a proper definable reduct ofM1). And that Aut(M1) ⊂

Aut(M̂1), where Aut(N ) denotes the automorphism group of a structure N . We
indicate in each lemma which properties of Assumption 2.16 it requires.

Lemma 2.17 (P1-P2). If N ∈ C̄1, then N̂ ∈ C̄2.

Proof. Let X ⊆fin N be arbitrary. Denote A = ΛN (X) and A = N [A]. P1 implies

that N̂ [A] = Â and P2 implies that Â ∈ C2. Since C2 is closed under taking

substructures and N̂ [X ] ⊆ N̂ [A], we get N̂ [X ] ∈ C2. We chose X arbitrarily, so

N̂ ∈ C̄2. �

2Later in this paper, the association will be by taking a definable reduct, but the follow-
ing is applicable also to type-definable reducts,

∨
-definable reducts, or any other arbitrary map

satisfying Assumption 2.16.
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Lemma 2.18 (P1-P2). If A 61 B ∈ C1, then Â 62 B̂.

Proof. By P1, B̂[A] = Â. It suffices to show that δ2(B̂/Â) ≥ 0.
For a natural r, let D ∈ C1 be a free amalgam of B1, . . . ,Br—distinct copies of

B over A—over A. Then, up to renaming elements of D, A,B1, . . . ,Br 61 D. By

P1, Â = D̂[A], and B̂i = D̂[Bi] for each i ≤ r. Iterating submodularity, we have

δ2(D̂/Â) ≤ r · δ2(B̂/Â).

By P2, D̂ ∈ C2, hence δ2(D̂) ≥ 0, so δ2(D̂/Â) ≥ −δ2(Â). As r can be chosen

arbitrarily large, δ2(B̂/Â) must be non-negative. �

We remind the reader of Remark 2.5 prior to the next proof, which lifts Lemma 2.18
to countable structures.

Corollary 2.19 (P1-P2). If P 61 N ∈ C̄1, then P̂ 62 N̂ .

Proof. Assume P 61 N and let X ⊆fin N . Take B = ΛN (X) and B = N [B]. As

P 61 N , by submodularity, B∩P 61 B. Then by Lemma 2.18 we have B∩P 62 B̂,
hence δB̂(X/X ∩ P ) ≥ 0. By P1, B̂ = N̂ [B], so δN̂ (X/X ∩ P ) ≥ 0. Thus, P 62 N̂ .

To see N̂ [P ] = P̂ note that for any A 61 P , P1 implies P̂ [A] = Â = N̂ [A]. �

We use the defining property of a generic structure for C2 to attain the result
of Proposition 2.20. See the extension property (∗) described in the discussion
following Definition 2.10 for a reminder regarding generic structures. Recall that
M1 and M2 are generic.

Proposition 2.20 (P1-P3). M̂1
∼= M2.

Proof. We need to show that M̂1 is generic for C2. We know that M̂1 ∈ C̄2 by

Lemma 2.17, so we only need to show that M̂1 has the extension property (∗) with
respect to C2.

Suppose A 62 M̂1 and B ∈ C2 is such that A 62 B. Denote the universe of A

by A, let C = ΛM1
(A), and denote C = M1[C]. Then P1 implies Ĉ = M̂1[C], P2

implies Ĉ ∈ C̄2, and by A 62 M̂1 we have A 62 Ĉ. Let D ∈ C2 be an amalgam of

Ĉ and B over A. We may assume Ĉ 62 D.

By P3, choose E ∈ C1 with C 61 E and D 62 Ê . As M1 is generic for C1 and

C 61 M1, we may assume C 61 E 61 M1. By Corollary 2.19, Ê 62 M̂1. By

construction, A 62 Ĉ 62 D 62 Ê and B can be strongly embedded into D over A.

In particular, we have found a strong embedding of B into M̂1 over A. �

For a structure N and a set F ⊆ N , denote by AutF (N ) the group of automor-
phisms of N fixing F pointwise.

Proposition 2.21 (P1-P4). For any finite F ⊆ M1, AutF (M1) ⊂ AutF (M̂1). In

particular, AutF (M1) 6= AutF (M̂1).

Proof. To see AutF (M1) ⊆ AutF (M̂1), let σ ∈ AutF (M1), let X ⊆fin M1 and
denote Y = σ[X ]. Without loss of generality, by extending X , we may assume

X 61 M1, and therefore Y 61 M1. Then by P1, M̂1[X ] = M̂1[X ] ∼= M̂1[Y ] =

M̂1[Y ], meaning σ is also an automorphism of M̂1.
Now we show inequality of the automorphism groups. By extending to its self-

sufficient closure, assume F 61 M1. LetA,B ∈ C1 and f : A → B be as guaranteed
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by P4. Since M1 is generic for C1, we may assume A,B 61 M1. By Corollary 2.19,

we have Â, B̂ 62 M̂1. By Proposition 2.20, M̂1 is a generic structure for C2. So f

extends to an automorphism of M̂1, which is not an automorphism of M1. �

Corollary 2.22. If L1 is finite and the map N 7→ N̂ is the operation of taking

a definable reduct, then M̂1 is a proper reduct, i.e., M1 is not interdefinable with

M̂1.

Proof. Had M1 been interdefinable with M̂1, letting F be the (finite) set of pa-

rameters required to define M1 in M̂1, any automorphism of M̂1 fixing F is also
an automorphism of M1, contradicting Proposition 2.21. �

3. Varying symmetry in Hrushovski’s non-collapsed construction

Fix some natural n ≥ 3. We denote by Sn the group of permutations of n
elements, under the operation of composition. The elements σ ∈ Sn act on the
space of n-tuples by σ(a1, . . . , an) = (aσ(1), . . . , aσ(n)).

Definition 3.1. For an n-ary relation R and a subgroup g ≤ Sn, we say that

• R is irreflexive if whenever (a1, . . . , an) ∈ R, then the elements a1, . . . , an
are pairwise distinct.

• R is g-symmetric if g · R = R, i.e., whenever (a1, . . . , an) ∈ R, then
{σ(a1, . . . , an) : σ ∈ g} ⊆ R.

We describe for each g ≤ Sn a generic structure Mg. In the spirit of Remark 2.3,
we let {Lg : g ≤ Sn} be a collection of disjoint languages, where Lg is the language
of a single n-ary relation symbol Rg. From now on, we restrict our discussion of Lg-
structures only to those structures A such that RA

g is irreflexive and g-symmetric

(i.e., the class Cg
0 as defined in Definition 3.5). Before proceeding, we introduce

some important notation and naming conventions, motivated by the predimension
function associated to Lg-structures (Definition 3.6).

Notation 3.2. For a subgroup g ≤ Sn, we denote the orbit of a tuple (a1, . . . , an)
under g by [a1, . . . , an]g = {σ(a1, . . . , an) : σ ∈ g}. We will sometimes refer to such
an orbit as an edge or, more specifically, a g-symmetric edge. We use symmetric
edge, omitting g, when g is the full group Sn.
For a relationR, abusing notation, we write [a1, . . . , an]g ∈ R to mean [a1, . . . , an]g ⊆
R.

Remark 3.3. To avoid ambiguity in formalism, the object RA
g is a set of ordered

tuples, in accordance with standard notation. At times, we may wish to think of
it as a set of g-orbits (recall that g permutes elements within a single tuple, rather
than permuting tuples in a structure). Thus, when defining a structure A, often
we will let G be a set of g-orbits, and take RA

g to be
⋃
G. This difference is why

later, in Definition 3.20, we define both Q(a; b) and G(a; b).

Notation 3.4. The full and trivial subgroups, Sn and {id}, respectively, will be
of special importance to us. We write ∼ for the full subgroup Sn, and 6∼ for the
trivial subgroup {id}. For example, C 6∼, δ∼, L6∼, etc..
We also use special notation for an orbit under the full subgroup. Instead of
[a1, . . . , an]∼, we write [a1, . . . , an], omitting the ∼ subscript.
As for the special subgroup {id}, since an orbit is just a single tuple, the notation
[a1, . . . , an] 6∼ will never be invoked.
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Returning to Mg, to construct the structure we only need to define the class Cg
0 ,

a predimension function δg, and follow the procedure presented in the first part of
Section 2.

Definition 3.5. For each g ≤ Sn, define Cg
0 to be the class of finite irreflexive3

g-symmetric Lg-structures.

The predimension used for Hrushovski’s construction assigns to a structure A
the difference between the cardinality of A and the number of instances of the
relation R in A. In the case of a g-symmetric structure, the natural generalization
is to count an entire g-orbit as a single “instance”.

Definition 3.6. For each A ∈ Cg
0 define

δg(A) = |A| − |{[a1, . . . , an]g : (a1, . . . , an) ∈ RA
g }|,

the number of points in A minus the number of g-orbits contained in RA
g .

Each function δg is shown to be submodular by using the inclusion-exclusion
principle, and is hence a predimension function for Cg

0 (see Definition 2.1). We
associate to δg (and to Cg

0 ) the notion of self-sufficiency 6g, and similarly define
6∼ and 6 6∼.

Observation 3.7. Were we to identify L6∼, L∼ and some Lg with each other,
examining a structure A yields δ 6∼(A) ≤ δg(A) ≤ δ∼(A). Consequently, again up
to identifying the languages, for some B ⊇ A, we have A 6 6∼ B =⇒ A 6g B =⇒
A 6∼ B.

Formally, by “identifying languages”, we mean considering (A,R), where A is a
set and R ⊆ An, once as an L6∼-structure, once as an Lg-structure, and once as an
L∼-structure. In the paragraph above, despite denoting all three structures by A,
we trust the reader to determine which A is in what language.

The stage is set to define Cg from Cg
0 . Note that in light of the observation above,

up to identifying languages and foregoing symmetry assumptions, C 6∼ ⊂ Cg ⊂ C∼.

Definition 3.8. For each g ≤ Sn, define Cg = {A ∈ Cg
0 : ∅ 6g A}.

The classes defined above are free amalgamation classes with respect to their
respective predimension functions. The class C 6∼ gives rise to the (non-collapsed)
construction of [Hru93]. We denote by Mg the generic structures associated to Cg.
We remind the reader of the special notation M 6∼ and M∼. Using the methods of
subsections 2.1 and 2.2, we will show that

Theorem 3.9. Whenever g, h ≤ Sn, then PG(Mg) ∼= PG(Mh) and Mh is iso-
morphic to a proper definable reduct of Mg.

3In his paper, Hrushovski did not require irreflexivity of the relation, but it is easy to take

a reduct of the original construction which preserves only irreflexive tuples, making the relation
irreflexive. The question of irreflexivity also does not affect the isomorphism type of the associated
pregeometry. Thus, for the purpose of this paper, there is no harm in assuming all structures are
irreflexive.
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3.1. Pregeometries. For this subsection we fix some g ≤ Sn. We will show that
PG(Mg) ∼= PG(M 6∼) using Lemma 2.12, building on the empty isomorphism. Since
g is arbitrary, this proves the first part of Theorem 3.9.

Recall Definition 2.11. Given the definitions of δg and δ 6∼, it is easy to show

Cg
∗
 C 6∼. We merely need to replace every g-orbit in a g-symmetric extension with

a single representative tuple.

Lemma 3.10. Cg
∗
 C 6∼

Proof. Let A1 ∈ Cg and A2 ∈ C 6∼ be such that PG(A1) ∼= PG(A2). We may assume
A1 and A2 have the same universe A, and so PG(A1) = PG(A2). Let B1 ∈ Cg with
A1 6g B1.

Define on RB1
g \ RA1

g the equivalence relation ≡g, where x̄ ≡g ȳ if and only if
ȳ ∈ [x̄]g. Let R2 be a set of representatives for the equivalence classes of ≡g, and de-

fine B2 to be the structure in C 6∼
0 with the same universe as B1 and RB2

6∼ = RA2

6∼ ∪R2.

Observe that for every subset Y of the universe of B1, we have δB1
(Y/Y ∩A) =

δB2
(Y/Y ∩ A), so Lemma 2.13 gives PG(B1) = PG(B2). �

In the other direction, to get C 6∼
∗
 Cg, what we would like to do is replace every

R6∼-related tuple with its g-orbit. However, this mapping need not be injective if
there is more than one instance of the relation on the same tuple. Our strategy
is to extend the structure to one where this never occurs, while preserving the
pregeometry, and only then “symmetrize” each related tuple.

Definition 3.11. Let A,B ∈ C 6∼ with A 6 6∼ B. For each ā := (a1, . . . , an) ∈
RB

6∼ \RA
6∼, let e

ā be a new element. Define D[B/A] and Ď[B/A] to be the structures

in C 6∼
0 with universe D := B ∪ {eā : ā ∈ RB

6∼ \RA
6∼} and

R
D[B/A]
6∼ = RB

6∼ ∪ {(a1, . . . , an−1, e
ā) : ā ∈ RB

6∼ \RA
6∼}

R
Ď[B/A]
6∼ = RA

6∼ ∪ {(a1, . . . , an−1, e
ā), (a2, . . . , an, e

ā) : ā ∈ RB
6∼ \RA

6∼}

Intuitively, in both D[B/A] and Ď[B/A], we “replace” each related n-tuple ā
with a “doubly-related” set of size n+1, composed of the n elements of the tuple ā
and the new element eā. To clarify, here ”doubly-related” means that on the n+1
elements of the set, there are two distinct related n-tuples. While the isomorphism
type of such an n+1-sized set differs between the structures, this is indistinguishable
geometrically.

Lemma 3.12. In the notation of Definition 3.11, denote D := D[B/A] and Ď :=
Ď[B/A]. Then A 6 6∼ B 6 6∼ D, A 6 6∼ Ď and PG(D) = PG(Ď).

Proof. Say that a set X ⊆ D is good if whenever ā := (a1, . . . , an) ∈ RB
6∼ \ RA

6∼

is such that |X ∩ {eā, a1, . . . , an}| ≥ n − 1, then {eā, a1, . . . , an} ⊆ X . For X a

good set, |RD
6∼ ∩ Xn| = |RĎ

6∼ ∩ Xn|, so δD(X) = δĎ(X). If X is closed, either

in PG(D) or in PG(Ď), it is a good set, hence δD(X) = δĎ(X). Recalling that
δD(X ∩ A) = δA(X ∩ A) = δĎ(X ∩ A), by Lemma 2.13 and its following remark,

PG(D) = PG(Ď).
Clearly B 6 6∼ D, since the addition of eā to any set introduces at most one

new related tuple. By transitivity, A 6 6∼ D, hence dD(A) = δ 6∼(A). As dĎ(A) =

dD(A) = δ 6∼(A), we get also A 6 6∼ Ď. �
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By construction, a simple “symmetrization” of Ď[B/A] preserves the predimen-
sion function, hence the pregeometry. Thus, we are able now to parallel D[B/A]
with a structure in Cg by passing through Ď[B/A].

Lemma 3.13. C 6∼
∗
 Cg.

Proof. Let A1 ∈ C 6∼, A2 ∈ Cg with common universe A be such that PG(A1) =

PG(A2), and let B1 ∈ C 6∼ be such thatA1 6 6∼ B1. Let D1 := D[B/A], Ď := Ď[B/A],
and let

R2 =
⋃

{[a1, . . . , an]g : (a1, · · ·an) ∈ RĎ
6∼ \RA1

6∼ },

the union of orbits of elements of RĎ
6∼ \ RA1

6∼ under the action of g. Let D2 be the

structure in Cg
0 with the same universe as Ď and RD2

g = RA2
g ∪ R2. Note that

for every set Y , by construction, δĎ(Y/Y ∩ A) = δD2
(Y/Y ∩ A). In particular,

as A1 6 6∼ Ď, clearly A2 6g D2. Additionally, by (3) of Lemma 2.13 we get

PG(D2) = PG(Ď), and by Lemma 3.12 we know PG(Ď) = PG(D1). Then the
structures D1, D2 are as desired. �

Corollary 3.14. PG(Mg) ∼= PG(M 6∼).

Proof. Immediate by Lemma 2.12. �

3.2. Definable reduction. We direct the reader to Definition 2.15 for the precise
definition of a definable reduct. In this paper, we will only consider reducts to a
single formula, namely, to one of the languages Lg.

Our goal is to show that whenever g, h ≤ Sn, then Mg is isomorphic to a (proper)
definable reduct of Mh, thus finishing the proof of Theorem 3.9. In case g ≤ h, this
is easy – we simply “symmetrize” the edges.

Theorem 3.15. Let g ≤ h ≤ Sn. Then the reduct of Mg to the formula

ϕRh
(x1, . . . , xn) =

∨

σ∈h

Rg(xσ(1), . . . , xσ(n))

is isomorphic to Mh. Moreover, if g 6= h, the reduct of Mg to ϕRh
is proper.

Proof. For each A ∈ C̄g define Â to be the Lh-structure which is the reduct of A
to ϕRh

. We show that P1-P4 of Assumption 2.16 hold with respect to Cg and Ch.
By Proposition 2.20 and Corollary 2.22, this will prove the statement.

P1. Let N ∈ C̄g. Because ϕRh
is quantifier free, in fact N̂ [A] = Â for every

substructure A ⊆ N , regardless of self-sufficiency.

P2. Observe that for any A ∈ Cg
0 , the inequality δg(A) ≤ δh(Â) holds. In

particular, ∅ 6g A implies ∅ 6h Â. As Â is clearly h-symmetric, Â ∈ Ch.

P3. Let A ∈ Cg, B ∈ Ch be such that Â 6h B. For any ā, b̄ ∈ RB
h \ RÂ

h , write

ā ≡h b̄ if b̄ ∈ [ā]h. Let S be a set of representatives for the equivalence
classes of ≡h. Let E be the Lg-structure with the same universe as B and

RE
g = RA

g ∪
⋃

{[ā]g : ā ∈ S}

Then A 6g E , because δE(X/A) = δB(X/A) for every X ⊆ B. As Ê = B,

in particular B 6h Ê .
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P4. Assume that there is τ ∈ h \ g. Let F ∈ Cg be arbitrary. Define A,B to be
the structures in Cg

0 with universe F ∪ {a1, . . . , an} and

RA
g = RF

g ∪ [a1, . . . , an]g

RB
g = RF

g ∪ [a1, . . . , an]g ∪ [aτ(1), . . . , aτ(n)]g.

Then A 6∼= B, but Â = B̂. �

A more daunting task is reducing the amount of symmetry. The remainder of
this section is dedicated to the proof that M 6∼ is isomorphic to a (proper) definable
reduct of M∼. Since the relation “X is isomorphic to a definable reduct of Y ”
is transitive, combining Theorem 3.15 with a reduction from M∼ to M 6∼ gives a
proof of the second part of Theorem 3.9 via the progression

Mh → M∼ → M 6∼ → Mg.

In particular, this demonstrates that Mg and Mh are mutually interpretable (but
not necessarily bi-interpretable).

The next thing we do is to isolate desirable properties of a formula with respect
to which we will take the reduct. For the remainder of the paper, we will not need
to think of Lg structures for an arbitrary g ≤ Sn, but only of structures in C∼

0 and

C 6∼
0 .
To improve readability of the upcoming material, from now on we let x, y, a, b, r, t, . . .

denote tuples of distinct elements. Abusing notation, when appropriate, we identify
a tuple a with the set of elements appearing in a. In particular, when tuples appear
in the context of ∩,∪, \ ⊆, they are thought of as sets. We let |a| denote the length
of a, or equivalently, as elements appearing in a are distinct, the cardinality of the
set of elements appearing in a. We write ab for the concatenation of the tuples a
and b.

Definition 3.16. In the context of a structure N ∈ C∼ and A,B ⊆fin N , say that
B is simply algebraic over A if:

• δN (B/A) = 0
• For every nonempty X ⊂ B \A, δN (X/A) > 0.

Definition 3.17. Say that Q ∈ C∼ with universe ab—where the elements in ab are
pairwise distinct—is sturdy if

(Q1) |a| = n, |b| > 2n, a /∈ RQ
∼ , and δ∼(Q) = n− 1.

(Q2) Q is rigid, i.e., the only automorphism of Q is the identity map.
(Q3) In Q, for every r ∈ RQ

∼ , the set ab is simply algebraic over r.

Remark 3.18. Later in the paper, in order to construct sturdy structures, we will
induct on n, the arity of R∼. To that end, we will use the term k-sturdy to indicate
that a structure is sturdy, according to Definition 3.17, in the case n = k.

An example of a sturdy structure for a ternary R∼ can be found in Lemma 3.34.
The following are simple structural consequences to be used later.

Lemma 3.19. Let Q ∈ C∼ be sturdy with universe ab as above. Then

(i) dQ(r) = δQ(r) = n− 1 for every r ∈ RQ
∼.

(ii) Whenever X ⊆ ab with δQ(X) ≥ n, the self-sufficient closure of X contains
all of ab. Hence, if |X | > n or if |X | = n and there is no edge on X, then
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ab ⊆ ΛQ(X). In particular, ΛQ(a) = ab. (recall that ΛQ is the self-sufficient
closure operator)

(iii) For any B1, B2 ⊂ ab with ab = B1 ∪B2 and |B1 ∩B2| ≤ n, the structure Q is
not a free join of B1 and B2 over A := B1∩B2. That is, R

Q[B1]
∼ ∪RQ[B2]

∼ 6= RQ
∼.

Proof. The definition of simple algebraicity and (Q3) imply (i) directly. To see (ii),
observe that (Q3) implies there is no X ⊆ ab properly containing an edge with
δQ(X) < n, apart from the entirety of ab.

For (iii), assume for a moment Q is such a free join. Because |ab| > 2n, without
loss of generality, |B1| > n. Then, by (ii), 0 > δQ(B2/B1) = δQ(B2/A), hence
δQ(B2) < δQ(A) ≤ |A|. Now, take some Y such that A ⊆ Y ⊆ B1 with |Y | = n
and note the strict inequality δQ(B2 ∪ Y ) ≤ δQ(B2) + |Y \ A| < |Y | ≤ n. By (ii),
we have δQ(B1/B2 ∪ Y ) < 0, implying δ∼(Q) < δQ(B2 ∪ Y ) < n. This contradicts
(Q1), δ∼(Q) = n− 1. �

We will prove later that sturdy structures exist. For now, fix a sturdy Q as in
Definition 3.17 above.

Definition 3.20. Define the following

(1) Define Q(x; y) to be the complete atomic diagram of ab in Q.
Explicitly, Q(a; b) =

∧
r∈RQ

∼
R∼(r) ∧

∧
r∈Qn\RQ

∼
¬R∼(r).

(2) Define Q+(x; y) to be the complete positive atomic diagram of ab in Q.
Explicitly, Q+(a; b) =

∧
r∈RQ

∼
R∼(r).

(3) Define q(x; y) to be the formula stating that Q(x; y) holds and, whenever
Q+(u; v) holds with xy 6= uv, then |xy ∩ uv| ≤ n. This is a universal
statement.

(4) For a tuple cd with |c| = |a| and |d| = |b|, write G(c; d) for the set of
symmetric edges {[r] : Q(c; d) |= R∼(r)}.
I.e.,

⋃
G(a; b) = RQ

∼ , and |G(a; b)| = |ab| − (n− 1), because δ∼(Q) = n− 1.

(5) For every N ∈ C̄∼, denote by N̂ the L6∼-structure which is the definable
reduct (see Definition 2.15) of N to the formula

ϕR 6∼
(x) := ∃y q(x; y).

Our goal is showing that M̂∼ is isomorphic to M 6∼, which we achieve by proving
that all properties of Assumption 2.16 hold with respect to C∼ and C 6∼, where the

map N 7→ N̂ is as defined in Definition 3.20.5 above. Properties P1, P3, P4 are
not difficult to prove.

Lemma 3.21. If A 6∼ N ∈ C̄∼ with A finite, then Â = N̂ [A]. (P1)

Proof. Observe that whenever N |= Q+(a; b) with a ⊆ A or |ab ∩ A| > n, then by
Lemma 3.19.ii and A 6∼ N , the self-sufficient closure of ab ∩ A is contained in A,
hence ab ⊆ A. So we only need to show that for every ab ⊆ A, the structures A
and N agree on the truth value of q(a; b).

As a universal statement, N |= q(a; b) implies A |= q(a; b). If, on the other
hand, N |= Q(a; b)∧¬q(a; b), then there exist cd 6= ab such that N |= Q+(c; d) and
|ab ∩ cd| > n. In particular, |cd ∩ A| > n, so by the above paragraph, cd ⊆ A and
so also A |= ¬q(a; b). �

Lemma 3.22. Whenever A ∈ C∼, B ∈ C 6∼ are such that Â 6 6∼ B, then there exists

some E ∈ C∼ with A 6∼ E and B 6 6∼ Ê . (P3)
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Proof. Denote S = RB
6∼ \ RÂ

6∼, and for each a ∈ S let wa be a (|Q| − n)-tuple

of new elements. Let Ga be the set of relations which satisfies Q(a;wa). That
is, formally, Ga =

⋃
G(a;wa). Consider the L∼-structure E with universe E =

B ∪
⋃
{wa : a ∈ S} and

RE
∼ = RA

∼ ∪
⋃

a∈S

Ga.

Note that E is the free join of the L∼-structures {(B ∪ wa, R
A
∼ ∪Ga) : a ∈ S} over

(B,RA
∼), so for any A ⊆ X ⊆ E

δE(X/A) = δE(X ∩B/A) + δE(X/X ∩B)

= δE(X ∩B/A) +
∑

a∈S

δE(X ∩ wa/X ∩B)

≥ |(X ∩B) \A| − |S ∩Xn| = δB(X ∩B/A) ≥ 0;

hence A 6∼ E . We have left to show B 6 6∼ Ê . By Lemma 3.21 we get for free that

Ê [A] = Â = B[A]. For each a ∈ S, the structure E can be seen as the free join of
E [E \ wa] and E [awa] over E [a]. Thus, it follows from (iii) of Lemma 3.19 that if
E |= Q+(c; d), then either cd ⊆ awa for some a ∈ S, and then by rigidity of Q it
must be that c = a and d = wa, or cd ⊆

⋂
a∈S E \wa = B. If the latter holds, then

because RE[B]
∼ = RA

∼, in fact cd ⊆ A. From this analysis, by construction it follows

that Ê [B] = B. Additionally, we see that whenever x is such that E |= ∃yQ+(x; y),

in fact x ⊆ B. As all the related tuples in Ê are found within B, in particular

Ê [B] 6 6∼ Ê . �

Lemma 3.23. For any F ∈ C∼ there exist A,B ∈ C∼ with F 6∼ A,B and a

bijection f : A → B fixing F pointwise such that f is an isomorphism between Â

and B̂, but not an isomorphism between A and B. (P4)

Proof. Let A, B be the L∼-structures with universe F ∪{a1, . . . , an} and RA
∼ = RF

∼,
RB

∼ = RF
∼ ∪ [(a1, . . . , an)], where a1, . . . , an are new elements. Take f to be the

identity map. �

The proof of property P2 (with C∼ standing in for C1 and C 6∼ standing in for C2),

that A ∈ C∼ implies Â ∈ C 6∼, is less immediate. Put one way, we are tasked with
showing that every structure A ∈ C∼ has only a small number of realizations of
ϕR 6∼

(x) (relative to |A|). Ideally, all the realizations of q(x, y) do not interact with
each other, similarly to the construction of E in the proof of Lemma 3.22. There,

we “manufacture” in Ê each instance of the relation a appearing in B by appending
a new copy of Q(a; b) on top of a, and so it is easy to see that predimension in
the resulting structure E is bounded from below in terms of predimension in B.
However, if there is an edge (i.e., an instance of R∼) shared between two (or more)
distinct realizations of q(x, y), as the case may be for an arbitrary structure in C∼,
this computation becomes muddled.

Observation 3.24. If q(a; b) and q(c; d) hold for ab 6= cd in a structure N ∈ C̄∼
0 ,

then |G(a; b) ∩G(c; d)| ≤ 1. This is because, by definition of q(a; b), as Q+(c; d)
holds, we have |ab ∩ cd| ≤ n and on n many points there can be at most one
symmetric edge.
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Definition 3.25. Let N ∈ C̄∼
0 . Say that (ab, cd) with ab 6= cd is a weak collision

in N if N |= Q+(a; b) ∧ Q+(c; d) and G(a; b) ∩ G(c; d) 6= ∅. Say that (ab, cd) is
a collision if in fact N |= q(a; b) ∧ q(c; d). For a collision (ab, cd), call the unique
element of G(a; b)∩G(c; d) identified in Observation 3.24 the center of the collision.

Define wN to be the number of weak collisions in N , and define cN to be the
number of collisions in N .

We address the issue by gradually “untangling” an arbitrary structure until all
collisions are gone. The order by which we choose to eliminate the collisions will
be such that predimension in every intermediate step is still bounded from below
in terms of the predimension of the structure we started with. We illustrate this
idea and its execution with two instructive examples.

Example 3.26. Let A ∈ C∼ be a structure exemplifying a single collision. Explic-
itly, RA

∼ =
⋃
G(a1; b1)∪

⋃
G(a2; b2) where there is a single [r] ∈ G(a1; b1)∩G(a2; b2),

and a1b1 ∩ a2b2 = r. By Definition 3.20.5, the reduct Â contains only a1 and a2 as
R6∼-related tuples.

Towards undoing the collision, let us replace b2 with a new, external witness to
ϕR 6∼

(a2). Examine the L∼-structure B0 with universe A ∪ c, where c is a tuple

of new elements, and with RB0
∼ = RA

∼ ∪
⋃
G(a2; c). We have RÂ

6∼ ⊆ RB̂0

6∼ , so if

B̂0 ∈ C 6∼, also Â ∈ C 6∼. However, since we added a complete copy of Q over a2, we
have lowered the predimension, i.e. δ∼(B0) = δ∼(A) − 1, and now it may be that
B0 /∈ C∼.

To remedy the problem of B0 having a lower predimension than A, we ob-
serve that some symmetric edges in G(a2; b2), our “old” configuration witnessing
ϕR 6∼

(a2), are no longer needed. We cannot remove the edge [r] for fear of no longer
witnessing ϕR 6∼

(a1), but if we obtain B from B0 by removing at least one edge in

G(a2; b2) \ [r], now δ∼(B) ≥ δ∼(A) and still RÂ
6∼ ⊆ RB̂

6∼. Additionally, in B there are
no collisions.

The construction of B demonstrates a way to “remove” a collision without alter-
ing the reduct. This is why we need te upcoming Definition 3.28, to identify those
edges that we can remove from the structure without altering the resulting reduct.

We may repeat this, “outsourcing” the witnessing for ϕR 6∼
(a1) to a new tuple

d and dropping unneeded edges from G(a1; b1) (note that unlike before, now r is
no longer needed) to obtain a structure D. In D, every tuple witnessing ϕR 6∼

for

some a ∈ RD̂
6∼ ⊇ RÂ

6∼ is completely disjoint from the universe of A and from every
other witnessing tuple, making δD̂ computations easily expressible in terms of δD
computations.

The success we achieved in the above example hinges on the ability to offset, in
terms of predimension, the addition of a new copy of Q on top of an existing tuple.
For an arbitrary instance of ϕR 6∼

(x), this is not always immediately possible.

Example 3.27. Let ab be a tuple of elements of size |Q|. For every [r] ∈ G(a; b), let
crdr be such that G(a; b)∩G(cr , dr) = {[r]}, ab∩ crdr = r. Let A be the structure
with universe ab ∪

⋃
{crdr : [r] ∈ G(a; b)} and RA

∼ =
⋃
{G(cr; dr) : [r] ∈ G(a; b)}.

In words, A is composed of a “core” ab that is isomorphic to Q, with each edge
r in the core being part of a configuration witnessing ϕR 6∼

(cr) for a tuple cr not
contained in the “core”. In particular, each edge in the core copy of Q is the center
of a collision.
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If we wish to construct a structure B where we “outsource” the witness for
ϕR 6∼

(a), as we did in the previous example, there is no edge in G(a; b) we could
remove without losing some realization of ϕR 6∼

(x). However, if we first outsource
the witness for ϕR 6∼

(cr), for some [r] ∈ G(a; b), then in the resulting structure
B the edge [r] will only be used in the witnessing of ϕR 6∼

(a). At that point, it
becomes “safe” to remove [r] from the structure to offset outsourcing the witnessing
of ϕR 6∼

(a). After that is done, we may proceed to outsource the witnessing of the
remaining instances of ϕR 6∼

(x), in no particular order.

As the second example demonstrates, the key to employing our strategy is finding
a loose end from which to begin the unraveling.

Definition 3.28. For structures N ,M ∈ C̄∼
0 (or N ,M ∈ C̄ 6∼

0 ), write N ⊑ M to
mean that N ⊆ M and RN

∼ ⊆ RM
∼ (or RN

6∼ ⊆ RM
6∼ ). In other words, the identity

map ι : N → M is a homomorphism into M, but not necessarily an embedding.
For N ,M ∈ C̄∼

0 with N ⊑ M, say that a symmetric edge [r] is N -expendable in
M, if there exists in N a unique tuple ab with M,N |= q(a; b), [r] ∈ G(a; b), and
such that ab takes part in a collision in M. If N = M say that [r] is expendable in
M.

Note that if [r] is N -expendable in M and ab is the unique tuple alluded to,
then whenever M |= q(c; d) with [r] ∈ G(c; d) and ab 6= cd, then in particular
N 6|= Q+(c; d), or otherwise cd contradicts the uniqueness of ab.

The expendable edges are those that can be discarded when resolving collisions.
We will show that these must exist in every A ∈ C∼ that has collisions.

While more technically involved in our case, the guiding principle is clearer to
explain in terms of an analogy with graphs. In a finite graph in which each vertex
has valence at least k > 2, there are many cycles. Over any one of its vertices,
a cycle adds more edges than vertices. I.e, an extension by a cycle has a lower
“predimension”. If predimension is bounded from below—meaning there is no
subset of the graph on which there are more edges than vertices—there cannot be
many such extensions, and so there must be a vertex with small valence. This is
where we will find an expendable edge.

In this analogy, roughly, vertices are instances of Q+(x; y) and edges are weak
collisions. We define our cycle analogue, and formalize our claim regarding predi-
mension.

Definition 3.29. In the context of some structure D ∈ C̄∼
0 , let S be a set of

symmetric edges in D and let L = (a1b1, . . . , akbk) be a sequence of distinct (but
possibly intersecting) tuples each realizing q(x; y) in D. Write Gi for G(ai; bi).

Say that L is an S-loop if S ∩G1, Gi ∩Gi+1 are all non-empty, Gk * S, and

• If k = 1, then |G1 ∩ S| ≥ 2.
• If k > 1, letting [r] be the unique (by Observation 3.24) symmetric edge

that must be in Gk−1 ∩Gk, then Gk ∩ (S ∪
⋃k−2

i=1 Gi \ {[r]}) is non-empty.

In the next lemma we show that appending an S-loop to a structure whose set
of edges is S causes a reduction in predimension.

Lemma 3.30. Let N ∈ C̄∼
0 . Let D0 ⊑ N be finite, denote S0 = RD0

∼ , and let
L = (a1b1, . . . , akbk) be an S0-loop. Denote Gi := G(ai; bi) and for each j ≤ k
denote Dj = D0 ∪

⋃
i≤j aibi, Sj = S0 ∪

⋃
i≤j Gi, and Dj = (Dj , Sj). Then,

δ∼(Dk) < δ∼(D0).
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Proof. We think of Dj as the j-th stage in the process of appending the loop L to
D0, one instance of q at a time.

For each l < k, by (al+1bl+1, Gl+1) ∼= Q and property (Q3) of a sturdy structure
(see Definition 3.17), as Gl+1 intersects Sl, we have |Dl+1| − |Sl+1| ≤ |Dl| − |Sl|,
and inductively

|Dl| − |Sl| ≤ |D0| − |S0|

for every l. That is almost enough to prove the lemma, but we must have at least
one such stage l in which the inequality is strict. We achieve this by slightly altering
the order in which we traverse the loop L.

Let 0 ≤ j < k be the least such that Sj contains at least two elements of Gk.
We demonstrate that appending akbk, Gk at this stage instead of at the very end
brings about the strict inequality we seek, without this changing of order affecting
the weak inequalities already established.

We show that Gk * Sj in order to apply simple algebraicity. If j = 0, then
Gk * Sj by definition of an S-loop of length k. Assume j > 0, i.e., |Gk ∩ S0| ≤ 1.
By Observation 3.24 for every l ≤ j we have |Gk ∩Gl| ≤ 1, hence Gk intersects Sl

by at most one more symmetric edge than it did Sl−1. By choice of j, this means
|Gk ∩ Sj | = 2 precisely. Since |Gk| > 2, in particular Gk * Sj .

As Sj intersects Gk in at least two edges, |akbk ∩Dj | > n. Assuming akbk * Dj,
by simple algebraicity we have

|Dj ∪ akbk| − |Sj ∪Gk| < |Dj | − |Sj |.

If akbk ⊆ Dj, the same inequality holds directly by Gk * Sj .
Completing the process, as at the beginning of the proof, for every l < k,

|Dl+1 ∪ akbk| − |Sl+1 ∪Gk| ≤ |Dl ∪ akbk| − |Sl ∪Gk|, and inductively

|Dk| − |Sk| ≤ |Dj ∪ akbk| − |Sj ∪Gk|.

Combining the displayed inequalities, we conclude

δ∼(Dk) = |Dk| − |Sk| < |D0| − |S0| = δ∼(D0) �

The next step is to use loops to show that if there are collisions at all, we
will be able to find expendable edges (recall Definition 3.28). We achieve this by
traversing loops building on non-expendability of edges, until we can loop no more
due to predimension constraints.

Lemma 3.31. Let A ∈ C∼ be such that the number of collisions in A (see Def-
inition 3.25) is positive, i.e., cA > 0. Then there exists some symmetric edge [r]
which is expendable in A.

Proof. Assume the contrary. Let A ∈ C∼ be such that no symmetric edge in A is
expendable in A. Using the following claim, we will construct S-loops. Fix a tuple
ab appearing in a collision in A.

Claim 1. Suppose B ⊑ A is such that B |= Q+(a; b). Denote by SB the set of
symmetric edges in B. If [r1] ∈ G(a; b) is B-expendable in A, then there is an
SB-loop (a1b1, . . . , akbk) with [r1] ∈ G(a1; b1) and a1b1 6= ab.

Proof. Recall that no edge in A is expendable in A. Since in particular [r1] is
not expendable in A, but it is B-expendable in A, there is some a1b1 6= ab with
A |= q(a1; b1) such that [r1] ∈ G(a1; b1). Given [ri], aibi such that A |= q(ai; bi) and
[ri] ∈ G(ai; bi), choose arbitrarily some [ri+1] ∈ G(ai; bi)\{[ri]}. As aibi appears in
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a collision in A and, by choice of A, [ri+1] is not expendable in A, we may choose
some ai+1bi+1 6= aibi such that A |= q(ai+1; bi+1) and [ri+1] ∈ G(ai+1bi+1).

Since A is finite, there is a large enough k for which (a1b1, . . . , akbk) satisfies the
requirements of an SB-loop, maybe apart from G(ak; bk) * SB. For such a k > 1, if
G(ak; bk) ⊆ SB, then (a1b1, . . . , ak−1bk−1) also satisfies the aforementioned require-
ments, because in this case [rk] ∈ G(ak−1; bk−1) ∩ S. Since [r1] is B-expendable in
A, as in the last paragraph of Definition 3.28, we know B 6|= Q+(a1; b1), hence
G(a1; b1) * SB. Thus, choosing k minimal such that (a1b1, . . . , akbk) satisfies
either bullet of Definition 3.29, we also get that G(ak; bk) * SB, which means
(a1b1, . . . , akbk) is an SB-loop. �

Denote t = |G(a; b)|. Let X0 = ab, S0 = G(a; b) = {[r1], . . . , [rt]}, and let
B0 ⊑ A be the L∼-structure on X0 with set of symmetric edges S0. Note that each
of [r1], . . . , [rt] is B0-expendable in A. Recall that by Definition 3.17, δ∼(B0) =
δ∼(Q) = n− 1 and, since |ab| = |Q| > 3n, we have t > 2n+ 1.

For i < n, given Bi such that at least 2(n− i) of [r1], . . . , [rt] are Bi-expendable
in A, we define inductively an L∼-structure Bi+1 ⊑ A such that Bi ⊑ Bi+1,
δ∼(Bi+1) < δ∼(Bi), and at least 2(n−(i+1)) of [r1], . . . , [rt] remain Bi+1-expendable
in A.

Denote by Si the set of symmetric edges of Bi. Using Claim 1, choose some
Si-loop L = (a1b1, . . . , akbk) such that ab 6= a1b1 and for some [rji ] that is Bi-
expendable in A, [rji ] ∈ G(a1; b1). Choose L so that k is minimal. Define Bi+1

to be the L∼-structure with universe Xi+1 = Xi ∪
⋃k

l=1 albl and set of symmetric

edges Si+1 = Si ∪
⋃k

l=1 G(al; bl). By Lemma 3.30, δ∼(Bi+1) < δ∼(Bi).
To proceed with the inductive construction, we only need to show that at least

2(n− i)− 2 of [r1], . . . , [rt] remain Bi+1-expendable inA. Maintaining this property
assures we can continue the process for n steps.

Claim 2. For some i < n, let [rji ] be the edge to which Claim 1 was applied when
constructing Bi+1 from Bi. Then there is at most one m 6= ji such that [rm] is
Bi-expendable in A but not Bi+1-expendable in A.

Proof. Suppose [rm] is distinct from [rji ] and that there exists cd a tuple witnessing
that [rm] is Bi-expendable in A, but not Bi+1-expendable in A. That is, cd is such
that [rm] ∈ G(c; d) ⊆ Si+1, but G(c; d) * Si. Let L = (a1b1, . . . , akbk) be the Si-
loop used to construct Bi+1. We claim that cd = akbk. Assume for a contradiction
that cd 6= akbk.

By minimality of k, cd 6= albl for every 1 ≤ l < k. Moreover, again by min-
imality of k, G(c; d) cannot intersect G(al, bl) for any 1 ≤ l < k − 1. Thus, by
Observation 3.24, as G(c; d) can intersect at most G(ak−1; bk−1) and G(ak; bk), we
have |G(c; d) ∩ (Si+1 \ Si)| ≤ 2.

Similarly, for any p < i, letting Lp = (ap1b
p
1, . . . , a

p
mbpm) be the Sp-loop used to

construct Bp+1, we know cd 6= apl b
p
l for every l ≤ m, because G(c; d) * Sp+1. As

before, by minimality of m, G(c; d) cannot intersect G(apl ; b
p
l ) for any l < m − 1.

So again by Observation 3.24, |G(c; d) ∩ (Sp+1 \ Sp)| ≤ 2.
Summing all of these together, we find that |G(c; d) ∩ (Si+1 \ S0)| ≤ 2(i + 1).

By assumption i < n and we know |G(c; d) ∩ S0| = 1, so overall |G(c; d) ∩ Si+1| <
2n+ 1 < t, in contradiction to G(c; d) ⊆ Si+1.

Thus, it must be that cd = akbk, so [rm] ∈ G(ak; bk). In particular, there can be
at most |G(a; b) ∩G(ak; bk)| ≤ 1 such m as in the statement of the claim. �
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Claim 2 guarantees that we can construct up to Bn ⊑ A, but then δA(Xn) ≤
δ∼(Bn) ≤ δ∼(B0)− n < 0, contradicting A ∈ C∼. This proves the lemma. �

We can now apply the logic of examples 3.26 and 3.27 to resolve collisions.

Lemma 3.32. Let A ∈ C∼ be such that cA > 0. Then there exists some B ∈ C∼
such that

(1) Â ⊑ B̂
(2) wB < wA (recall Definition 3.25)

Proof. As cA > 0, by Lemma 3.31 we may choose some [r] ∈ RA
∼ that is expendable

in A. Let ab be the unique tuple such that A |= q(a, b) and [r] ∈ G(a; b). Let w
be a tuple of new elements with |w| = |b|. Define the L∼-structure B ∈ C∼

0 with
universe B = A ∪ w and

RB
∼ = (RA

∼ \ [r]) ∪
⋃

G(a;w).

Note that B is a free join of B[A] and B[aw] over B[a].
We argue that B ∈ C∼. Let X ⊆ B be such that δB(X) is minimal. If a * X ,

then δB(X) ≥ δB(X ∩ A) ≥ δA(X ∩ A) ≥ 0. If a ⊆ X , then δB(w/X) ≤ 0 and
δB(b/X) ≤ 0, so we may assume bw ⊆ X . Now as a free join

δB(X) = δB(X ∩A) + δB(X ∩ aw/a)

= (δA(X ∩ A) + 1)− 1 = δA(X ∩ A) ≥ 0.

We show that wB < wA. First, recall that [r] was expendable in A, hence
involved in a collision in A. Because B |= ¬Q+(a; b), that specific collision no
longer exists in B.

Now, observe that if B |= Q+(c; d), since B[cd] is a free join of B[cd ∩ A] and
B[cd∩aw] over B[cd∩a], by (iii) of Lemma 3.19 either cd ⊆ aw or cd ⊆ A. If the first
occurs, it must be that G(c; d) = G(a;w) and by rigidity (Q2 of Definition 3.17) of
Q , cd = aw. If the latter occurs, then B[A] |= Q+(c; d), hence A |= Q+(c; d).

Let (c1d1, c2d2) be a weak collision in B. If one of the tuples is aw, then
G(c1; d1) ∩ G(c2; d2) = {[a]}, which would imply [a] ∈ RB

∼, hence [a] ∈ RA
∼. How-

ever, since A |= q(a; b), in particular A |= ¬R∼(a). Then neither tuple is aw, so
(c1d1, c2d2) was already a weak collision in A. We conclude that wB < wA.

Lastly, to show Â ⊑ B̂, we must show that for any c, A |= ∃y q(c, y) implies
B |= ∃y q(c, y). Noting (iii) of Lemma 3.19 again, if B |= Q+(u; v) for some uv ⊆ B
then either uv = aw or A |= Q+(u; v). Since aw cannot intersect any tuple from
A in more than n elements, this is enough so that whenever A |= q(c; d) and
B |= Q+(u; v) with cd 6= uv, then |cd ∩ uv| ≤ n. This guarantees that for any
cd 6= ab such that A |= q(c; d), also B |= q(c; d). For the special case cd = ab, we
no longer have B |= Q+(a; b), so B 6|= q(a; b). However, we do have B |= q(a;w) by
construction, and so B |= ∃y q(a, y) all the same. �

Now, showing that we may assume there are no collisions, P2 becomes easy to
prove.

Lemma 3.33. If A ∈ C∼, then Â ∈ C 6∼. (P2)

Proof. Assume the statement is false and let A ∈ C∼ contradict it with wA minimal.
We claim that cA = 0. Otherwise, by Lemma 3.32 there is some B ∈ C∼ with
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wB < wA such that Â ⊑ B̂. Since Â 6∈ C∼, clearly B̂ /∈ C 6∼, contradicting the
minimality of wA.

Let Y ⊆ A with δÂ(Y ) < 0 witness Â /∈ C 6∼. Let W = {ab : a ⊆ Y, A |=
q(a; b)} and let X = Y ∪

⋃
W . Since there are no collisions in A, we know that

G(a; b) ∩G(c; d) = ∅ whenever ab, cd ∈ W . We compute

δA(X) ≤ |Y |+ |
⋃

ab∈W

b| − |
⋃

ab∈W

G(a; b)|

≤ |Y |+
∑

ab∈W

(|b| − |G(a; b)|)

= |Y | − |W | ≤ δÂ(Y ) < 0

This contradicts A ∈ C∼. �

Modulo the existence of a sturdy Q ∈ C∼, this finishes the proof of Theorem 3.9.
To show the existence of a sturdy Q, we will vary n, the arity of R∼, which was
fixed up until now. We denote by Lk the language L∼ for the choice of arity n = k.
We use Rk to denote R∼ in the case n = k. In the context of a specific arity, we
interpret symbols such as 6k in the obvious way. Write Ck

∼ for the collection of
Lk-structures A with ∅ 6k A. As per Remark 3.18, define an n-sturdy structure by
modifying Definition 3.17 so that Q ∈ Cn

∼. Note that (Q1) of the definition depends
on n as well.

The proof that an n-sturdy structure exists (for n ≥ 3) is by a constructive
induction. In the next two lemmas we provide an explicit n-sturdy structure for
the base case n = 3, and the induction step.

Lemma 3.34. There exists a 3-sturdy structure Q3 ∈ C3
∼.

Proof. Consider the structure Q3 with universe ab = {a1, a2, a3, b1, . . . , b8} and

RQ3

3 =
⋃

{[(a1, b1, b2)], [(a2, b2, b3)], [(a3, b1, b7)],

[(a1, b3, b4)], [(a2, b4, b5)], [(a3, b8, b3)],

[(a1, b5, b6)], [(a2, b6, b7)],

[(a1, b7, b8)]}

It is clear that property (Q1) is satisfied. We prove the other two.

Claim 1. The structure Q3 is rigid. (Q2)

Proof. We will show that each point is ∅-definable in Q3, and hence fixed by any
automorphism. Note that any two edges in Q3 intersect in at most one element.

• a1 is the only element appearing in 4 edges.
• a2 is the only element appearing in three edges in which a1 does not appear.
• a3 is the unique element not appearing in an edge with a1 or a2.
• {b1, b8} is the set of points not sharing an edge with a2.
• b7 is the unique non-ai element sharing an edge with each element of
{b1, b8}.

• From a1, a2, a3, b7 it is easy to define the rest. �

Claim 2. For every r ∈ RQ3

3 , the entire structure is simply algebraic over r. (Q3)
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Proof. We need to show that ifX ⊂ ab properly contains any edge, then δQ3
(X) ≥ 3.

We will show that this is true whenever |X | > 3, which holds for any set X properly
containing an edge.

Let X ⊆ ab be minimal such that |X | > 3 and δQ3
(X) < 3. We will show that

X cannot be a proper subset of ab. Note that there must be at least two symmetric
edges on X . By construction, no two edges intersect in more than one element, so
|X | ≥ 5. Thus, every x ∈ X must appear in at least two distinct symmetric edges
in X or else X \ {x} contradicts the minimality of X .

Therefore, it cannot be that a3 /∈ X , since

a3 /∈ X =⇒ b1, b8 /∈ X =⇒ b2, b7 /∈ X =⇒ a2 /∈ X =⇒ b4, b5, b6 /∈ X.

and |X | < 3. Then both edges containing a3 must also be in X , hence b1, b3, b7, b8 ∈

X . Now b1 introduces (a1, b1, b2) into R
Q3[X]
3 , and in turn b2 introduces (a2, b2, b3)

into R
Q3[X]
3 . We have so far ab \ {b4, b5, b6} ⊆ X . We must have b5 ∈ X , for

otherwise both b4 /∈ X and b6 /∈ X , which would imply there is a single edge

containing a2 in X . In turn, b5 introduces (a2, b4, b5) and (a1, b5, b6) into R
Q3[X]
3

and we conclude X = ab. �

The two claims show that Q3 is 3-sturdy. �

Lemma 3.35. If there exists a k-sturdy structure Qk ∈ Ck
∼, then there exists a

k + 1-sturdy structure Qk+1 ∈ Ck+1
∼ .

Proof. Let ab be the universe of Qk where a = (a1, . . . , ak), b = (b1, . . . , bl). Fix

arbitrarily some r ∈ RQk

k . Since l > 2k, |b \ r| ≥ k + 1. Without loss of generality,
assume b1, . . . , bk+1 do not appear in r.

Let ak+1, c1, . . . , ck+1 be new elements. Define, where if j > k+1, then cj stands
for cj−(k+1),

Γ1 = {[c1r
′] : r′ ∈ RQk

k \ [r]}

Γ2 = {[(ak+1, bi, ci, . . . , ci+(k−2))] : 1 ≤ i ≤ k + 1}

Let Qk+1 be the structure with universe {a1, . . . , ak+1, b1, . . . , bl, c1, . . . , ck+1} and

R
Qk+1

k+1 =
⋃

Γ1 ∪ [c2r] ∪
⋃

Γ2

Noting |Γ1| = |{[r′] : r′ ∈ RQk

k }|− 1 = l and |Γ2| = k+1, it is easy to check that
(Q1) holds.

Claim 1. Qk+1 is rigid. (Q2)

Proof. Observe

• c1 is definable as the only element appearing in at least l+2 many symmetric

edges in R
Qk+1

k+1 .
• ak+1 is definable as the only element appearing in exactly k + 1 edges of

R
Qk+1

k+1 , with exactly two of those not containing c1.
• The set {c1, . . . , ck+1} is definable as the set of points appearing with ak+1

in more than one edge.

Then the set ab is definable as the complement of {ak+1, c1, . . . , ck+1}. Also, RQk

k

is a definable relation in Qk+1 as the set of k-tuples contained in ab that can

be extended to an edge in R
Qk+1

k+1 by a point from {c1, . . . , ck+1}. Hence, every
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automorphism of Qk+1 fixes ab and RQk

k set-wise, inducing an automorphism of
Qk. By rigidity of Qk, this means every automorphism of Qk+1 fixes ab point-wise.

The edges of Γ2 are definable as the edges in which ak+1 appears. For each
1 < i ≤ k+1, the element ci is thus definable over b1, . . . , bk+1, because the elements
bi index the edges of Γ2. So any automorphism of Qk+1 also fixes {c2, . . . , ck+1}
point-wise. That is, the only automorphism of Qk+1 is the identity. �

Claim 2. The entire structure is simply algebraic over every r ∈ R
Qk+1

k+1 . (Q3)

Proof. As in the proof of Claim 2 in Lemma 3.34, let X be a minimal subset such
that |X | > k + 1 and δQk+1

(X) < k + 1. In particular, there are at least two
symmetric edges on X .

We show that R
Qk+1[X]
k+1 * Γ1. Otherwise, c1 ∈ X , |X ∩ab| > k, and δQk+1

(X) ≥
δQk+1

(X ∩ c1ab), so by minimality X ⊆ c1ab. If r ⊆ X , in particular if ab ⊆ X ,
then

δQk+1
(X) = (δQk

(X ∩ ab) + 1) + 1 ≥ k + 1.

If r * X , then ab * X , and by sturdiness of Qk we have δQk
(X ∩ab) ≥ k and again

δQk+1
(X) = δQk

(X ∩ ab) + 1 ≥ k + 1.

In any case, this contradicts our choice of X .
In case |X | = k+2, any two edges on X intersect in k many points. By construc-

tion, this is only possible if R
Qk+1[X]
k+1 ⊆ Γ1, which we know to be false. Therefore,

|X | > k + 2, and by minimality of X , each element in X appears in at least two
symmetric edges on X . Thus, by construction of Γ2, the set {ak+1, c2, . . . , ck+1} is

either contained in X or disjoint from X . Since R
Qk+1[X]
k+1 * Γ1, the set must be

contained in X . Moreover, Γ2 ⊆ R
Qk+1[X]
k+1 , so also c1, b1, . . . , bk+1 ∈ X .

Now, unless ab ⊆ X , we have δQk+1
(ab/X) = δQk

(ab/X ∩ ab) < 0, implying
k = δ(Qk+1) < δQk+1

(X), in contradiction. Conclude that ab ⊆ X , i.e., X is the
entire universe of Qk+1, which proves the claim. �

The two claims show that Qk+1 is k + 1-sturdy. �

Corollary 3.36. For each natural n ≥ 3 there exists an n-sturdy structure Qn. �

This is the final component required for the proof of the main theorem.

Theorem 3.9. Whenever g, h ≤ Sn, then PG(Mg) ∼= PG(Mh) and Mh is isomor-
phic to a proper definable reduct of Mg.

Proof. Let g, h ≤ Sn.
Theorem 3.15 shows that M∼ is isomorphic to a reduct of Mg. Taking Q to be

the n-sturdy structure guaranteed by Corollary 3.36, lemmas 3.21 to 3.23 and 3.33
show that Assumption 2.16 holds with respect to C∼ and C 6∼ and reduction to
ϕR 6∼

(x), hence M 6∼ is isomorphic to a proper reduct of M∼. Using Theorem 3.15
again, Mh is isomorphic to a reduct of M 6∼. Chaining these reductions, we find
that Mh is isomorphic to a proper reduct of Mg.

Finally, by Corollary 3.14, PG(Mg) ∼= PG(M 6∼) ∼= PG(Mh). �

An immediate corollary follows.

Corollary 3.37. There is an infinite descending chain of proper reducts with a
non-disintegrated pregeometry, beginning with M∼. �
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