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The Fluted Fragment with Transitive Relations✩
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Abstract

We study the satisfiability problem for the fluted fragment extended with tran-
sitive relations. The logic enjoys the finite model property when only one transi-
tive relation is available and the finite model property is lost when additionally
either equality or a second transitive relation is allowed. We show that the
satisfiability problem for the fluted fragment with one transitive relation and
equality remains decidable. On the other hand we show that the satisfiability
problem is undecidable already for the two-variable fragment of the logic in the
presence of three transitive relations (or two transitive relations and equality).
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1. Introduction

The fluted fragment, here denoted FL, is a fragment of first-order logic in
which, roughly speaking, the order of quantification of variables coincides with
the order in which those variables appear as arguments of predicates. The
allusion is presumably architectural: we are invited to think of arguments of
predicates as being ‘lined up’ in columns. The following formulas are sentences
of FL

No student admires every professor
∀x1(student(x1) → ¬∀x2(prof(x2) → admires(x1, x2)))

(1)

No lecturer introduces any professor to every student
∀x1(lecturer(x1) →

¬∃x2(prof(x2) ∧ ∀x3(student(x3) → intro(x1, x2, x3)))),
(2)

with the ‘lining up’ of variables illustrated in Fig. 1. By contrast, none of the
formulas

∀x1.r(x1, x1)

✩This is a revised and substantially extended version of the MFCS 2019 paper [19].
∗Corresponding author
Email addresses: ipratt@cs.man.ac.uk (Ian Pratt-Hartmann), tendera@uni.opole.pl

(Lidia Tendera)

Preprint submitted to Elsevier June 22, 2020

http://arxiv.org/abs/2006.11169v1


∀x1
(student(x1)

→ ¬∀x2
(prof(x2)

→ admires(x1, x2)))

∀x1
(lecturer(x1)

→ ¬∃x2
(prof(x2)

∧∀x3
(student(x3)

→ intro(x1, x2, x3))))

Figure 1: The ‘lining up’ of variables in the fluted formulas (1) and (2); all quantification is
executed on the right-most available column.

∀x1∀x2(r(x1, x2) → r(x2, x1))

∀x1∀x2∀x3(r(x1, x2) ∧ r(x2, x3) → r(x1, x3)),

expressing, respectively, the reflexivity, symmetry and transitivity of the relation
r, is fluted, as the atoms involved cannot be arranged so that their argument
sequences ‘line up’ in the fashion of Fig. 1.

The history of this fragment is somewhat tortuous. The basic idea of fluted
logic can be traced to a paper given by W.V. Quine to the 1968 International
Congress of Philosophy [22], in which the author defined the homogeneous m-
adic formulas. Quine later relaxed this fragment, in the context of a discussion of
predicate-functor logic, to what he called ‘fluted’ quantificational schemata [23],
claiming that the satisfiability problem for the relaxed fragment is decidable.
The viability of the proof strategy sketched by Quine was explicitly called into
question by Noah [15], and the subject then taken up by W.C. Purdy [20], who
gave his own definition of ‘fluted formulas’, proving decidability. It is question-
able whether Purdy’s reconstruction is faithful to Quine’s intentions: the matter
is clouded by differences between the definitions of predicate functors in Noah’s
and Quine’s respective papers [15] and [23], both of which Purdy cites. In
fact, Quine’s original definition of ‘fluted’ quantificational schemata appears to
coincide with a logic introduced—apparently independently—by A. Herzig [4].
Rightly or wrongly, however, the name ‘fluted fragment’ has now attached itself
to Purdy’s definition in [20]; and we shall continue to use it in that way in the
present article. See Sec. 2 for a formal definition.

To complicate matters further, Purdy claimed in [21] that FL (i.e. the fluted
fragment, in our sense, and his) has the exponential-sized model property: if a
fluted formula ϕ is satisfiable, then it is satisfiable over a domain of size bounded
by an exponential function of the number of symbols in ϕ. Purdy concluded that
the satisfiability problem for FL is NExpTime-complete. These latter claims
are false. It was shown in [17] that, although FL has the finite model property,
there is no elementary bound on the sizes of the models required, and the
satisfiability problem for FL is non-elementary. More precisely, define FLm to
be the subfragment of FL in which at most m variables (free or bound) appear.
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Then the satisfiability problem for FLm is ⌊m/2⌋-NExpTime-hard for allm ≥ 2
and in (m − 2)-NExpTime for all m ≥ 3 [18]. It follows that the satisfiability
problem for FL is Tower-complete, in the framework of [24]. These results fix
the exact complexity of satisfiability of FLm for small values of m. Indeed, the
satisfiability problem for FO2, the two-variable fragment of first-order logic, is
known to be NExpTime-complete [3], whence the corresponding problem for
FL2 is certainly in NExpTime. Moreover, for 0 ≤ m ≤ 1, FLm coincides with
the m-variable fragment of first-order logic, whence its satisfiability problem is
NPTime-complete. Thus, taking 0-NExpTime to mean NPTime, we see that
the satisfiability problem for FLm is ⌊m/2⌋-NExpTime-complete, at least for
m ≤ 4.

The focus of the present paper is what happens when we add to the fluted
fragment the ability to stipulate that certain designated binary relations are
transitive, or are equivalence relations. The motivation comes from analogous
results obtained for other decidable fragments of first-order logic. Consider
basic propositional modal logic K. Under the standard translation into first-
order logic (yielded by Kripke semantics), we can regard K as a fragment of
first-order logic—indeed as a fragment of FL2. From basic modal logic K, we
obtain the logic K4 under the supposition that the accessibility relation on pos-
sible worlds is transitive, and the logic S5 under the supposition that it is an
equivalence relation: it is well-known that the satisfiability problems for K and
K4 are PSpace-complete, whereas that for S5 is NPTime-complete [13]. (For
analogous results on graded modal logic, see [6].) Closely related are also de-
scription logics (cf. [1]) with role hierarchies and transitive roles. In particular,
the description logic SH, which has the finite model property, is an ExpTime-
complete fragment of FL with transitivity. Similar investigations have been
carried out in respect of FO2, which has the finite model property and whose
satisfiability problem, as just mentioned, is NExpTime-complete. The finite
model property is lost when one transitive relation or two equivalence relations
are allowed. For equivalence, everything is known: the (finite) satisfiability
problem for FO2 in the presence of a single equivalence relation remains NExp-

Time-complete, but this increases to 2-NExpTime-complete in the presence of
two equivalence relations [9, 10], and becomes undecidable with three. For tran-
sitivity, we have an incomplete picture: the finite satisfiability problem for FO2

in the presence with a single transitive relation is decidable in 3-NExpTime [16],
while the decidability of the satisfiability problem remains open (cf. [26]); the
corresponding problems with two transitive relations are both undecidable [11].

Adding equivalence relations to the fluted fragment poses no new problems.
Existing results on of FO2 with two equivalence relations can be used to show
that the satisfiability and finite satisfiability problems for FL (not just FL2)
with two equivalence relations are decidable. Furthermore, the proof that the
corresponding problems for FO2 in the presence of three equivalence relations
are undecidable can easily be seen to apply also to FL2. On the other hand, the
situation with transitivity is less straightforward. We show in the sequel that
the satisfiability and finite satisfiability problems for FL remain decidable in the
presence of a single transitive relation and equality. (This logic lacks the finite
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model property.) On the other hand, the satisfiability and the finite satisfiability
problems for FL in the presence of two transitive relations and equality, or
indeed, in the presence of three transitive relations (but without equality) are all
undecidable. For the fluted fragment with two transitive relations but without
equality, the situation is not fully resolved. We show in the sequel that this
fragment lacks the finite model property; this contrasts with the situation in
description logics, where not only SH but also its extension SHI retain the
finite model property, independently of the number of transitive relations [14].
However, the decidability of both satisfiability and finite satisfiability for this
fragment remain open. Table 1 gives an overview of these results in comparison
with known results on FO2.

Some indication that flutedness interacts in interesting ways with transi-
tivity is given by known complexity results on various extensions of guarded
two-variable fragment with transitive relations. The guarded fragment, denoted
GF, is that fragment of first-order logic in which all quantification is of either
of the forms ∀v̄(α → ψ) or ∃v̄(α∧ψ), where α is an atomic formula (a so-called
guard) featuring all free variables of ψ. The guarded two-variable fragment, de-
noted GF2, is the intersection of GF and FO2. It is straightforward to show that
the addition of two transitive relations to GF2 yields a logic whose satisfiability
problem is undecidable. However, as long as the distinguished transitive rela-
tions appear only in guards, we can extend the whole of GF with any number
of transitive relations, yielding the so-called guarded fragment with transitive
guards, whose satisfiability problem is in 2-ExpTime [25]. Intriguingly, in the
two-variable case, we obtain a reduction in complexity if we require transitive re-
lations in guards to point forward—i.e. allowing only ∀v(t(u, v) → ψ) rather than
∀v(t(v, u) → ψ), and similarly for existential quantification. These restrictions
resemble flutedness, of course, except that they prescribe the order of variables
only in guards, rather than in the whole formula. Thus, the extension of GF2

with (any number of) transitive guards has a 2-ExpTime-complete satisfiability
problem; however, the corresponding problem under the restriction to one-way
transitive guards is ExpSpace-complete [8]. Since the above-mentioned exten-
sions of GF2 lack the finite model property, their satisfiability and the finite
satisfiability problems do not coincide. Decidability and complexity bounds for
the finite satisfiability problems are established in [11, 12].

2. Preliminaries

All signatures in this paper are purely relational, i.e., there are no individual
constants or function symbols. We do, however, allow 0-ary relations (proposi-
tion letters). We use the notation ϕ∨̇ψ to denote the exclusive disjunction of ϕ
and ψ.

Let x̄ω = x1, x2, . . . be a fixed sequence of variables. We define the sets of
formulas FL[m] (for m ≥ 0) by structural induction as follows: (i) any non-
equality atom α(xℓ, . . . , xm), where xℓ, . . . , xm is a contiguous (possibly empty)

subsequence of x̄ω , is in FL[m]; (ii) FL[m] is closed under boolean combinations;

4



Special symbols Decidability and Complexity

FLm (m ≥ 2) FO2

no transitive r. ⌊m/2⌋-NExpTime-hard FMP

in (m− 2)-NExpTime∗) NExpTime-compl.
[17, 18] [3]

1 transitive r. FMP [19] Sat: ?
1 transitive r. Sat: in m-NExpTime Sat: ?

with = Theorem 20 FinSat:
FinSat: in (m+ 1)-NExpTime in 3-NExpTime

Corollary 21 [16]
2 transitive r. Sat: ? undecidable

FinSat: ? [7, 5]
2 transitive r. undecidable

with = Theorem 25 undecidable
1 trans.& 1 equiv. undecidable

with = Corollary 26 undecidable
3 transitive r. undecidable

Sat: Theorem 29 undecidable
FinSat: Theorem 30

3 equivalence r. undecidable
Corollary 31 undecidable

Table 1: Overview of FL
m and FO2 over restricted classes of structures. ∗) in case m > 2,

and NExpTime-complete for FL
2. Undecidability of extensions of FO2 shown in grey were

known earlier, but now can be inherited from remaining results of the Table.

(iii) if ϕ is in FL[m+1], then ∃xm+1ϕ and ∀xm+1ϕ are in FL[m]. The set of
fluted formulas is defined as FL =

⋃

m≥0 FL[m]. A fluted sentence is a fluted
formula with no free variables. Thus, when forming Boolean combinations in
the fluted fragment, all the combined formulas must have as their free variables
some suffix of some prefix x1, . . . , xm of x̄ω; and, when quantifying, only the
last variable in this prefix may be bound. Note also that proposition letters
(0-ary predicates) may, according to the above definitions, be combined freely

with formulas: if ϕ is in FL[m], then so, for example, is ϕ ∧ P , where P is
a proposition letter. For m ≥ 0, denote by FLm the m-variable sub-fragment
of FL, i.e. the set of formulas of FL featuring at most m variables, free or
bound. Do not confuse FLm with FL[m]. For example, (1) is in FLm just in

case m ≥ 2, and (2) is in FLm just in case m ≥ 3; but they are both in FL[0].
Note that FLm-formulas cannot, by force of syntax, feature predicates of arity
greater than m. The fragments FL[m]

= , FL= and FLm
= are defined analogously,

except that equality atoms xm−1 = xm are allowed in FL[m]
= for m ≥ 2.

We denote by FLkT the extension of FL with k distinguished binary predi-
cates assumed to be interpreted as transitive relations; and we denote by FL=kT
the corresponding extension of FL=. We denote their m-variable sub-fragments
(m ≥ 2) by FLmkT, respectively FLm

= kT. A predicate is called ordinary if it
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is neither the equality predicate nor one of the distinguished predicates. Fi-
nally, we denote by FL2

=1T
u
the sub-fragment of FL2

=1T in which no binary
predicates occur except equality and the distinguished predicate, i.e., where the
non-logical signature consists purely of nullary and unary predicates, together
with one distinguished binary predicate.

If L is any logic, we denote its satisfiability problem by Sat(L) and its finite
satisfiability problem by FinSat(L), understood in the usual way.

2.1. Variable-free syntax for fluted formulas

Assuming, as we shall, that the arity of every predicate is fixed in advance,
variables in fluted formulas carry no information, and therefore can be omitted.
Thus, for example, sentences (1) and (2) can be written as follows

No student admires every professor
∀(student → ¬∀(prof → admires))

(3)

No lecturer introduces any professor to every student
∀(lecturer → ¬∃(prof ∧ ∀(student → intro))),

(4)

As an exercise, try converting (4) back into (2). The only ambiguity here
comes from the choice of the highest-indexed variable; for example, the notation
∀(prof → admires) can mean ∀xm+1(prof(xm+1) → admires(xm, xm+1)) for any
m ≥ 1. However, such ambiguity is perfectly harmless, and in fact—as the
present authors have found—rather convenient. Variable-free syntax for fluted
formulas takes a little getting used to, but makes for a compact presentation;
we shall standardly employ it in the sequel. We write ∀m to denote a block of m
universal quantifiers; thus, if ϕ ∈ FL[m], then ∀mϕ ∈ FL[0]. The elimination of
variables seems to have been part of Quine’s original motivation for introducing
the fluted fragment (or at least one of its close relatives).

2.2. Loss of the finite model property

The logic FL1T possesses the finite model property (see Table 1). However,
this is no longer true if we add either equality or a second transitive relation, as
shown by the examples below.

Example 1. Consider the FL2
=1T-sentence ϕ1 = ∀∃.T1 ∧ ∀∀(T1 → ¬ =),

where T1 is a distinguished binary predicate denoting a transitive relation. This
sentence is satisfiable, but not finitely satisfiable.

Proof. In standard first-order syntax, ϕ1 reads as follows:

ϕ1 = ∀x∃y.T1(x, y) ∧ ∀x∀y(T1(x, y) → x 6= y).

It is obvious that ϕ1 is satisfiable (for example by the structure N with T1
interpreted as <), but not finitely satisfiable.
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Example 2. Consider the FL22T-sentence

ϕ2 = ∃p0 ∧ ∀(p0∨̇p1∨̇p2) ∧ ∀∀¬(T1 ∧ T2)∧
∧

i=0,1,2

∀
(

pi → (∃(pi+1 ∧ ¬(T1 ∨ T2)) ∧ ∀(pi+2 → T1 ∨ T2))
)

,

where the pi (0 ≤ i ≤ 2) are unary predicates (addition in subscripts interpreted
modulo 3), and T1, T2 are distinguished binary predicates denoting transitive
relations. This sentence is satisfiable, but not finitely satisfiable.

Proof. For readers still getting used to variable-free notation, we again restore
the variables in ϕ2:

∃x1.p0(x1) ∧ ∀x1(p0(x1)∨̇p1(x1)∨̇p2(x1)) ∧ ∀x1∀2¬(T1(x1, x2) ∧ T2(x1, x2))∧
∧

i=0,1,2

∀x1
(

pi(x1) → (∃x2(pi+1(x2) ∧ ¬(T1(x1, x2) ∨ T2(x1, x2))) ∧

∀x1(pi+2(x1) → T1(x1, x2) ∨ T2(x1, x2)))
)

.

One can easily check that the structure N with the following interpretation of
the predicate letters

pi(n) iff n mod 3 = i

T1(n,m) iff n+ 1 < m

T2(n,m) iff n > m

is a model of ϕ2.

a0 a1 a2 a3 a4 a5 a6 a7

. . .

Figure 2: Infinite chain in models of ϕ2 from Example 2. Pairs (ai, ai+1) are neither in T1 nor
in T2; depicted by dotted lines. Blue and red arrows depict pairs belonging to the transitive
relations T1 and T2.

To see that ϕ2 is not finitely satisfiable, suppose A |= Ψ. By the existential
conjuncts of ϕ2, there exist distinct elements a0, a1, a2 ∈ A such that ai ∈ pi
and (a0, a1), (a1, a2) 6∈ T1 ∪ T2 (cf. Figure 2). The universal conjuncts of ϕ2

imply that (a0, a2), (a1, a0) and (a2, a1) belong to T1 ∪ T2 but not to T1 ∩ T2.
One can check that with transitive T1 and T2 this allows for only two options:
(i) (a1, a0), (a2, a1) ∈ T1 and (a0, a2) ∈ T2, or (ii) (a1, a0), (a2, a1) ∈ T2 and
(a0, a2) ∈ T1. In both cases applying transitivity of T1 or of T2 we have (a2, a0) ∈
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T1 ∪ T2. But then the existential conjuncts require a new witness, say a3, for
a2 such that (a2, a3) 6∈ T1 ∪ T2. Again, taking the universal conjuncts into
considerations, we get (a3, a1) ∈ T1 ∪ T2. So, the situation repeats, and indeed
A embeds an infinite chain of elements such that, for each consecutive pair,
(ai, ai+1) 6∈ T1 ∪ T2.

2.3. Fluted types and cliques

Suppose A is a structure interpreting the distinguished binary predicate T as
a transitive relation. A clique of A is a maximal subset B ⊆ A with the property
that, for all distinct a, b ∈ B, A |= T [a, b]. Every element a ∈ A is a member of
exactly one clique, and if that clique has size greater than 1, then, necessarily
A |= T [a, a]. Furthermore, if B1 and B2 are cliques, then either every element
of B1 is related to every element of B2 by T , or no element of B1 is related to
any element of B2 by T . In this way, TA induces a strict partial order on the
set of cliques. If a singleton {a} is a clique, then it may or may not be the case
that A |= T [a, a]. If A |= ¬T [a, a], then we call a (or sometimes {a}) a soliton.

In this paper, we adapt the familiar notions of atom, literal, m-type and
clause to the fluted environment. A fluted m-atom is an atomic formula of
FL[m]

= . Remembering that we are using variable-free syntax, we see that a fluted
m-atom is simply a predicate p having arity at most m. A fluted m-literal is
a fluted m-atom or its negation; a fluted m-type is a maximal consistent con-
junction of fluted m-literals. If ā = a1, . . . , am is a tuple of elements in some
structure A, then ā satisfies a unique fluted m-type over Σ, denoted ftpA[ā]. We
silently identify fluted m-types with their conjunctions where appropriate; thus,
any fluted m-type may be regarded as a (quantifer-free) FL[m]-formula. Finally,
a fluted m-clause is a disjunction of fluted m-literals. We allow the empty clause
⊥. We silently identify a finite set of clauses Γ with its conjunction where conve-
nient, thus writing Γ in formulas instead of the (technically more correct)

∧

Γ.
A fluted m-atom/literal/clause is automatically a fluted m′-atom/literal/clause
for all m′ > m; the same is not true of fluted m-types for signatures containing
predicates of arity greater than m. In any case, reference to m is suppressed if
inessential or clear from context.

At various points in Sec. 3, it will be convenient to appeal to the technique
of resolution theorem-proving in order to simplify formulas. If γ = γ′ ∨ A and
δ = δ′ ∨ ¬A are both fluted m-clauses, where A is a fluted atom, then so is the
clause γ′∨δ′, called a fluted resolvent of γ and δ. If the predicate in A is ordinary
and has maximum arity both among the predicates of γ and among those of δ,
then we say that γ′ ∨ δ′ is the maximal ordinary resolvent (or mo-resolvent) of
γ and δ. (Recall that a predicate is called ordinary if it is neither the equality
predicate nor one of the distinguished predicates.) Thus mo-resolution is simply
a restricted version of resolution. By regarding fluted m-clauses as shorthand
for their universal closures, resolution—and in particular mo-resolution—can be
seen as a valid inference rule: from ∀m(γ′∨A) and ∀m(δ′∨¬A), infer ∀m(γ′∨δ′).
We remark that, if A is the only literal of γ involving an m-ary predicate, and
similarly for ¬A in δ, then the mo-resolvent γ′ ∨ δ′ will be a fluted (m − 1)-
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clause (and therefore also a fluted m-clause). This is will prove important when
dealing with the fragments FLm

= kT for m > 2.
If Γ is a set of fluted clauses, denote by Γ∗ the smallest set of fluted clauses

including Γ and closed under mo-resolution, in the sense that if γ, δ ∈ Γ∗

mo-resolve to form ǫ, then ǫ ∈ Γ∗. Clearly, Γ∗ is finite if Γ is. Further, if
Γ is a set of m-clauses, for m ≥ 2, and taking m to be clear from context, we
denote by Γ◦ the result of removing from Γ∗ any clauses involving any ordinary
predicates of arity m. If m > 2, then Γ◦ is necessarily a set of fluted (m − 1)-
clauses; and if m = 2, then Γ◦ is a set of fluted 2-clauses involving no binary
predicates other than (possibly) = or the distinguished predicates Tk.

The following lemma is, in effect, nothing more than the familiar complete-
ness theorem for (ordered) propositional resolution.

Lemma 3. Let Γ be a set of fluted m-clauses, and τ a fluted m-type over the
signature of Γ◦. If Γ◦ ∪{τ} is consistent, then there exists a fluted type τ+ over
the signature of Γ such that τ+ ⊇ τ and Γ ∪ {τ+} is consistent.

Proof. Enumerate the ordinary m-ary predicates occurring in Γ as
p1, . . . , pn. Note that none of these predicates occurs in τ . Define a level-i
extension of τ inductively as follows: (i) τ is an level-0 extension of τ ; (ii) if τ ′

is a level-i extension of τ (0 ≤ i < n), then τ ′ ∪ {pi+1} and τ ′ ∪ {¬pi+1} are
level-(i + 1) extensions of τ . Thus, the level-n extensions of τ are exactly the
fluted m-types over the signature of Γ extending τ . If τ ′ is a level-i extension
of τ (0 ≤ i < n), we say that τ ′ violates a clause δ if, for every literal in γ, the
opposite literal is in τ ′; we say that τ ′ violates a set of clauses ∆ if τ ′ violates
some δ ∈ ∆. Suppose now that τ ′ is a level-i extension of τ (0 ≤ i < n). We
claim that, if both τ ′ ∪ {pi+1} and τ ′ ∪ {¬pi+1} violate Γ∗, then so does τ ′. For
suppose otherwise. In that case, there must be a clause ¬pi+1∨γ

′ ∈ Γ∗ violated
by τ ′ ∪ {pi+1} and a clause pi+1 ∨ γ′ ∈ Γ∗ violated by τ ′ ∪ {¬pi+1}. But then
τ ′ violates the mo-resolvent γ′ ∨ δ′, contradicting the supposition that τ ′ does
not violate Γ∗. This proves the claim. Now, since τ is by hypothesis consistent
with Γ◦, it certainly does not violate Γ◦. Moreover, since it involves no ordinary
predicates of arity m, τ does not violate Γ∗ either. By the above claim, then,
there must be at least one level-n extension of τ which does not violate Γ∗ ⊇ Γ.
Since τ+ is a fluted m-type, this proves the lemma.

3. The decidability of fluted logic with one transitive relation and

equality

In this section, we study the logic FL=1T, the fluted fragment with equality
and a single distinguished transitive relation; we also consider its m-variable
sub-fragment, FLm

=1T = FL=1T ∩ FOm, for all m ≥ 2. As already men-
tioned, even the smallest of these fragments lacks the finite model property.
Nevertheless, we show that the satisfiability problem for FL=1T is decidable;
indeed, Sat(FLm

=1T) is in (m + 1)-NExpTime for m ≥ 2. Given known re-
sults on the fluted fragment, it follows that Sat(FL=1T) is Tower-complete,
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according to the framework of super-elementary complexity classes developed
in Schmitz [24]. The structure of the proof is as follows. Recall that FL2

=1T
u

is the sub-fragment of FL2
=1T in which no binary predicates appear other than

T and =. In Sec. 3.1, we prove an upper complexity bound of 2-NExpTime for
Sat(FL2

=1T
u); in Sec. 3.2, we show that Sat(FL2

=1T) is also in 2-NExpTime,
via a reduction to Sat(FL2

=1T
u); and in Sec. 3.3, we show that Sat(FLm

=1T) is
in m-NExpTime, via a series of exponential-sized reductions to Sat(FL2

=1T).
In all these reductions, we take particular care of the sizes both of the formulas
produced, and of their signatures.

We will be dealing here with logics featuring a single distinguished transitive
relation, and we use the letter T for the corresponding binary predicate. Thus,
if A is a structure, we always assume that TA is a transitive relation on A. A
formula of FLm

=1T is said to be in normal form if it has the shape

∧

i∈S

∀m−1(µi → ∃(κi ∧ Γi)) ∧
∧

j∈T

∀m−1(νj → ∀∆j) ∧ ∀mΩ, (5)

where S and T are finite sets of indices, such that, for i ∈ S and j ∈ T , µi and
νj are quantifier-free fluted formulas of arity at most (m − 1), κi is a formula
of any of the four forms (T∧ =), (T∧ 6=), (¬T∧ =), (¬T∧ 6=), and Γi, ∆j and
Ω are sets of fluted clauses in FLm

= 1T. (Here, of course, we are making use of
our convention that finite sets of clauses are identified with their conjunctions.)
We refer to the formulas κi as control formulas; observe in this regard that the
binary predicates T and = count as atomic formulas of FL[m] for all m ≥ 2.
The following lemma is slightly modified from [18, Lemma 4.1], where it was
proved for the sub-fragment without equality. The proof, however, is virtually
identical, and we may simply state:

Lemma 4. Let ϕ be an FL2
=1T-sentence. We can compute, in time bounded

by a polynomial function of ||ϕ||, a normal-form FL2
=1T-formula ψ such that:

(i) |= ψ → ϕ; and (ii) any model of ϕ can be expanded to a model of ψ.

We show in Lemmas 16 and 17 how, in the two-variable case, normal form
formulas can be further massaged into a collection of extremely simple formulas
for which the satisfiability problem is easy to analyse. Since that analysis forms
the core of the whole proof, that is where we shall begin.

3.1. Basic formulas in FL2
=1T

u

In the logic FL2
=1T

u, the only binary predicates available are equality and
the distinguished predicate, T . These suffice, however, to state that an element
is related by T to itself, for example, using the unary formula ∃(= ∧ T ). We
may therefore suppose that we have available a distinguished unary predicate
T̂ , which we take to be satisfied, in any structure, by precisely those elements
related to themselves by T : i.e. A |= T̂ [a] ⇔ A |= T [a, a]; this constitutes no
essential increase in the expressive power of FL2

=1T
u. In this section (3.1),

then, all signatures are implicitly assumed to contain both T and T̂ , interpreted
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as described. Under this assumption, a soliton is a clique consisting of a single
element a such that A 6|= T̂ [a].

Our goal is to establish that the satisfiability problem for this fragment is
in 2-NExpTime. In fact, it suffices to confine our attention to conjunctions
of so-called basic formulas of this fragment (defined below). Our strategy is
to show that any satisfiable, finite set Ψ of basic formulas has a certificate, of
size bounded by a doubly exponential function of ||Ψ||, which guarantees the
existence of a (possibly infinite) model.

Let Σ be a signature for FL2
=1T

u. Call an FL21Tu-formula over Σ basic if
it is of one of the following forms, where π and π′ are fluted 1-types over Σ and
µ a quantifier-free formula over Σ of arity 1:

(B1) ∀(π → ∃(µ ∧ T ∧ 6=))

(B2) ∀(π → ∃(µ ∧ ¬T ∧ 6=))

(B3) ∀(π → ∀(π′ → T )) (π 6= π′)

(B4) ∀(π → ∀(π′ → ¬T )) (π 6= π′)

(B5) ∀(π → ∀(π → (= ∨ T ))

(B6) ∀(π → ∀(π → (= ∨ ¬T ))

(B7) ∀µ

(B8) ∃µ.

Suppose A is a structure, B a clique of A, and π, π′ fluted 1-types. Say that
B is determined by the pair {π, π′} if it is the unique clique of A in which π
and π′ are both realized. We call A quadratic if, for any clique B determined by
some pair of fluted 1-types {π, π′}, there exists a fluted 1-type π∗ such that B is
the unique clique of A in which π∗ is realized. That is, in a quadratic structure,
any clique which can be uniquely identified as the only clique containing a given
pair of fluted 1-types, π and π′, can be uniquely identified as the only clique
containing some (possibly different) fluted 1-type π∗.

Let Φ be a set of basic formulas over some signature Σ, and write ℓ = |Σ|.
Now let Σ∗ be Σ together with the fresh unary predicates p0, . . . p2ℓ−1, let p̄0 be
the formula ¬p0 ∧ · · · ∧ ¬p2ℓ−1, and let Φ∗ = {ϕ∗ | ϕ ∈ Φ ∪ {∃⊤}}, where

ϕ∗ :=



















∀(π ∧ p̄0 → ∃(µ ∧ p̄0 ∧ χ) if ϕ = ∀(π → ∃(µ ∧ χ))

∀(π ∧ p̄0 → ∀(π′ ∧ p̄0 → χ) if ϕ = ∀(π → ∀(π′ → χ))

∀(p̄0 → µ) if ψ = ∀µ

∃(µ ∧ p̄0) if ψ = ∃µ.

Modulo trivial logical manipulation, Φ∗ is a set of basic formulas over Σ∗. Call
any fluted 1-type π over Σ∗ such that |= π → p̄0 proper. Clearly, the proper
fluted 1-types over Σ∗ are in natural 1–1 correspondence with the fluted 1-types
over Σ.

Lemma 5. Suppose Φ is a set of basic formulas. The following are equivalent:
(i) Φ is satisfiable; (ii) Φ∗∪{∀p̄0} is satisfiable; (iii) Φ∗ is satisfied in a quadratic
structure; (iv) Φ∗ is satisfiable.

Proof. (i) ⇒ (ii): If A |= Φ, let B be the expansion of A obtained by taking
every element of A to satisfy p̄0. It is obvious that B |= Φ∗∪{∀p̄0}. (ii) ⇒ (iii):
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Suppose A |= Φ∗ ∪ {∀p̄0}. For each (unordered) pair, π, π′ of distinct, proper
fluted 1-types (over Σ∗) such that there is exactly one clique, u of A in which
both are realized, choose a fresh, improper fluted 1-type over Σ∗, and simply
add a new element with that fluted 1-type to u. Because there are certainly
22|σ| − 1 improper fluted 1-types, we never run out of fresh, improper fluted
1-types, so let B be the resulting structure. Since the new elements do not
satisfy p̄0, we have B |= Φ∗. And since all the newly realized fluted 1-types
occur only in single cliques, B is quadratic. (iii) ⇒ (iv) is trivial. (iv) ⇒ (i):
Suppose A |= Φ∗, and let B be restriction of A to the (necessarily non-empty)
set of elements satisfying p̄0. It is obvious that B |= Φ.

Lemma 5 tells us that any set Φ of basic formulas over Σ can be transformed,
in polynomial time, to a set Φ∗ of basic formulas over a larger signature Σ∗ such
that Φ has a model if and only if Φ∗ has a quadratic model. In the following
lemmas, therefore, we may assume this conversion has been carried out, and
concern ourselves with establishing conditions for a set of basic formulas Φ to
have a quadratic model.

For the remainder of Sec. 3.1, we fix a signature Σ of unary predicates.
All fluted 1-types are assumed to be over the signature Σ, and are, as usual,
identified with their conjunctions where convenient. We denote by ΠΣ the set of
these fluted 1-types. We always use the (possibly decorated) letters π to range
over fluted 1-types, and µ to range over quantifier-free formulas of arity 1 in the
signature Σ. Thus, all such π and µ are FL2

=1T
u-formulas. We use Π to range

over sets of fluted 1-types.
A clique-type is a function ξ : ΠΣ → {0, 1, 2}. If A is a structure interpreting

Σ, B is a clique of A, and a ∈ B, then the clique-type of B is the function
ctpA[a] : ΠΣ → {0, 1, 2} given by

ctpA[a](π) =











2 if π is realized in A by at least two elements of B

1 if π is realized in A by exactly one element of B

0 otherwise.

Intuitively, we should think of a clique type as a multi-set of fluted 1-types,
with counting truncated at 2. We write π ∈ ξ to mean that ξ(π) ≥ 1, and treat
ξ as the set of fluted 1-types {π | π ∈ ξ} where convenient, thus writing, for
example ξ ∪ Π for {π | π ∈ ξ or π ∈ Π}, and so on. A soliton clique-type ξ
is one such that ¬T̂ ∈

⋃

ξ. A clique-super-type is a pair (ξ,Π), where ξ is a
clique-type and Π a set of fluted 1-types. The clique-super-type of a is the pair
cstpA[a] = (ctpA[a],Π), where

Π = {ftpA[b] | A |= T [a, b] and A 6|= T [b, a] for some b ∈ A}.

Intuitively, a clique-super-type is the type of some clique together with a spec-
ification of which fluted 1-types outside that clique can be reached via the
predicate T . If B is a clique, then all elements of B obviously have the same
clique-type and the same clique-super-type, denoted by ctpA[B] and cstpA[B],
respectively.
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We now describe the principal data-structure used to test satisfiability of
sets of basic FL2

=1T
u-formulas. A certificate is a triple C = 〈Ω,≪, V 〉, where

Ω is a set of clique super-types, ≪ a strict partial order on ΠΣ, and V ⊆ ΠΣ,
subject to the following conditions:

(C1) if 〈ξ,Π〉 ∈ Ω and π′ ∈ Π, then there exists 〈ξ′,Π′〉 ∈ Ω such that
(i) π′ ∈ ξ′, (ii) Π′ ∪ ξ′ ⊆ Π, and (iii) ξ ∩ V ∩ Π′ = ∅;

(C2) if 〈ξ,Π〉, 〈ξ′,Π′〉 ∈ Ω are distinct, π ∈ ξ, π′ ∈ ξ′ and π ≪ π′, then
ξ′ ∪ Π′ ⊆ Π;

(C3) if 〈ξ,Π〉, 〈ξ′,Π′〉 ∈ Ω and ξ ∩ ξ′ ∩ V 6= ∅, then ξ = ξ′ and Π = Π′;

(C4) if 〈ξ,Π〉 ∈ Ω and ξ is a soliton clique-type, then there exists π ∈ ΠΣ such
that ξ(π) = 1 and ξ(π′) = 0 for all π′ ∈ ΠΣ \ {π};

(C5) if 〈ξ,Π〉 ∈ Ω, π′ ∈ ξ and π ≪ π′, then π 6∈ Π;

(C6) if 〈ξ,Π〉 ∈ Ω, π, π′ ∈ ξ and π ≪ π′ then ξ ∩ V 6= ∅.

If A is a structure, then the certificate of A is the tuple C(A) = 〈Ω,≪, V 〉,
where: Ω = {cstpA[a] | a ∈ A} is the set of clique-super-types realized in A;
π ≪ π′ if and only if π and π′ are realized in A, A |= ∀(π → ∀(π′ → T )) and
A 6|= ∀(π′ → ∀(π → T )); and V is the set of fluted 1-types realized in exactly
one clique of A.

Lemma 6. The relation ≪ in the construction of C(A) is a strict partial order
on ΠΣ.

Proof. We need only check transitivity. Suppose, π ≪ π′ and π′ ≪ π′′. Trivially,
A |= ∀(π → ∀(π′′ → T )). On the other hand, if we also have A |= ∀(π′′ → ∀(π →
T )), then A |= ∀(π′′ → ∀(π′ → T )), contradicting π′ ≪ π′′. Hence π ≪ π′′.

Lemma 7. If A is any quadratic structure interpreting Σ, then C(A) is a cer-
tificate.

Proof. Write C(A) = 〈Ω,≪, V 〉. By Lemma 6, ≪ is a strict partial order on
ΠΣ. We must check conditions (C1)–(C6).

(C1): Suppose 〈ξ,Π〉 ∈ Ω and π′ ∈ Π. Let a be such that cstpA[a] = 〈ξ,Π〉.
Then there exists b ∈ A such that ftpA[b] = π′ and A |= T [a, b], but with a and
b lying in different cliques. Let cstpA[b] = 〈ξ′,Π′〉. Then: (i) 〈ξ′,Π′〉 ∈ Ω by
construction of Ω; (ii) ξ′ ∪Π′ ⊆ Π by transitivity of TA; and (iii) if π′′ ∈ ξ ∩ V ,
then all elements with fluted 1-type π′′ lie in the same clique as a. Since a and
b are not in the same clique, b cannot be related by T to any of these elements,
which is to say π′′ 6∈ Π′.
(C2): Suppose 〈π,Π〉, 〈π′,Π′〉 ∈ Ω are distinct, π ∈ ξ, π′ ∈ ξ′ and π ≪ π′. Let
a, b ∈ A be such that cstpA[a] = 〈ξ,Π〉 and cstpA[b] = 〈ξ′,Π′〉. If π ≪ π′, then
A |= T [a, b]. Moreover, if a and b belong to different cliques, then ξ′ ∪ Π′ ⊆ Π,
by the transitivity of T .
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Aξ,Π

π1π2π3
Aξ,Π,0

Aξ,Π,1

...

· · ·

Aξ′,Π′

· · ·

Aξ′′,Π′′

...

· · ·

Aξ′′′,Π′′′

Figure 3: Construction of the domain A of A(C) for C a certificate.

(C3): Suppose 〈ξ,Π〉, 〈ξ′,Π′〉 ∈ Ω and ξ ∩ ξ′ ∩ V 6= ∅. Let a, b ∈ A be such
that cstpA[a] = 〈ξ,Π〉 and cstpA[b] = 〈ξ′,Π′〉. If there exists a fluted 1-type π′′

realized both in the clique of a and in the clique of b, and, moreover, in just one
clique of A, then a and b are in the same clique.
(C4): Suppose 〈ξ,Π〉 ∈ Ω and ¬T̂ ∈

⋃

ξ. By construction, there exists b ∈ A
such that ctpA[b] = ξ, and A 6|= T̂ [b]. But then b is the only element of its clique,
and we may set π = ftpA[b].
(C5): Suppose 〈ξ,Π〉 ∈ Ω, π′ ∈ ξ and π ≪ π′. Let a, a′ ∈ A be such that
cstpA[a] = 〈ξ,Π〉, ftpA[a′] = π′, and a′ is in the same clique as a. To show that
π 6∈ Π, we must show that, for all b ∈ A such that ftpA[b] = π, either A 6|= T [a, b]
or b is in the same clique as a. But this follows immediately from π ≪ π′.
(C6): Suppose 〈ξ,Π〉 ∈ Ω, π, π′ ∈ ξ and π ≪ π′. It follows that there is
exactly one clique of A, say u, in which π and π′ are both realized, and that
cstpA[u] = 〈ξ,Π〉. Since A is, by assumption, quadratic, there exists a fluted
1-type π∗ ∈ ξ realized only in u. Thus ξ ∩ V 6= ∅.

Now suppose C = 〈Ω,≪, V 〉 is a certificate. We proceed to define a structure
A. As an aide to intuition, we give an informal sketch first. The domain A is
the disjoint union of sets Aξ,Π, where (ξ,Π) ranges over Ω; the elements of Aξ,Π

will all be assigned the clique-super-type (ξ,Π). If ξ contains no fluted 1-type
π such that π ∈ V , then Aξ,Π will consist of infinitely many sets Aξ,Π,i (i ≥ 0),
referred to in the construction as ‘cells’. (It will later turn out that the cells
are exactly the T -cliques.) If, on the other hand, ξ contains a fluted 1-type π
such that π ∈ V , then Aξ,Π will consist of a single cell Aξ,Π,0. Note that, in
the latter case, there will only ever be a single pair (ξ,Π) ∈ Ω such that π ∈ ξ,
by (C3). Each cell Aξ,Π,i is in turn the disjoint union of sets Aπ,ξ,Π,i, where
π ranges over the fluted 1-types in ξ. Each element of the set Aπ,ξ,Π,i will be
given fluted 1-type π, and this set has cardinality equal to ξ(π) (i.e. either 1
or 2). Fig. 3 gives a schematic representation of the domain A, showing some
representative sets Aξ,Π; here, ξ contains the fluted 1-types π1, π2 and π3 with
the indicated multiplicities.

The relation T is defined as the transitive closure of the union of three
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relations, t0, t1 and t2, each of which plays a specific role. The relation t0
specifies T within each cell, Aξ,Π,i. As long as ξ contains no fluted 1-type π

such that ¬T̂ ∈ π, we take t0 to be the total relation on Aξ,Π,i. If, on the

other hand, ξ does contain a fluted 1-type π such that ¬T̂ ∈ π, then we take
t0 to be the empty relation on Aξ,Π,i. Note that, in the latter case, Aξ,Π,i is
in fact a singleton, by (C4). The relation t1, in essence, secures the existential
commitments required by the clique-super-types. Specifically, if a ∈ Aξ,Π,i and
π′ ∈ Π, we select some (ξ′,Π′) ∈ Ω such that ξ′∪Π′ ⊆ Π (possible by (C1)), and
choose cells included in Aξ′,Π′ whose elements will act as ‘witnesses’ for the fact
that a has to be related by T to something of type π′. We need to be careful
which cells we choose, however, because there is a danger of creating loops in
the resulting graph of t1-links, which would result in the merging of more than
one cell into a single clique. To avoid such loops, if a ∈ Aξ,Π,i, we generally pick
witnesses in Aξ′,Π′,i+2 (so that, in particular, the last index increases). In one
case, however, we must break this rule: if ξ′ contains a fluted 1-type π′′ such
that π′′ ∈ V , then Aξ′,Π′,j exists only for the value j = 0, and we need to do
some work to ensure that unwanted loops do not arise here. Finally, the relation
t2 deals with the T -relations mandated by ≪. If Aξ,Π,i and Aξ′,Π′,j are distinct
cells with π ∈ ξ and π′ ∈ ξ′, where π ≪ π′, we take all elements of the former
cell to be related by t2 to all elements of the latter. Again, we need to do some
work to ensure that this does not generate unwanted loops in the graph of t1-
and t2-links.

Turning to the formal definition of A, we begin with the construction of the
domain, A. For all (ξ,Π) ∈ Ω, all π ∈ ξ and all i ∈ N, let a+π,ξ,Π,i and a

−
π,ξ,Π,i

be fresh objects. Set

Aπ,ξ,Π,i =

{

{a+π,ξ,Π,i, a
−
π,ξ,Π,i} if ξ(π) = 2

{a+π,ξ,Π,i} otherwise (i.e. if ξ(π) = 1)

Aξ,Π,i =
⋃

π∈ξ

Aπ,ξ,Π,i

Aξ,Π =

{

⋃

i∈N
Aξ,Π,i if ξ ∩ V = ∅

Aξ,Π,0 otherwise

A =
⋃

(ξ,Π)∈Ω

Aξ,Π.

The sets Aξ,Π,i will be called cells. If ξ is a soliton clique-type, we call the cell
Aξ,Π,i a soliton-cell. It follows from (C4) that, in this case, Aξ,Π,i = {a+π,ξ,Π,i}
for some fluted 1-type π. Note that the converse does not hold: it is perfectly
feasible for the cell Aξ,Π,i to consist of the single element a+π,ξ,Π,i even though

T̂ ∈ π. Having defined A, we may set the extensions of all the ordinary (unary)
predicates by stipulating ftpA[a] = π for all a = apπ,ξ,Π,i ∈ A, where p ∈ {+,−}.

It remains only to set the extension of the distinguished predicate T . To
this end, we define three binary relations, t0, t1 and t2. Let a = apπ,ξ,Π,i and

a′ = ap
′

π′,ξ′,Π′,j ; and let u = Aξ,Π,i and v = Aξ′,Π′,j be the respective cells of
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a and a′. We declare t0(a, a
′) if and only if u = v (i.e. ξ = ξ′, Π = Π′, and

i = j), and ξ is not a soliton clique-type. That is: t0 holds between pairs of
elements in the same non-soliton cell. Now declare t1(a, a

′) if (a) ξ′ ∪ Π′ ⊆ Π;
(b) ξ′ ∩ V = ∅ ⇒ j ≥ i + 2; and (c) ξ ∩ V ∩ Π′ = ∅. Note that the relation t1
depends only on the cells of its relata: that is to say, if b ∈ u and b′ ∈ v, then
t1(a, a

′) implies t1(b, b
′). There being no ambiguity, we shall write, in this case,

t1(u, v). Finally, declare t2(a, a
′) if u 6= v and, for some fluted 1-types π ∈ ξ and

π′ ∈ ξ′, we have π ≪ π′. Again, we write in this case t2(u, u
′), since this relation

depends only on the cells of its relata. Having defined the relations t0, t1 and
t2, we let T

A be the transitive closure of t0∪ t1∪ t2. We denote the structure A,
constructed from the certificate C as just described, by A(C). Notice that A(C)
will in general be infinite.

We must check that A(C) interprets the predicates T and T̂ consistently.
Lemmas 8–11 do precisely this.

Lemma 8. If t1(a, a
′), then a and a′ occupy different cells of A.

Proof. Suppose for contradiction that t1(a, a
′) with a = apπ,ξ,Π,i and a′ =

ap
′

π′,ξ,Π,i. By condition (a) in the definition of t1, we have ξ ⊆ Π, and, by con-
dition (b), we have, ξ ∩ V 6= ∅, whence ξ ∩ V ∩ Π 6= ∅, contradicting condition
(c).

Now consider the directed graph on the set of cells of A defined by the
relation t1 ∪ t2. We show that this graph is acyclic. It follows that the cells
(both soliton and non-soliton) are the cliques of the relation TA, and hence that
TA induces a strict partial order on these cells.

Lemma 9. Suppose u0, . . . , uk (k ≥ 1) is a sequence of cells such that, for all
h (0 ≤ h < k) either t1(uh, uh+1) or t2(uh, uh+1). Writing uh = Aξh,Πh,ih for
all h (0 ≤ h ≤ k), we have ξk ∪ Πk ⊆ Π0.

Proof. We proceed by induction on k. For the base case (k = 1) if t1(u0, u1),
then the result is immediate by (a) in the definition of t1. If t2(u0, u1), then
there exist π0 ∈ ξ0 and π1 ∈ ξ1 such that π0 ≪ π1. The result then follows
from (C2). For the inductive case (k > 1), we have by inductive hypothesis,
ξk−1 ∪Πk−1 ⊆ Π0; and from the base case applied to the sequence uk−1, uk, we
have ξk ∪ Πk ⊆ Πk−1.

Lemma 10. There exists no sequence of cells u0, . . . , uk = u0 (k ≥ 2) such
that, for all h (0 ≤ h < k) either t1(uh, uh+1) or t2(uh, uh+1).

Proof. Suppose for contradiction that such a sequence exists, again writing uh =
Aξh,Πh,ih for all h (0 ≤ h ≤ k). By Lemma 9, Π0 = · · · = Πk = Π, say, and
ξh ∈ Π for all h (0 ≤ h ≤ k). It follows that we cannot have t2(uh, uh+1) for any
h (0 ≤ h < k), since, if there exist πh ∈ ξh and πh+1 ∈ ξh+1 with πh ≪ πh+1,
then, by (C5), πh+1 6∈ Πh = Π, contradicting ξh+1 ⊆ Π. Thus, we may assume
that t1(uh, uh+1) for all h (0 ≤ h < k). Necessarily, ih+1 ≤ ih for some h in
the same range; indeed, by rotating the original sequence if necessary, we may
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assume without loss of generality that h < k − 1. By (b) in the definition of t1,
ξh+1 ∩ V 6= ∅, and by (c), ξh+1 ∩ V ∩ Πh+2 = ∅. But we have just argued that
ξh+1 ⊆ Π and Πh+2 = Π. This is a contradiction.

Lemma 11. In the structure A = A(C), we have T̂A = {a ∈ A | A |= T [a, a]}.

Proof. Fix a ∈ Aπ,ξ,Π,i. If A |= T̂ [a], then T̂ ∈ π, whence, by (C4), ξ is not a

soliton clique type. Hence t0(a, a), and A |= T [a, a]. Conversely, if A 6|= T̂ [a],
then ¬T̂ ∈ π, so that ξ is certainly a soliton type, and a is not related to itself
by t0. On the other hand, by Lemma 10, there is no sequence of cells u0, . . . , uk
(k ≥ 2) with a ∈ u0 = uk, such that, for all h (0 ≤ h < k), either t1(uh, uh+1)
or t2(uh, uh+1). Since TA is the transitive closure of t0 ∪ t1 ∪ t2, we see that
A 6|= T [a, a], as required.

Thus, from a quadratic structure A, we can define a certificate C(A), and
from a certificate C, we can define a structure A(C). (It is easy to see that A

will in fact be quadratic, though this is inessential.) Let C = 〈Ω,≪, V 〉 be a
certificate and ψ a basic formula. We next define a relation |= of satisfaction
between these relata. In this definition, for any fluted 1-type π, we say that π
occurs in C if, there exists (ξ,Π) ∈ Ω such that π ∈ ξ.

1. ψ is ∀(π → ∃(µ ∧ T ∧ 6=)): C |= ψ if and only if, for all (ξ,Ω) ∈ Ω, with
π ∈ ξ, either (i) |= π → µ and ξ(π) = 2; or (ii) there exists π′ ∈ ξ such
that π′ 6= π and |= π′ → µ; or (iii) there exists π′ ∈ Π such that |= π′ → µ.

2. ψ is ∀(π → ∃(µ ∧ ¬T ∧ 6=)): C |= ψ if and only if, for all 〈ξ,Π〉 ∈ Ω with
π ∈ ξ, there exists 〈ξ′,Π′〉 ∈ Ω such that (i) |= π′ → µ; (ii) there exist no
π′′ ∈ Π and π′′′ ∈ ξ′ such that π′′ ≪ π′′′; (iii) ξ′ ∩ Π ∩ V = ∅; and (iv)
(ξ,Π) = (ξ′,Π′) ⇒ ξ ∩ V = ∅.

3. ψ is ∀(π → ∀(π′ → T )), where π 6= π′: C |= ψ if and only if one of the
following obtains: (i) one of π or π′ does not occur in C; (ii) π ≪ π′; or
(iii) for all (ξ,Π), (ξ′,Π′) ∈ Ω such that π ∈ Π and π′ ∈ ξ′, we have ξ = ξ′,
Π = Π′ and ξ ∩ V 6= ∅.

4. ψ is ∀(π → ∀(π′ → ¬T )), where π 6= π′: C |= ψ if and only if for all
〈ξ,Π〉 ∈ Ω such that π ∈ ξ, π′ 6∈ ξ ∪ Π.

5. ψ is ∀(π → ∀(π → (= ∨ T ))): C |= ψ if and only if there is at most one
〈ξ,Π〉 ∈ Ω such that π ∈ ξ, and, if such a 〈ξ,Π〉 exists, then ξ ∩ V 6= ∅.

6. ψ is ∀(π → ∀(π → (= ∨ ¬T ))): C |= ψ if and only if for all 〈ξ,Π〉 ∈ Ω,
π 6∈ ξ ∩Π, and ξ(π) ≤ 1.

7. ψ is ∀µ: C |= ψ if and only if, for all 〈ξ,Π〉 ∈ Ω and π ∈ ξ, |= π → µ.

8. ψ is ∃µ: C |= ψ if and only if there exist 〈ξ,Π〉 ∈ Ω and π ∈ ξ such that
|= π → µ.
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Finally, we show that satisfaction of formulas by certificates corresponds to
satisfaction of formulas by structures in the sense captured by the following two
lemmas.

Lemma 12. Let ψ be a basic formula, and suppose A |= ψ for some quadratic
structure A. Then C(A) |= ψ.

Proof. Write C(A) = 〈Ω,≪, V 〉. We consider the forms of ψ in turn.

1. ψ is ∀(π → ∃(µ ∧ T ∧ 6=)): Suppose A |= ψ and (ξ,Π) ∈ Ω with π ∈ ξ. Let
a ∈ A be such that cstpA[a] = (ξ,Π) and ftpA[a] = π. Pick b ∈ A \ {a} such
that A |= µ[b] and A |= T [a, b], and let ftpA[b] = π′. Thus, |= π′ → µ. (i) If a
and b are in the same clique of A and π = π′, then |= π → µ, and ξ(π) = 2.
(ii) If a and b are in the same clique, but π′ 6= π, then π′ ∈ ξ. (iii) If a and b
are not in the same clique, then π ∈ Π.

2. ψ is ∀(π → ∃(µ ∧ ¬T ∧ 6=)): Suppose A |= ψ and (ξ,Π) ∈ Ω with π ∈ ξ. Let
a ∈ A be such that cstpA[a] = (ξ,Π) and ftpA[a] = π. Pick b ∈ A \ {a} such
that A |= µ[b] and A 6|= T [a, b], and let cstpA[b] = (ξ′,Π′), and ftpA[b] = π′.
(i) Thus, |= π′ → µ. (ii) Suppose, for contradiction, that there exist π′′ ∈ Π
and π′′′ ∈ ξ′ such that π′′ ≪ π′′′. Then there exist b′′, b′′′ ∈ A such that
A |= T [a, b′′], A |= T [b′′, b′′′], with b′′′ in the same clique as b, contradicting
the assumption that A 6|= T [a, b]. (iii) Suppose, for contradiction, that π′′ ∈
ξ′ ∩ Π ∩ V . Then there exists b′′ ∈ A with ftpA[b′′] = π′′, realized in just
one clique (namely, the clique of b) and an element b′′′ with ftpA[b′′′] = π′′

and A |= T [a, b′′′]. This contradicts the supposition that A 6|= T [a, b]. (iv)
Suppose, for contradiction, that (ξ,Π) = (ξ′,Π′) and π′′ ∈ ξ ∩ V . Then
the cliques of both a and b contain elements of fluted 1-type π′′, with such
elements realized in just one clique. Thus a and b are in the same clique,
which contradicts the supposition that A 6|= T [a, b].

3. ψ is ∀(π → ∀(π′ → T )), where π 6= π′: Suppose A |= ψ. (i) If π and π′ are
not both realized in A, then they do not both occur in C. If π and π′ are both
realized in A, and A 6|= ∀(π′ → ∀(π → T )), then π ≪ π′. (iii) Otherwise,
π and π′ are realized in A, but there is a clique, say u, containing all these
realizing elements. Hence, if (ξ,Π), (ξ′,Π′) ∈ Ω with π ∈ ξ and π′ ∈ ξ′, then
(ξ,Π)= (ξ′,Π′), and π ∈ V , whence ξ ∩ V 6= ∅.

4. ψ is ∀(π → ∀(π′ → ¬T )), where π 6= π′: Suppose A |= ψ and (ξ,Π) ∈ Ω with
π ∈ ξ. Then there exist a ∈ A such that cstpA[a] = (ξ,Π). By the definition
of cstpA[a], π′ 6∈ ξ ∪ Π.

5. ψ is ∀(π → ∀(π → (= ∨ T ))): Suppose A |= ψ. Then all elements a ∈ A such
that ftpA[a] = π lie in a single clique, so let their common clique-super-type
be (ξ,Π). Thus, (ξ,Π) is the only element of Ω such that π ∈ ξ; moreover, if
this element exists, we have π ∈ V , and hence ξ ∩ V 6= ∅.

6. ψ is ∀(π → ∀(π → (= ∨ ¬T ))): Suppose A |= ψ and (ξ,Π) ∈ Ω with π ∈ ξ.
Let a ∈ A be such that cstpA[a] = (ξ,Π) and ftpA[a] = π, and let u be the
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clique of a in A. Since A |= ψ, there is certainly no element b ∈ A \ u such
that ftpA[b] = π and A |= T [b, a], whence π 6∈ Π. One the other hand, there
is no element b ∈ u \ {a} such that ftpA[b] = π, whence ξ(π) = 1.

The cases ∀µ and ∃µ are routine.

Lemma 13. Let ψ be a basic formula, and suppose C |= ψ for some certificate
C. Then A(C) |= ψ.

Proof. Write C = 〈Ω,≪, V 〉 and A = A(C). We consider the forms of ψ in turn.

1. ψ is ∀(π → ∃(µ ∧ T ∧ 6=)): Suppose C |= ψ and a ∈ A with ftpA[a] = π.
We may write a = apπ,ξ,Π,i, for (ξ,Π) ∈ Ω with π ∈ ξ. We must show that
there exists b ∈ A \ {a} such that A |= µ[b] and A |= T [a, b]. (i) If |= π → µ

and ξ(π) = 2, then, by construction of A, there exists b = ap
′

π,ξ,Π,i with

p′ 6= p. Thus, ftpA[b] = π and t0(a, b), whence A |= T [a, b]. (ii) If there exists
π′ ∈ ξ such that π′ 6= π and |= π′ → µ, there exists b = apπ′,ξ,Π,i. Thus,

ftpA[b] = π′ and t0(a, b), whence A |= T [a, b]. (iii) If there exists π′ ∈ Π such
that |= π′ → µ, then, by (C1), choose (ξ′,Π′) ∈ Ω with π′ ∈ ξ′, ξ′ ∪ Π′ ⊆ Π
and ξ ∩Π′ ∩ V = ∅. Suppose on the one hand that ξ′ ∩ V = ∅. Then we may
let b = a+π′,ξ,Π,i+2. Certainly, ftpA[b] = π′. It suffices to prove that t1(a, b),
whence A |= T [a, b]. We consider conditions (a)–(c) in the definition of t1.
(a) We have already established that ξ′ ∪Π′ ⊆ Π. (b) Trivially, i+2 ≥ i+2.
(c) A fortiori, ξ′ ∩ V ∩ Π = ∅. Suppose on the other hand that ξ′ ∩ V 6= ∅.
Then we may let b = a+π′,ξ,Π,0. Since ξ ∩Π′ ∩ V = ∅, we have ξ 6= ξ′, so that
b 6= a. Again, consider conditions (b) and (c) in the definition of t1. For
(b), we are supposing anyway that ξ′ ∩ V 6= ∅, and for (c), we have already
established that ξ ∩ Π′ ∩ V = ∅. Thus, in all cases, we have A |= µ[b] and
A |= T [a, b], as required.

2. ψ is ∀(π → ∃(µ ∧ ¬T ∧ 6=)): Suppose C |= ψ and a ∈ A with ftpA[a] = π.
We may write a = apπ,ξ,Π,i, for (ξ,Π) ∈ Ω with π ∈ ξ. Then we may select
(ξ′,Π′) ∈ Ω with π′ ∈ ξ′ such that: (i) |= π′ → µ; (ii) there exists no
π′′ ∈ Π and π′′′ ∈ ξ′ such that π′′ ≪ π′′′; (iii) ξ′ ∩ Π ∩ V = ∅; and (iv)
(ξ,Π) = (ξ′,Π′) ⇒ ξ∩V = ∅. Suppose on the one hand that (ξ′,Π′) 6= (ξ,Π).
Let b = a+π′,ξ′,Π′,0, so that, by construction of A, ftpA[b] = π′. We must show
that a 6= b and A 6|= T [a, b]. Let u be the cell containing a and u′ the cell
containing b. Since (ξ′,Π′) 6= (ξ,Π), we have u 6= u′, whence, certainly a 6= b.
So suppose for contradiction that there is a sequence of (t1 ∪ t2)-links from
u to u′. Let u′′ ∈ Aξ′′,Π′′ , say, be the penultimate element of this sequence.
Certainly, there is no t2-link from u′′ to u′, since this would require π′′ ∈ ξ′′

and π′′′ ∈ ξ′ with π′′ ≪ π′′′. But by Lemma 9, we would then have π′′ ∈ Π,
which is ruled out by (ii). On the other hand, if there were a t1-link from
u′′ to u′, then we would have ξ′ ∩ V 6= ∅, and again by Lemma 9, ξ′ ⊆ Π,
whence ξ′ ∩ V ∩ Π 6= ∅, which is ruled out by (iii). Suppose on the other
hand that (ξ′,Π′) = (ξ,Π). But then (iv) implies ξ ∩ V = ∅, so that we
may select b = a+π′,ξ,Π,j , where j = 1 if i = 0 and j = 0 otherwise. Again,
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let u be the cell containing a and u′ the cell containing b. Thus u 6= u′,
whence certainly a 6= b. Moreover, A |= µ[b]. Again, it remains to show that
A 6|= T [a, b]. Suppose there is a chain u = u0, . . . , uk = u′ of (t1,∪t2)-links.
By construction of t1, we must have t2(uk−1, uk), since j ≤ 1. Then there
exists π′′ ∈ ξk−1 and π′′′ ∈ ξk such that π′′ ≪ π′′′. Then, certainly, k > 1
since, otherwise, ξ0 = ξk = ξ contains both π′′ and π′′′ with π′′ ≪ π′′′ and
ξ ∩ V = ∅, which contravenes (C6). But if k > 1, then π ∈ Π by Lemma 9,
which contravenes (C5). Thus, we have shown that A 6|= T [a, b] as required.

3. ψ is ∀(π → ∀(π′ → T )), where π 6= π′: Suppose C |= ψ, and that a, a′ ∈ A

with ftpA[a] = π and ftpA[a′] = π′. Write a = apπ,ξ,Π,i and a′ = ap
′

π′,ξ′,Π′,j .
We must show that A 6|= T [a, a′]. We consider the three possibilities in the
definition of C |= ψ. (i) By construction of A, π and π′ both occur in C, so the
first possibility does not arise. (ii) Suppose that π ≪ π′. If a and a′ are in
different cells, then then we immediately have t2(a, a

′). If, on the other hand,
a and a′ are in the same cell, then since π 6= π′, by (C4), ¬T̂ 6∈

⋃

ξ, whence
t0(a, a

′). (iii) Suppose that there is a single clique-super-type (ξ,Π) ∈ Ω such
that ξ contains either π or π′ and that ξ ∩ V 6= ∅. By the construction of
A, a and a′ belong to the same cell Aξ,Π,0, and again by (C4), ¬T̂ 6∈

⋃

ξ,
whence t0(a, a

′). In all cases, then, A |= T [a, a′], as required.

4. ψ is ∀(π → ∀(π′ → ¬T )), where π 6= π′: Suppose C |= ψ, and that a, a′ ∈ A

with ftpA[a] = π and ftpA[a′] = π′. Write a = apπ,ξ,Π,i and a′ = ap
′

π′,ξ′,Π′,j .
From the definition of C |= ψ, we have π′ 6∈ ξ ∪ Π, whence ξ 6= ξ′. Thus, a
and a′ occupy different cells, say, u and u′, respectively. By Lemma 9, there
is no chain u = u0, . . . , uk = u′ of (t1 ∪ t2)-links. Therefore, A 6|= T [a, a′], as
required.

5. ψ is ∀(π → ∀(π → (= ∨ T ))): Suppose C |= ψ, and that a, a′ ∈ A with
ftpA[a] = ftpA[a′] = π and a 6= a′. From the definition of C |= ψ and
the construction of A, a and a′ belong to the same set Aξ,Π and, moreover,
ξ ∩ V 6= ∅. It follows that a and a′ belong to the cell Aπ,ξ,Π,0. Since a 6= a′,
by the construction of A, ξ(π) = 2, whence by (C4), ξ is not a soliton clique-
type, whence t0(a, a

′). Thus A |= T [a, a′], as required.

6. ψ is ∀(π → ∀(π → (= ∨ ¬T ))): Suppose C |= ψ. It follows immediately by
construction of A that no set Aπ,ξ,Π,i can have cardinality greater than 1.

Now suppose a, a′ ∈ A with ftpA[a] = ftpA[a′] = π and a 6= a′. Thus, a and a′

are not in the same cell, and hence by Lemma 9, A |= T [a, a′] implies ξ′ ⊆ Π,
whence π ∈ Π, contradicting the definition of C |= ψ. Thus, A 6|= T [a, a′], as
required.

The cases ∀µ and ∃µ are routine.

Lemma 14. There exists a non-deterministic procedure which, when given a set
Φ of basic FL2

=1T
u-formulas over a signature Σ, will terminate in time bounded

by g(22
g(|Σ|)

+ ||Φ||), for some fixed polynomial g, and which has an accepting run
if and only if Φ is satisfiable.
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Proof. Let Φ be given. By Lemma 5, the following are equivalent: Φ is satisfi-
able; Φ∗ is satisfied in a quadratic structure; Φ∗ is satisfiable. Observe that Φ∗

(a set of basic formulas over some signature Σ∗ ⊇ Σ) can be computed in time
bounded by a polynomial function of Φ. By Lemma 12, if Φ∗ is satisfiable over
a quadratic structure then there exists a certificate C, interpreting Σ∗, such that
C |= Φ∗. By Lemma 13, if there exists a certificate C over Σ∗, such that C |= Φ∗,
then Φ∗ is satisfiable. Evidently ||C|| is bounded by a doubly exponential func-
tion of |Σ∗|, and the condition C |= Φ∗ may be checked in time bounded by a
polynomial function of ||Φ∗||+ ||C||.

3.2. The logic FL2
=1T

The next step is to allow arbitrary (non-distinguished) binary predicates;
that is, we consider the logic FL2

=1T, the 2-variable fluted fragment with equal-
ity and a single, distinguished, transitive relation T .

In the context of a structure interpreting a relational signature, a king is
an element whose fluted 1-type is not realized by any other element in that
structure. The fluted 1-types of kings are called royal. We make use of the well-
known fact that, in two-variable logic, parts of structures may be duplicated
as long as they contain no king. We use the formulation appearing in [16,
Lemma 4.1]. The proof given there concerns two-variable first-order logic with
a single distinguished predicate interpreted as a partial order; however, the proof
for the (present) case in which it is interpreted as a transitive relation is identical,
and we need not repeat it here.

Lemma 15. Let A1 be a structure over domain A1, A0 the set of kings of A1,
A0 the restriction of A to A0, and B1 = A1 \ A0. There exists a family of sets
{Bi}i≥2, pairwise disjoint and disjoint from A1, a family of bijections {fi}i≥1,
where fi : Bi → B1, and a sequence of structures {Ai}i≥2, where Ai has domain
Ai = A0 ∪B1 ∪B2 ∪ · · · ∪Bi, such that, for all i ≥ 1:

(i) Ai−1 ⊆ Ai, and all 2-types realized in Ai are realized in A1;

(ii) for all a ∈ Bi and all b ∈ A1, if fi(a) 6= b, then ftpAi [a, b] = ftpA1 [fi(a), b];

(iii) for all a ∈ Bi, all j (1 ≤ j ≤ i) and all b ∈ Bj, if fi(a) 6= fj(b), then

ftpAi [a, b] = ftpA1 [fi(a), fj(b)];

(iv) TAi is a transitive relation.

Intuitively, the sets B2, . . . , Bi are copies of B1. This copying process may
be continued indefinitely (or even infinitely); we require only finitely many iter-
ations in this paper.

Recall the notion of normal form for FLm
=1T given in (5). For m = 2, we

obtain the special case

∧

i∈S

∀(µi → ∃(κi ∧ Γi)) ∧
∧

j∈T

∀(νj → ∀∆j) ∧ ∀∀Ω, (6)
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where S and T are finite sets of indices, such that, for i ∈ S and j ∈ T , µi and
νj are quantifier-free formulas of arity 1, κi is a control formula, and Γi, ∆j , and
Ω are sets of fluted 2-clauses. Our strategy will be to reduce the satisfiability
problem for formulas of the form (6) to that of sets of basic FL2

=1T
u-formulas.

We begin by introducing a variant of the normal form for FL2
=1T. A formula

of this logic is in spread normal form if it has the shape

∧

h∈R

∃λh ∧
∧

i∈S

∀(µi → ∃(oi ∧ κi ∧ Γi))∧

∧

j∈T

∀(νj → ∀∆j) ∧ ∀∀Ω ∧

i6=i′
∧

i,i′∈S

∀(oi → ¬oi′ ), (7)

where R is an index set, the λh (h ∈ R) are quantifier-free, unary formulas,
the oi (i ∈ S) are unary predicates, and S, T , Ω, µi, νj , κi, Γi, ∆j are as
before. The essential change here is the insertion of the atoms oi into the
conjuncts ∀(µi → ∃(κi ∧ Γi)) of (6) together with the addition of the conjuncts
∀(oi → ¬oi′ ) for distinct indices i and i′. The point is that, if an object satisfies
µi for several indices i, the corresponding witnesses of the formula ∃(oi∧κi∧Γi)
for that element are all distinct. As we might say, the witness requirements
are ‘spread’ over different objects. The other change in (7) is the addition of
the conjuncts ∃λh. These are required if we are going to convert normal-form
FL2

=1T-sentences into spread normal form without incurring an unacceptable
inflation in the size of the signature, as promised by the next lemma.

Lemma 16. Let ϕ be a normal-form FL2
=1T-formula and Π = {π1, . . . , πL} a

set of fluted 1-types over the signature of ϕ. We can compute, in time bounded
by an exponential function of ||ϕ||, a formula ψ in spread normal form, such
that: (i) the signature of ψ is bounded in size by a polynomial function of ||ϕ||;
(ii) |= ψ → ϕ; and (iii) if ϕ has a (finite) model in which Π is the set of royal
fluted 1-types, then ψ has a (finite) model.

Proof. Let ϕ have the shape

∧

i∈S

∀(µi → ∃(κi ∧ Γi)) ∧
∧

j∈T

∀(νj → ∀∆j) ∧ ∀∀Ω.

Let oi be a fresh unary predicate for each i ∈ S, let k = ⌈log((L + 1) · |S|)⌉,
and let w0, . . . , wk−1 be a collection of fresh unary predicates. Observe that
k is polynomially bounded as a function of ||ϕ||. For each i ∈ S and each ℓ
(0 ≤ ℓ ≤ L), we take w̄〈i, ℓ〉 to be a distinct formula of the form ±w0∧· · ·∧±wk.
As a guide to intuition, read the (1-place) formula w̄〈i, 0〉 as characterizing those
elements a such that there exists a non-royal b with a, b satisfying Γi, read the
formulas w̄〈i, ℓ〉 (1 ≤ ℓ ≤ L) as characterizing those elements a such that a, bℓ
satisfies Γi, where bℓ is the king with fluted 1-type πℓ, and finally take the
predicates oi to pick out pairwise disjoint collections of non-royal elements (we
will say more presently about how these sets are chosen).
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We define ψ to be the conjunction of the following formulas.

L
∧

ℓ=1

∃πℓ (8)

∧

i∈S

∀(w̄〈i, 0〉 → ∃(oi ∧ κi ∧ Γi)) (9)

∧

i∈S

L
∧

ℓ=1

∀(w̄〈i, ℓ〉 → ∀(πℓ → (κi ∧ Γi))) (10)

∧

i∈S

∀
(

µi →
L
∨

ℓ=0

w̄〈i, ℓ〉
)

(11)

∧

j∈T

∀ (νj → ∀∆j) (12)

i6=i′
∧

i,i′∈S

∀¬(oi ∧ o
′
i) ∧ ∀∀Ω. (13)

The conjuncts (8)–(11) clearly entail
∧

i∈S ∀(µi → ∃(κi ∧ Γi)). Thus, ψ →
ϕ. Suppose, on the other hand, A1 |= ϕ with the set of royal types in A1

equal to Π. We may assume without loss of generality that S = {1, . . . , s}.
Let the set of kings in A1 be A0, and apply the construction of Lemma 15
to obtain the structures A2, . . . ,As. Let B = As, a model of ϕ with domain
B = A0 ∪B1 ∪ · · · ∪Bs. For all a ∈ B, if there exists a non-royal element b such
that B |= Γi[a, b], then there exists such a b in each of the sets B1, · · ·Bs. Now

expand B to a model B+ by setting oB
+

i = Bi, and interpreting the predicates
w0, . . . , wk−1 so that the formulas w̄〈i, ℓ〉 (0 ≤ ℓ ≤ L) have the interpretations
suggested above. It is then simple to check that B+ |= ψ. We remark finally
that the consequents (κi∧Γi) occurring in (10) can of course be written as a set
of fluted clauses since =, 6=, T and ¬T are fluted literals. Hence ψ is in spread
normal form.

Lemma 17. Let ϕ be a spread normal-form FL2
=1T-formula. We can compute,

in time bounded by an exponential function of ||ϕ||, a set Φ of basic formulas,
such that: (i) the signature of Φ consists of the unary predicates occurring in
ϕ together with the distinguished predicate T ; (ii) |= ϕ →

∧

Φ; and (iii) any
model of Φ can be expanded to a model of ϕ.

Proof. Let ϕ be given, having the shape

∧

h∈R

∃λh ∧
∧

i∈S

∀(µi → ∃(oi ∧ κi ∧ Γi))∧

∧

j∈T

∀(νj → ∀∆j) ∧ ∀∀Ω ∧

i6=i′
∧

i,i′∈S

∀(oi → ¬oi′ ),
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and recall from Sec. 2.3 that, for any fluted clause set Γ, Γ◦ denotes the result
of saturating under mo-resolution, and then removing any clauses involving
ordinary predicates of maximal arity (in this case 2). Noting that each oi is a
(1-literal) clause, and regarding each control formula κi as a pair of (1-literal)
clauses, let ψ be the corresponding conjunction

∧

h∈R

∃λh (14)

∧

i∈S

∧

J⊆T

∀
((

µi ∧
∧

j∈J

νj
)

→ ∃
(

κi ∪ {oi} ∪ Γi ∪
⋃

j∈J

∆j ∪ Ω
)◦)

(15)

∧

J⊆T

∀
(

∧

j∈J

qj → ∀
(

⋃

j∈J

∆j ∪ Ω
)◦)

(16)

i6=i′
∧

i,i′∈S

∀¬(oi ∧ o
′
i). (17)

It is immediate by the validity of mo-resolution that |= ϕ → ψ. We claim
that any model of ψ may be expanded to a model of ϕ. For suppose B |= ψ;
we expand to a structure B+ interpreting a signature Σ+ which additionally
features the non-distinguished binary predicates occurring in ϕ as follows. Fix
any a ∈ B, and let J = {j ∈ J | B |= νj [a]}. For each i ∈ S, if B |= µi[a],

by (15), there exists bi ∈ B such that B |=
(

κi∪{oi}∪Γi∪
⋃

j∈J ∆j∪Ω
)◦)

[a, bi],

and by (17), these bi are all distinct. For each i ∈ S, let τi = ftpB[a, bi].
Obviously, |= τi → κi. By Lemma 3, there exists a fluted type τ+i in the
signature Σ+, such that τ+i ⊇ τi and τ

+
i |= {oi} ∪ Γi ∪

⋃

j∈J ∆j ∪Ω. Therefore,

we may assign the pair a, bi to the extensions of the predicates in Σ+ \Σ in such
a way that its fluted 2-type is τ+i . Since the various bi are distinct, no clashes
arise. Performing this operation for every element a, we have a partially defined
structureB+ such that, however it is completed, B+ |=

∧

i∈S∀(µi → ∃(κi∧Γi)),
and, moreover, the conjuncts ∀(νj → ∀∆j) (for j ∈ T ) and ∀∀Ω have not been
violated. To complete the definition of B+, consider any ordered pair a, b for
which the predicates in Σ+ \ Σ have not been assigned. Let J = {j ∈ J |

B |= νj [a]}, so that, by (16), B |=
(

⋃

j∈J ∆j ∪ Ω
)◦

. Letting τ = ftpB[a, b], by

Lemma 3 there exists a fluted type τ+ in the signature Σ+, such that τ+ ⊇ τ and
τ+ |=

⋃

j∈J ∆j ∪ Ω. Therefore, we may assign the pair a, b to the extensions of

the predicates in Σ+ \Σ in such a way that its fluted 2-type is τ+. At the end of
this process, we haveB+ |=

∧

j∈T ∀(νj → ∀∆j)∧∀∀Ω. Since B+ is an expansion

of B, we certainly have B+ |=
∧

h∈R ∃λh, and also B+ |=
∧i6=i′

i,i′∈S ∀¬(oi ∧ o′i)
by (14) and (17).

The desired set of basic formulas Φ can now be obtained from ψ by simple
manipulation. The conjuncts in (14) and (17) are already basic. The conjuncts
in (15) are all of the forms ∀(η → ∃(6= ∧ ± T ∧ θ)) or ∀(η → ∃(= ∧ ± T ∧ θ)).
Clearly, we may eliminate occurrences of T and = from θ, so assume that this
has been done, and θ is a quantifier-free formula of arity 1. In the former case,
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we replace the conjunct with a collection of conjuncts ∀(π → ∃(6= ∧θ ∧ ±T )),
where π ranges over all fluted 1-types consistent with η; such conjuncts are
basic, of the forms (B1) or (B2). In the latter case, remembering that T̂ is a
unary predicate interpreted as the diagonal of T , we see that all such formulas
are either trivial or logically equivalent to a formula of the form (B7) ruling
out a certain collection of fluted 1-types, and which can be computed in time
bounded by an exponential function of ||ϕ||. The conjuncts in (16) are all of the
forms ∀(η → ∀θ). Conversion to a conjunction of basic formulas of the forms
(B3)–(B7) in time bounded by an exponential function of ||ϕ|| is then completely
routine, using similar considerations.

Thus, we have the promised upper bound for the problem SatFL2
=1T.

Lemma 18. The satisfiability problem for FL2
=1T is in 2 -NExpTime.

Proof. Let an FL2
=1T-sentence ϕ be given. By Lemma 4, we may assume

without loss of generality that ϕ is in normal form. Guess a set Π of fluted 1-
types over the signature of ϕ and apply the procedure guaranteed by Lemma 16
to obtain, in time bounded by an exponential function of ||ϕ||, a spread normal-
form formula ψ, over a signature bounded by a polynomial function of ||ϕ||, such
that |= ψ → ψ, and, if ϕ has a (finite) model in which the set of royal fluted
1-types is Π, then ψ has a such a model too. By Lemma 17 we may then obtain,
in time bounded by an exponential function of ||ψ||, a set ΦΠ of basic FL2

=1T
u

sentences, over the signature consisting of the unary predicates of ψ together
with the distinguished predicate T , such that ΦΠ is satisfiable over the same
domains as ϕ, assuming that the set of royal 1-types is Π. Hence it suffices to
check the satisfiability of each such ΦΠ, non-deterministically, in time bounded
by a doubly exponential function of ||ϕ||. But this we can do by Lemma 14.

3.3. The logic FLm
=1T

Finally, we show how the satisfiability problem for FLm+1
= 1T can be reduced

to the corresponding problem for FLm
= 1T, but with exponential blow-up. The

following notion will be useful. Let I be a finite set. A cover of I is a set
M = {C1, . . . , Cℓ} of subsets of I such that C1∪· · ·∪Cℓ = I; the elements ofM
will be referred to as cells. A minimal cover of I is a cover M of I such that no
proper subset of M is a cover of I. Since no minimal cover of I can have more
than I cells, we have |MC(I)| ≤ 2|I|

2

. Denote by MC(I) the set of minimal
covers of I. If I is a set of integers, and M is a minimal cover of I, we may
assume the cells of M to be enumerated in some standard way as C1, . . . , Cℓ.

Lemma 19. Let ϕ be a normal-form FLm+1
= 1T-formula (m ≥ 2). We can

compute, in time bounded by an exponential function of ||ϕ||, a normal-form
FLm

=1T-formula ψ such that ϕ and ψ are satisfiable over the same domains.

Proof. Let ϕ be as given in (5). The control formulas κi occurring there involve
only binary predicates, and thus will be—so far as this proof is concerned—
inert. Indeed, since each κi is a conjunction of two (1-literal) clauses, we can
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harmlessly absorb it into the respective clause set Γi. Thus, we may take ϕ to
have the shape:

∧

i∈S

∀m(µi → ∃Γi) ∧
∧

j∈T

∀m(νj → ∀∆j) ∧ ∀m+1Ω.

We may also assume without loss of generality that the indices in the sets S and
T are integers. For each I (I ⊆ S) and each J (J ⊆ T ), let pI,J and qJ be fresh
(m− 1)-ary predicates. Further, for each minimal cover M = {C1, . . . , Cℓ} of I
(enumerated in the standard way), let pI,J,M be a fresh (m− 1)-ary predicate,
and for each h (1 ≤ h ≤ ℓ), let pI,J,M,h be a fresh m-ary predicate.

Remembering that the Γi, ∆j , and Ω occurring in ϕ are sets of fluted (m+1)-
clauses, let ψ be the conjunction of formulas

∧

I⊆S

∧

J⊆T

∀m
(

∧

i∈I

µi ∧
∧

j∈J

νj → pI,J
)

(18)

∧

J⊆T

∀m
(

∧

j∈J

νj → qJ
)

(19)

∧

I⊆S

∧

J⊆T

∀m
(

pI,J →
∨

M∈MC(I)

pI,J,M
)

(20)

∧

I⊆S

∧

J⊆T

∧

M∈MC(I)

∀m−1
(

pI,J,M →

|M|
∧

h=1

∃
(

pI,J,M,h ∧
(

⋃

i∈Ch

Γi ∪
⋃

j∈J

∆j ∪Ω
)◦))

(21)

∧

I⊆S

∧

J⊆T

∀m−1
(

qJ →

|M|
∧

h=1

∀
(

⋃

j∈J

∆j ∪Ω
)◦)

(22)

∧

I⊆S

∧

J⊆T

∧

M∈MC(I)

∧

1≤h<h′≤|M|

∀m¬(pI,J,M,h ∧ pI,J,M,h′). (23)

Modulo re-arrangement of conjuncts, ψ is a normal-form formula of FLm
=1T. It

suffices therefore to show that ϕ and ψ are satisfiable over the same domains.
Suppose A |= ϕ. We expand to a model A+ |= ψ as follows. For any

(m − 1)-tuple ā and any I ⊆ S and J ⊆ T , if there exists a ∈ A such that
A |= µi[a, ā] for all i ∈ I and A |= νj [a, ā] for all j ∈ J , assign ā to the
extension of pI,J , and pick some particular a for which this condition is satisfied.
Since A |= ϕ, there exists a collection of distinct individuals b1, . . . , bℓ and
a minimal cover M = {C1, . . . , Cℓ} of I such that, for all h (1 ≤ h ≤ ℓ),

A |=
(

⋃

i∈Ch
Γi ∪

⋃

j∈J ∆J ∪ Ω
)

[a, ā, bh]. Now assign ā to the extension of

pI,J,M , and for all h (1 ≤ h ≤ ℓ), assign ā, bh to the extension of A+ |= pI,J,M,h.
It follows by the validity of the resolution rule, that, for all h (1 ≤ h ≤ ℓ), A |=
(

⋃

i∈Ch
Γi ∪

⋃

j∈J ∆J ∪Ω
)◦

[ā, bh], and, by construction, A+ |= pI,J,M,h[ā, bh].

Carrying out this process for all possible (m−1)-tuples ā, we see that A+ verifies
the formulas (18), (20) and (21). Moreover, since the individuals b1, . . . , bℓ are by
hypothesis distinct, no tuple ā, bh satisfies both pI,J,M,h and pI,J,M,h′ for h′ 6= h,
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so that A+ verifies the formulas (23). Similarly, for any (m−1)-tuple ā and any
J ⊆ T , if there exists a ∈ A such that A |= νj [a, ā] for all j ∈ J , assign ā to the
extension of qJ , and pick some particular a for which this condition is satisfied.

Since A |= ϕ, for any individual b ∈ A, we have A |=
(

⋃

j∈J ∆J ∪ Ω
)

[a, ā, b],

whence, by the validity of the resolution rule, A |=
(

⋃

j∈J ∆J ∪ Ω
)◦

[ā, b]. Thus,

A+ verifies the formulas (19) and (22), whence A+ |= ψ, as required.
Suppose, conversely, that B |= ψ. We expand to a structure B+ interpreting

the (m+1)-ary predicates of ϕ in such a way that B+ |= ϕ. Fix for the moment
some element a and (m − 1)-tuple of elements ā, and define I = {i ∈ S | B |=
µi[a, ā]} and J = {j ∈ T | B |= νj [a, ā]}. It follows from (18) that B |= pI,J [ā].
Indeed, from (20), there exists a minimal cover M = {C1, . . . , Cℓ} of I such
that B |= pI,J,M [ā], whence from (21), we can find elements b1, . . . , bℓ such

that, for all h (1 ≤ h ≤ ℓ), B |=
(

⋃

i∈Ch
Γi ∪

⋃

j∈J ∆J ∪ Ω
)◦

[ā, bh], and B |=

pI,J,M,h[ā, bh]. Letting τh = ftpB[ā, bh], it follows from Lemma 3 that there ex-

ists a fluted (m+1)-type τ+h ⊇ τh such that |= τ+h →
(

⋃

i∈Ch
Γi ∪

⋃

j∈J ∆J ∪ Ω
)

.

From (23), the bh are all distinct, so we may interpret the (m + 1)-ary predi-

cates of ϕ in B+ so that ftpB
+

[a, ā, bh] = τ+h . Carrying out this process for all
m-tuples (a, ā), we thus ensure that B+ |=

∧

i∈S ∀m(µi → ∃Γi). Note that we
have not assigned any (m+1)-tuples in such a way as to violate the constraints
∧

j∈T ∀m(νj → ∀∆j) or ∀m+1Ω. To complete the definition of B+, let a, ā, b be
an (m + 1)-tuple for which the extensions of the (m + 1)-ary predicates have
not been fixed. Again, let J = {j ∈ T | B |= νj [a, ā]}. It follows from (19)

that B |= qJ [ā], and thence from (22) that B |=
(

⋃

j∈J ∆J ∪Ω
)◦

[ā, b]. Now let

τ = ftpB[ā, b], so that, from Lemma 3, there exists a fluted (m+1)-type τ+ ⊇ τ

such that |= τ+ →
(

⋃

j∈J ∆J ∪ Ω
)

. Hence we may interpret the (m + 1)-ary

predicates of ϕ in B+ so that ftpB
+

[a, ā, b] = τ+. At the end of this process,
B+ |=

∧

j∈T ∀m(νj → ∀∆j) ∧ ∀m+1Ω. Thus, B+ |= ϕ.

We have finally reached the goal of this section.

Theorem 20. The satisfiability problem for FLm
=1T is in m-NExpTime.

Proof. Let an FLm
= 1T-sentence ϕ be given. By Lemma 4, we may assume

without loss of generality that ϕ is in normal form. We proceed by induction,
starting with m = 2. (The cases m = 0 and m = 1 are trivial.) The base case
is Lemma 18. For the recursive case, Lemma 19 reduces the original problem
to the corresponding problem for m− 1, but with an exponential blow-up.

Before moving the the next section we obtain a corollary concerning the
finite satisfiability problem.

Corollary 21. The finite satisfiability problem for FLm
=1T is in

(m+ 1)-NExpTime.
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Proof. The proof differs from the proof of Theorem 20 only in the base case,
where we apply the fact that the finite satisfiability problem for FO2 with one
transitive relation and equality is decidable in 3-NExpTime [16]; this complex-
ity bound obviously applies to FL=1T.

4. Fluted Logic with more Transitive Relations

In the previous section, we considered FL2 extended with a single tran-
sitive relation and equality. In this section we consider FL2 extended with
more transitive relations. Specifically, we show that the satisfiability and finite
satisfiability problems for FL2

=2T (two-variable fluted logic with two transi-
tive relations and equality) or for FL23T (two-variable fluted logic with three
transitive relations but without equality), are all undecidable.

A tiling system is a tuple C = (C, H, V ), where C is a finite set of tiles, and
H , V ⊆ C ×C are the horizontal and vertical constraints. A tiling of N2 for C is
a function f : N2 → C, such that for all X,Y ∈ N, (f(X,Y ), f(X + 1, Y )) ∈ H
and (f(X,Y ), f(X,Y + 1)) ∈ V . Intuitively, we think of f as assigning (a copy
of) some tile in C to each point with integer coordinates in the upper-right
quadrant of the plane: this assignment must respect the horizontal and vertical
constraints, understood as a list of which tiles may be placed immediately to
the right of (respectively: immediately above) which others. A tiling is periodic
if there exist m, n such that, for all X and Y , f(X +m,Y ) = f(X,Y + n) =
f(X,Y ). Denote by N

2
m,n the finite initial segment [0,m−1]× [0, n−1] of N2. A

tiling of N2
m,n is a function f : N2

m,n → C, such that for allX , Y (0 ≤ X < m−1,
0 ≤ Y ≤ n− 1), (f(X,Y ), f(X + 1, Y )) ∈ H and for all X , Y (0 ≤ X ≤ m− 1,
0 ≤ Y < n− 1), (f(X,Y ), f(X,Y + 1)) ∈ V . If f is a tiling (of either N2

m,n or
N

2), we call the value f(0, 0) the initial condition, and, if f is a tiling of N2
m,n,

we call the value f(m− 1, n− 1) the final condition.
There are many undecidability results concerning tiling systems. The infinite

tiling problem with initial condition is the following: given a tiling system C and
a tile C0 ∈ C, does there exist a tiling of N2 for C with initial condition C0? The
finite tiling problem with initial and final conditions is the following: given a
tiling system C and tiles C0, C1 ∈ C, do there exist positive m, n and a tiling of
N

2
m,n for C with initial condition C0 and final condition C1? It is straightforward

to show:

Proposition 22. The infinite tiling problem with initial condition and the finite
tiling problem with initial and final conditions are both undecidable.

The following result, by contrast, is deep (see e.g. [2, p. 90]). Recall that sets
A and B are recursively inseparable if there exists no recursive (=decidable) set
S such that A ⊆ S and B ∩ S = ∅.

Proposition 23. The set of tiling systems for which there exists a periodic
tiling of N2 is recursively inseparable from the set of tiling systems for which
there exists no tiling of N2.
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4.1. The case of two transitive relations

In this section we show that both the satisfiability and the finite satisfiability
problems for FL2

=2T are undecidable. (Recall from Example 2 that FL22T
admits infinity axioms.)
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Figure 4: Intended expansion of the N×N grid with two transitive relations T1 and T2. Edges
without arrows represent connections in both direction. Nodes are marked by the indices of
the cijs they satisfy.

Suppose the signature contains two transitive relations T1 and T2, and ad-
ditional unary predicates ci,j (0 ≤ i, j ≤ 3) called local address predicates. We
write a formula ϕgrid capturing several properties of the intended expansion of
the N

2 grid as shown in Fig. 4. There, each element with coordinates (X,Y )
satisfies ci,j , where i = X mod 4 and j = Y mod 4, and the transitive rela-
tions connect only some elements that are close in the grid. The formula ϕgrid

is a conjunction of the following statements (24)-(32).

There is an initial element:
∃c0,0. (24)

The predicates ci,j enforce a partition of the universe:

∀
( ˙∨

0≤i≤3

˙∨

0≤j≤3
ci,j

)

. (25)

Transitive paths do not connect distinct elements with the same local address:

∧

0≤i,j≤3

∀(ci,j → ∀((T1 ∨ T2) ∧ ci,j →=)). (26)

Each element belongs to a 4-element T1-clique:

∧

i,j∈{0,2}

∀
(

(ci,j → ∃(T1 ∧ ci+1,j)) ∧ (ci+1,j → ∃(T1 ∧ ci+1,j+1))∧

(ci+1,j+1 → ∃(T1 ∧ ci,j+1)) ∧ (ci,j+1 → ∃(T1 ∧ ci,j))
)

. (27)
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Each element belongs to a 4-element T2-clique:

∧

i,j∈{1,3}

∀
(

(ci,j → ∃(T2 ∧ ci+1,j)) ∧ (ci+1,j → ∃(T2 ∧ ci+1,j+1))∧

(ci+1,j+1 → ∃(T2 ∧ ci,j+1)) ∧ (ci,j+1 → ∃(T2 ∧ cij))
)

. (28)

Certain pairs of elements connected by one transitive relation are also connected
by the other one, specifically:

∧

i=0,2

∀(ci,i → ∀((T1 ∨ T2) ∧ (ci,i−1 ∨ ci−1,i) → (T1 ∧ T2)) (29)

∧

i=1,3

∀(ci,i → ∀((T1 ∨ T2) ∧ (ci,i+1 ∨ ci+1,i) → (T1 ∧ T2)) (30)

∧

i=0,2

∀(ci,i+1 → ∀((T1 ∨ T2) ∧ (ci,i+2 ∨ ci−1,i+1) → (T1 ∧ T2)) (31)

∧

i=1,3

∀(ci,i−1 → ∀((T1 ∨ T2) ∧ (ci,i ∨ ci,i−2) → (T1 ∧ T2)). (32)

A model of ϕgrid is shown in Fig. 4. Observe that the formulas (27) and (28)
work in tandem with (26). Namely, both (27) and (28) generate, for a given
element a of some local address ci,j in any model of ϕgrid four new elements of
certain local addresses such that the fourth element, say a′, has the same local
address as the element a. Formula (26) then implies a = a′, hence the element
a is a member of a 4-element T1-clique and a member of a (distinct) 4-element
T2-clique; members of these cliques can be uniquely identified by their local
addresses (cf. Fig. 4). One can also obtain finite models over a toroidal grid
structure Z4m × Z4m (m > 0) by identifying elements from columns 0 and 4m
and from rows 0 and 4m.

We show that any model of ϕgrid embeds the standard grid N
2 in a natural

way. To see this, for all i, j in the range 0 ≤ i, j < 4, define the formulas hi,j
and vi,j as follows:

hi,j :=

{

T1 ∧ ci+1,j if i is even

T2 ∧ ci+1,j otherwise
vi,j :=

{

T1 ∧ ci,j+1 if j is even

T2 ∧ ci,j+1 otherwise.

The intuition is that, for any element a satisfying ci,j , hi,j will be satisfied by
the pair [a, b] just in case b is immediately to the right of a, and vi,j will be
satisfied by the pair [a, b] just in case b is immediately above a. (See Fig. 4.)

Lemma 24. In any model A, of ϕgrid, the following hold for any i, j in the
range 0 ≤ i, j < 4:

A |= ci,j [a] ⇒ there exists b s.t. A |= hi,j [a, b] and a
′ s.t. A |= vi,j [a, a

′] (33)

A |= ci,j [a] ∧ hi,j [a, b] ∧ vi,j [a, a
′] ∧ vi+1,j [b, b

′] ⇒ A |= hi,j+1[a
′, b′]. (34)
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Proof. Let a ∈ A and A |= ci,j [a]. The existence of b in (33) is immediate
from (27) for i, j even, and from (28) for i, j odd. Suppose i is even and j is
odd. By the last conjunct of (27), there is a1 ∈ A such that T1[a, a1]∧ci,j−1[a1].
By (27) again, there are a2, a3, a4 ∈ A such that A |= T1[a1, a2] ∧ ci+1,j−1[a2] ∧
T1[a2, a3]∧ci+1,j [a3]∧T1[a3, a4]∧ci,j [a4]. By transitivity of T1, A |= T1[a, a4] and
by (26), a = a4, so the elements a, a1, a2, a3 form a T1-clique in A, hence T1[a, a3]
holds and, indeed, A |= hi,j [a, a3]. In the same way we show the existence of b
when i is odd and j even, and, also, the existence of a′. We should regard the
witnesses for the formulas ∃hi,j and ∃vi,j with respect to any element a are the
horizontal and vertical neighbours, respectively, of a.

We now establish (34) proceeding separately for the possible indices i and
j. Consider first the case i = j = 0, and suppose a, a′, b and b′ are elements
of A such that A |= c0,0[a] ∧ T1[a, b] ∧ c1,0[b] ∧ T1[a, a

′] ∧ c0,1[a
′] ∧ T1[b, b

′] ∧
c1,1[b

′]. By (27) b′ is a member of a T1-clique consisting of elements of local
addresses c1,1, c0,1, c0,0, c1,0. Since by (26) the relation T1 does not connect
distinct elements of the same local address, a′ belongs to the T1-clique of b′, so
A |= T1[a

′, b′], and the claim follows.
Consider now the case i = 3, j = 0, and suppose a, a′, b and b′ are elements

such that A |= c3,0[a] ∧ T1[a, a′] ∧ c3,1[a′] ∧ T2[a, b] ∧ c0,0[b] ∧ T1[b, b′] ∧ c0,1[b′].
Applying (28) together with (26) to b, we see that b is a member of a 4-element
T2-clique consisting of elements of local addresses c0,0, c3,0, c3,3, c0,3. By (26),
a is a member of this clique, whence A |= T2[b, a]. By (29), A |= T1[b, a].
Moreover, b′ is in a T1-clique of b, and so A |= T1[b

′, b]. By transitivity of T1,
A |= T1[b

′, a′]. Now, by (31), A |= T2[b
′, a′]. By (28), a′ is a member of a

T2-clique that, by (26), must contain b′. Hence h3,0[a
′, b′] holds and the claim

follows.
The remaining cases are dealt with similarly.

Lemma 24 shows that any model A of ϕgrid contains, in effect, a homo-
morphic embedding of the infinite grid N

2. Specifically, we define a function
ι : N2 → A as follows. Set ι(0, 0) to be some witness for (1). By (33), we may
choose ι(1, 0), ι(2, 0), . . . such that, for all X ≥ 0, setting i = X mod 4, we
have A |= hi,0[ι(X, 0), ι(X + 1, 0)]; and then, for every X ≥ 0, we may choose
ι(X, 1), ι(X, 2), . . . such that for every Y ≥ 0, setting j = Y mod 4, we have
A |= vi,j [ι(X,Y ), ι(X,Y + 1)]. A simple induction on Y using (34) then shows
that, for all X and Y , A |= hi,j [ι(X,Y ), ι(X + 1, Y )].

We can now map any tiling system C to an FL2
=2T-formula ηC in such a

way that C has a tiling if any only if ηC is satisfiable. We simply let ηC be the
conjunction of ϕgrid with the following formulas.

Each node encodes precisely one tile:

∀
(

∨

C∈C

C ∧
∧

C 6=D

(¬C ∨ ¬D)
)

. (35)
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Adjacent tiles respect H and V :

∧

C∈C

∧

0≤i,j<4

∀
(

C ∧ ci,j → ∀
(

(hi,j →
∨

C′:(C,C′)∈H

C′) ∧ (vi,j →
∨

C′:(C,C′)∈V

C′)
)

)

. (36)

If f is a tiling of N2 for C, we expand the standard grid model of ϕgrid

by taking any predicate C ∈ C to be satisfied by (X,Y ) ∈ N
2 just in case

f(X,Y ) = C. It is a simple matter to check that ηC is true in the resulting
structure. Conversely, if A |= ηC, then A |= ϕgrid, and so there exists a grid
embedding ι : N

2 → A. We then define a function f : N
2 → C by setting

f(X,Y ) to be the unique tile C ∈ C such that A |= C[ι(X,Y )], which is well-
defined by (35). By (36), f is a tiling for C.

Indeed, the same argument shows that, ηC has a finite model if and only if
there is a periodic tiling of N2 for C. Since, as remarked above, the set of tiling
systems for which there exists no tiling of the plane is recursively inseparable
from the set of tiling systems for which there exists a periodic tiling of the plane,
we obtain:

Theorem 25. The satisfiability problem and the finite satisfiability problems
for FL2

=2T are both undecidable.

A quick check reveals that the formula ηC lies in the guarded fragment of
first-order logic. Moreover, the proof of Lemma 24 remains valid even if T2 is
required to be an equivalence relation. Thus we have:

Corollary 26. The satisfiability problem and the finite satisfiability problems
for the intersection of FL2

=2T with the guarded fragment are both undecidable.
This result continues to hold if, in place of FL2

=2T, we have FL2
=1T1E, the

two-variable fluted fragment together with identity, one transitive relation and
one equivalence relation.

We conclude the section by remarking that decidability of the satisfiability
and the finite satisfiability problems for FLm2T remains open for every m ≥ 2.
We showed in Example 2 that these two problems are distinct.

4.2. The case of three transitive relations

In this section we show that the satisfiability problem and the finite satis-
fiability problem for FL23T are both undecidable. (Note that equality is not
available in this logic.) We start by reducing the infinite tiling problem to the
satisfiability problem.

We write a formula ϕgrid capturing several properties of the intended ex-
pansion of the N

2 grid as shown in Fig. 5. The formula ϕgrid comprises a large
number of conjuncts. To help give an overview of the construction, we have
organized these conjuncts into groups, each of which secures a particular prop-
erty (or collection of properties) exhibited by its models. We use the following
notational conventions. If i is an integer, i/2 indicates integer division without
remainder (e.g., 5/2 = 2); moreover, ⌊i⌋k denotes the remainder of i on division
by k, and ⌊i⌋ (i.e., without the subscript) denotes ⌊i⌋6.
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The signature of ϕgrid comprises the unary predicates ci,j and di,j (0 ≤ i, j ≤
5) and bt, lf, dg and dg+, together with the distinguished binary predicates T0,
T1 and T2. We call the ci,j and di,j local address predicates, and require that
they partition the universe:

∀
( ˙∨

0≤i,j≤5

ci,j ∨̇
˙∨

0≤i,j≤5

di,j
)

. (37)
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Figure 5: Intended expansion of the N×N grid and the boustrophedon order (thick gray path).

Informally, we think of an element in a structure interpreting these predicates
as having integer coordinates (X,Y ) in the plane such that if Y > X , then its
local address is ci,j , where i = ⌊X⌋ and j = ⌊Y ⌋, and if Y ≤ X , then its local
address is di,j , with i and j determined in the same way. We call the unary
predicates bt, lf, dg and dg+ control predicates, and require them to interact
with the local address predicates in certain ways:

∀(bt →
5
∨

i=0

di,0)∧∀(lf →
5
∨

j=0

c0,j)∧∀(dg →
5
∨

i=0

di,i)∧∀(dg
+ →

5
∨

j=0

cj,⌊j+1⌋). (38)
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Informally, we think of an element with coordinates (X,Y ) as satisfying bt if
Y = 0 (‘bottom’), lf if X = 0 and Y > 0 (‘left, but not bottom’), dg if Y = X
(‘diagonal’), and dg+ if Y = X+1 (‘super-diagonal’). Finally, we call the binary
predicates T0, T1 and T2 colours. To aid visualization, we use the respective
synonyms black, green and red for these predicates.

We take ϕgrid to contain conjuncts generating a sequence of elements {at}t≥0

satisfying the ci,j and di,j in a particular order. The intuition is that the el-
ements of this sequence (each of which is assigned integer coordinates in the
plane) follows the boustrophedon depicted in Fig. 5 (thick grey arrow). There
is an ‘initial’ element corresponding to the left bottom node:

∃(d0,0 ∧ dg ∧ bt). (39)

This element has a T1-successor satisfying c0,1, dg
+ and lf:

∀(bt ∧ dg → ∃(c0,1 ∧ dg+ ∧ lf ∧ T1). (40)

Other elements satisfying di,j in the sequence have successors given by the fol-
lowing conjuncts:

∧

i=0,2,4

5
∧

j=0

∀(di,j ∧ ¬dg → ∃(di,⌊j+1⌋ ∧ ¬bt ∧ T⌊j/2⌋3 ∧ T⌊(j+1)/2+1⌋3 )) (41)

∧

i=1,3,5

5
∧

j=0

∀(di,j ∧ ¬bt → ∃(di,⌊j−1⌋ ∧ ¬dg ∧ T⌊j/2+1⌋3 ∧ T⌊(j+1)/2−1⌋3)) (42)

∧

i=1,3,5

∀(di,0 ∧ bt ∧ ¬dg → ∃(d⌊i+1⌋,0 ∧ bt ∧ ¬dg ∧ T0)) (43)

∧

i=0,2,4

∀(di,i ∧ ¬bt ∧ dg → ∃(c⌊i−1⌋,i ∧ dg+ ∧ ¬lf ∧ T⌊i/2−1⌋3 ∧ T⌊i/2⌋3 )). (44)

Likewise, each element satisfying ci,j in the sequence has a successor given by
the following conjuncts:

∧

j=0,2,4

5
∧

i=0

∀(ci,j ∧ ¬lf → ∃(c⌊i−1⌋,j ∧ ¬dg+ ∧ T⌊i/2−1⌋3 ∧ T⌊(i+1)/2⌋3)) (45)

∧

j=1,3,5

5
∧

i=0

∀(ci,j ∧ ¬dg+ → ∃(c⌊i+1⌋,j ∧ ¬lf ∧ T⌊i/2+1⌋3 ∧ T⌊(i+1)/2−1⌋3 )) (46)

∧

j=0,2,4

∀(c0,j ∧ lf → ∃(c0,j+1 ∧ lf ∧ ¬dg+ ∧ T1)) (47)

∧

j=1,3,5

∀(cj−1,j ∧ dg+ → ∃(dj,j ∧ dg ∧ ¬bt ∧ T⌊(j+1)/2⌋3 ∧ T⌊(j+3)/2⌋3 )). (48)

Starting with a0 witnessing the formula (39), we see that formulas (40)–(48)
generate, potentially, further elements. Accordingly, we call these conjuncts of
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ϕgrid the generation rules. Since the address predicates ci,j and di,j form a
partition, at most one of these formulas has its preconditions satisfied, so we
obtain a sequence a0, a1, a2, . . . , satisfying the various predicates specified by
those formulas. It is not obvious that the sequence {at} defined in this way
continues forever; but we shall show that it does.

We give an informal explanation of how the sequence {at} works. A good
way to understand what is happening is to suppose that there is some element
at+1 in the sequence such that di,0[at+1] (with i even) and bt[at+1]. (The for-
mal proof below ensures that such t exists; but for now we shall take this on
trust.) Only two possible generation rules can apply: (41) and (44), depend-
ing on whether dg[at+1]. If ¬dg[at+1], then rule (41) applies and ensures that
di,⌊j+1⌋[at+2]. The first index in the local address remains as i, but the second
index is incremented modulo 6. Now the situation repeats, with the applicable
generation rules being (41) and (44). Thus, either the former is applied forever,
or we eventually generate an element at+ , say, such that di,j′ [at+ ] (for some
j′) and dg[at+ ]. We will see presently that the first of these alternatives is not
possible; and on this assumption, we shall refer to the elements at+1, . . . , at+
as an upward column. The generation rule (41) ensures that each element in
this sequence is related to the next by two different colour-predicates. Let us
call these—in the order they appear in (41)—the primary colour and the sec-
ondary colour, respectively. Since di,0[at+1], and remembering our mnemonics
black, green and red for T0, T1 and T2, respectively, we see that the sequences
of primary and secondary colours on this upward column are

black, black, green, green, red, red, . . .

green, red, red, black, black, green, . . .

repeating (as long as the column continues) with a period of six. This is illus-
trated by the even-numbered columns in Fig. 5 below the diagonal, where the
primary colours are drawn to the left and the secondaries to the right. Further-
more, rule (41) also ensures that the local addresses in the sequence are all di,j ,
with i constant and j cycling through the numbers 0, . . . , 5.

A scan of the generation rules shows that at+1 can itself only have been
generated by (43), in which case we have d⌊i−1⌋,0[at] and bt[at], and indeed,
by (38), ¬dg[at]. Working backwards, the only we we could have generated at is
by (42), whence d⌊i−1⌋,1[at−1] and ¬bt[at−1]. Comparing the local addresses of
at and at−1, we see that the first index is ⌊i− 1⌋ in both cases, but the second
index has been incremented modulo 6. Let us continue to work back. Only two
possible generation rules could have yielded at−1: (42) and (48), depending on
whether dg[at−1]. If ¬dg[at−1], then at−1 must have been generated by (42),
whence d⌊i−1⌋,2[at−2]. As this cannot carry on for ever (for a0 has local address
d0,0 and ⌊i− 1⌋ is odd), we must have some t− < t such that d⌊i−1⌋,j′ [at− ] (for
some j′) and dg[at− ]. We refer to the subsequence at− , . . . , at as a downward
column. Each element in this sequence generates its successor via rule (42),
which ensures that the former is related to the latter by two different colour-
predicates, which we call—again in the order they appear in (42)—the primary
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colour and the secondary colour, respectively. Since di,0[at], we see that the
sequences of primary and secondary colours on this upward again cycle through
the colours with period 6, but this time ending in the respective patterns

. . . , green, black, black, red, red, green

. . . , red, red, green, green, black, black.

This is illustrated by the odd-numbered columns in Fig. 5 below the diagonal,
where the primary colours are drawn to the left and the secondaries to the right.
(To help the reader, Table 2 resolves the colour predicates in conjuncts (41),
(42), (45) and (46) for each i and j.) In particular, we see that the sequence
of primary colours counting forwards from at+1 is the same as the sequence
of secondary colours counting backwards from at. Furthermore, as we move
backwards from at to at− , the elements all have local addresses d⌊i−1⌋,j′ , with
j′ cycling through the numbers 0, . . . , 5.

conjunct (41): conjunct (42):
(i = 0, 2, 4) (i = 1, 3, 5)

j pr. c. sec. c. pr. c. sec. c.
0 0 1 1 2
1 0 2 0 2
2 1 2 0 1
3 1 0 2 1
4 2 0 2 0
5 2 1 1 0

conjunct (45): conjunct (46):
(j even) (j odd)

i pr. c. sec. c. pr. c. sec. c.
0 2 0 1 2
1 1 0 1 0
2 1 2 2 0
3 0 2 2 1
4 0 1 0 1
5 2 1 0 2

Table 2: Primary and secondary colours resolved. (Intended to help the reader.)

Now let us concentrate on the few elements surrounding at and at+1. We
have established that at+1 was generated from at by application of rule (43),
so that at and at+1 joined by T0 (black). Assuming that t− ≤ t − 2 and
t+ ≥ t+3, we have established that each element in the sequence at−2, . . . , at+3

is related to the next by T0 (black), whence by transitivity, T0[at−2, at+3]. Thus
we obtain a ‘black brick’ of six elements connected in sequence by T0, sitting
on the bottom of the grid between a downward column and a following upward
column (see Fig. 5). We now add to ϕgrid conjuncts which we refer to as transfer
formulas:

∧

i=1,3,5

∧

j=0,2,4

∀(di,j → ∀(d⌊i+1⌋,j ∧ T⌊j/2−1⌋3 → T⌊j/2⌋3 )) (49)

∧

i=0,2,4

∧

j=1,3,5

∀(di,j → ∀(d⌊i+1⌋,j ∧ T⌊j/2−1⌋3 → T⌊j/2+1⌋3 )) (50)

∧

i=0,2,4

∀(di,i ∧ dg → ∀(ci,⌊i+1⌋ ∧ T⌊i/2⌋3 → T⌊i/2+1⌋3 )) (51)

36



∧

i=1,3,5

∀(di,i ∧ dg → ∀(ci,⌊i+1⌋ ∧ T⌊i/2⌋3 → T⌊i/2−1⌋3 )) (52)

∧

i=0,2,4

∧

j=0,2,4

∀(ci,j → ∀(ci,⌊j+1⌋ ∧ T⌊i/2⌋3 → T⌊i/2+1⌋3 )) (53)

∧

i=1,3,5

∧

j=1,3,5

∀(ci,j → (ci,⌊j+1⌋ ∧ T⌊i/2⌋3∧ → T⌊i/2−1⌋3)). (54)

It follows from (49) (under the stated assumptions about the sequence at−2, . . . ,
at+3), that T1[at−2, at+3] (green). Now the argument repeats. Assuming that
t− ≤ t − 4 and t+ ≥ t + 5, we see from the sequences of secondary colours
in the downward column and primary colours in the upward column, that
T1[at−4, at−2] and T1[at+3, at+5]. But we have just argued that T1[at−2, at+3], so
that, by transitivity, T2[at−4, at+5], giving us a ‘green brick’ consisting of the six
elements at−4, at−3, at−2, at+3, at+4, at+5. (Note that these are not consective
in the sequence {at}.) Furthermore, by (49), T2[at−4, at+5]. Continuing this
reasoning, as long as the downward and upward columns in question have at
least 2ℓ+ 1 elements, we must have T⌊ℓ⌋3 [at−2ℓ, at+1+2ℓ]. That is, the elements
at display the pattern of ‘horizontal’ colour links between every second element
of the (i− 1)st (downward) and ith (upward) columns, for i non-zero and even,
as shown in Fig. 5.

Let us write T⋄ to abbreviate T0 ∨ T1 ∨ T2; thus T⋄[a, b] means that a is
related to b by at least one of the colours. We now add to ϕgrid conjuncts which
we refer to as control formulas :

5
∧

i=0

∀(di,i ∧ ±dg → ∀(T⋄ ∧ d⌊i+1⌋,⌊i+1⌋ → ±dg)) (55)

5
∧

i=0

∀(di,0 ∧±bt → ∀(T⋄ ∧ d⌊i+1⌋,0 → ±bt)) (56)

5
∧

j=0

∀(c⌊j−1⌋,j ∧±dg+ → ∀(T⋄ ∧ cj,⌊j+1⌋ → ±dg+)) (57)

5
∧

j=0

∀(c0,j ∧ ±lf → ∀(T⋄ ∧ c0,⌊j+1⌋ → ±lf)). (58)

Here, the occurrences of ± are assumed to be resolved in the same way within
a numbered display: thus, each of (55)–(58) is actually a pair of formulas. In
particular, the formulas (55) say that, if a if related to b by any colour, and the
local addresses of a and b are as indicated, then a satisfies dg iff b does.

Returning to our example of a downward column at− , . . . at, followed by
an upward column at+1, at+2, . . . , we observe from (38) that, since j is odd
and at− by assumption satisfies dg, we may write t− = t − 2ℓ − 1 for some
ℓ. Furthermore, since this downward column was generated by rule (42), none
of the elements at−2ℓ, . . . , at satisfies dg. It then follows from (55) and the
colour links just established that successive elements at+2, . . . , at+2ℓ+2 also do
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not satisfy dg, and indeed that the upward column extends at least to the point
at+2ℓ+3. But since at− = at−2ℓ−1 by assumption satisfies dg, it follows from (55)
and the colour links just established that at+2ℓ+3 does as well. Thus, the upward
column ends precisely at the point at+ = at+2ℓ+3. Again, this is illustrated by
adjacent columns below the diagonal in Fig. 5.

Similar reasoning applies to rightward rows (subsequences of {at} in which
elements satisfy ci,j with i fixed and odd, and with j cycling through the indices
0, . . . , 5, as well as leftward rows, defined similarly. Using the same argument as
for the di,j , we see that, if there is a leftward row of length 2ℓ+1 ending in at−1

(where, by assumption, all elements satisfy ci,j with i taking a common, even
value), then there is a corresponding rightward row of length 2ℓ+2, and starting
with at. Moreover, elements in these rows are connected by vertical colour links
as shown in Fig. 5, and none of the elements at, . . . , at+2ℓ+1 satisfies dg+ (but
at+2ℓ+2 does).

Finally, we consider what happens at the end of an upward column (an
element at+ satisfying dg, and hence di,i with i even). At that point (44)
ensures that at++1 satisfies c⌊i−1⌋,i and dg+. Moreover, Ti/2[at+ , at++1]. Now
consider the element at− at the start of the previous downward column. We
have already argued that at− is related to at+ by Ti/2. But then, by transitivity,
Ti/2[at− , at++1], and hence, by (52), T⌊i/2−1⌋3 [at− , at++1]. This allows us to
coordinate the elements of the rightward row ending in at−−1 with the leftward
row beginning from at++2. Similar remarks apply to columns.

This concludes the informal presentation of the formula ϕgrid. Let us take
stock. The generation rules (39)–(48) generate a sequence of elements {at}t≥0

satisfying certain local address predicates and control predicates. Quite in-
dependently, we define the boustrophedon curve {(Xt, Yt)}t≥0 shown in Fig. 5.
The transfer formulas (49)–(54) and control formulas (55)–(58) then ensure that
the predicates satisfied by each element at are appropriate to the corresponding
pair of coordinates (Xt, Yt). In particular, the local address predicates tell us
whether we are above or below the diagonal, and give the values Xt and Yt
modulo 6; and the control predicates tell us whether (Xt, Yt) lies on the bot-
tom row, the left column, the diagonal or the super-diagonal. This is done by
ensuring that (geometrically) neighbouring points are connected by colours as
indicated in Fig. 5.

Let us now turn to the formal proof. Denote by ς(t) = (Xt, Yt) the coor-
dinates of the tth point on the boustrophedon shown in Fig. 5, starting with
ς(0) = (X0, Y0) = (0, 0). We would like to show that, for each point in the
sequence {at}, the following properties are satisfied.

(P1) If Xt < Yt, then ci,j [at], where i = ⌊Xt⌋ and j = ⌊Yt⌋; if Xt ≥ Yy, then
di,j [at], where i = ⌊Xt⌋ and j = ⌊Yt⌋.

(P2) We have: lf[at] if and only if Xt = 0 and Yt > 0; bt[at] if and only if Yt = 0;
dg[at] if and only if Xt = Yt; and dg+[at] if and only if Yt = Xt + 1.

(P3) If s < t and the points (Xs, Ys) and (Xt, Yt) are connected by an arrow in
Fig. 5 of colour Tk, then Tk[as, at].
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Lemma 27. Suppose A |= ϕgrid, and let the sequence a0, a1, . . . be constructed
as described above. Then (P1)–(P3) hold for all t ≥ 0.

Proof. By induction on t. For t = 0, all statements in (P1)–(P3) are either trivial
or immediate from 39. Furthermore, the only generation rule that applies in
this case is (40), in which case (P1)–(P3) are immediately secured for t = 1.
Suppose, then t ≥ 1, and that (P1)–(P3) hold for all values up to t; we show
that they hold for t+1. We proceed by cases, depending on whether at satisfies
either di,j or ci,j , and whether i (respectively, j) is odd or even. We give details
for the case where at satisfies di,j and i is even. The other cases are similar.

Assume first that at does not satisfy dg. The generation rule that applies
in this case is (41), in whence at+1 satisfies di,⌊j+1⌋ but not bt. Now, by IH
(P2), Xt 6= Yt, hence by IH (P1): Xt > Yt, with Xt even. By the construction
of the boustrophedon, then, Xt+1 = Xt and Yt+1 = Yt + 1 whence Xt+1 > 0
and Xt+1 ≥ Yt+1. This immediately secures all the conditions in (P1)–(P2)
except for the condition that dg[at+1] if and only if Xt+1 = Yt+1, which we
must establish. In addition, we must establish (P3).

We begin with the latter. That Tj/2[at, at+1] and T⌊j/2+1⌋3 [at, at+1] is im-
mediate from the generation rule (41). Consulting Fig. 5, it remains only to
show that, if j is odd, and s < t is such that Xs = Xt+1−1 and Ys = Yt+1, then
Tj/2[as, at+1] and T⌊j/2+1⌋3 [as, at+1]. Now, using IH (P3), we see from Fig. 5
Tj/2[as, as+1], Tj/2[as+1, as+2], Tj/2[as+2, at−1] and Tj/2[at−1, at]; and we have
just established that Tj/2[at, at+1]. By transitivity of Tj/2, then, Tj/2[as, at+1];
and by the transfer formula (49), T⌊j/2+1⌋3 [as, at+1]. Thus (P3) is established.
Returning to the missing condition in (P2), if j is even, then, by IH (P1), so is
Yt; similarly, since i is even so is Xt. Thus Xt+1 = Xt 6= Yt+1 = Yt + 1, and
moreover, by (38), ¬dg[at+1], since di,j+1[at+1]. Thus, we may assume that j is
odd. But now let s′ < t− 1 be such that Xs′ = Xt− 1 and Ys′ = Yt. By inspec-
tion of Fig. 5 and applying IH (P3), we see that Tj/2[as′−1, as′ ], Tj/2[as′ , at−1],
and Tj/2[at−1, at]; and, we have just established that Tj/2[at, at+1]. By tran-
sitivity, then, Tj/2[as′−1, at+1]. But by IH (P2), dg[as′−1] ⇔ Xs′−1 = Ys′−1,
and by the choice of s′, Xs′−1 = Ys′−1 ⇔ Xt+1 = Yt+1. Furthermore, having
established that Tj/2[as′−1, at+1], it follows by the control formula (55) that
dg[as′−1] ⇔ dg[at+1]. Thus, dg[at+1] ⇔ Xt+1 = Yt+1 as required.

We assumed above that at does not satisfy dg; now suppose that it does. The
generation rule that applies in this case is (44), and (P1)–(P2) follow instantly.
To establish (P3), referring to Fig. 5, we observe first that the generation rule
itself ensures that at is connected to at+1 by T⌊i/2−1⌋3 and T⌊i/2⌋3 . It remains
to show that, if s < t is such that Xs = Xt − 1 and Ys = Yt − 1, then as
is connected to at+1 by T⌊i/2−1⌋3 and T⌊i/2+1⌋3 . By IH (P3), the successive
pairs in the sequence as, as+1, at−2, at−1, at are connected by T⌊i/2−1⌋3 ; and we
have just established that T⌊i/2−1⌋3 [at, at+1]. By transitivity, T⌊i/2−1⌋3 [as, at+1].
Since di−1,i−1[as], and ci−1,i[at+1], it follows from the transfer formula (52) that
T⌊i/2+1⌋3 [as, at+1] as required.

Lemma 27 justifies us in picturing the sequence a0, a1, . . . as laid out in
Fig. 5, but it does not tell us that the elements of this sequence are distinct.
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However, we shall show that, in fact, ϕgrid is an axiom of infinity. As a prelimi-
nary, consider the rectangles into which the upper-right quadrant of the plane is
divided by the black, green and red lines in Fig. 5. We refer to these rectangles
as bricks. Each brick consists of four or six points in the plain, with the former
kind confined to the left-hand and bottom edges; moreover, the bricks form a
natural sequence following the boustrophedon. Since every point ς(t) = (Xt, Yt)
is associated with an element at in some model of ϕgrid, we can think of bricks
as the set of associated elements. And by inspection of Fig. 5, we see that for
any brick B, there exists k (0 ≤ k < 3) such that, for all elements as, at ∈ B
with s < t, we have Tk[as, at]. In other words, each brick has a colour, and,
furthermore, an orientation induced by the ordering of points on the boustro-
phedon. We call the bricks below the diagonal having their left-hand margins in
even columns downward-pointing, while those below the diagonal having their
left-hand margins in odd columns are upward-pointing; similarly for leftward-
and rightward-pointing bricks above the diagonal, depicted by yellow arrows in
Figure 5. Of course, while the elements of B lie in order as the periphery of B
is traversed, they are not in general consecutive in the sequence {at}. In the
light of the above discussion, the following are evident.

(E1) Every element satisfying di,j except for a0 lies on at least one upward-
pointing brick and at least one downward pointing brick.

(E2) The colour and orientation of a brick B is determined entirely by the local
addresses of its elements; hence two elements with the same local address
lie on bricks with the same set of colours/orientations.

(E3) In particular, ifB is a 6-element upward-pointing brick and its first element
is a non-diagonal element, then that element has local address di,j (i odd,
j even), while the last element has local address d⌊i+1⌋,j , and the colour
of B is T⌊j/2−1⌋3 .

(E4) The first element of each brick B is related to all the others by the colour
of B, and all the elements but the last are related to the last element by
the colour of B.

In the proof of the following lemma, recall that ς(t) = (Xt, Yt), the t-th point
in the boustrophedon.

Lemma 28. Suppose A |= ϕgrid, and let the sequence {at} be as just con-
structed. Then the elements of this sequence are all distinct.

Proof. Assume for contradiction that as = at with t < s. We consider the case
where as = at satisfies some di,j ; the case for elements satisfying some ci,j is
handled similarly.

Assume first that Ys = Yt. Since t < s, and, as has the same local address
as at (since they are identical), we must have Xt < Xs and therefore, by (P1),
Xt < Xs−5. As a preliminary, we claim that, if as lies on a brick B and at on a
brickD, then no element of either B orD can satisfy dg. For if B has an element
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as′ such that dg[as′ ], then Xt < Xs−5 ≤ Xs′−4 = Ys′−4 ≤ Ys−2 = Yt−2 < Yt
contradicting (P1) and the fact that as = at satisfies some predicate di,j . In
particular, as = at itself does not satisfy dg. If, on the other hand, D has an
element at′ satisfying dg, then, by inspection of Fig 5, there is such a t′ satisfying
t′ > t. Letting s′ = s + (t′ − t), we see that since the sequences as, . . . as′

and at, . . . at′ are the same (and thus have the same local addresses), whence
Xs, . . . Xs′ and Xt, . . . Xt′ move in the same way, so that Xt < Xs − 5 implies
Xt′ < Xs′ − 5. Thus, recalling that dg[as′ ] implies Xt′ = Yt′ , and that Ys = Yt
by assumption, we haveXs′ > Xt′+5 = Yt′+5 ≥ Yt+3 = Ys+3 ≥ Ys′+1 > Ys′ ,
contradicting the supposition that at′ = as′ satisfies dg. This proves the claim
that neither as nor at lie on any brick containing a diagonal element.
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Figure 6: Proof of Lemma 28: ς(s0) = (13, 2), ς(t0) = (8, 2). T0[as0 , at0 ] implies T1[as0 , at0 ]
implies T1[as1 , at1 ] implies T2[as1 , at1 ] implies T2[as2 , at2 ] implies T0[as2 , at2 ]. The black
edge from (13, 7) to (8, 8) yields the desired contradiction.

This claim having been established, we proceed to derive the promised con-
tradiction. To make the proof easier, we suggest the reader follows with reference
to the example ς(s) = (14, 1) and ς(t) = (8, 1) (see Fig. 6). Let B0 andD0 be the
upward-pointing bricks containing, respectively, as and at, and having the same
colour, say Tk0 . Let as0 be the first element on the brick B0, and at0—the last
element on the brick D0, in our example, ς(s0) = (13, 2) and ς(t0) = (8, 2). By
(E4), Tk0 [as0 , at0 ], i.e. as0 is connected to at0 by an edge of some colour, Tk0—in
our example, black. The transfer formula (49) implies that T⌊k0+1⌋3 [as0 , at0 ], in
our case green. Now, write k1 = ⌊k0 + 1⌋3, and let B1 and D1 be the upward-
pointing bricks of colour Tk1 (in our case, green), containing, respectively, as0
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and at0 . Let as1 be the first element on the brick B1, and at1—the last element
on the brick D1, i.e. ς(s1) = (13, 4) and ς(t1) = (8, 4). Again, by (E4), as1 is
connected to at1 by a Tk1-edge (green), hence by (49), also by an edge of colour
Tk2 , where k2 = ⌊k1 + 1⌋3 (red).

Now the reasoning simply repeats, until either the brick aboveBℓ or the brick
above Dℓ contains an element satisfying dg. In particular, in our example, we
consider B2 and D2—the red upward-pointing bricks containing, respectively,
as1 and at1 , and we let as2 be the first element on the brick B2, and at2—the
last element on the brick D2. So, ς(s2) = (13, 6) and ς(s2) = (8, 6). Again,
by (E4), as2 is connected to at2 by a red edge, hence by (49), also by a black
one. Now the black brick above D2 contains diagonal elements (i.e. l = 2); in
particular, dg[at2+2], where ς(t2 + 2) = (8, 8).

Recall that we are assuming that Ys = Yt. By (E2), we have Ys0 = Yt0 ,
and, since we have been following the two columns of the boustrophedon up-
ward, Ysℓ = Ytℓ . Moreover, since t < s, we have Xtℓ < Xsℓ , and indeed,
Xtℓ < Xsℓ − 5. So, indeed, the process stops when the brick above Dℓ contains
an element satisfying dg and, then, we necessarily have dg[atℓ+2]. We have al-
ready established that di0,⌊j0+2ℓ⌋[asℓ ], d⌊i0+1⌋,⌊j0+2ℓ⌋[atℓ ] and Tk0+l+1[asℓ , atℓ ]
(black). By inspection of Fig. 5, we see that Tk0+l+1[asℓ−1, asℓ ], and, in-
deed, Tk0+l+1[atℓ , atℓ+2]. By transitivity, therefore Tk0+l+1[asℓ−1, atℓ+2]. On
the other hand, since Xsℓ−1 > Ysℓ−1, (P2) implies that asℓ−1 does not sat-
isfy dg . But then we have di0,⌊j0+2ℓ+1⌋[asℓ−1], d⌊i0+1⌋,⌊j0+2ℓ+2⌋[atℓ+2] and
Tk+l+1[asℓ−1, atℓ+2], which, in the presence of (38), violates the control for-
mula (55). In our case, ς(s2 − 1) = (13, 7) and we have d1,1[as2−1], d2,2[at2+2],
T0[as2−1, at2+2], ¬dg[as2−1] and dg[at2+2].

This deals with the case Ys = Yt. If Ys 6= Yt, then we letB0 be any downward-
pointing brick containing as, Tk be the colour of B0, and D0 the downward-
pointing brick containing at and having the same colour as D0. Again, we
let s0 be the first element on B0 and t0 be the last element on D0, following
the preceding bricks B1, B2, . . . and D1, D2, . . . . This time, however, we will
be moving down the columns until we reach Bℓ and Dℓ such that one of the
elements asℓ−1 or atℓ+1 satisfies bt. Now, the assumption that Ys 6= Yt implies
that at most one of asℓ−1 and atℓ+1 satisfies bt, which yields a violation of the
control formula (56) using parallel reasoning to the upward case. The process
is depicted in Figure 7 for one particular case.

Equipped with Lemma 28 we can now define a natural embedding ι of N2

into any model A of ϕgrid setting ι(X,Y ) = at, where at is the element of the
infinite sequence as defined above such that ς(t) = (X,Y ). In view of the above
discussion it is easy to see that ι has the following properties:

(H1) If X ≥ Y then T⋄[ι(X,Y ), ι(X + 1, Y )]. Moreover, if X is even then
T⋄[ι(X,Y ), ι(X,Y + 1)], and if X is odd then T⋄[ι(X,Y + 1), ι(X,Y )].

(H2) If X < Y then T⋄[ι(X,Y ), ι(X,Y + 1)]. Moreover, if Y is even then
T⋄[ι(X + 1, Y ), ι(X,Y )], and if Y is odd then T⋄[ι(X,Y ), ι(X + 1, Y )].
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Figure 7: Proof of Lemma 28: ς(s0) = (10, 9), ς(t0) = (5, 3). T0[as0 , at0 ] implies T2[as0 , at0 ]
implies T2[as1 , at1 ] implies T1[as1 , at1 ]. ς(s1 − 1) = (10, 6), ς(t1 + 1) = (5, 0) and the green
edge from (10, 6) to (5, 0) yields the desired contradiction with (56).

The above observation allows us to write formulas that properly assign tiles to
elements of the model of ϕgrid. We do this with a formula ϕtile, which again
features several conjuncts. The first conjunct is straightforward. We require
that each node encodes precisely one tile and the initial element satisfies the
initial tiling condition by adding to ϕtile the formula:

∀
(

∨

C∈C

C ∧
∧

C 6=D

(¬C ∨ ¬D) ∧ (lf ∧ dg → C0)
)

. (59)

The next formulas ensure that adjacent tiles respect the constraints H and
V . To ensure that the horizontal constraints are satisfied we add to ϕtile the
following conjuncts for every C ∈ C:

∧

0≤i,j≤5

∀(C ∧ dij → ∀(T⋄ ∧ d⌊i+1⌋,j →
∨

C′:(C,C′)∈H

C′)) (60)
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∧

0≤i≤5

∧

j=1,3,5

∀(C ∧ cij → ∀(T⋄ ∧ (c⌊i+1⌋,j ∨ d⌊i+1⌋,j) →
∨

C′:(C,C′)∈H

C′)) (61)

∧

0≤i≤5

∧

j=0,2,4

∀(C ∧ (ci,j ∨ di,j) → ∀(T⋄ ∧ c⌊i−1⌋,j →
∨

C′:(C′,C)∈H

C′)). (62)

A similar group of conjuncts is added to handle the vertical constraints. Again,
we add to ϕtile the following conjuncts for every C ∈ C:

∧

0≤i,j≤5

∀(C ∧ (ci,j ∨ di,j) → ∀(T⋄ ∧ ci,⌊j+1⌋ →
∨

C′:(C,C′)∈V

C′)) (63)

∧

i=0,2,4

∧

0≤j≤5

∀(C ∧ di,j → ∀(T⋄ ∧ di,⌊j+1⌋ →
∨

C′:(C,C′)∈V

C′)) (64)

∧

i=1,3,5

∧

0≤j≤5

∀(C ∧ di,j → ∀(T⋄ ∧ di,⌊j−1⌋ →
∨

C′:(C′,C)∈V

C′)). (65)

This completes the definition of the formula ϕtile. Finally, let ηC be the con-
junction of ϕgrid and ϕtile. We show that ηC is satisfiable iff C tiles N2. Namely,
if C tiles N

2 then to show that ηC is satisfiable we expand our intended model
G for ϕgrid assigning to every element of the grid a unique C ∈ C given by the
tiling.

Now, let A |= ηC. Since A |= ϕgrid consider the embedding ι of the standard
N

2 grid into A defined above. We define a tiling of the N2 grid assigning to every
node (X,Y ) ∈ N

2 the unique tile C such that A |= C(ι(X,Y )). Formula (59)
ensures that this is well defined and satisfies the initial condition. Formulas (60)-
(62) ensure that the horizontal constraints are satisfied and formulas (63)-(65)
ensure that the vertical constraints are satisfied. Hence, we have the following

Theorem 29. The satisfiability problem for FL23T, the two-variable fluted
fragment with three transitive relations, is undecidable.

We remark that since the formula ϕgrid is an axiom of infinity, we cannot
get simultaneously undecidability of the finite satisfiability problem applying
Proposition 23. To prove the latter we reduce from the finite tiling problem.
We proceed as follows. First, we modify the formula ϕgrid so that it no longer
constructs an infinite chain of witnesses but the process is allowed to stop when-
ever the boustrophedon meets an element on the bottom row. In other words,
the chain of witnesses corresponds to a square domain N

2
2n,2n, for some n ≥ 1.

Denote the modified formula ϕsgrid. It contains some conjuncts taken di-
rectly ϕgrid, some that are modified versions of conjuncts in ϕgrid, and some
that are new. First of all, we employ an additional control predicate rt intended
to mark the rightmost column of the square domain. This is secured by adding
the following new conjunct to ϕsgrid (complementing the formula (38)):

∀(rt →
∨

i=0,2,4

5
∨

j=0

di,j) (66)
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and the following new control formula:

5
∧

i=0

5
∧

j=0

∀(di,j ∧ ±rt → ∀(T⋄ ∧ di,⌊j−1⌋ → ±rt)). (67)

In ϕsgrid we modify the formula (39) by ensuring that the initial element does
not satisfy rt as follows:

∃(d0,0 ∧ dg ∧ bt ∧ ¬rt). (68)

Finally, we modify the formula (44); now we require a new witness only for
bottom elements that are not on the rightmost column, writing:

∧

i=1,3,5

∀(di,0 ∧ bt ∧ ¬dg ∧ ¬rt → ∃(d⌊i+1⌋,0 ∧ bt ∧ ¬dg ∧ T0)). (69)

Remaining conjuncts of ϕgrid constitute conjuncts of ϕsgrid without modifica-
tion.

Observe that ϕsgrid has finite models: if a witness at of the conjunct (48)
happens to satisfy rt then the following witnesses at′ with t′ > t, correspond-
ing to a downward column in the model, also satisfy rt due to the control
formula (67). As argued earlier, the chain of witnesses eventually reaches an
element at′′ satisfying bt, and this is where no new witnesses are required due
to the modified conjunct (69). Moreover in every finite model of ϕsgrid one can
embed a square grid N

2
2n,2n similarly as we did before embedding the N

2 grid
in models of ϕgrid.

In order to complete the reduction of the finite tiling problem we need one
more conjunct ensuring the final condition:

∀(dg ∧ rt → C1). (70)

It should be now straightforward to check that the conjunction of (70) with
ϕsgrid ∧ ϕtile is finitely satisfiable iff C tiles N

2
2n,2n, for some n ≥ 1. Hence, we

have the following:

Theorem 30. The finite satisfiability problem for FL23T, the two-variable
fluted fragment with three transitive relations, is undecidable.

We complete this section noticing that all formulas used in the proofs of The-
orems 29 and 30 are either guarded or can be rewritten as guarded. Furthermore,
in the proof it would suffice to assume that T0, T1 and T2 are interpreted as
equivalence relations. Hence, we can strengthen the above theorem as follows.

Corollary 31. The (finite) satisfiability problem for the intersection of the
fluted fragment with the two-variable guarded fragment is undecidable in the
presence of three transitive relations (or three equivalence relations).
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5. Conclusions

In this paper, we considered the logics FLmkT and FLm
=kT, the m-variable

fluted fragment in the presence of (equality and) k transitive relations. We
showed that the satisfiability problem for FLm

=1T is in m-NExpTime, and in-
deed that the corresponding finite satisfiability problem is in (m+1)-NExpTime.
(It seems probable that this latter bound, at least, can be improved.) Together
with known lower bounds on the m-variable fluted fragment, it follows that
the satisfaibility and finite satisfiability problems for FL=1T, the fluted frag-
ment with equality and a single transitive relation, are both Tower-complete.
(This extends the result of [18], which establishes the same complexity for the
fluted fragment without equality or any transitive relations.) We also showed,
however, that decidability is easily lost when additional transitive relations are
added: even the two-variable fluted fragments FL2

=2T (two transitive relations
plus equality) and FL2

=3T (three transitive relations, but without equality) have
undecidable satisfiability and finite satisfiability problems.

It is open whether the satisfiability or finite satisfiability problems for FL2T
(two transitive relations, but without equality) are decidable. We point out
that Lemma 19 in Section 3 could be generalized to normal-form formulas of
FLm+12T (defined in the natural way). Hence, the (finite) satisfiability problem
for FLm2T (m > 2) is decidable if and only if the corresponding problemFL22T
is. Unfortunately neither the method of Sec. 3 (to show decidability) nor that
of Sec. 4 (to show undecidability) appears to apply here. The barrier in the
former case is that pairs of elements can be related by both of the transitive
relations, T1 and T2, via distinct T1- and T2-chains, so that simple certificates
of the kind employed for FL2

=1T
u do not guarantee the existence of models.

The barrier in the latter case is that the grid construction has to build models
featuring transitive paths of bounded length, and this seems not to be achievable
with just two transitive relations.
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[3] E. Grädel, P. Kolaitis, and M. Vardi. On the decision problem for two-
variable first-order logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.

[4] A. Herzig. A new decidable fragment of first order logic. In Abstracts
of the 3rd Logical Biennial Summer School and Conference in Honour of
S. C.Kleene, June 1990.

46



[5] Y. Kazakov. Saturation-based decision procedures for extensions of the
guarded fragment. PhD thesis, Universität des Saarlandes, Saarbrücken,
Germany, 2006.

[6] Y. Kazakov and I. Pratt-Hartmann. A note on the complexity of the sat-
isfiability problem for graded modal logic. In Logic in Computer Science,
pages 407–416. IEEE, 2009.
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