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IDEAL TOPOLOGIES IN HIGHER DESCRIPTIVE SET THEORY

PETER HOLY, MARLENE KOELBING, PHILIPP SCHLICHT,
AND WOLFGANG WOHOFSKY

Abstract. We investigate generalizations of the topology of the higher Cantor
space on 2κ, based on arbitrary ideals rather than the bounded ideal on κ. Our
main focus is on the topology induced by the nonstationary ideal, and we call
this topology the nonstationary topology, or also the Edinburgh topology on 2κ.

It may be of independent interest that as a side result, we show κ-Silver
forcing to satisfy a strong form of Axiom A not only if κ is inaccessible (which
is well-known), but also under the assumption ♦κ.

1. Introduction

Let κ be a regular and uncountable cardinal, and let bdκ denote the bounded
ideal on κ. For an ideal I on κ, let I+ = {x ⊆ κ | x /∈ I} denote the collection
of I-positive sets. Let ubκ denote the collection of all unbounded subsets of κ,
i.e., ubκ = (bdκ)

+. Let I∗ = {κ \ x | x ∈ I} denote the filter dual to I. Let
NSκ denote the nonstationary ideal on κ. We want to consider different topologies
on 2κ, induced by ideals other than the bounded ideal on κ. Let I be a <κ-complete
proper ideal on κ that extends bdκ throughout our paper.

Definition 1.1. For any set I, let FnI = {f | f : D → 2 is a function with D ∈ I}.
For an ideal I as above, the I-topology τI of I-open sets is provided by the basis
{[f ] | f ∈ FnI} of I-clopen subsets of 2κ (we also call those I-clopen sets I-cones),
where, for any partial function f : κ→ 2, [f ] = {g ∈ 2κ | f ⊆ g}, and where we say
that a set is I-clopen / . . . if it is clopen / . . . in the I-topology. An ideal topology
is an I-topology for an ideal I as above. If I = NSκ, we also say that a set is
Edinburgh open / . . . in case it is I-open / . . . , and we refer to the I-topology on
2κ as the Edinburgh topology or the nonstationary topology on 2κ. As usual, we say
that a set is open / . . . in case it is bdκ-open / . . . , and we refer to the bdκ-topology
on 2κ as the bounded topology on 2κ.

The topology of the higher Cantor space on 2κ is the bdκ-topology. Clearly, if
I1 ⊇ I0, then τI1

refines τI0
. In particular, the Edinburgh topology on 2κ thus

refines the topology of the higher Cantor space 2κ. Since the bdκ-topology on 2κ is
Hausdorff, the same holds for every I-topology. A simple observation shows that as
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soon as we allow our ideals to contain unbounded sets, they yield topologies with
the maximal possible number of open sets:

Observation 1.2. If I contains an unbounded subset of κ, then:

(1) There are 2κ-many disjoint basic I-open sets whose union is 2κ.
(2) |τI | = 22

κ

.

Proof. (1) Let A be an unbounded subset of κ in I, and let F = {f | f : A→ 2}.
Then, the 2κ-many I-cones [f ] for f ∈ F are pairwise disjoint, and their
union is all of 2κ, as desired.

(2) For any X ⊆ F , let OX =
⋃

f∈X [f ]. Then, X 6= Y implies OX 6= OY . �

Note that (1) implies in particular a strong failure of (generalized) compactness
for I-topologies whenever I contains an unbounded subset of κ. Also note that
(1) implies that, in such cases, the I-topology does not have a basis of size strictly
less than 2κ; this is a strong failure of “generalized second countability”. On the
other hand, {[f ] | f ∈ FnI} is a canonical basis of size 2κ, hence the I-topology has
weight 2κ.

One of the most basic topological results holds outright for arbitrary ideal topolo-
gies, by the usual argument, which we would nevertheless like to present for the
convenience of our readers.

Proposition 1.3. (Baire category theorem for ideal topologies) The intersection of
κ-many I-open dense sets is I-dense.1

Note that this statement is equivalent to the fact that for every f ∈ FnI , the
I-cone [f ] is not I-meager.

Proof of Proposition 1.3. Let (Dα)α<κ be a sequence of I-open dense sets. For
every α < κ, there exists a set Iα and a sequence 〈fα

i | i ∈ Iα〉, with each fα
i ∈ FnI ,

such that Dα =
⋃

i∈Iα
[fα

i ]. Let f0 ∈ FnI . We construct a ⊆-increasing sequence of

functions 〈fα | α < κ〉 in FnI such that fκ :=
⋃

α<κ fα satisfies [fκ] ⊆
⋂

α<κDα.
Given an ordinal α < κ and fα ∈ FnI , sinceDα is I-dense, Dα∩[fα] 6= ∅. Therefore,
there exists i ∈ Iα such that [fα

i ] ∩ [fα] 6= ∅, yielding that fα+1 := fα
i ∪ fα is a

function. Since I is an ideal, fα+1 ∈ FnI . Assume now that α < κ is a limit
ordinal, and that 〈fβ | β < α〉 has been constructed. Then,

⋃
β<α fβ is a function,

and, using that I is <κ-complete,
⋃

β<α fβ ∈ FnI . In the end, fκ is clearly as
desired. �

The above proof essentially also shows the following slightly stronger result.

Corollary 1.4. (Mycielski’s theorem for ideal topologies) The intersection of κ-
many I-open dense sets contains a perfect set (in the sense of the bounded topology
on 2κ), that is, a closed set that is homeomorphic to the higher Cantor space 2κ.

Proof. As for Proposition 1.3, but extending f0 to two incompatible functions, and
then extending those to some f1 and f ′

1 in the same way that we extended f0 to f1
in the proof of Proposition 1.3. Continuing now with these extensions, and carrying
on like this throughout all κ-many stages of our construction, we eventually obtain
our desired perfect set in the intersection of our κ-many I-open dense sets. �

We will later show that in many situations, the nonstationary topology satisfies
an even stronger form of Mycielski’s theorem (see Theorem 7.1).

1We write I-open dense to mean I-open and I-dense. Furthermore, using our above conven-
tion, a set being I-dense means that it intersects every I-open set.



IDEAL TOPOLOGIES IN HIGHER DESCRIPTIVE SET THEORY 3

Observe that whenever B ⊆ I is a basis for I (i.e., for every A ∈ I there exists
a B ∈ B with A ⊆ B), then each point in 2κ has a neighbourhood basis of the
same size as B; conversely, each neighbourhood basis yields a basis for I of the
same size. In particular, 2κ with the I-topology is “generalized first countable”
(i.e., each point has a neighbourhood basis of size κ) if and only if I has a basis of
size κ. Note that {α | α < κ} ⊆ bdκ is a basis (of size κ) for the bounded ideal,
hence 2κ with the bounded topology is always “generalized first countable”. There
are also ideals other than bdκ which have a basis of size κ (e.g., the ideal from
Example 1.7).

We say that a set is I-Fκ if it is the union of κ-many I-closed sets. The following
proposition generalizes the fact that, in the bounded topology, every open set is Fκ

(even, if κ<κ > κ; see [AMR, Lemma 4.15]).

Proposition 1.5. If I has a basis of size κ, then every I-open set is I-Fκ.

Proof. Let B = {Bi | i < κ} ⊆ I be a basis for I, and let X ⊆ 2κ be I-open. Every
x ∈ X is in the I-interior of X , so there exists Ax ∈ B such that [x ↾ Ax] ⊆ X .
Clearly, X =

⋃
x∈X [x ↾ Ax]. Let

Xi :=
⋃

{[x ↾ Ax] | x ∈ X and Ax = Bi}.

It is easy to see that the sets Xi are I-closed (in fact I-clopen), so clearly X =⋃
i<κXi is I-Fκ. �

On the other hand, there are ideals for which the usual implication “every I-
open set is I-Fκ” fails (e.g., for the nonstationary ideal NSκ; see Corollary 3.9 and
Theorem 3.10).

For the nonstationary topology, we also have the property that cones are iso-
morphic to the whole space (as is the case for the standard bounded topology).

Lemma 1.6. If I = NSκ, then the space 2κ with the I-topology is homeomorphic
to any I-cone with the induced topology.

More precisely, if f ∈ FnI then there exists ρ : [f ] → 2κ which is a homeomor-
phism both with respect to the bounded topology and with respect to the nonstationary
topology (taking the respective induced topologies on [f ]).

Proof. Let f ∈ FnI be given, so that A := dom(f) is nonstationary, and let us
consider the I-cone [f ]. We want to construct a homeomorphism between [f ] and
2κ based on a bijection π between B := κ \ A and κ. Let C ⊆ B be a club
subset of κ, such that, in order to simplify the argument to follow, B \ C is an
unbounded subset of κ. Let 〈cα | α < κ〉 be the increasing enumeration of C, and
let 〈bα | α < κ〉 be the increasing enumeration of B \ C. We define π : B → κ by
setting π(cα) = 2 · α, and letting π(bα) = 2 · α+ 1.

The point of our construction is now that π is a bijection between B and κ such
that if D ⊆ B, then D is stationary if and only if π[D] is stationary: This follows
because if E ⊆ B contains a club subset of κ, then also E∩C contains a club subset
of κ, and since π is continuous on C, it follows that π[E] contains a club subset
of κ. On the other hand, if E ⊆ κ contains a club subset of κ, then its restriction
to the even ordinals contains a club subset of κ, and its pointwise preimage under
π contains a club subset of C ⊆ B.

Next, we use π to induce a bijection ρ : [f ] → 2κ in a natural way: For each
x ∈ [f ], we simply define ρ(x) by letting ρ(x)(α) := x(π−1(α)) for each α ∈ κ. It is
easy to see that ρ is a homeomorphism between 2κ with the bounded topology and
[f ] (with the induced topology). We will finish our argument by showing that ρ is
also a homeomorphism between 2κ with the nonstationary topology and [f ] (with
the induced topology).
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It suffices to show that both ρ and its inverse map preserve basic open sets. A
basic open subset of [f ] in its induced topology is of the form [g] for g ⊇ f in FnI .
Then, ρ[[g]] = [h], where dom(h) = π[dom(g) \ A] and h(π(α)) = g(α) for every
α ∈ dom(g)\A. Since dom(h) is nonstationary by our above arguments, this shows
that [h] is a basic open set in the nonstationary topology.

For the other direction, assume that [h] is a basic open subset of 2κ in the
nonstationary topology. Then, ρ−1[[h]] = [g] where g ⊇ f is such that dom(g) =
A ∪ π−1[dom(h)] and for α ∈ dom(g) \ A, g(α) = h(π(α)). Again by our above
arguments, dom(g) is nonstationary, hence [g] is a basic open set in the induced
topology on [f ], as desired. �

There are counterexamples to the above homogeneity property for other I-
topologies:

Example 1.7. Assume 2<κ = κ. Let A be an unbounded subset of κ which also
has an unbounded complement, and let I be the ideal generated by bdκ together
with the set A – that is, B ∈ I if and only if B \ A is a bounded subset of κ.
Then, for any f : A → 2, 2κ with the I-topology is not homeomorphic to [f ] with
its induced topology.

Proof. Homeomorphic topological spaces need to have the same number of open
sets. However, by Observation 1.2, |τI | = 22

κ

, while there are only 2κ-many open
sets in the induced topology on [f ], for it is clearly homeomorphic to the bounded
topology on 2κ (which has a basis of size 2<κ = κ). �

Let us show that every I-topology is homogeneous, in the sense that for any two
elements x, y ∈ 2κ, there is a homeomorphism of 2κ with respect to τI that maps
x to y. Let 0 denote the function with domain κ and constant value 0, and let 1

denote the function with domain κ and constant value 1.

Proposition 1.8. The I-topology is homogeneous for any ideal I.

Proof. It suffices to provide, for each x ∈ 2κ, a homeomorphism H : 2κ → 2κ

with H(0) = x. For any subset x of κ, we define2 the function Hx : 2
κ → 2κ by

Hx(y)(i) = 1 − y(i) for all i ∈ x and Hx(y)(i) = y(i) otherwise. Clearly, Hx is
a bijection, and Hx is a homeomorphism, since Hx[[f ]] = [g] whenever f, g ∈ FnI

such that dom(g) = dom(f), and g(i) = 1− f(i) for i ∈ dom(f)∩x and g(i) = f(i)
for i ∈ dom(f) \ x. Clearly, Hx(0) = x. �

The following trivial observation will be useful later on:

Observation 1.9. Let s ∈ 2<κ. Then 2κ is homeomorphic to [s] with respect to
the I-topology.

In particular, there are κ-many disjoint I-cones that are homeomorphic to 2κ

with the I-topology.

Proof. We show that 2κ is homeomorphic to [s] with respect to the I-topology,
using the bijection π : 2κ → [s] which maps x to sax (where we are thinking of s
and of x as sequences of 0’s and 1’s, and sax ∈ 2κ denotes their concatenation).
To see that π is an I-homeomorphism, it is enough to show that

(1) A ∈ I if and only if {|s|+ β | β ∈ A} ∈ I.

Observe that there exists γ < κ such that |s| + β = β for every β ≥ γ, hence
γ ∪ A = γ ∪ {|s|+ β | β ∈ A}. Since bdκ ⊆ I, it follows that (1) holds.

2Note that Hx(y) = x + y for each y ∈ 2κ, where x + y is the bitwise sum (modulo 2) of x

and y. In fact, it is easy to check that 2κ together with the operation + is a topological group
(with respect to the I-topology).
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The second statement of the observation easily follows by picking κ-many in-
compatible functions in 2<κ. �

2. An overview

Before we embark on the main parts of the paper, we would like to give a quick
overview of the contents of this paper, and of some of our main results.

Section 3 studies the class of Borel sets of ideal topologies. We first investigate
the complexity of some canonical subsets of 2κ in I-topologies. Theorem 3.10
shows that the bounded ideal is never I-Gκ. Since the bounded ideal is I-closed
in many cases (and in particular when I = NSκ, see Corollary 3.9), this also shows
that I-closed sets need not be I-Gκ in general. The set Clubκ of club subsets
of κ is always I-Gκ; Theorem 3.19 shows that Clubκ is not I-Fκ when I is the
nonstationary ideal on κ, and we also observe that in this case, Clubκ can neither
be I-open nor I-closed. However, Observation 3.15 and Proposition 3.16 show that
for certain choices of I other than NSκ, Clubκ can sometimes be I-closed or I-
open. Corollary 3.23 shows that the club filter is not I-Borel in the nonstationary
topology. One of the main questions left open by the results of Section 3 is certainly
whether there is an I-Borel hierarchy which resembles the usual Borel hierarchy on
the Cantor space.

Question (see Question 1). Assuming I = NSκ, do the I-Borel sets form a
strict hierarchy of length κ+?

In Section 4, we investigate possible notions of convergence, accumulation points
and subsequences in ideal topologies.

In Section 5, we make some remarks on the connection between ideal topolo-
gies and forcing topologies, with the former being a special case of the latter. In
particular, we show that the topology induced by κ-Silver forcing is exactly the
nonstationary topology on 2κ.

In Section 6, we investigate a strengthening of Axiom A that was introduced as
Axiom A∗ in [FKK16], and show in Theorem 6.4 that if ♦κ holds, then this axiom
is satisfied by κ-Silver forcing. This was previously known under the assumption
that κ is inaccessible. We say that a regular uncountable cardinal κ is simple in
case it is inaccessible or ♦κ holds.

In Section 7, we start an investigation of the connections between meager and
I-meager sets. We make use of the results of Section 6 in Theorem 7.1, where we
show that for simple cardinals κ, the notions of meager and of nowhere dense sets
coincide for the nonstationary topology on κ. We do not know whether this holds
without the assumption of simplicity (see Question 5) or for other ideal topologies
(see Question 6). In Theorem 7.2, again for simple cardinals κ, we show that
every comeager subset of 2κ contains a dense set that is open in the nonstationary
topology. From this, in Corollary 7.3 we infer that if κ is simple and I ⊇ NSκ, then
all I-meager sets with the Baire property are in fact meager.

In Section 8, we investigate the reaping number r(κ) at κ and some of its variants,
which we show to agree with each other in case κ is simple (see Theorem 8.4).

In Section 9, we continue our investigation of the notion of meagerness in ideal
topologies. In Proposition 9.1, we show that if I ) bdκ, then there is always a
meager set that is not I-meager. In Theorem 9.6, we show that if κ is simple,
r(κ) = 2κ, and I is tall, then there is an I-meager set that is not meager.

Question (see Question 9). Is there always an I-meager set that is not meager,
at least if κ is simple?
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Finally, in Section 10, we investigate the connections between the Baire property
in the bounded and in the nonstationary topology. In Proposition 10.1, we show
that there is a subset of 2κ that has the Baire property (in the bounded topology),
yet it does not have the Baire property in the nonstationary topology. In The-
orem 10.3, we extend another result about inaccessible cardinals from [FKK16],
showing that if κ is simple and every ∆1

1-subset of 2
κ has the Baire property, then

every ∆1
1-subset of 2

κ has the Baire property in the nonstationary topology.

3. On the Borel hierarchy in ideal topologies

3.1. A normal form for closed sets. In this short section, we provide a normal
form for closed sets in ideal topologies, that generalizes the usual normal form with
respect to the bounded topology, and which will be very useful later on.

For x ∈ 2κ and J ⊆ P(κ), let

x↾↾J := {x ↾ A | A ∈ J},

and, for P ⊆ FnP(κ), let

[P ]J := {x ∈ 2κ | x ↾↾ J ⊆ P}.

Note that if J = κ ⊆ P(κ) and T ⊆ FnJ = 2<κ is a tree, then [T ]J = [T ] is
exactly the body of T , i.e., the set of branches (of length κ) through T . Our next
result shows that the usual normal form for closed sets as sets of branches through
trees generalizes to the context of arbitrary ideal topologies.

Proposition 3.1. If P ⊆ FnP(κ), then

[P ]I = {x ∈ 2κ | x ↾↾ I ⊆ P}

is an I-closed subset of 2κ.
Conversely, if X ⊆ 2κ is I-closed, then there is P ⊆ FnI such that X = [P ]I.

Moreover, we may assume that P is closed under restrictions, and that P is pruned
– that is, for every p ∈ P , there is x ∈ 2κ with p ∈ x ↾↾ I ⊆ P .

Proof. Let P ⊆ FnP(κ), and let X = [P ]I . If x ∈ 2κ is not an element of X , then
there is A ∈ I with x ↾ A 6∈ P . But then [x ↾ A] is disjoint from X , hence the
complement of X is I-open, and thus X is I-closed.

Conversely, assume now that X ⊆ 2κ is I-closed, and let P = {x ↾ A | x ∈
X ∧ A ∈ I}. Now if x ∈ X , then clearly x ↾↾ I ⊆ P by definition of P . If x 6∈ X ,
then since X is I-closed, there is A ∈ I with X ∩ [x ↾ A] = ∅. But then, x ↾ A 6∈ P ,
hence also x ↾↾ I 6⊆ P . Moreover, observe that P is clearly closed under restrictions
and pruned. �

3.2. Tallness, and related properties of ideals. Tallness is a well-known notion
in case κ = ω. Generalizations of this concept will turn out to be very useful and
natural in the context of ideal topologies.

Definition 3.2. Let I and J be ideals on κ. We say that I is J -tall if for every
A ∈ J+, there is B ⊆ A in J + ∩ I. We say that I is tall if it is bdκ-tall. We say
that I is stationarily tall if it is NSκ-tall.

The following is very easy to prove (compare with Proposition 4.9):

Observation 3.3. NSκ is tall, and hence every I ⊇ NSκ is tall.



IDEAL TOPOLOGIES IN HIGHER DESCRIPTIVE SET THEORY 7

On the other hand, I being tall does not necessarily imply that I ⊇ NSκ.
3 Note

that every normal ideal4 contains the nonstationary ideal, and is thus tall by the
above. Clearly, any J -tall ideal contains a set in J +, but this is not sufficient for
being J -tall. However, there is an easy property which implies J -tallness:

Proposition 3.4. If I contains a set in J ∗ then I is J -tall.

Proof. If C ∈ I ∩ J ∗ and A ∈ J +, then C ∩ A ⊆ A is in J + ∩ I. �

For x ⊆ κ, let χx : κ→ 2 denote the characteristic function of x. We will always
identify x and χx. We may thus view a collection K of subsets of κ as a subset of
2κ via the identification

K = {χx | x ∈ K}.

Observation 3.5. Let H1 : 2
κ → 2κ be the homeomorphism defined as in the proof

of Proposition 1.8. Since for any ideal J on κ, H1[J ] = J ∗, it follows that J and
J ∗ have the same topological properties in the I-topology, in particular J is I-open
iff J ∗ is I-open, and J is I-closed iff J ∗ is I-closed.

Our next proposition provides a characterization of J -tallness of an ideal I in
terms of whether certain sets lie low down in the I-Borel hierarchy.

Proposition 3.6. The following are equivalent:

(1) I is J -tall.
(2) J+ is I-open.
(3) J is I-closed.
(4) J ∗ is I-closed.

Proof. (1) implies (2): Assume that I is a J -tall ideal. Then,

J + =
⋃

{[1 ↾ A] | A ∈ I ∩ J +}

is clearly I-open.

(2) implies (1): Assume that J + is I-open, and let A ∈ J +. Then, J + contains
an I-cone [f ] with A ∈ [f ]. Since [f ] must only contain elements of J+, f has to
take value 1 on some B ∈ J + with B ⊆ dom(f) ∈ I. This shows that every
element of J+ contains an element of J + ∩ I, which means that I is J -tall, as
desired.

(2) and (3) are equivalent, because J + is the complement of J . The equivalence
of (3) and (4) follows from Observation 3.5. �

The next proposition provides a similar characterization of a property stronger
than J -tallness (see Proposition 3.4).

Proposition 3.7. The following are equivalent:

(1) I contains a set in J ∗.
(2) J+ is I-closed.
(3) J is I-open.
(4) J ∗ is I-open.

3As an example, let κ be strongly compact (i.e., every <κ-complete filter on κ can be extended
to a <κ-complete ultrafilter). Extend the filter generated by a fixed nonstationary set and the

co-bounded sets to a <κ-complete ultrafilter to get a maximal ideal which does not contain all
nonstationary sets; by Observation 3.8(2), each maximal ideal is tall, which finishes the argument.

4Remember that an ideal is normal if it is closed under the taking of diagonal unions.
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Proof. (1) implies (4): Assume that there exists C in J ∗ ∩ I. Then, J ∗ =⋃
x∈J ∗ [1 ↾ (x ∩ C)].

(4) implies (1): Now assume that J ∗ is I-open, and hence contains an I-cone
[f ]. If the domain of f were not in J ∗, then, since f−1[{1}] ∈ [f ], we obtain a
contradiction. But this implies that dom(f) ∈ J ∗ ∩ I 6= ∅, as desired.

Again, (2) and (3) are equivalent, because J + is the complement of J , and the
equivalence of (3) and (4) follows from Observation 3.5. �

Note that the two propositions above show that for an ideal J the following
implication holds:5

J is I-open ⇒ J is I-closed.

Of course this can also be shown directly (the proof makes essential use of the
property of an ideal to be closed under unions).

Let us shed light on a few relationships between (stationary) tallness and other
properties of ideals that we are making use of in this paper:

Observation 3.8.

(1) If I contains a club subset of κ, then I is stationarily tall.
(2) If I is a maximal ideal, then I is both tall and stationarily tall.
(3) Ideals which contain a stationary subset of κ are not necessarily tall or

stationarily tall.
(4) Stationarily tall ideals are not necessarily tall.

Proof. (1) Immediately follows from Proposition 3.4, letting J = NSκ.
(2) Let I be a maximal ideal, and let A be an unbounded subset of κ that is

not in I. Partition A into two disjoint unbounded subsets A0 and A1 of κ.
By the maximality of I, either A0 or A1 is an element of I, yielding I to
be tall.

More generally, the same proof yields that I is J -tall, provided that
every set in J + can be partitioned into two disjoint sets in J +. Since
every stationary set can be partitioned into two disjoint stationary sets, I
is also stationarily tall.

(3) Let I be the ideal generated by the bounded ideal and a single stationary
and co-stationary subset S of κ. Then, I is neither tall nor stationarily
tall, for the complement of S contains no unbounded subset of κ in I.

(4) Let I be the ideal generated by the bounded ideal and a single club subset
C of κ, the complement of which is unbounded in κ. Then, I is stationarily
tall by (1), yet the complement of C has no unbounded subset in I, showing
that I is not tall. �

3.3. On the collection of unbounded sets. Using that I is <κ-complete, the I-
open sets are closed under <κ-intersections, and the I-closed sets are closed under
<κ-unions. We may define an I-Borel hierarchy as usual in higher descriptive set
theory, through using κ-intersections, κ-unions and complements. For example, on
the second level of this hierarchy, we have the I-Fκ-sets, which are the κ-unions⋃

α<κXα of I-closed sets, and the I-Gκ-sets, which are the κ-intersections
⋂

α<κXα

of I-open sets, etc.6

Let
ubκ = {χx | x is an unbounded subset of κ}

5By Observation 3.5, an analogous remark applies to filters rather than ideals.
6It is easy to see that if κλ = κ, then the I-Gκ-sets are closed under λ-unions, and correspond-

ingly, the I-Fκ-sets are closed under λ-intersections. In particular, if κ<κ = κ, then these classes
are closed under <κ-unions and <κ-intersections, respectively.
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be the collection of unbounded subsets of κ. Note that ubκ =
⋂

α<κXα, where
Xα = {x ∈ 2κ | x(β) = 1 for some β ≥ α} is open (in the bounded topology),
hence ubκ is Gκ (again in the bounded topology); therefore, ubκ is I-Gκ for any
ideal I.

The following is an immediate consequence of Proposition 3.6, letting J = bdκ:

Corollary 3.9. I is tall if and only if ubκ is I-open.

Note that ubκ is not I-closed, for any choice of ideal I. We will now show that
ubκ can never be an I-Fκ set. This in particular yields an example that whenever
I is tall, there is an I-open set that is not I-Fκ (so there is always an Edinburgh
open set that is not Edinburgh Fκ). For A ⊆ κ, let ub(A) be the collection of
subsets of κ which have unbounded intersection with A.

Theorem 3.10. ubκ is not I-Fκ. In fact, for every A /∈ I, the collection ub(A) is
not I-Fκ.

Proof. Let A /∈ I, and assume for a contradiction that ub(A) is I-Fκ, i.e., that
ub(A) =

⋃
α<κ[Pα]I , with each Pα ⊆ FnI closed under restrictions. We want to

inductively construct a set in ub(A) which is not in the above union, and thus reach
a contradiction. The key ingredient will be the following claim. If B ⊆ κ, we say
that f : B → 2 is bounded (in κ) if {α ∈ B | f(α) = 1} is bounded in κ.7

Claim. Suppose f ∈ FnI is bounded, α < κ, and [P ]I is I-closed with P ⊆ FnI

closed under restrictions, and such that [P ]I contains only unbounded subsets of κ.
Then there is an extension g ⊇ f of f in FnI which is bounded, such that g 6∈ P ,
and such that g(γ) = 1 for some γ ≥ α in A.

Proof. Let f∗ ∈ FnI be bounded and extending f such that f∗(γ) = 1 for some
γ ≥ α in A (using that A /∈ I). For B ⊆ κ \ dom(f∗) in I, let f∗

B ∈ FnI

denote the extension of f∗ with dom(f∗
B) = dom(f∗) ∪ B ∈ I and with f∗

B(α) = 0
for every α ∈ B. Now, assume for a contradiction that every such f∗

B were an
element of P . But then, letting x ∈ 2κ be the extension of f∗ with x(α) = 0 for
every α ∈ κ \ dom(f∗), it follows, using that P is closed under restrictions, that
x ↾↾ I ⊆ P , and hence that x ∈ [P ]I . But x is a bounded subset of κ, contradicting
our assumption on P . Hence, we may pick g = f∗

B, for some B as above, for which
f∗
B 6∈ P . �

Let f0 = ∅. Given fα, let fα+1 be a bounded extension of fα in FnI with
fα+1(γ) = 1 for some γ ≥ α in A and with fα+1 6∈ Pα, by an application of
the claim. At limit stages α < κ, let fα =

⋃
β<α fβ ∈ FnI . Let f ∈ 2κ be any

extension of
⋃

α<κ fα. Then f ∈ ub(A), yet f /∈
⋃

α<κ[Pα]I , which yields our
desired contradiction. �

Let us say that I is tall on A if for every unbounded set A′ ⊆ A, there is an
unbounded set B ⊆ A′ with B ∈ I.

Corollary 3.11. If A /∈ I and I is tall on A, then ub(A) is I-open, yet not I-Fκ.

Proof. Note that ub(A) is I-open, because

ub(A) =
⋃

{[1 ↾ B] | B ∈ I is an unbounded subset of A}.

By Theorem 3.10, ub(A) is not I-Fκ, as desired. �

So whenever I is tall on a set which is not in I, there exists an I-open set which
is not I-Fκ.

7Clearly, if B = κ, then f : B → 2 is bounded in κ if and only if f is bounded in κ in the usual
sense when identified with a subset of κ.
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3.4. The lowest levels of the ideal Borel hierarchies. Corollary 3.11 clearly
motivates the question on how the lowest levels of the I-Borel hierarchy are related
when I is tall on a set A /∈ I, given the unusual non-implication from being I-open
to being I-Fκ. We will consider some of the lowest level natural classes of I-Borel
sets: I-open sets, I-closed sets, I-Gκ-sets, and I-Fκ-sets, as well as the class

I-∩ = {X ∩ Y | X is I-open and Y is I-closed}

of intersections of I-open and I-closed sets, and the class

I-∪ = {X ∪ Y | X is I-open and Y is I-closed}

of unions of I-open and I-closed sets. Note that the class I-∩ is the second level
of the difference hierarchy over the I-open sets (or the I-closed sets), and the class
I-∪ is its dual.

We will show that, assuming that I is tall on a set A /∈ I, only the following six
trivial implications between the above hold (which hold by the very definition of
the classes involved):

• I-open sets are I-Gκ, I-closed sets are I-Fκ.
• I-open sets are both I-∩ and I-∪.
• I-closed sets are both I-∩ and I-∪.

Let Iκ = {χ{α} | α < κ}. Moreover, fix a set A /∈ I such that I is tall on A.
We start by determining exactly to which of the above classes some of our major
examples belong to – these are marked with a + in the following table. The entries
of this table are immediate for 2κ, and they follow for ub(A) by Corollary 3.11. We
will provide the easy verifications of the other entries in Lemma 3.12 below.

I-open I-closed I-∩ I-∪ I-Gκ I-Fκ

2κ + + + + + +
{0} + + + + +
Iκ + + +

ub(A) + + + +

Table 1. Borel properties of some basic sets

Lemma 3.12.

(1) {0} is not I-open, yet I-closed and I-Gκ.
(2) Iκ is neither I-open nor I-closed, yet I-∩. Moreover, it is not I-∪, yet it

is both I-Gκ and I-Fκ.

Proof. The properties of {0} and of Iκ marked with a + in the above table cor-
respond exactly to the respective properties that those sets have in the bounded
topology. Whenever a set has such a property in the bounded topology, it inherits
to the I-topology: for example, {0} is closed in the bounded topology, and hence
it is I-closed.

For (1), it remains to show that {0} is not I-open, which follows as every non-
empty I-open set has size 2κ. The same argument shows that Iκ is not I-open. To
finish the proof of (2), it remains to show that Iκ is neither I-closed nor I-∪. If
Iκ were I-closed, its complement would be I-open, hence would contain an I-cone
around 0; but each such I-cone contains an element χ{α} of Iκ, a contradiction.
Moreover, if Iκ were in I-∪, i.e., the union of an I-open and an I-closed set, the
above cardinality argument yields that the I-open part is in fact empty, which is
impossible by the above. �
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Note that sets with further patterns with respect to the properties in Table 1
can simply be generated by the taking of complements: if X ⊆ 2κ and Y = 2κ \X
is the complement of X , then Y is I-closed if and only if X is I-open, and vice
versa, and correspondingly for the properties I-∩ and I-∪, as well as the properties
I-Gκ and I-Fκ. In particular, this allows us to obtain all the five possible patterns
for sets which are either I-open or I-closed, by also considering the complements
of {0} and of ub(A).

We will show that for sets which are neither I-open nor I-closed, all 16 combi-
nations of the remaining four properties occur (see Table 2), very much unlike the
case of the bounded topology. The combination of the above then shows that there
are no implications between (any combinations of) the six properties in Table 1
other than the trivial ones listed above. All of our examples below will be based
on the basic sets 2κ, {0}, Iκ and ub(A). We will use the method of taking unions
on disjoint cones :

Definition 3.13. Given X,Y ⊆ 2κ we say that W = X∪̇Y is a union of X and
Y on disjoint I-cones in case [f ] and [g] are two disjoint I-cones, which are both,
using the respective induced topologies, homeomorphic to 2κ with the I-topology,
via bijections π : 2κ → [f ] and ρ : 2κ → [g], and such that W = π[X ]∪ρ[Y ]. Unions
X∪̇Y ∪̇Z of three (or more) sets are defined analogously.8

Lemma 3.14. Assume that W = X∪̇Y is a union of X and Y on disjoint I-cones.
Then, for each in the following list of classes, W is a member if and only if both X
and Y are members – these classes are: I-open, I-closed, I-∩, I-∪, I-Gκ, I-Fκ.
An analogous result holds for unions on disjoint I-cones of a larger (finite will be
sufficient for our purposes) number of sets.

Proof. An easy check that we would like to leave to our readers. �

Armed with the above lemma, we may now easily construct sets which are nei-
ther I-open nor I-closed, and satisfy arbitrary combinations of the remaining four
properties of being I-∩, I-∪, I-Gκ and I-Fκ, by simply combining the four basic
sets 2κ, {0}, Iκ and ub(A) from above via taking unions on disjoint I-cones, and via
taking complements of such sets. We illustrate those results in Table 2 below. For

a set X , we let X denote the complement of X : for example, {0} denotes 2κ \ {0}
in the table below. When we put the symbol ∼ in our table, this means that a
set with exactly the properties indicated by the combination of +’s in its row can
simply be obtained by considering the complement of one of the other sets used in
the table (which might only appear further down in the table) – note that, as we
mentioned above, a set is in I-∩ if and only if its complement is in I-∪, and it is in
I-Gκ if and only if its complement is in I-Fκ, i.e., taking complements corresponds
to switching the entries of the corresponding columns in the table. We will leave
the completely straightforward task of verifying any of the entries in Table 2 to our
interested readers.

It remains open whether there is an I-Borel hierarchy which is somewhat similar
to the classical Borel hierarchy.

Question 1. Given that I contains an unbounded subset of κ, are there I-Borel
sets which are substantially more complicated than the examples from Table 2? Do
the I-Borel sets even form a strict hierarchy of length κ+ (at least if I = NSκ)?

8Note that by Observation 1.9, we always have at least κ-many disjoint I-cones available that
are each homeomorphic to 2κ with the I-topology.
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I-∩ I-∪ I-Gκ I-Fκ

{0}∪̇{0} + + + +

ub(A)∪̇{0} + + +

∼ + + +

ub(A) ∪̇ ub(A) + +

Iκ + + +

Iκ ∪̇ ub(A) + +

∼ + +

Iκ ∪̇ ub(A) ∪̇ ub(A) +

∼ + + +

ub(A) ∪̇ Iκ + +

∼ + +

∼ +

Iκ ∪̇ Iκ + +

ub(A) ∪̇ Iκ ∪̇ Iκ +

∼ +

ub(A) ∪̇ ub(A) ∪̇ Iκ ∪̇ Iκ

Table 2. All 16 properties

3.5. On the collection of closed and unbounded sets. Let

Closedκ = {χx | x is a closed subset of κ}

be the collection of closed (possibly bounded) subsets of κ, which is a closed set in
the bounded topology (and therefore also in any ideal topology). Let

Clubκ = {χx | x is a club subset of κ} = Closedκ ∩ ubκ

be the collection of club subsets of κ. Recall from Section 3.3 that ubκ is Gκ (in the
bounded topology); moreover, since every closed set (in the bounded topology) is
Gκ (again in the bounded topology), also Closedκ is Gκ (in the bounded topology);
therefore, Clubκ is Gκ (in the bounded topology), and hence Clubκ is I-Gκ for any
ideal I.

If I is tall (hence in particular if I = NSκ), Corollary 3.9 implies that Clubκ

is, unlike for the bounded topology, an intersection of an I-open and a closed (and
hence also I-closed) set (so in this case, Clubκ is I-∩).

We now want to deal with the question when Clubκ can be on any of the other low
levels of I-Borel hierarchies. We first characterize exactly when Clubκ is I-closed:

Observation 3.15. Clubκ is I-closed if and only if I contains a stationary subset
of κ.

Proof. Fix S ∈ I stationary. Let x ⊆ κ not be in Clubκ, i.e., x not closed un-
bounded. In case x is not closed, let α < κ be such that x ↾ α is not closed; then
[x ↾ α] ∩ Clubκ = ∅.

If x is bounded, fix α < κ such that x ⊆ α, and let S′ := S \ α ∈ I. Since S′

is stationary, it intersects each closed unbounded subset of κ, and hence [x ↾ S′] =
[0 ↾ S′] has empty intersection with Clubκ.

The above shows that in each case, x is in the I-interior of the complement of
Clubκ, and hence that Clubκ is I-closed, as desired.
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For the reverse direction, assume that Clubκ is I-closed. Then, its complement
contains an I-cone [f ] with ∅ ∈ [f ]. Hence, f has to have constant value 0. Since [f ]
must not contain a club subset of κ, dom(f) has to be stationary, and dom(f) ∈ I,
which finishes the proof. �

Note that if Clubκ has non-empty I-interior, then I contains a club, which can
be seen as follows. Assume C ∈ Clubκ is in the I-interior, i.e., there exists f ∈ FnI

with C ∈ [f ] ⊆ Clubκ. If dom(f) does not contain a club, then there exists x ∈ [f ]
which is not a club. By the above Observation 3.15, it follows that Clubκ is I-closed
whenever Clubκ has non-empty I-interior. From this, we get that Clubκ being I-∪
is equivalent to Clubκ being I-closed.

In particular, Clubκ being I-open implies that I contains a club (and hence, by
Observation 3.15, that Clubκ is I-closed). We now investigate the possibility of
Clubκ being I-open and give an exact characterization. Let Lim denote the club
set of all limit ordinals in κ.

Proposition 3.16. Clubκ is I-open if and only if the following Property (*) holds:
Lim ∈ I, and for every nonstationary subset N of Lim, there is a regressive func-
tion r : N → κ such that

⋃
α∈N [r(α), α) ∈ I.

Proof. Assume that Clubκ is I-open. Let [f ] be an I-cone such that κ ∈ [f ] ⊆
Clubκ. Then, f = 1 ↾ A for some A ∈ I. If α ∈ Lim \A, then [f ] contains a subset
of κ that does not contain α as an element, yet is unbounded below α, contradicting
that [f ] ⊆ Clubκ, and thus showing that A ⊇ Lim ∈ I.

Let N be a nonstationary subset of Lim. Let C ⊆ Lim be a club that is disjoint
from N . There is some [f ] ⊆ Clubκ with C ∈ [f ], hence f = C ↾ A for some
A ∈ I. If for some α ∈ N , the complement of A were unbounded in α, then
[f ] again contains a subset of κ which does not contain α as an element (due to
C ∩N = ∅), yet is unbounded in α, which is again a contradiction. This now allows
us to construct a regressive function r on N that is as desired.

Assume now that I satisfies Property (*). We want to show that Clubκ is I-
open. Let C ⊆ κ be any club subset of κ. It suffices to find a function f : A→ 2 in
FnI such that C ∈ [f ] ⊆ Clubκ.

Let N be the nonstationary set Lim \ C, let r : N → κ be regressive such that
A′ :=

⋃
α∈N [r(α), α) ∈ I, and let A = Lim ∪ A′. Let f = C ↾ A. Then, clearly,

C ∈ [f ]. We have to show that [f ] ⊆ Clubκ. Let x ∈ [f ].
Since C ∩A is unbounded, x is clearly unbounded. It remains to show that x is

closed. Take any strictly increasing sequence 〈αi | i < cof(α)〉 with limit α. The
only problematic case that we have to consider is if α 6∈ x, yet for all i < cof(α),
αi ∈ x. Since x and C agree on A ⊇ Lim and α ∈ Lim, we have α /∈ C, hence
α ∈ N . So by the definition of A, [r(α), α) ⊆ A, hence all but boundedly many αi

are in C, contradicting C being closed. �

It remains to observe that ideals satisfying Property (*) actually exist:

Observation 3.17. There is an ideal I such that I satisfies Property (*).

Proof. Given A ⊆ κ, let A⊕ = {α + 1 | α ∈ A}, and let A⊖ = {α − 1 | α ∈ A is
a successor ordinal}. Let I be the (<κ-complete) ideal generated by Lim together
with {A⊕ | A ⊆ κ nonstationary}. It is easy to see that by the <κ-completeness
of NSκ, I is a proper ideal on κ. Let N be a nonstationary subset of Lim, let
C ⊆ Lim be a club that is disjoint from N , and let

A =
⋃

{[α+ 2, β) | β ∈ N ∧ α = max(C ∩ β)}.
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Let B = A⊖. Then, B is disjoint from C, and therefore nonstationary, yielding
that A ∈ I, and showing that I satisfies Property (*). �

We already observed in the above that Clubκ is Edinburgh Gκ, and also that
it is an intersection of an Edinburgh open and an Edinburgh closed set; moreover,
we have seen that Clubκ is neither Edinburgh open or Edinburgh closed, nor a
union of an Edinburgh open and an Edinburgh closed set. Let us finally verify
that Clubκ is not Edinburgh Fκ (and hence Clubκ provides a natural example of
an Edinburgh Gκ set which is not Edinburgh Fκ), by an argument that builds on
the argument for Theorem 3.10. Recall from its proof that we say that f : A → 2
is bounded if {α ∈ A | f(α) = 1} is bounded in κ. We will also need the following.

Definition 3.18. If A ⊆ κ and f : A → 2, we say that f is closed if {α ∈ A |
f(α) = 1} is a closed subset of κ,9 i.e., if the following holds: whenever λ < κ and
〈αi | i < λ〉 ⊆ dom(f) is an increasing sequence with f(αi) = 1 for every i < λ,
then α =

⋃
i<λ αi ∈ dom(f) and f(α) = 1.

Theorem 3.19. Clubκ is not Edinburgh Fκ.

Proof. Let Fn abbreviate FnNSκ
. Assume for a contradiction that Clubκ is Edin-

burgh Fκ, i.e., that Clubκ =
⋃

α<κ[Pα]NSκ
, with each Pα ⊆ Fn closed under re-

strictions. We want to inductively construct a club subset of κ which is not in
the above union, and thus reach a contradiction. The key ingredient will be the
following claim:

Claim. Suppose f ∈ Fn is closed and bounded, C ⊆ κ is a club subset of κ that
is disjoint from dom(f), and [P ]NSκ is Edinburgh closed with P ⊆ Fn closed under
restrictions, and such that [P ]NSκ

contains only club subsets of κ. Then there is an
extension g ⊇ f of f in Fn which is closed and bounded, such that g 6∈ P , and such
that for some γ ∈ C, dom(g) ⊇ γ + 1, and

∀δ ∈ dom(g) \ dom(f) g(δ) = 1 ⇐⇒ δ = γ.

Proof. Let C∗ := C \{min(C)}. Let f∗ ∈ Fn be the extension of f with dom(f∗) =
κ\C∗, with f∗(min(C)) = 1, and with f∗(α) = 0 whenever α ∈ κ\(dom(f)∪C). For
A ⊆ C∗ in NSκ, let fA ∈ Fn denote the extension of f∗ with dom(fA) = dom(f∗)∪A
and with fA(α) = 0 for every α ∈ A. Assume for a contradiction that every such fA
were an element of P . But then, letting x ∈ 2κ be the extension of f∗ with x(α) = 0
for every α ∈ C∗, it follows, since P is closed under restrictions, that x ↾↾ NSκ ⊆ P ,
and hence that x ∈ [P ]NSκ

. But10 x ∈ NSκ, contradicting our assumption on P . �

Let f0 := ∅, and let C0 := κ. Then f0 ∈ Fn is closed and bounded. Given
fα ∈ Fn closed and bounded and Cα which is disjoint from dom(fα), let fα+1 and
γα+1 be obtained by an application of the claim with respect to Cα and Pα, that
is, γα+1 ∈ Cα, and fα+1 is an extension of fα in Fn which is closed and bounded,
with dom(fα+1) ⊇ γα+1 + 1 and

∀δ ∈ dom(fα+1) \ dom(fα) fα+1(δ) = 1 ⇐⇒ δ = γα+1,

and such that fα+1 6∈ Pα. Let Cα+1 ⊆ Cα \ (γα+1 + 1) be a club subset of κ
that is disjoint from dom(fα+1). At limit stages α < κ, let γα :=

⋃
β<α γβ , and

let fα :=
⋃

β<α fβ ∪ {(γα, 1)}. Note that γα ∈ Cα :=
⋂

β<α Cβ , and therefore

9Clearly, if A = κ, then f : A → 2 is closed if and only if f is closed in the usual sense when
identified with a subset of κ.

10It is easy to see that x is actually bounded, so assuming in the claim that [P ]NSκ contains only

unbounded sets would be sufficient. Therefore a slight modification of the proof of the theorem
yields the following stronger result: every Edinburgh Fκ set which contains Clubκ also contains
some bounded set.
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γα 6∈ dom(fβ) for any β < α. Hence, fα is indeed a function, and thus an element
of Fn. It is easy to see that the γβ ’s are strictly increasing, and that fα is closed
and bounded. Then f :=

⋃
α<κ fα ∈ 2κ is closed and unbounded (in fact, the

characteristic function of the club set {γα | α < κ}), yet f 6∈
⋃

α<κ[Pα]NSκ . �

This yields yet another characterization of when I contains a stationary subset
of κ (which also shows, by Observation 3.15, that Clubκ is I-Fκ if and only if it is
I-closed):

Corollary 3.20. Clubκ is I-Fκ if and only if I contains a stationary subset of κ.

Proof. If I contains a stationary subset of κ, then Clubκ is I-closed by Observation
3.15, and hence it is trivially also I-Fκ. On the other hand, Clubκ is not Edin-
burgh Fκ by Theorem 3.19, and hence if I ⊆ NSκ, it is not I-Fκ, for the Edinburgh
topology then refines the I-topology. �

3.6. The club filter. Let Cκ denote the club filter on κ, i.e., the collection of all
subsets of κ that contain a club subset of κ. In the bounded topologies on higher
cardinals, the club filter is usually the standard example for a non-Borel set. The
situation is somewhat different for I-topologies. The following is an immediate
consequence of Proposition 3.6 and of Proposition 3.7, letting J = NSκ:

Corollary 3.21.

• I is stationarily tall if and only if Cκ is I-closed.
• I contains a club subset of κ if and only if Cκ is I-open.

Compare the first item with Observation 3.15, which gives a similar characteri-
zation of Clubκ being I-closed. In particular, it follows that

Cκ is I-closed ⇒ Clubκ is I-closed.

However, if I is not stationarily tall, then the situation is somewhat less unusual,
for then we will show that certain relativized club filters are not I-Borel. In case
I does not contain a stationary set (in particular, if I = NSκ), the club filter itself
turns out to be not I-Borel. We do not know the complexity of the club filter in
case I is not stationarily tall yet contains a stationary set. The following argument
extends and generalizes [HS01, Theorem 4.2], and also builds on the proof of that
theorem.11

Let us first recall some basic topological concepts for I-topologies. A set X is
I-nowhere dense if for any I-cone [f ] there is an I-cone [g] ⊆ [f ] with X ∩ [g] = ∅.
A set is I-meager if it is a κ-union of I-nowhere dense sets. A set is I-comeager
if its complement is I-meager. A set X has the I-Baire property, if there is an
I-open set U such that X∆U is I-meager. Let us observe that, as usual, every
set with the I-Baire property is either I-meager, or is I-comeager in an I-cone.
Furthermore, by the usual argument, every I-Borel set has the I-Baire property.

Given a stationary set S ⊆ κ, let

CS
κ = {A ⊆ κ | ∃C ⊆ κ club with A ⊇ C ∩ S}.

Theorem 3.22. Assume that S is a stationary subset of κ, and that I contains
no stationary subset of S. Then, CS

κ does not have the I-Baire property.

11In retrospect, we realized that also the arguments for the proofs of Theorem 3.10 and of
Theorem 3.19 are somewhat similar to the arguments in the proof of [HS01, Theorem 4.2].
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Proof. Towards a contradiction, suppose that CS
κ has the I-Baire property. First

assume that CS
κ is I-meager. Let ~U = 〈Ui | i < κ〉 be a sequence of I-open dense

sets whose intersection U :=
⋂

i<κ Ui is disjoint from CS
κ . We construct sequences

~f = 〈fj | j < κ〉 in FnI , ~C = 〈Cj | j < κ〉 in Clubκ, and ~α = 〈αj | j < κ〉 in κ with
the following properties:

(1) fi ⊆ fj, Ci ⊇ Cj and αi < αj for all i < j < κ,
(2) (a) αj = min(Cj) for all j < κ,

(b) αλ = supi<λ αi for limits λ < κ,
(3) (a) [fj+1] ⊆ Uj for all j < κ,

(b) dom(fj) ∩ Cj ∩ S = ∅ for all j < κ, and
(c) fj(αi) = 1 for all i < j < κ with αi ∈ S.

The construction proceeds as follows.

(i) Choose f0 ∈ FnI arbitrary, let C0 be a club disjoint from dom(f0)∩S, and
let α0 := min(C0).

(ii) For successors j + 1, assume that fj has been constructed. If αj ∈ S,
let f ′

j := fj ∪ {(αj , 1)}, and let f ′
j := fj otherwise. Since Uj is I-open

dense, there is some fj+1 extending f ′
j with [fj+1] ⊆ Uj . Find a club

Cj+1 ⊆ Cj \(αj+1) disjoint from dom(fj+1)∩S and let αj+1 := min(Cj+1).
(iii) For limits λ < κ, let fλ :=

⋃
i<λ fi, Cλ :=

⋂
i<λ Ci and αλ := min(Cλ).

Then, f :=
⋃

i<κ fi is constant with value 1 on the intersection of the club C :=
{αi | i < κ} with S by (3)(c). Since [fj+1] ⊆ Uj for all j < κ by (3)(a), any total
extension g ⊇ f contradicts that CS

κ is disjoint from U .
Finally, assume that CS

κ is I-comeager in [h] for some h ∈ FnI . But then,
virtually the same construction, letting f0 = h and setting f(αj) = 0 (instead of
f(αj) = 1) in case αj ∈ S, yields a contradiction just as in the previous case. �

Corollary 3.23.

(1) Cκ does not have the Edinburgh Baire property, hence is not Edinburgh Borel.
(2) I is stationarily tall if and only if for every stationary S ⊆ κ, CS

κ is I-Borel.
(3) If I is not stationarily tall, then there is a set without the I-Baire property.
(4) If I is not stationarily tall, then there is a set which is not I-Borel.

Proof. The above are immediate from Theorem 3.22 and the comment preceding it
that I-Borel sets have the I-Baire property, except that we still have to verify for
(2) that if I is stationarily tall, then for every stationary set S ⊆ κ, CS

κ is I-Borel
(in fact: I-closed). Let x /∈ CS

κ . Then for all clubs C ⊆ κ, (κ \ x) ∩ C ∩ S 6= ∅, so
(κ \ x) ∩ S is stationary. Using that I is stationarily tall, we can fix a stationary
set S′ ∈ I such that S′ ⊆ (κ \ x) ∩ S. Let y ∈ [x ↾ S′]. Since S′ is disjoint from x,
y is disjoint from S′. Assume there exists a club B such that y ⊇ B ∩ S; then also
B ∩ S ∩ S′ = ∅, but S ∩ S′ = S′ is stationary, which contradicts the fact that B is
club. Hence y /∈ CS

κ , and therefore CS
κ is disjoint from [x ↾ S′], as desired. �

Let us finally remark the following, which was brought to our attention by Vin-
cenzo Dimonte.

Observation 3.24. For any ideal I on κ, if 2(2
<κ) = 2κ (in particular, if 2<κ = κ),

then there is a set that does not have the I-Baire property, and hence is not I-Borel.

Proof. Since 2(2
<κ) = 2κ, there exists a Bernstein subset of 2κ (in the sense of the

higher Cantor space 2κ), that is a set X such that both X and 2κ\X intersect every
perfect subset of 2κ, simply because by our assumption, there are only 2κ-many
perfect subsets of 2κ. Let us argue that a Bernstein set cannot have the I-Baire
property (and hence is not I-Borel). If it were I-meager, its complement would



IDEAL TOPOLOGIES IN HIGHER DESCRIPTIVE SET THEORY 17

contain a perfect set by Corollary 1.4, a contradiction. But otherwise, our Bernstein
set would have to be I-comeager in an I-cone, but then it would contain a perfect
set by a relativized version of Corollary 1.4, which is also a contradiction. �

We do not know how to come up with an example of a non-I-Borel set if 2<κ > κ
and I is stationarily tall:

Question 2. Does there always exist a set which is not I-Borel (or even does not
have the I-Baire property)?

4. Sequences in ideal topologies

4.1. Convergence and accumulation points. A prominent notion in analysis is
that of I-convergence, a generalized notion of convergence with respect to an ideal
I on the set of natural numbers. The idea is that for a sequence to I-converge, it
only needs to enter every neighbourhood (in the bounded topology) of its limit on
a set in I∗, thus yielding a weakening of the standard notion of convergence. Such
a generalized notion of convergence – namely statistical convergence – was first
considered in [Ste51] and [Fas51], and the generalized notion of I-convergence was
introduced only much later in [KŠW01]. If we consider topologies other than the
bounded topology, it seems most natural to generalize the concept of convergence
in two respects, to that of (I,J )-convergence.

Definition 4.1. Given ideals I and J on κ, and a sequence ~x = 〈xα | α < κ〉 of
elements of 2κ, we say that

• ~x (I,J )-converges to x ∈ 2κ if for every I-open set O containing x, {α <
κ | xα ∈ O} ∈ J ∗; we call x the (I,J )-limit of ~x;

• ~x I2-converges to x if ~x (I, I)-converges to x; we call x the I2-limit of ~x;12

• as usual, of course, to (I,J )-converge means to (I,J )-converge to some
x ∈ 2κ; similarly for I2-convergence.

If we only change the ideal that induces our topology, yet leave the condition for
convergence as usual, then in many cases, we do not obtain an interesting notion:

Proposition 4.2. Assume that I is tall, and that ~x = 〈xi | i < κ〉 does (I, bdκ)-
converge to x ∈ 2κ. Then, ~x is eventually constant.

Proof. Assume for a contradiction that ~x is not eventually constant. Then there

are strictly increasing sequences ~α = 〈αi | i < κ〉 and ~β = 〈βi | i < κ〉 with
xβi

(αi) 6= x(αi) for all i < κ. Let A = {αi | i < κ}. Since I is tall, there’s
an unbounded subset B of A with B ∈ I. But then, xβi

/∈ [x↾B] for all i ∈ B,
contradicting the assumption of the proposition. �

Let us provide examples showing that bd
2
κ-convergence and I2-convergence for

I ) bdκ are independent of each other:

Observation 4.3. Let I be an ideal on κ that contains an unbounded subset A
of κ. Then, the following hold true.

(1) There are I2-convergent sequences that are not bd2κ-convergent.

(2) There are bd
2
κ-convergent sequences that are not I2-convergent.

Proof. (1) Any sequence such that xα = 0 for all α in κ \ A is I2-convergent

with limit 0, but it will not be bd2κ-convergent for example if we additionally
let xα = 1 for all α in A.

12When context makes this obvious, we may sometimes talk about limits when we actually
mean (I,J )-limits or I2-limits.
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(2) Let ~x = 〈xα | α < κ〉 enumerate A in increasing order. Then, ~y = 〈{xα} |
α < κ〉 is clearly bd

2
κ-convergent with limit 0, and it is easy to see that 0

is the only possible I2-limit for ~y, yet the cone [0 ↾ A] contains no {xα},
yielding that ~y does not I2-converge.13 �

A notion closely connected to convergence is that of an accumulation point of a
sequence. Given the above, it is pretty obvious what should be the right definition
of this notion in our generalized context.

Definition 4.4. With I, J and ~x as above, we say that x ∈ 2κ is an (I,J )-
accumulation point of ~x in case that for every I-open set O containing x, {α < κ |
xα ∈ O} ∈ J+. I2-accumulation points are (I, I)-accumulation points.

We make some simple observations:

Observation 4.5.

(1) If ~x is (I,J )-convergent with limit x ∈ 2κ, then x is the unique (I,J )-
accumulation point of ~x – this is easily shown as usual (using that J ∗ ⊆
J+). It is then also a bd

2
κ-accumulation point of ~x (using that J ∗ ⊆ ubκ).

(2) Any (I,J )-convergent sequence has a unique (I,J )-limit, and if J is a
maximal ideal, then every sequence has at most one (I,J )-accumulation
point. (This uses that the I-topology is Hausdorff and J ∗ is a filter.)

Our next observation is trivial to verify.

Observation 4.6. Let I ⊆ I ′ and J ⊆ J ′ be ideals on κ and let ~x be a sequence.
The following implications hold:

(1) z is the (I ′,J )-limit of ~x⇒ z is the (I,J ′)-limit of ~x.
(2) z is an (I ′,J ′)-accumulation point of ~x⇒

z is an (I,J )-accumulation point of ~x.

Let us observe the following.

Observation 4.7. Let I and J be ideals on κ, such that I contains an unbounded
subset of κ. Then, there is a sequence ~x without an (I,J )-accumulation point.

Proof. Using Observation 1.2, let {[fα] | α < κ} be a family of disjoint I-cones.
For every α < κ, let xα ∈ [fα]. Then, ~x = 〈xα | α < κ〉 is clearly as desired. �

When I ⊇ NSκ, then there are strong restrictions on what I2-convergent se-
quences (and also sequences with I2-accumulation points) can look like.

Definition 4.8. We say that an ideal I on κ is sequentially tall if for each sequence
{yi | i < κ} of unbounded subsets of κ, there exists a set y ∈ I such that y has
non-empty intersection with every yi.

It is straightforward to check that every sequentially tall ideal is tall. However,
we do not know whether the converse holds true:

Question 3. Is there a tall ideal which is not sequentially tall?

It is easy to see (for a similar proof, see Observation 3.8(2)) that every maximal
ideal is sequentially tall. Note that if I is sequentially tall, then any I ′ ⊇ I is
sequentially tall.

Proposition 4.9. NSκ is sequentially tall.

13The proof clearly shows that ~y has not even an I2-accumulation point (see Definition 4.4).
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Proof. Given {yi | i < κ} with yi unbounded for each i, define y = {γi | i < κ}
recursively as follows. Let δ0 ∈ κ be arbitrary and pick γ0 > δ0 such that γ0 ∈ y0.
Assume that δi and γi have been defined. Pick some δi+1 > γi and some γi+1 >
δi+1, such that γi+1 ∈ yi+1. If i is a limit ordinal, and δj and γj have been defined
for each j < i, let δi := supj<i δj and pick some γi > δi such that γi ∈ yi.

Note that {δi | i < κ} is a club subset of κ which is disjoint from y, hence
y ∈ NSκ, and γi ∈ y ∩ yi for each i < κ. �

Lemma 4.10. Let I and J be ideals, let I be sequentially tall and let ~x = 〈xα |
α < κ〉 be a sequence that (I,J )-converges to x ∈ 2κ. Then, there is a set C ∈ J ∗

such that the symmetric difference14 xα∆x is bounded whenever α ∈ C. If x is only
an (I,J )-accumulation point of ~x, then we only get this for a set of α’s in J +

(rather than J ∗).

Proof. Considering xα∆x rather than xα for every α < κ, we may as well assume
that x = 0. Since I is sequentially tall, there exists y ∈ I which intersects every xα
which is unbounded, hence [0 ↾ y] contains no unbounded xα, yet it is supposed to
contain J ∗-many (or, J +-many if we consider the case of x being only an (I,J )-
accumulation point) xα’s. Thus, J ∗-many (or, J+-many) xα’s have to be bounded,
i.e., after translating back via taking symmetric differences with x once again, xα∆x
is bounded, as desired. �

Let us say that for a set X ⊆ 2κ, the I-closure of X is the ⊆-minimal I-closed set
Y ⊇ X , which exists because I-closed sets are closed under the taking of arbitrary
intersections.

Observation 4.11. The I-closure of I∗ is all of 2κ.

Proof. Since every non-empty I-open set contains an element of I∗, it follows that
the complement of the I-closure of I∗ has to be empty, i.e., that the I-closure of
I∗ is all of 2κ. �

Our next result shows that for many interesting ideals I, I-closure cannot be
characterized through (I,J )-limits or through (I,J )-accumulation points of se-
quences.

Corollary 4.12. Let I and J be ideals, where I is sequentially tall. Then, the
following hold true:

(1) If ~x is a sequence of elements of I+, then all (I,J )-accumulation points
of ~x are in I+. In particular, if ~x is (I,J )-convergent, its (I,J )-limit is
in I+.15

(2) I+ is closed under (I,J )-accumulation points of sequences, and under
(I,J )-limits of sequences. In particular, this shows that I-closed sets can-
not be characterized as being closed under (I,J )-accumulation points or
closed under (I,J )-limits.

Proof. (1) By Lemma 4.10, if ~x had an (I,J )-accumulation point outside
of I+, then, using that bdκ ⊆ I, J+-many xα’s would have to be out-
side of I+, contradicting our assumption.

(2) Immediate by (1) and by Observation 4.11, for I+ ⊇ I∗. �

We have so far only seen one trivial example of an I2-convergent sequence in
Observation 4.3, (1). Let us provide an example of an I2-convergent sequence which
is slightly less trivial, in case I = NSκ:

14Note that x∆y = x + y, where x + y is the bitwise sum (modulo 2) of x and y.
15The same holds true for I∗ in place of I+.
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Observation 4.13. Let I = NSκ, and let x ∈ I∗ be enumerated in increasing order
by 〈xα | α < κ〉. Then, ~y = 〈{xα} | α < κ〉 I2-converges to 0.

Proof. Let A ⊆ κ be nonstationary. Let C ⊆ x be a club subset of κ that is disjoint
from A, and let D be the set of indices α such that xα ∈ C. Note that D is again
a club subset of κ. Now, [0 ↾ A] contains {xα} for all α ∈ D, yielding that ~y does
indeed I2-converge to 0. �

4.2. Subsequences. It should not come as a surprise that the usual concept of
subsequence is not of much use in generalized I-topologies.16 Let us demonstrate
this with the following trivial observation:

Observation 4.14. Assume that I contains an unbounded subset A of κ. Then,
the following hold true:

(1) There is a sequence ~x with no I2-accumulation points which has an I2-
convergent subsequence ~y.

(2) There is an I2-convergent sequence (that is also bd
2
κ-convergent) with a

subsequence that has no I2-accumulation points.
(3) There is an I2-convergent sequence with an I2-convergent subsequence that

has a different I2-limit.

Proof. (1) Simply take xα to have constant value for an unbounded subset of
α’s in I, and for the other α’s, pick xα in disjoint I-cones [fα], as provided
in Observation 1.2. Then, ~x is clearly as desired, with the subsequence of
yα’s being of the above constant value.

(2) Let xα = {α} for α < κ. Then ~x = 〈xα | α < κ〉 is easily seen to be
I2-convergent, yet the sequence of {α}’s for α ∈ A is a subsequence of ~x
that does not have an I2-accumulation point (see Observation 4.3 (2) and
Footnote 13).

(3) Easy, and essentially the same as the proof of [KŠW01, Proposition 3.1 (ii)].
�

The following easy observation provides a positive result for certain ideals I:

Observation 4.15. If I has a basis of size κ, then every sequence with an (I,J )-
accumulation point x has a subsequence with (I,J )-limit x.

Let us propose the following generalized notion of subsequence, which corre-
sponds to the usual notion of subsequence being based on an unbounded set of
indices when working with the bounded topology:

Definition 4.16. Let ~x = 〈xα | α < κ〉 be a sequence in 2κ. We say that ~y = 〈yα |
α < κ〉 is a J -subsequence of ~x, and denote this property as ~y →֒J ~x, if there is a
strictly increasing sequence 〈βα | α < κ〉 of ordinals below κ such that yα = xβα

for every α < κ, and such that {βα | α < κ} ∈ J +.

The following definition provides two properties of ideals which will be shown to
be equivalent to some natural properties of the J -subsequence relation. If S is a
set of ordinals, let πS denote the transitive collapsing map of S.

Definition 4.17. Let J be an ideal on κ. We say that J is

• closed under re-enumerations if for each S ∈ J+ and each A ⊆ S with
A ∈ J , we have πS [A] ∈ J .

• almost closed under re-enumerations if for each S ∈ J + and each A ⊆ S
with A ∈ J , we have πS [A] /∈ J ∗.

16With ~y being a subsequence of ~x, we mean (as usual) that there is a strictly increasing
sequence of ordinals 〈βα | α < κ〉, and yα = xβα

for every α < κ.
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Observation 4.18. If J is a maximal ideal which is almost closed under re-
enumerations, then it is closed under re-enumerations, just because J+ = J ∗.

Proposition 4.19. bdκ is closed under re-enumerations.

Proof. This holds because being in bdκ is just a matter of cardinality: Assume S
is in bd

+
κ , i.e., it is has size κ and A ⊆ S is bounded, i.e., it has size < κ. Then

clearly πS [A] has size < κ, so πS [A] ∈ bdκ. �

For λ < κ regular, let cof λ := {α < κ | cof(α) = λ}.

Proposition 4.20. If κ > ω1, then NSκ is not closed under re-enumerations.

Proof. Let S = cof ω, and let A = {α + ω | cof(α) = ω1}. Then, A is clearly
nonstationary, as witnessed by the club that is the closure of cof ω1, yet πS [A] =
cof ω1 is stationary. �

Question 4. Is NSω1
closed under re-enumerations?

However, the weaker of the above properties does hold true for NSκ:

Proposition 4.21. Let J ⊇ NSκ. Then J is almost closed under re-enumerations.

This implies, together with Observation 4.18, that any maximal ideal J ⊇ NSκ

is closed under re-enumerations.

Proof of Proposition 4.21. Let S ∈ J + and A ⊆ S with A ∈ J .
Let us first prove the following claim:

Claim. There is a club D such that πS ↾ (D ∩ S) = id.

Proof. Assume not, i.e., for every club D, πS ↾ (D ∩ S) 6= id. Hence the set
S′ := {α ∈ S | πS(α) 6= α} is stationary. Since πS is a transitive collapsing map,
πS(α) < α whenever π(α) 6= α. So πS ↾ S′ is a regressive function, and hence by
Fodor, there is a stationary subset on which it is constant, contradicting the fact
that πS is injective. �

Let C ∈ J ∗ be the complement of A. Use the claim to obtain D, and observe
that D ∈ J ∗ and let D′ := D ∩C ∈ J ∗; then πS [D

′ ∩S] = D′ ∩S ∈ J + is disjoint
from πS [A], showing that πS [A] /∈ J ∗. �

Proposition 4.22. Let I and J be ideals on κ. Then, the following are equivalent:

(1) J is closed under re-enumerations.
(2) Whenever ~y is a J -subsequence of ~x, then

z is the (I,J )-limit of ~x =⇒ z is the (I,J )-limit of ~y.

(3) Whenever ~y is a J -subsequence of ~x, then

z is an (I,J )-accumulation point of ~y =⇒

z is an (I,J )-accumulation point of ~x.

(4) Being a J -subsequence is a transitive relation, i.e.,

~z →֒J ~y →֒J ~x =⇒ ~z →֒J ~x.

Proof. (1) =⇒ (2): Let z be the (I,J )-limit of ~x, so for every I-neighbourhood
O of z there is a J ∗-set C such that xα ∈ O for every α ∈ C. Let S ∈ J+ be
the index set of ~y. Since J is closed under re-enumerations, πS [C ∩ S] ∈ J ∗, and
therefore, z is the (I,J )-limit of ~y.

(1) =⇒ (3): Let z be an (I,J )-accumulation point of ~y, so for every I-
neighbourhood O of z there is a J+-set S′ such that yα ∈ O for every α ∈ S′.
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Let S ∈ J + be the index set of ~y. Since J is closed under re-enumerations,
π−1
S [S′] ∈ J +, and therefore, z is an (I,J )-accumulation point of ~x.
(1) =⇒ (4): Let S ∈ J+ be the index set of ~y as a subsequence of ~x, and let

S′ ∈ J + be the index set of ~z as a subsequence of ~y. Since J is closed under
re-enumerations, we have π−1

S [S′] ∈ J +, hence ~z is a J -subsequence of ~x.
(2) =⇒ (1): Assume that J is not closed under re-enumerations, as witnessed

by S and by A. Let xα = 1 for α ∈ A, and let xα = 0 for α /∈ A. Clearly, 0 is
the (I,J )-limit of ~x. Now ~y := {xα | α ∈ S} is a J -subsequence, and 0 is not the
(I,J )-limit of ~y, because πS [A] ∈ J+.

(3) =⇒ (1): Assume that J is not closed under re-enumerations, as witnessed
by S and by A. Let xα = 1 for α ∈ A and xα = 0 for α /∈ A. Clearly 1 is not an
(I,J )-accumulation point of ~x. Now ~y := {xα | α ∈ S} is a J -subsequence, and 1

is an (I,J )-accumulation point of ~y, because πS [A] ∈ J+.
(4) =⇒ (1): Assume that J is not closed under re-enumerations, as witnessed by

S and by A. Let ~x be a sequence, let ~y := {xα | α ∈ S}, and let ~z := {xα | α ∈ A}.
Then, ~z →֒J ~y →֒J ~x, yet ~z →֒J ~x does not hold. �

It follows that bdκ-subsequences have all these nice properties, while NSκ-subse-
quences do not have them (at least if κ > ω1). But since NSκ is almost closed under
re-enumerations, the following proposition gives weaker properties which hold for
NSκ-subsequences.

Proposition 4.23. Let I and J be ideals on κ. Then, the following are equivalent:

(1) J almost closed under re-enumerations.
(2) Whenever ~y is a J -subsequence of ~x, then

z is (I,J )-limit of ~x =⇒ z is (I,J )-accumulation point of ~y.

(3) Whenever ~y is a J -subsequence of ~x, then

z is (I,J )-limit of ~y =⇒ z is (I,J )-accumulation point of ~x.

Proof. (1) =⇒ (2): Let O be an I-open set containing x. Since ~x (I,J )-converges
to x, xα is an element of O for a J ∗-set of α’s. But then, since J is almost closed
under re-enumerations this implies that yα is an element of O for a J +-set of α’s,
yielding that x is an (I,J )-accumulation point of ~y, as desired.

(1) =⇒ (3): Let z be an (I,J )-limit of ~y, so for every I-neighbourhood O of z
there is a J ∗-set C such that yα ∈ O for every α ∈ C. Let S ∈ J + be the index
set of ~y. Since J is closed under re-enumerations, π−1

S [C] ∈ J +, and therefore z is
an (I,J )-accumulation point of ~x.

(2) =⇒ (1): Assume that J is not almost closed under re-enumerations and let
S and A be witnesses for that. Let xα = 1 for α ∈ A and xα = 0 for α /∈ A.
Clearly, 0 is the (I,J )-limit of ~x. Now ~y := {xα | α ∈ S} is a J -subsequence, and
0 is not an (I,J )-accumulation point of ~y, because πS [A] ∈ J ∗. In fact, 1 is the
(I,J )-limit of ~y.

(3) =⇒ (1): Assume that J is not almost closed under re-enumerations and let
S and A be witnesses for that. Let xα = 1 for α ∈ A and xα = 0 for α /∈ A.
Clearly 1 is not an (I,J )-accumulation point of ~x. Now ~y := {xα | α ∈ S} is a
J -subsequence of ~x, and 1 is the (I,J )-limit of ~y, because πS [A] ∈ J ∗. �

Remark 4.24. If J is almost closed under re-enumerations, but not closed under
re-enumerations, then the example from the proof of (2) =⇒ (1) of Proposition 4.22
yields sequences ~y →֒J ~x such that x is the (I,J )-limit of ~x, such that x is an
(I,J )-accumulation point of ~y (by (2) of Proposition 4.23), and such that x is not
the unique (I,J )-accumulation point of ~y.
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Let us provide an example of a strong failure of Proposition 4.22.

Proposition 4.25. Let I be an ideal on κ that contains an unbounded subset of
κ, and let J be an ideal that is not closed under re-enumerations. Then, there
is a sequence ~x with no (I,J )-accumulation points, which has a J -subsequence
~y with a unique (I,J )-accumulation point, such that ~y has an (I,J )-convergent
J -subsequence ~z.17

Proof. Let S and A be witnesses for J not being closed under re-enumerations. By
Observation 1.2, we may pick disjoint I-cones [fα] for α < κ. Define a sequence ~x by
taking xα to have constant value on A, and for α 6∈ A, pick some xα ∈ [fα]. Then,
~x has no (I,J )-accumulation points. However, letting 〈βα | α < κ〉 enumerate S
in increasing order, and letting yα = xβα

for α < κ, we obtain a sequence ~y with
unique (I,J )-accumulation point, which is the constant value on the J +-set of
indices πS [A]. The final statement of the proposition now follows by considering
the J -subsequence of ~y with domain πS [A]. �

We give yet another example of a sequence that does not I2-converge, for I =
NSκ. This should be compared to Observation 4.3, (1) and to Observation 4.13.

Corollary 4.26. If κ > ω1 is regular and I = NSκ, then if 〈sα | α < κ〉 is
the increasing enumeration of cof ω, the sequence ~s = 〈{sα} | α < κ〉 does not
I2-converge.

Proof. The sequence ~s could only I2-converge to 0. Let π denote the transitive
collapsing map of cof ω, and let A be a nonstationary subset of cof ω for which π[A]
is stationary, as provided by Proposition 4.20. This means that there is a stationary
set T of indices α for which sα ∈ A. Assuming that ~s does indeed I2-converge to
0, there is a club C of indices α for which {sα} ∈ [0 ↾ A], i.e., sα 6∈ A. Since
T ∩ C 6= ∅, this yields a contradiction. �

5. Connections with topologies generated by forcing partial orders

Ideal topologies can be seen as a special case of topologies connected to tree-
like forcing notions, that we will describe below, following [FKK16].18 While this
connection may be interesting enough to be mentioned here in its own right, we will
also make use of this connection later on. We start with the following definition
from [FKK16], slightly adapted to our present purposes.

Definition 5.1. [FKK16, Definition 3.1] A forcing notion P is called κ-tree-like if

(1) conditions of P are pruned and <κ-closed trees on 2<κ, ordered by inclusion,
(2) 2<κ ∈ P, and whenever T ∈ P and s ∈ T , then {t ∈ T | s ⊆ t or t ⊆ s} ∈ P,

and
(3) if 〈Tα | α < λ〉 is a decreasing sequence of conditions of length λ < κ, then⋂

α<λ Tα ∈ P.

In many cases, κ-tree-like forcing notions induce natural topologies on 2κ. The
following is a minor modification of [FKK16, Definition 3.6, 1], as the definition
used in that paper seems to be slightly too weak in order to yield a topology basis.

17Note that, since NSκ is almost closed under re-enumerations, this J -subsequence ~y cannot
be (I,J )-convergent, for otherwise its (I,J )-limit were an (I,J )-accumulation point of ~x. This
also shows again that being a J -subsequence is not a transitive relation, because if ~z were a J -
subsequence of ~x, its (I,J )-limit would be an (I,J )-accumulation point of ~x by Proposition 4.23.

18Even more generally, this may be seen as a special case of the natural topology that can be
constructed on the Stone space of any partial order, see for example [Ike10, Section 3].
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Definition 5.2. A κ-tree-like notion of forcing P is topological if {[T ] | T ∈ P}
forms a topology basis for 2κ, that is whenever S, T ∈ P, and x ∈ [S] ∩ [T ], then
there is R ∈ P such that x ∈ [R] ⊆ [S] ∩ [T ]. In this case we call the topology
generated by the basic open sets of the form [T ] for T ∈ P the topology generated
by P, or the P-topology.

Ideal topologies are generated by generalizations of Grigorieff forcing to uncount-
able cardinals:

Definition 5.3. Let κ be an infinite cardinal and let I be an ideal on κ. Grigorieff
forcing with the ideal I is the notion of forcing consisting of conditions from FnI ,
ordered by reverse inclusion.

At first sight, Grigorieff forcing may not seem to be a κ-tree-like notion of forcing,
but it can be represented as one: We identify a condition f ∈ FnI with a tree T on
2<κ, which we construct by induction on α as follows: Given t ∈ T of order-type α,
let ta0 ∈ T if and only if f(α) 6= 1, and let ta1 ∈ T if and only if f(α) 6= 0 (these
are both supposed to include the cases when α is not in the domain of f , i.e., t is
splitting if and only if α is not in the domain of f). At limit levels α, we extend
every branch through the tree constructed so far. It is straightforward to check
that the resulting forcing is indeed a κ-tree-like forcing, using that I ⊇ bdκ and
that I is <κ-complete. Note moreover that if T is the tree on 2<κ corresponding
to the condition f ∈ FnI , then [T ] = [f ].

For any ideal I, Grigorieff forcing with the ideal I is topological: Given f, g ∈
FnI , assuming that [f ]∩[g] 6= ∅, it follows that f∪g ∈ FnI , and that [f∪g] = [f ]∩[g].

The following is now immediate by comparing the basic open sets (which are the
same) used to generate the respective topologies:

Observation 5.4. The topology on 2κ generated by Grigorieff forcing with the
ideal I is exactly the topology τI.

Another notion of forcing that is closely connected to I-topologies is κ-Silver
forcing, which is sometimes also called κ-club-Silver forcing:

Definition 5.5. Given a regular cardinal κ, κ-Silver forcing is the notion of forcing
consisting of all conditions f ∈ FnI for which κ\dom(f) is a club subset of κ, ordered
by reverse inclusion.

Note that clearly, κ-Silver forcing is a dense subset of Grigorieff forcing with the
ideal NSκ. In fact, whenever p is a condition in the latter forcing and x ∈ 2κ is
such that p ⊆ x, then p can be extended to a condition q ⊆ x in κ-Silver forcing.
This implies both that κ-Silver forcing can be represented as a κ-tree-like notion
of forcing (see also [FKK16, Example 3.2, 6]), that κ-Silver forcing is topological,19

and that it generates the same topology as does Grigorieff forcing with NSκ, namely
the Edinburgh topology on 2κ.

Let us finally remark that it is straightforward to formulate and verify an ana-
logue of Proposition 3.1 for the more general setting of topologies that are generated
by κ-tree-like forcing notions. We will leave this to the interested reader, for we
will not need it in the remainder of our paper.

19The opposite is wrongly claimed in [FKK16] without justification, see for example [FKK16,
Table 1].
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6. On κ-Silver forcing and Axiom A∗

In [FKK16, Definition 3.6, 2], a strengthening of Axiom A is defined as follows:

Definition 6.1. We say that a κ-tree-like notion of forcing P satisfies Axiom A∗

if there are orderings {≤α| α < κ} with ≤0=≤, satisfying:20

(1) g ≤β f implies g ≤α f for all α ≤ β.
(2) If 〈fα | α < λ〉 is a sequence of conditions with λ ≤ κ satisfying that

fβ ≤α fα for all α ≤ β, then there is f ∈ P such that f ≤α fα for all α < λ.
(3) For all f ∈ P, D dense below f in P, and α < κ, there exists E ⊆ D

and g ≤α f such that |E| ≤ κ and E is predense below g, such that21

additionally [g] ⊆
⋃
{[h] | h ∈ E}.

Many of our subsequent proofs are going to work either under the assumption
that κ is inaccessible, or that ♦κ holds. Recall that, for κ being regular uncountable,
♦κ holds if there exists a ♦κ-sequence 〈Aα | α < κ〉, that is, for every A ⊆ κ, there
is a stationary set of α’s such that Aα = A ∩ α.

Definition 6.2. We say that κ is simple, if κ is inaccessible or ♦κ holds.

The assumption 2<κ = κ is very common in higher descriptive set theory. It is
necessary (but not quite sufficient) for κ being simple.

Observation 6.3. If κ is simple, then 2<κ = κ.

On the other hand, by results of Shelah (see [She10]), if κ is a successor cardinal
and κ > ω1, then 2<κ = κ implies that ♦κ holds. For κ = ω1, however, it is
consistent that 2<κ = κ (i.e., CH holds) and ♦κ (i.e., ♦) fails. The case κ = ω1 is
therefore particularly interesting for potential counterexamples.

It is well-known that the standard proof to verify that Silver forcing (on ω)
satisfies Axiom A can be adapted to show that κ-Silver forcing satisfies Axiom A
in case κ is inaccessible, and it is easy to see from the proof that in fact it even
yields Axiom A∗. We want to show that the same conclusion also holds under the
assumption ♦κ. We will then apply this result in the next section.

Theorem 6.4. If ♦κ holds, then κ-Silver forcing satisfies Axiom A∗. (So κ-Silver
forcing satisfies Axiom A∗ whenever κ is simple.)

Proof. Let 〈P,≤〉 denote κ-Silver forcing. For any α < κ, let g ≤α f if g ≤ f and
the first α-many elements of the complements of the domains of f and of g are the
same. It is clear that Items (1) and (2) in Definition 6.1 are thus satisfied, and we
only have to verify Item (3).

(If κ is inaccessible, this follows from standard arguments, as mentioned above;
also compare with the proofs of Theorem 7.2 and Lemma 8.3 in which we provide
details for both the case that κ is inaccessible and the case that ♦κ holds.)

Fix a ♦κ-sequence 〈Ai | i < κ〉. Let f ∈ P, let α < κ, and let D ⊆ P be dense
below f . We inductively construct a decreasing sequence 〈fi | i ≤ κ〉 of conditions
in P with fi = f for i ≤ α, and a sequence 〈αi | i < κ〉 of ordinals with the property
that 〈αj | j ≤ i〉 enumerates the first (i+1)-many elements of κ\dom(fi) for every
i ≤ κ, as follows. Let 〈αi | i ≤ α〉 enumerate the first α + 1-many elements of the
complement of the domain of f .

Assume that we have constructed fi, and also αj for j ≤ i.
Using that D is dense below f , let g0i ≤ fi be such that

20Since this definition is about κ-tree-like notions of forcing, one would usually use S and T to
denote the elements of the forcings. We use f and g instead, for we will only be concerned with
the special case of Grigorieff forcing.

21Without this additional clause, this would be the usual Axiom A.
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• g0i (αj) = Ai(j) for all j < i,
• g0i (αi) = 0, and
• g0i ∈ D,

and let g1i ≤ g0i ↾ (dom(g0i ) \ {αi}) be such that

• g1i (αi) = 1, and
• g1i ∈ D.

Let fi+1 = g1i ↾ (dom(g1i ) \ {αj | j ≤ i}), and note that fi+1 ≤i fi, for {αj | j < i}
is contained in the complement of dom(fi+1). Let αi+1 be the least element of
κ \ dom(fi+1) above αi.

For limit ordinals i ≤ κ, let fi =
⋃

j<i fj, and if i < κ, let αi =
⋃

j<i αj be the

least element of κ \ dom(fi), using that the intersection of <κ-many club subsets
of κ is again a club subset of κ. Let E = {g0i | i < κ} ∪ {g1i | i < κ}.

In order to verify Axiom A, first note that fκ ≤α f . Now we want to show
that E is predense below fκ. Thus, let h ≤ fκ be given. Using the properties of
our diamond sequence, pick i < κ such that i ≥ α, and such that for all j < i
with αj ∈ dom(h), Ai(j) = h(αj). Pick δ ∈ {0, 1} such that h(αi) = δ in case
αi ∈ dom(h). Then, gδi is compatible to h, as desired.

In order to check the additional property for Axiom A∗, note that any extension
x of fκ to a total function from κ to 2 can be treated in the same way as h above,
yielding some i < κ and δ ∈ {0, 1} such that x ∈ [gδi ]. �

7. Edinburgh cones and I-meagerness

In this section, we provide two results on properties of simple cardinals with
respect to Edinburgh cones, and two consequences on Edinburgh meager sets.

The first result is due to S. Friedman, Khomskii and Kulikov ([FKK16, Sec-
tion 3.2]) in case κ is inaccessible, yet, making use of Theorem 6.4, it holds also
under the assumption of ♦κ:

Theorem 7.1. If κ is simple, then every κ-intersection of Edinburgh open dense
subsets of 2κ contains an Edinburgh open dense set,22 i.e., the Edinburgh meager
sets are the same as the Edinburgh nowhere dense sets.

Proof. Let us first observe that the two conclusions of the theorem are simply
equivalent, using that the Edinburgh closure of an Edinburgh nowhere dense set
(that is, the smallest Edinburgh closed set containing it) is still Edinburgh nowhere
dense.23 It follows from Theorem 6.4, that κ-Silver forcing satisfies Axiom A∗, and
we have observed in Section 5 that κ-Silver forcing is topological and generates
the Edinburgh topology on 2κ. It is straightforward to derive from Axiom A∗ that
the Edinburgh meager sets are the same as the Edinburgh nowhere dense sets, as
desired (see also [FKK16, Lemma 3.8]).24 �

Note that the above theorem is a strengthening (of a special case) of Corol-
lary 1.4. However, we do not know the answer to the following question.

Question 5. Is it consistent that the Edinburgh meager sets are not the same as
the Edinburgh nowhere dense sets? (By the above theorem, κ would necessarily not
be simple.)

22In order to avoid any possible confusion, let us remark that by a convention made earlier on
in this paper, Edinburgh open dense means Edinburgh open and Edinburgh dense.

23We mostly provide the formulation via Edinburgh open dense sets here as well in order to
relate this result more obviously to the statement of Theorem 7.2 below.

24It would be possible, yet less informative, to verify Theorem 7.1 without making use of
Axiom A∗, by extending on and making appropriate modifications to the proof of Theorem 7.2
below.
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Note that the proof of Theorem 7.1 actually yields the following more general
fact: If Grigorieff forcing with I satisfies Axiom A∗, then I-meager is the same as
I-nowhere dense.

Question 6. Are there ideals I other than NSκ such that Grigorieff forcing with
I satisfies Axiom A∗ (or such that I-meager implies I-nowhere dense)?

The arguments for the next result are essentially the same as the argument in
the proof of [FKK16, Lemma 4.9, 6] in case κ is inaccessible, and they can again
be generalized to include the case when ♦κ holds. Since the context and notation
in [FKK16] are somewhat different to ours, we would like to include a proof of this
theorem in both cases, for the benefit of our readers.

Theorem 7.2. Let κ be simple. If s ∈ Fnbdκ , then every κ-intersection of open
dense subsets of 2κ contains an Edinburgh cone [f ] with [f ] ⊆ [s]. In other words,
every comeager subset of 2κ contains a dense set that is Edinburgh open.

Proof. If κ is not inaccessible, ♦κ holds by the assumption that κ is simple; in this
case, let us fix a ♦κ-sequence 〈Aα | α < κ〉.

Let s ∈ Fnbdκ , and let 〈Di | i < κ〉 be a sequence of open dense subsets of
2κ. Since the intersection of less than κ-many open dense subsets of 2κ is open
dense, we can assume that Dj ⊆ Di for j > i. By induction on i < κ, we define
a ⊆-increasing sequence of functions 〈fi | i < κ〉 in Fnbdκ with f0 = s, as well as
a club subset C = {αj | j < κ} of κ that is disjoint from dom(fi) for each i < κ.
Then, letting f :=

⋃
i<κ fi, we show that [f ] ⊆

⋂
i<κDi, and since [f ] ⊆ [s], this

finishes the proof.
Let f0 = s, and pick α0 > sup dom(s). Let i < κ, and assume that 〈αj | j ≤ i〉

and fi ∈ Fnbdκ are defined, such that {αj | j ≤ i} is a closed subset of κ that is
disjoint from dom(fi). For the successor step we consider two cases:

Case 1: κ is inaccessible – Let ≺ be a wellorder of 2i+1. For t ∈ 2i+1, by
induction on ≺, we pick gti ∈ Fnbdκ such that

(1) gti extends fi,
(2) gti(αj) = t(j) for j ≤ i,
(3) gti extends g

u
i on dom(gui ) \ {αj | j ≤ i} whenever u ∈ 2i+1 and u ≺ t, and

(4) [gti ] ⊆ Di.

This is possible because κ is inaccessible, hence in particular |2i+1| < κ, and because
Di is open dense. Let

fi+1 :=
⋃

t∈2i+1

(gti ↾ (dom(gti) \ {αj | j ≤ i})),

and let αi+1 > αi such that αi+1 > sup dom(fi+1). Note that our above construc-
tion ensures that fi+1 ∈ Fnbdκ , and that [fi+1] ⊆ Di, since [fi+1] ⊆

⋃
t∈2i+1 [gti ] ⊆

Di.

Case 2: ♦κ holds – Using that Di is open dense, pick h0i ∈ Fnbdκ such that

(1) h0i extends fi,
(2) h0i (αj) = Ai(j) for j < i,
(3) h0i (αi) = 0, and
(4) [h0i ] ⊆ Di.

Now, using again that Di is open dense, pick h1i ∈ Fnbdκ such that

(1) h1i extends h0i on dom(h0i ) \ {αi},
(2) h1i (αi) = 1, and
(3) [h1i ] ⊆ Di.
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Let fi+1 = h1i ↾ (dom(h1i ) \ {αj | j ≤ i}), and pick some αi+1 > sup dom(fi+1).

Now again in both cases, for limit ordinals i ≤ κ, let fi =
⋃

j<i fj and, in case

i < κ, let αi = supj<i αj < κ, by the regularity of κ. Thus, C = {αi | i < κ} is
a club subset of κ, and, letting f = fκ, dom(f) ⊆ κ \ C is nonstationary, yielding
that f ∈ FnNSκ

.
Our above construction ensured that [f ] ⊆

⋂
i<κDi: In the case of κ inaccessible,

this holds by construction, as mentioned above. Now assume that κ is a successor
cardinal for which ♦κ holds. Given x ∈ [f ], let A = {i < κ | x(αi) = 1}. Since
〈Aα | α < κ〉 is a ♦κ-sequence there exists a stationary set S such that A ∩ i = Ai

for i ∈ S. For any such i, by our above construction of fi+1, we have x ∈ [h0i ] ⊆ Di

if x(αi) = 0 and x ∈ [h1i ] ⊆ Di if x(αi) = 1. In both cases, x ∈ Di. Since we
assumed the sequence 〈Di | i < κ〉 to be ⊆-decreasing, and S is unbounded, this
yields that x is in the intersection of all the Di, as desired. �

The above now allows us to easily infer the following:

Corollary 7.3. If κ is simple, X ⊆ 2κ has the Baire property and is I-meager for
I ⊇ NSκ, then X is meager.

Proof. Assume that X has the Baire property and is not meager. We show that X
is not I-meager. By our assumptions on X , there is an s ∈ Fnbdκ such that X ∩ [s]
is comeager in [s]. In other words: there exists a sequence 〈Dα | α < κ〉 of open
dense sets such that

⋂
α<κDα∩ [s] ⊆ X . Applying Theorem 7.2, there exists f ⊇ s,

f ∈ FnNSκ
⊆ FnI with [f ] ⊆

⋂
α<κDα ∩ [s] ⊆ X , but [f ] is not I-meager by Baire

Category for the I-topology (see Proposition 1.3), thus X is not I-meager. �

Again, we do not know the following:

Question 7. Is it consistent that there is X ⊆ 2κ with the Baire property which
is Edinburgh meager, but not meager? In particular: Is the above consistent for
κ = ω1 together with 2<κ = κ (by Corollary 7.3, ♦ has to fail)?

We will also apply Theorem 7.2 once again in Section 10 below.

8. The reaping number and some of its variants

In this section, we will take a small detour in order to investigate some cardinal
invariants of the higher Cantor space 2κ (with our results also applying to the
classical Cantor space 2ω), and we will apply these results in our later sections. We
thus assume that κ is a regular infinite cardinal. In particular, we also allow for
κ = ω. Remember that for a, b ∈ ubκ, a splits b if a∩ b and b \ a are both of size κ.

Definition 8.1.

• An unsplit family at κ is a set F ⊆ ubκ for which there is no a ⊆ κ such
that for all b ∈ F , a splits b.

• The reaping number r(κ) is the smallest size of an unsplit family at κ.
• A strongly unsplit family at κ is a set F ⊆ ubκ such that for every a ⊆ κ,

there is b ∈ F for which either a ∩ b = ∅ or b \ a = ∅.
• We let R(κ) denote the smallest size of a strongly unsplit family at κ.
• A cone covering family at κ is a set F ⊆ Fnubκ such that

⋃

f∈F

[f ] = 2κ.

• R(κ) is the smallest size of a cone covering family at κ.
• We let R∗(κ) denote the smallest size of a family F ⊆ Fnubκ such that there

exists a comeager set X ⊆ 2κ with X ⊆
⋃

f∈F [f ].



IDEAL TOPOLOGIES IN HIGHER DESCRIPTIVE SET THEORY 29

The next lemma collects some easy basic facts about these cardinal invariants,
together with the result that R(κ) = R(κ).

Lemma 8.2. κ+ ≤ r(κ) ≤ R(κ) = R(κ) ≤ 2<κ · r(κ) ≤ 2κ, and κ+ ≤ R∗(κ) ≤
R(κ).

Proof. It is well-known (and very easy to check) that κ+ ≤ r(κ) ≤ 2κ. Clearly,
every strongly unsplit family at κ is an unsplit family at κ, and this directly yields
that r(κ) ≤ R(κ). If F is an unsplit family at κ, then

F ′ = {a ⊆ κ | ∃b ∈ F a ⊆ b ∧ |b \ a| < κ}

is clearly a strongly unsplit family at κ, of size 2<κ · |F |, yielding that R(κ) ≤
2<κ · r(κ). That R∗(κ) ≤ R(κ) is immediate from the definitions. To see that
κ+ ≤ R∗(κ) note that [f ] is nowhere dense for every f ∈ Fnubκ (see Proposition 9.1),
hence the union of κ-many such cones is meager. Therefore it cannot cover any
comeager set, because 2κ is not meager by the Baire Category Theorem for the
bounded topology. It remains to show that R(κ) = R(κ).
R(κ) ≤ R(κ): Let F be a strongly unsplit family at κ. For any set A and i ∈ 2,

let cAi denote the function with domain A and constant value i. We show that
{cbi | b ∈ F, i ∈ 2} is a cone covering family at κ. Since F is a strongly unsplit
family, for every x ∈ 2κ, there is b ∈ F and i ∈ 2 such that x−1[{i}] ∩ b = ∅.
Therefore, x ∈ [cb1−i].

R(κ) ≤ R(κ): Let F be a cone covering family at κ. Let

F := {f−1[{i}] | f ∈ F , i ∈ 2} ∩ ubκ.

We show that F is a strongly unsplit family at κ. Let a ⊆ κ. Since F is a cone
covering family, there is f ∈ F with χa ∈ [f ]. Thus, f−1[{1}] ⊆ a, and hence
f−1[{1}] \ a = ∅. On the other hand, f−1[{0}] ⊆ κ \ a, hence f−1[{0}] ∩ a = ∅.
Since dom(f) ∈ ubκ, either f

−1[{1}] or f−1[{0}] has to be an unbounded subset
of κ, and hence an element of F . �

This shows that in particular if 2<κ ≤ r(κ), then r(κ) = R(κ) = R(κ). Our next
result will show that if κ is simple or κ = ω, R∗(κ) is equal to the other invariants
as well. We first need an auxiliary result:

Lemma 8.3. Let κ be simple or κ = ω, and let X be a comeager subset of 2κ.
Then, there is a tree T ⊆ 2<κ of height κ such that [T ] ⊆ X, and such that the
following two properties hold:

(a) T has uniform splitting (i.e., on each level, either all nodes are splitting
nodes, or none of them is) and the set of splitting levels of T form a club25

subset C of κ, such that 0 ∈ C.
For each i < κ, let i 9C be the largest δ ≤ i with δ ∈ C (such a δ exists since
C is closed and contains 0).

(b) For any two x, y ∈ [T ], and any i < κ, x(i) = y(i) if and only if x(i 9C) =
y(i 9C). So we can define a function p : κ× 2 → 2, such that for any x ∈ [T ]
and any i < κ, we have

(2) x(i 9C) = p(i, x(i)).

Proof. In case ♦κ holds, fix a ♦κ-sequence 〈Aα | α < κ〉.

Since X is a comeager subset of 2κ, there exists a sequence 〈Di | i < κ〉 of
open dense subsets of 2κ such that X ⊇

⋂
i<κDi. Since the intersection of less

than κ-many open dense subsets of 2κ is again open dense, we can assume that the
sequence of Di’s is ⊆-decreasing.

25For κ = ω, a club subset is just an unbounded subset.
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We construct T by induction in κ-many steps, by constructing a sequence ~S =
〈Si | i < κ〉 of unboundedly many levels of T ; we let δi be the length of the elements
of Si (all sequences in Si will have the same length) for all i < κ, and we let our
club C = {δi | i < κ}. Let S0 = {∅}. Given Si, consisting of binary sequences of
equal length, we will define Si+1 by distinguishing two cases.

Let us fix the following notation: for u ∈ 2<κ, let 1−u denote the sequence with
all the bits of u flipped, i.e., 1 − u ∈ 2<κ is such that dom(1 − u) = dom(u) and
(1− u)(β) = 1− u(β) for each β ∈ dom(u).

Case 1: κ is inaccessible or κ = ω – Let λ := |Si|, and let {tl | l < λ} be
an enumeration of Si. Note that λ < κ. We will define an increasing sequence
{u0l | l < λ} in 2<κ by induction on l < λ, and afterwards, again by induction on
l < λ, we will define another increasing sequence {u1l | l < λ} in 2<κ.

Let u00 := ∅. For l < λ, let u0l+1 ⊇ u0l be such that

[tal 0
au0l+1] ⊆ Di.

At limits l ≤ λ, let u0l :=
⋃

j<l u
0
j . Let u10 := 1 − u0λ. For l < λ, let u1l+1 ⊇ u1l be

such that

[tal 1
au1l+1] ⊆ Di.

At limits l ≤ λ, let u1l :=
⋃

j<l u
1
j .

Let u1 := u1λ, and let u0 := 1− u1. Finally, let

Si+1 := {tal 0
au0 | l < λ} ∪ {tal 1

au1 | l < λ}.

This finishes the construction of Si+1 in case κ is inaccessible. Note that every node
in Si is a splitting node of T , and the elements of Si+1 are sequences of equal length
less than κ (which we call δi+1), using that λ < κ. Finally, it is straightforward to
check that [s] ⊆ Di for each s ∈ Si+1.

Case 2: ♦κ holds – If Aδi 6∈ Si, we simply let

Si+1 = {ta0 | t ∈ Si} ∪ {ta1 | t ∈ Si}.

Otherwise, we proceed as follows: Let u0 ∈ 2<κ be such that [Aa

δi
0au0] ⊆ Di, and

let u1 := 1−u0. Let v1 ∈ 2<κ be such that [Aa

δi
1aua1 v1] ⊆ Di, and let v0 := 1− v1.

Finally, let

Si+1 = {ta0aua0 v0 | t ∈ Si} ∪ {ta1aua1 v1 | t ∈ Si}.

This finishes the construction of Si+1 in case ♦κ holds. Note that, again, every
node in Si is a splitting node of T , and the elements of Si+1 are sequences of equal
length less than κ (which we call δi+1).

In both cases, for limit ordinals i < κ, we take unions, i.e., we let

Si = {t ∈ 2<κ | ∃〈tj | j < i〉 t =
⋃

j<i

tj ∧ tj ∈ Sj for j < i}.

Note that elements of Si are again sequences of length less than κ by the regularity
of κ. Finally, let T = {t | ∃i < κ ∃s ∈ Si t ⊆ s} be the tree induced by the Si’s.
It remains to check that T is as desired. It is straightforward to check from our
construction that T satisfies Properties (a) and (b) in either of our two cases. We
have to check that moreover, our construction ensures that [T ] ⊆

⋂
i<κDi (and

hence [T ] ⊆ X).

Case 1: κ is inaccessible or κ = ω – Given x ∈ [T ] and i < κ, note that
x ↾ δi+1 ∈ Si+1, so, as discussed above, [x ↾ δi+1] ⊆ Di, and hence x ∈ Di, as
desired.
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Case 2: ♦κ holds – Given x ∈ [T ] and i < κ, let j ≥ i be such that Aδj =
x ↾ δj , which is possible because {δj | i ≤ j < κ} is a club and the ♦κ-sequence
guesses correctly on a stationary set. Let ξ := x(δj). Note that, by construction,

x ∈ [Aa

δj
ξauaξ vξ] ⊆ Dj ⊆ Di, as desired. �

We are now ready to show that in many cases, all the cardinal invariants intro-
duced in this section are actually equal.

Theorem 8.4. If κ is simple or κ = ω, then

r(κ) = R(κ) = R(κ) = R∗(κ).

Proof. If κ = ω, we clearly have 2<κ = κ; if κ is simple, the same holds by
Observation 6.3. So, by Lemma 8.2, we only need to show that R∗(κ) ≥ R(κ). Let
X be a comeager subset of 2κ and let F ⊆ Fnubκ be such that X ⊆

⋃
f∈F [f ]. To

finish the proof, it is enough to find such a family of the same size which covers the
whole space 2κ.

Let T , C, and p be as provided by26 Lemma 8.3 with respect to X , and let
{δi | i < κ} be an increasing enumeration of C. Since [T ] ⊆ X also [T ] ⊆

⋃
f∈F [f ].

By passing to a suitable function f ′ ⊆ f (with f ′ ∈ Fnubκ) for each f ∈ F , we
may assume that, for every f ∈ F and every i < κ, dom(f) and the ordinal interval
[δi, δi+1) intersect in at most one element.27

Now, define Ω,Ω′ : F → Fnubκ as follows: for each f ∈ F , let

(3) Ω(f) := {(i 9C , p(i, f(i))) | i ∈ dom(f)}.

Let Ω′(f) be such that i ∈ dom(Ω′(f)) if and only if δi ∈ dom(Ω(f)), and, for
such i, let Ω′(f)(i) := Ω(f)(δi). Clearly, for each f ∈ F , Ω′(f) ∈ Fnubκ , and we
want to finish our argument by showing that

2κ ⊆
⋃

f∈F

[Ω′(f)].

To see this, let ψ : 2<κ → T be the embedding for which for s ∈ 2<κ, we have
ψ(s)(δi) = s(i).28 Let ψ also denote its canonical extension to 2κ, i.e., for y ∈ 2κ,
let ψ(y) =

⋃
i<κ ψ(y ↾ i). Now let y ∈ 2κ. Let x := ψ(y). Since x ∈ [T ], we can fix

f ∈ F such that x ∈ [f ], i.e., x ⊇ f . By (2) from Lemma 8.3 and (3), it follows
that x ⊇ Ω(f) as well. Consequently, y ⊇ Ω′(f), i.e., y ∈ [Ω′(f)], thus finishing the
argument. �

Question 8. Is it consistent that R∗(κ) < r(κ) for any regular uncountable cardi-
nal κ?

9. Meager sets in ideal topologies

In this section, we continue our investigation of the notion of meagerness in ideal
topologies. One point of the results of this section is to highlight some aspects of the
complex relationship between the bounded topology and generalized ideal topolo-
gies on 2κ, and in particular the Edinburgh topology. Our first simple proposition
shows that meagerness does not imply I-meagerness.

Proposition 9.1. If f ∈ Fnubκ , then [f ] is meager (in fact, closed nowhere dense).
Thus, there is a meager subset of 2κ which is not I-meager whenever I ) bdκ.

26Note that our assumption on κ is only needed in order to be able to invoke Lemma 8.3 at
this point.

27This uses that, clearly, if f ′ ⊆ f , then [f ′] ⊇ [f ].
28This is the unique isomorphism between 2<κ and the set split(T ) of splitting nodes of T

that preserves lexicographical order.
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Proof. [f ] is closed, for

2κ \ [f ] =
⋃

α∈dom(f),f(α) 6=i

[{(α, i)}]

is open.
Let s ∈ Fnbdκ . Since dom(f) is unbounded in κ, we may pick some α ∈ dom(f)\

dom(s). Let t = s∪{(α, 1−f(α))} ∈ Fnbdκ . Then, [t]∩[f ] = ∅, hence [f ] is nowhere
dense.

Finally, if I ) bdκ, there is f ∈ FnI ∩ Fnubκ ; then [f ] is meager, but [f ] is not
I-meager by Baire Category for the I-topology (see Proposition 1.3). �

We now show that there cannot be a small basis for the ideal MI of I-meager
sets (provided that I is not the bounded ideal). The proof uses a similar strategy as
corresponding proofs in the context of tree forcings on ω which have large antichains
(see [BKW17]). As usual, let cof(MI) denote the smallest size of a basis for the
ideal MI .

Proposition 9.2. Let I ) bdκ. Then cof(MI) > 2κ.

Proof. Let {fi | i < 2κ} with fi ∈ FnI be as in Observation 1.2(1), i.e., {[fi] | i <
2κ} is a partition of 2κ. Fix {Xi | i < 2κ} with Xi being I-meager. We will show
that there exists an I-nowhere dense (and hence I-meager) set Y , which is not
contained in any Xi. This shows that cof(MI) > 2κ.

Since [fi] is not I-meager by Proposition 1.3, we can pick yi ∈ [fi] \Xi for every
i < 2κ. Let Y := {yi | i < 2κ}. Clearly Y * Xi for every i < 2κ. It remains to
show that Y is I-nowhere dense.

Let f ∈ FnI . Clearly, there is an i such that [f ] ∩ [fi] 6= ∅ and hence g := f ∪ fi
is in FnI and [g] ⊆ [fi]. Since [fi] is disjoint from [fj ] for all j with j 6= i, there is
at most one element in Y ∩ [g]. Therefore, we can extend g to h ∈ FnI such that
[h] ∩ Y = ∅, as desired. �

We now want to look at the question whether I-meagerness could possibly imply
meagerness, which we can answer negatively in many cases.

Proposition 9.3. If I is tall,29 then every set of size < 2κ is I-nowhere dense.

Proof. Assume |X | < 2κ, and let f ∈ FnI . Using that I is tall, let S ⊆ κ \ dom(f)
with S ∈ I ∩ ubκ. There are 2κ-many distinct extensions of f to dom(f) ∪ S, and
the cones of these are disjoint. Since |X | < 2κ, there exists g ⊇ f in FnI with
[g] ∩X = ∅. This shows that X is I-nowhere dense, as desired. �

Let Mκ = Mbdκ denote the ideal of meager sets (in the bounded topology
on 2κ), and let non(Mκ) denote its uniformity, i.e., the smallest size of a set which
is not meager. The following is an immediate consequence of the above proposition:

Corollary 9.4. If I is tall and non(Mκ) < 2κ, then there is an I-nowhere dense
set that is not meager.

As a side note, let us show the following:

Proposition 9.5. There is a closed30 set X of size 2κ which is I-nowhere dense
for every ideal I. In fact, X = [T ] for a perfect subtree T of 2<κ.

29In fact, we only need that every I-cone contains 2κ-many disjoint I-cones, which is guaran-
teed by the following property of I (which is actually weaker than tallness): for each Z ∈ I, there
exists an unbounded set Z′ in I with Z′ ⊆ κ \ Z.

30This implies that the set is I-closed for every ideal I.
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Proof. Let X := {x ∈ 2κ | x(2i) = x(2i+ 1) for each i < κ}.
Let I be an ideal. To show that X is I-nowhere dense, let f ∈ FnI . Since

κ /∈ I, dom(f) 6= κ, so there exists an i < κ such that either 2i /∈ dom(f) or
2i+1 /∈ dom(f). Since bdκ ⊆ I, we can extend f to a function g ∈ FnI with g ⊇ f
such that g(2i) 6= g(2i+1). Consequently, [g] ⊆ [f ] and [g]∩X = ∅, as desired. �

The following yields another situation in which we obtain I-meager sets that are
not meager, and should also be contrasted with Corollary 7.3.

Theorem 9.6. If κ is31 simple, r(κ) = 2κ, and I is tall,32 then there exists an
I-nowhere dense set X of size 2κ which does not have the Baire property. In
particular, X is not meager.

Proof. Let λ = |2κ|. We construct X in λ-many steps. Fix an enumeration 〈Di |
i < λ〉 of all κ-intersections of open dense sets (this is possible since 2<κ = κ by
Observation 6.3), an enumeration 〈[si] | i < κ〉 of the basic open sets (of the bounded
topology on 2κ), and an enumeration 〈fi | i < λ〉 of FnI∩ubκ . Let ϕ : λ→ λ× κ be
a bijection.

(1) Let X0 = ∅, Y0 = ∅.
(2) Let ϕ(i) =: (j, k). Let Xi+1 = Xi ∪ {xi}, Yi+1 = Yi ∪ {yi} with

• xi ∈ Dj \ Yi, xi /∈ [fl] for l < i, and
• yi ∈ [sk] ∩Dj \Xi+1.

Such xi exists since Dj is comeager, Yi has size less than λ, and r(κ) = λ =
R∗(κ) by assumption and by Theorem 8.4, hence33 {[fl] | l < i}∪ {[y] | y ∈
Yi} cannot cover Dj. Such yi exists, because Dj is comeager, thus [sk]∩Dj

is comeager in [sk], and therefore34 |[sk] ∩Dj| = λ while |Xi+1| < λ.
(3) For limit ordinals i ≤ λ, let Xi =

⋃
j<i

Xj and Yi =
⋃
j<i

Yj .

Let X = Xλ and Y = Yλ.
X is I-nowhere dense: Let f ∈ FnI . Since I contains unbounded sets, we can

pick i < λ with f ⊆ fi. By construction, |X ∩ [fi]| < 2κ, but every set of size < 2κ

is I-nowhere dense by Proposition 9.3. So there exists g ∈ FnI with [g] ⊆ [fi] ⊆ [f ]
such that X ∩ [g] = ∅, as desired.
X does not have the Baire property: Let U be open. If U = ∅, X∆U = X ,

and X is not meager, because X ∩ D 6= ∅ for every comeager set D. If U 6= ∅,
X∆U ⊇ U \X ⊇ Y ∩ [sk] for some k < κ. But Y ∩ [sk]∩D 6= ∅ for every comeager
set D. Thus, X∆U is not meager. �

Question 9. Is there always an I-meager set that is not meager, at least if κ
is simple? By our above results, this clearly relates to the question whether it is
consistent that κ is simple, and r(κ) < non(Mκ) = 2κ, which also appears to be
open.

Certain consequences of r(κ) < non(Mκ) = 2κ have appeared as open questions
in the literature. For instance, it holds that bκ ≤ r(κ) for all regular κ (see [RS19,
Lemma 7 and the remark afterwards]). Brendle, Brooke-Taylor, Friedman and
Montoya asked ([BBTFM18, Question 20 and Question 24]) whether it is consistent

31What this proof actually needs is R∗(κ) = 2κ and 2(2
<κ) = 2κ. So the assumptions of

the theorem on κ can also be replaced by GCH at κ and 2<κ = κ (which does not imply the
assumptions of the theorem).

32We need tallness only in order to be able to apply Proposition 9.3. Therefore, the weaker
property from Footnote 29 is in fact sufficient.

33Note that
⋃
{[y] | y ∈ Yi} =

⋃
{{y} | y ∈ Yi} = Yi.

34It is well-known that comeager sets have full size, see Corollary 1.4.
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that bκ < non(Mκ) holds for some uncountable successor cardinal κ with 2<κ = κ
or for some strongly inaccessible cardinal κ.

10. The Baire property in the nonstationary topology

In this section, we provide two results on the connections between the Baire
property in the bounded and in the nonstationary topology.

Proposition 10.1. Assume that I = NSκ. There is a subset of 2κ with the Baire
property, but not the I-Baire property.

Proof. Take any35 f ∈ Fnubκ∩FnI . Since [f ] is nowhere dense (see Proposition 9.1),
every subset of [f ] is meager and thus has the Baire property.

Since NSκ does not contain any stationary set, it is not stationarily tall, hence
by Corollary 3.23(3), 2κ has a subset without the I-Baire property. Since 2κ and
[f ] are I-homeomorphic by Lemma 1.6, there exists a subset of [f ] without the
I-Baire property (which has the Baire property by the above). �

Note that on the other hand, by Theorem 9.6, there is an Edinburgh meager set
without the Baire property, assuming that κ is simple and r(κ) = 2κ (or 2<κ = κ
and 2κ = κ+, see Footnote 31).

We will need the following, which may also be of independent interest:

Observation 10.2. Let κ be simple, let P denote κ-Silver forcing, and let I = NSκ.
Then, X ⊆ 2κ satisfies the I-Baire property if and only if for every f ∈ P, there is
g ≤ f in P such that either [g] ⊆ X or [g] ∩X = ∅.36

Proof. This is straightforward to check, using that under our assumptions, every
I-meager set is I-nowhere dense (see Theorem 7.1).

Alternatively, it follows from our observation in Section 5 that κ-Silver forc-
ing is topological and generates the Edinburgh topology on 2κ, together with the
combination of [FKK16, Lemma 3.8, 1 and 2] and of Theorem 6.4. �

The following is shown for inaccessible κ in [FKK16, Lemma 4.9, 6], yet, making
use of Theorem 7.2, it can also be shown to hold under the assumption of ♦κ. It
also shows that the statement of [FKK16, Corollary 3.14] for κ-Silver forcing can
be generalized to include the case that ♦κ holds: indeed, note that for regular and
uncountable cardinals κ, adding κ+-many Cohen subsets of κ forces that every ∆1

1

subset of 2κ has the Baire property (see for example [FKK16, Theorem 3.13(1)]),
and also forces ♦κ by an easy folklore standard argument.

Theorem 10.3. If κ is simple and every ∆1
1 subset of 2κ has the Baire property,

then every ∆1
1 subset of 2κ has the I-Baire property for I = NSκ.

37

Proof. Let P denote κ-Silver forcing, and let Γ denote the collection of ∆1
1 subsets

of 2κ. All we will actually need in the argument, as in [FKK16, Lemma 4.9], is that
Γ is closed under continuous preimages.

Let X ∈ Γ, and let f ∈ P. By Observation 10.2 it is enough to show that there
exists a non-empty I-open subset of [f ] which is either contained in X or disjoint
from X .

35In fact, this proof works for every ideal I with the following two properties: first, there
is an f ∈ Fnubκ ∩ FnI such that [f ] is I-homeomorphic to 2κ, and second, the assumption of

Corollary 3.23(3) is satisfied, i.e., I is not stationarily tall.
36It suffices to assume that each I-meager set is I-nowhere dense (which is in particular the

case if κ is simple and I = NSκ).
37In the language of [FKK16], this means that whenever κ is simple, then ∆

1
1(Cκ) → ∆

1
1(Vκ),

where Cκ denotes κ-Cohen forcing, and Vκ denotes κ-Silver forcing.
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By Lemma 1.6, there exists ϕ : 2κ → [f ] which is an homeomorphism with respect
to the bounded topology and with respect to the nonstationary topology (and the
respective induced topologies on [f ]). Let X ′ = ϕ−1[X ], which is again in Γ because
ϕ is continuous, and hence has the Baire property by our assumption. This means
that either X ′ is meager, or it is comeager in some basic open set [s] of the bounded
topology on 2κ. If X ′ is meager, then 2κ \X ′ is comeager, so Theorem 7.2 yields an
I-cone [g] that is disjoint from X ′. If it is comeager in [s], then there is a comeager
set D such that D ∩ [s] ⊆ X ′, so Theorem 7.2 yields an I-cone [g] ⊆ D ∩ [s] ⊆ X ′.

But then, since ϕ is an I-homeomorphism, ϕ[[g]] ⊆ [f ] is an I-open set that is
either disjoint from or contained in X . �
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