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CONSTRUCTIVE ACKERMANN’S INTERPRETATION

HANUL JEON

This paper is dedicated to David C. McCarty.

Abstract. The main goal of this paper is to formulate a constructive analogue of Ackermann’s observation

about finite set theory and arithmetic. We will see that Heyting arithmetic is bi-interpretable with CZFfin, the

finitary version of CZF. We also examine bi-interpretability between subtheories of finitary CZF and Heyting

arithmetic based on the modification of Fleischmann’s hierarchy of formulas, and the set of hereditarily finite

sets over CZF, which turns out to be a model of CZFfin but not a model of finitary IZF.

1. Introduction

Ackermann [1] noticed in 1937 that ZF without Infinity is interpretable within PA. Kaye and Wong [8]
improved Ackermann’s result by showing that ZFfin, a finitary version of ZF, is bi-interpretable with PA. We
may ask the same question for HA: could we find a set theory that is bi-interpretable with HA? One possible
solution is to expand the language of set theory and add some axioms that are related to arithmetic, like
[12]. However, we want to stick our set-theoretic counterpart is closer to ‘standard’ set theories as possible.

Fortunately, we have a good start point: Aczel [2] characterized and gave a careful analysis of a weak
subtheory ACST of constructive set theory CZF, which is able to interpret Heyting arithmetic. Moreover,
Aczel observed that there is a faithful interpretation from HA to ACST. We may hope that we can find
a set theory that is bi-interpretable with HA by extending ACST, as Kaye and Wong capture set-theoretic
counterpart of PA by extending ZF− Infinity, which can be interpreted in PA.

It turns that our strategy works: we will see that HA is bi-interpretable with ACSTfin + Set Induction,
which is identical with CZFfin, the finitary version of CZF. A bit surprisingly, Kaye and Wong’s proof
also works over constructive background, and we will see later how their proof can be implemented over a
constructive setting.

Theorem. HA is bi-interpretable with CZFfin.

Kaye and Wong also observed that their bi-interpretation is also a bi-interpretation between subtheories
of PA and ZFfin, which is called IΣn and Σn-Sep respectively, where Σn-Sep is a theory of set theory that
comprises Extensionality, Pairing, Empty set, Union, ¬Infintiy, ∆0-Collection, Σ1 ∪ Π1-Set Induction and
Σn-Separation. These subtheories rely on the hierarchy of formulas, which is given by prenex normal form,
and there is little known about the complexity of predicate formulas over intuitionistic predicate logic, which
renders finding appropriate constructive counterparts seemingly hard. However, we will see that modifying
Fleischmann’s hierarchy of formulas [7] yields a hierarchy on formulas of intuitionistic predicate logic, and
also provides a nice subtheories of HA and CZFfin. As a result, we also have a constructive analogue of Kaye
and Wong’s analysis on subtheories:

Theorem. For each n ≥ 1, there are subtheories of IEn of HA and SIEn of CZFfin that are bi-interpretable
with each other. Moreover, adding the full law of excluded middle into IEn and SIEn yields IΣn and Σn-Sep
respectively.

We know that ZF proves ZFfin has a natural model, namely, the set of all hereditarily finite sets. We may
ask whether a similar result holds CZF. We will see the following theorem holds in Section 10:

Theorem. CZF proves the set of hereditarily finite sets HF exists and satisfies CZFfin. However, HF need
not be a model of IZFfin.
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We develop facts that are necessary backgrounds in Section 2 to 6: we will define theories and interpre-
tation between theories in Section 2 and Heyting arithmetic in Section 3 respectively. We will define and
discuss ACST and finitary constructive set theories in Section 4. We will also provide a streamlined version
T of CZFfin for further technical convenience. In Section 5, we define subtheories of Heyting arithmetic
and set theory based on a modification of Fleischmann’s hierarchy of formulas [7]. Section 7 and 8 explain
the interpretation à la Kaye and Wong is also a bi-interpretation between HA and CZFfin. It turns out in
Section 9 that the interpretation can also interpret subtheories of HA and CZFfin defined in Section 5. In
Section 10, we will define and examine properties of the set of all hereditarily finite sets HF over CZF.

2. Theories and interpretations

The central notion of this article is interpretation. Kaye andWong [8] and Aczel [2] adopted interpretations
that are defined by Visser [18]. In this article, we will follow Enderton’s definition of interpretation (See
Section 2.7 of [6],) with some adoptation of notions from [8] and [2].

We will identify theories with a set of axioms. For given two theories T0 and T1, we write T0 ⊢ T1 if T0
proves every axioms of T1. If both T0 ⊢ T1 and T1 ⊢ T0 holds, we write T0 ⊢⊣ T1 and say that T0 and T1 are
identical.

To define an interpretation t : T0 → T1, we need formulas π∀(x), πP (x0, · · · , xn−1) for n-ary predicate
symbol P and πf (x0, · · · , xn−1, y) for n-ary function symbol f . (We will regard constant symbols as nullary
function symbols.) In addition, we assume that T1 proves ∃xπ∀(x) and the functionality of πf , that is,

(1) T1 ⊢ ∀x0 · · · ∀xn−1∃!yπf (x0, · · · , xn−1, y).

Then the interpretation t sends a formula of T0 to a formula of T1 as follows:

• Let s0, · · · , sn−1, t1, · · · , tm be terms, f be a function symbol, and P be a predicate symbol or =.
Then (P (f(s0, · · · , sn−1), t1, · · · , tm))t is

(2) ∃x0 · · · ∃xn−1∃y





∧

0≤i<n

(xi = si)
t ∧ πf (x0, · · · , xn−1, y) ∧ (P (y, t1, · · · , tm))t





We will apply the similar procedure if f(ti) appears on another argument of P .
• (P (x0, · · · , xn−1))

t is πP (x0, · · · , xn−1), where each xi is a variable.
• t respects logical connectives. For example, (φ→ ψ)t is defined by φt → ψt.
• (∀xφ(x))t is ∀x(π∀(x) → φt(x)). (∃xφ(x))t is ∃x(π∀(x) ∧ φ

t(x)).

Every theory T has the identity interpretation 1T , which is defined by π∀(x) ≡ (x = x), πP ≡ P and
πf (~x, y) ≡ (f(~x) = y). For two interpretation s, t : T0 → T1 , we say they are the same when T1 ⊢
∀~x[φs(~x) ↔ φt(~x)] for all formulas φ(~x). In that case, we write s = t. The composition of two interpretation
is the result of application of the two interpretations.

We can see that if s : T0 → T1 is an interpretation, then T0 ⊢ φ implies T1 ⊢ φs. We call s is faithful if
the converse also holds: that is, s is faithful if T0 ⊢ φ ⇐⇒ T1 ⊢ φ

s. For s : T0 → T1 and t : T1 → T0, s and t

are the inverses of each other if ts = 1T0
and st = 1T1

. In that case, we call s a bi-interpretation between T0
and T1.

3. Heyting arithmetic

Heyting arithmetic HA is the constructive counterpart of Peano arithmetic. There are various possible
formulations of Heyting arithmetic: for example, we may take the language of arithmetic as the set of all
primitive recursive functions and add axioms that define each primitive recursive functions. Since we want
to analyze the relation between classical interpretation and constructive one, we choose the form given over
the language L = {0, S,+, ·} with the following axioms:

(1) ∀x, y(Sx = Sy → x = y),
(2) ∀x(x = 0 ∨ ∃y(x = Sy)),
(3) ∀x(x+ 0 = x),
(4) ∀x, y(x+ Sy = S(x+ y)),
(5) ∀x(x · 0 = 0),
(6) ∀x, y(x · Sy = x · y + y),
(7) For each formula φ(x), φ(0) ∧ ∀x[φ(x) → φ(S(x))] → ∀xφ(x).



CONSTRUCTIVE ACKERMANN’S INTERPRETATION 3

The last axiom is called the induction scheme. These set of axioms are strong enough to define primitive
recursive functions and show they are provably total. Especially, we are interested in the totality of the
exponential function, and we postulate it as an axiom Exp. It is known that HA proves Exp, but Exp could
not be provable from a weaker subtheory of HA.

Heyting arithmetic does not include the law of excluded middle, but it proves the law of excluded middle
for bounded formulas, that is, formulas whose quantifiers are of the form ∀(x < y) or ∃(x < y):

Proposition 3.1. Let φ be a bounded formula of HA. Then HA proves φ ∨ ¬φ. �

4. Constructive finitary set theories

Aczel [2] defines an arithmetical version of constructive set theory ACST to analyze finite sets over con-
structive set theory CZF. We clarify some notions to define what ACST is. A formula φ(x) of set theory is
∆0 if every quantifier in the formula is bounded, that is, every quantifier is of the form ∀x(x ∈ a → · · · ) or
∃x(x ∈ a ∧ · · · ). We will abbreviate previous formulas into ∀x ∈ a(· · · ) and ∃x ∈ a(· · · ) respectively.

Aczel defined RCST before defining ACST.

Definition 4.1. RCST is the theory consisting of Extensionality, Empty set, Binary Intersection, Pairing
and Global Union-Replacment Rule GURR: for each formula φ(u, v),

(3) ∀u∃!vφ(u, v) → ∀x∃y∀z[z ∈ y ↔ ∃v(z ∈ v ∧ ∃u ∈ xφ(u, v))].

Intuitively, GURR states if F is a class function and x is a set, then
⋃

F ”[x] is also a set. Hence GURR im-
plies Union and Replacement. Some readers might wonder why RCST does not include a form of Separation.
However, the following well-known result shows that RCST proves Separation for ∆0-formulas:

Lemma 4.2. (Corollary 9.5.7 of [3]) BCST without ∆0-Separation proves that ∆0-Separation is equivalent
to Binary Intersection. �

Here BCST comprises Extensionality, Pairing, Replacement, Union, Empty set, and ∆0-Separation. Since
RCST proves every axiom of BCST except for ∆0-Separation, we can apply the previous lemma to RCST.

ACST is obtained by adding the induction scheme on natural numbers. We need to define what natural
numbers are:

Definition 4.3. The class of natural numbers ω is defined as follows:

(4) ω = {α ∈ Ord | α+ ⊆ {0} ∪ {γ+ | γ ∈ Ord}},

where α+ := α ∪ {α} and Ord is the class of all ordinals, that is, transitive sets whose elements are also
transitive.

Definition 4.4. Mathematical Induction Axiom Scheme MathInd(ω) is the following statement: for every
definable class X , the following holds:

(5) Ind(X) → ω ⊆ X,

where Ind(X) states X is an inductive class:

(6) Ind(X) ≡ (0 ∈ X ∧ ∀x ∈ X(x+ ∈ X)).

ACST is the theory obtained by adding MathInd(ω) to RCST.

ACST is strong enough to do finitary mathematics. For example, the following theorem is a consequence
of ACST.

Lemma 4.5 (Primitive Recursion). (ACST) Let A and B be classes and let F0 : B → A, F1 : B×ω×A→
A be class functions. Then there is H : B×ω → A such that H(b, 0) = F0(b) and H(b, k+1) = F1(b, k,H(b, k))
for all k ∈ ω.

Proof. The proof of the lemma is available at Theorem 10.6 of [2]. We will give a direct proof that works
over ACST for later analysis.

A function f is partially given under b up to m if f : m+ → A such that f(0) = F0(b) and f(k+) =
F1(b, k, f(k)) for all k ∈ m. Take ψ(b, k, f) if and only if f is partially given under b up to m and k ∈ dom f .

We claim that ∀b,m∃fψ(b,m, f) holds. We will use induction on m. The case m = 0 is obvious. Suppose
that ∃gψ(b,m, g) holds. Take u0 = F1(b, k, g(m)) and let f = g ∪{(m+, u0)}. Then f witnesses ψ(b,m+, f).
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Now assume that f0 and f1 are partially given under b, up to m0 and m1 respectively. We can see that
k < min(m0,m1) → f0(k) = f1(k) by induction on k. Finally let

�(7) H(b,m) = x ⇐⇒ ∃f [f is partially given under b up to m and f(m) = x].

By Primitive recursion, we can see that ACST is able to define addition and multiplication over ω. We
will see later, however, that ACST does not suffice to be bi-interpretable with HA. For example, ACST does
not prove every set is finite, while the set theory simulated by HA seems should do, as PA does.

Definition 4.6. Let Fin be the class of all finite sets, that is,

(8) Fin = {x | ∃n ∈ ω∃f : n→ x(f is a bijection between n and x)}.

The assertion V = Fin is that every set is finite, i.e., for each set x there is n ∈ ω such that x is a bijective
image of n. One can show that ACST proves, for every finite set x, there is a unique such a natural number
n. The readers can find its proof in Section 8.2 of [3]. We call this natural number n the cardinality of x.

Let ACSTfin be the theory ACST+ (V = Fin). It is easy to see that ACSTfin proves the axiom of choice

(9) ∀a[∀x ∈ a∃yφ(x, y) → ∃f ∈ aV ∀x ∈ aφ(x, f(x))]

and ∆0-excluded middle. Finally, let us consider the theory ACSTfin + Set Induction. We will verify that
the interpreted axiom is valid, but the verification takes effort per each axiom. Hence we prefer an axiom
system as simple as possible. We will see that the following system T is a streamlined version of ACSTfin +
Set Induction:

Definition 4.7. The theory T comprises the following axioms: Extensionality, Pairing, Union, Binary
Intersection, Set Induction and V = Fin.

Obviously T is a subsystem of ACSTfin + Set Induction. Moreover, we have

Proposition 4.8. T and ACSTfin + Set Induction are identical.

Proof. It suffices to show that MathInd(ω) and GURR is derivable from T.

(1) MathInd(ω): Let X be an inductive class. Applying Set induction to the formula x ∈ ω → x ∈ X
yields the result. However, we will give an alternative proof for later analysis.

Assume that α ∈ ω. Then we have α = 0 or α = γ+ for some ordinal γ. The former obviously
implies α ∈ X . In the latter case, apply the set induction to x ∈ γ++ → x ∈ A. Then we have
α = γ+ ∈ A.

(2) GURR: Let F be a class function. We will use the induction on the cardinality of x: assume that
⋃

F ”[x] exists for sets x of cardinality x. Then
⋃

F ”[x ∪ {y}] =
(
⋃

F ”[x]
)

∪ F (y), whose existence
follows from the listed axioms. �

Aczel showed that ACSTfin + Set Induction is identical with CZFfin, the finitary CZF, which is obtained
by replacing the axiom of Infinity in CZF to V = Fin. The proof is direct, and it uses induction on the size
of sets. We will give a proof of axiom of Strong collection from T for later analysis:

Proposition 4.9. T proves the axiom of Strong Collection.

Proof. Assume that ∀x ∈ a ∪ {c}∃yφ(x, y), where a is a set of size n and c /∈ a. Assume inductively that
Strong Collection holds for sets of size n, so we have b such that ∀x ∈ a∃y ∈ bφ(x, y) and ∀y ∈ b∃x ∈ aφ(x, y).
Take d such that φ(c, d), then b ∪ {d} witnesses Strong Collection for φ and a ∪ {c}. �

Kaye and Wong [8] included the existence of transitive closure into their set-theoretic counterpart of PA.
Thus it is natural to ask whether our T should contain the existence of transitive closure as an axiom. The
following lemma ensures it is provable from T, so adding it is unnecessary:

Lemma 4.10. T proves every set has a transitive closure; that is, for each x there is a transitive set y such
that x ⊆ y and for each transitive z such that x ⊆ z, we have y ⊆ z. Furthermore, the class function TC(x)
is definable.
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Proof. We will show first that the class TC(x) is uniformly definable. Consider F0(x) = x and F1(x, y) =
x ∪

⋃

y. By Lemma 4.5, there is H such that H(x, 0) = x and H(x, n + 1) = x ∪
⋃

H(x, n). Now take
TC(x) =

⋃

n∈ωH(x, n).
We can show that H(x, n) ⊆ y for all transitive y such that x ⊆ y by induction on n. Therefore TC(x)

is the least transitive class that contains x. However, we do not know TC(x) is a set yet. We will show the
following statement by induction on x:

(10) ∃u(u is transitive ∧ x ⊆ u ⊆ TC(x)).

Assume that (10) holds for all y ∈ x, i.e., for each y ∈ x we can find a transitive v such that v ⊆ TC(y). By
Strong collection, we can find c such that

(11) [∀y ∈ x∃v ∈ c(v is transitive ∧ y ⊆ v ⊆ TC(y))]

∧ [∀v ∈ c∃y ∈ x(v is transitive and ∧ y ⊆ v ⊆ TC(y))].

Now let u = x ∪
⋃

c. We claim that u witnesses (10). Since u is a union of transitive sets, u is transitive.
u ⊆ TC(x) follows from y ∈ x→ TC(y) ⊆ TC(x). �

We work over T in the remaining part of the section unless specified. We can see that the recursion
theorem on sets holds since T proves every axiom of CZF except for Infinity.

Lemma 4.11 (Set Recursion). Let G be a total (k+2)-ary class function. Then there is a total (k+1)-ary
class function F such that

(12) ∀~x∀y[F (~x, y) = G(~x, y, 〈F (~x, z) | z ∈ y〉)].

Proof. We will follow the proof of Proposition 19.2.1 of [3]. We present the whole proof for the sake of
completeness and later analysis.

Call f be partially given under ~x if f is a function of a transitive domain and ∀y ∈ dom f [f(y) = G(~x, y, f ↾

y)]. Take

(13) ψ(~x, y, f) ≡ (f is partially given under ~x) ∧ y ∈ dom f.

We will see that for given ~x, ∀y∃fψ(~x, y, f) holds. We appeal to Set Induction on y: assume that ∀u ∈
y∃gψ(~x, u, g) holds. By Strong Collection, we have a set A such that ∀u ∈ y∃g ∈ Aψ(~x, u, g) and ∀g ∈ A∃u ∈
yψ(~x, u, g). Let f0 =

⋃

A and u0 = G(~x, y, 〈f0(u) | u ∈ y〉). Take f = f0 ∪ {(y, u0)}.
We want to claim that f is a function. We need to ensure the following statement which can be shown

easily by applying Set Induction: for any g0, g1 ∈ A and x ∈ dom(g0) ∩ dom(g1), we have g0(x) = g1(x).
Its upshot is that f0 is a function. It is easy to see that the dom f0 is transitive, y ⊆ dom f0 and ∀u ∈
dom f0[f(y) = G(~x, y, f0 ↾ y)]. Hence ∀u ∈ dom f0 ψ(~x, u, f0).

Now assume that (a, b), (a, c) ∈ f . Then ether both of them is a member of f0 or one of them is a member
of {(y, u0)}. In the latter case, we can see that b = c by applying ψ(~x, u, f0) for all u ∈ dom f0 or the
definition of u0. Hence f is a function. Checking the remaining conditions of ψ(~x, y, f) is direct, so we omit
it. �

A class Φ is an inductive definition if it is a class of pairs. Every inductive class Φ is associated with a
class of consequences ΓΦ(A) = {x | (A, x) ∈ Φ}. A class C is ΓΦ-closed if ΓΦ(C) ⊆ C.

Proposition 4.12. (Class Inductive Definition Theorem) Let Φ be an inductive definition. Then there is a
least ΓΦ-closed class. �

See Theorem 12.1.1 of [3] for the proof of Class Inductive Definition Theorem. Note that the proof in [3]
works over BCST with Strong collection and Set induction, which are provable from T.

We will conclude this section with the following lemma, which asserts the composition of a ∆0-formula
and a class function is still decidable.

Lemma 4.13. Let F be a class function and φ(x) be a ∆0-formula. Then φ(F (x)) ∨ ¬φ(F (x)) holds.

Proof. It follows from the equivalence between φ(F (x)) ∨ ¬φ(F (x)) and

�(14) ∀y[(y = F (x)) → (φ(y) ∨ ¬φ(y))].
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5. Complexity of formulas and subtheories

We will analyze the interpretation over subtheories of T and HA, as Kaye and Wong scrutinize subtheories
of PA and finitary ZFC. Kaye and Wong analyzes these theories along the complexity of Induction schemes
and Separation. It calls into a need for a new hierarchy for arithmetical formulas, so we introduce a variation
of Fleischmann’s hierarchy of formulas [7].

Definition 5.1. Let Φ and Ψ be sets of formulas over the language of arithmetic or set theory. Then the set
E(Φ) is defined as the closure of Φ under ∧, ∨, bounded quantifications and ∃. The set U(Φ,Ψ) is defined
as the smallest set such that

(1) Φ ⊆ U(Φ,Ψ),
(2) U(Φ,Ψ) is closed under ∧, ∨, ∀, and bounded quantifications, and
(3) if ψ ∈ Ψ and φ ∈ U(Φ,Ψ) then ψ → φ is in U(Φ,Ψ).

Definition 5.2. Let E0 = U0 be the collection of all bounded formulas. For each n ≥ 1, define En := E(Un−1)
and Un := U(En−1, En−1).

Then En and Un form increasing sequences of sets. Moreover, we have the following fact by modifying the
proof of Theorem 3.10 of [7]:

Proposition 5.3.
⋃

n<ω En =
⋃

n<ω Un and they are equal to the set of all formulas. Moreover, En and Un

are subsets of En+1 and Un+1 respectively. �

We will confuse En and Un with a family of formulas that are provably equivalent to an En and Un

formula respectively. Note that E1-formulas over the language of set theory are also known as Σ-formulas
(cf. Definition 19.1.2 of [3].) Σ-reflection principle over IKP (Theorem 19.1.4 of [3]) shows every E1-formula
over IKP is in fact Σ-formula. Moreover, En and Un classes are classically equivalent to Σn and Πn classes
respectively.

We will analyze some definitions and theorems under the mentioned hierarchy.

Definition 5.4. Let IEn be a subtheory of HA where the full induction scheme is weakened to the induction
scheme for En-formulas. SIEn be a subtheory of T that restricts Set Induction schemes to En-formulas.

IE1 is still strong enough to show that every primitive recursive function is definable and total. Especially,
IE1 proves Exp. On the set-theoretic side, we can see that ∆0-LEM, the axiom of power set are still provable
from SIE1. Moreover, we have the following results:

Lemma 5.5 (Mathematical Induction for En-formulas). Let n ≥ 1. Then SIEn proves Ind(X) → ω ⊆
X for each class X that is given by an En-formula.

Proof. Note that we cannot apply Set Induction to x ∈ ω → x ∈ X since the complexity of x ∈ ω is
E1, so the complexity of the whole formula could not be En. Therefore, we instead apply the alternative
proof of Proposition 4.8: observe that x ∈ γ++ → x ∈ A is En if A is an En-class since it is equivalent to
∃z ∈ γ++(z = x ∧ z ∈ A), so the previous proof works. �

The following results can be obtained by modifying the proofs in Section 4:

Lemma 5.6. Let n ≥ 1. Then the axiom of Strong Collection for En-formulas are provable from SIEn. �

Lemma 5.7 (Primitive recursion for En-formulas). SIEn proves the following: let n ≥ 1 and m ≥ n.
Assume that A and B are Em-definable classes and take Em-definable class functions F0 : B → A and
F1 : B × ω × A → A. Then there is a unique H : B × ω → A such that H(b, 0) = F0(b) and H(b, k + 1) =
F1(b, k,H(b, k)). �

Note that Lemma 5.7 shows the addition and multiplication on ω is still definable over SIEn.

Lemma 5.8. SIE1 proves the existence and E1-definability of TC(x).

Proof. The proof of Lemma 4.10 still works over SIE1. Moreover, F0 and F1 in the proof of Lemma 4.10 is
E1, so H and TC is also E1 by Lemma 5.7. �

Hence we can carry on the usual proof of Set Recursion theorem and Class Inductive Definition Theorem
for En-formulas over SIEn for n ≥ 1. The readers could consult with Section 9.3 and Chapter 12 of [3] for
the usual proof of Set Recursion Theorem and Class Inductive Definition Theorem.
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Lemma 5.9 (Set Recursion for En-formulas). Assume n ≥ 1. Then the following statement is provable
from SIEn: Let G be a total (k + 2)-ary class function of complexity Em for m ≥ n. Then there is a total
(k + 1)-ary class function of complexity Em such that ∀~x∀y[F (~x, y) = G(~x, y, 〈F (~x, z) | z ∈ y〉)]. �

Corollary 5.10 (Class Inductive Definition Theorem for En-definitions). Assume n ≥ 1 and m ≤ n.
Let Φ be an inductive definition of complexity Em. Then SIEn proves there is a least ΓΦ-closed class, whose
complexity is Em. �

6. Ordinals over SIE1

We will work over SIE1 in this section unless specified. The aim of this section is to prove the following
theorem:

Theorem 6.1. The following statements hold over SIE1:

(1) Ord = ω,
(2) There is a bijection from V to Ord.

We defined ordinals as transitive sets whose elements are also transitive, and Ord as the class of all
ordinals. For example, every member of ω is an ordinal:

Lemma 6.2. Every member of ω is an ordinal.

Proof. The proof can be done by induction on n. �

It is known that if every ordinal satisfies ∈-least principle, then ∆0-LEM holds. We will show the converse:
that is, we will prove that every ordinal satisfies ∈-least principle. In fact, we will see that some classical
properties of ordinals hold. The proof is not difficult, but we present every detail of it. The reader should
bear in mind that SIE1 proves the law of excluded middle for ∆0-formulas, so we may use it freely.

Lemma 6.3. If α is an ordinal and A is an inhabited subset of α, then A has an ∈-minimal element.

Proof. Observe that the assertion ‘There is an ∈-minimal element a ∈ A’ is a ∆0 statement. Hence either
A has an ∈-minimal element or every element of A is not ∈-minimal. Assume that the latter holds. We will
prove ∀a ∈ A(a /∈ A) from the assumption by appealing to Set induction. Let a be a set such that b /∈ A for
all b ∈ a. If a ∈ A, then a is an ∈-minimal element of A, contradicting with the assumption on A. Therefore
a /∈ A. By Set induction, a /∈ A holds for all a. This contradicts with that A is inhabited. �

Lemma 6.4. If α and β are an ordinals, then exactly one of α ∈ β, α = β or α ∋ β holds.

Proof. We will use set induction on α and β simultaneously. That is, assume that either γ ∈ δ, γ = δ or
γ ∋ δ holds for all γ ∈ α and δ ∈ β if γ and δ are ordinals.

Assume that α and β are ordinals. By ∆0-excluded middle, we have α = β or α 6= β. If the latter holds,
then

(15) ¬(∀γ ∈ α(γ ∈ β) ∧ ∀γ ∈ β(γ ∈ α)),

so either α \ β or β \ γ has an element. Without loss of generality assume that γ is an ∈-minimal element
of α \ β. We want to show γ = β.

Assume the contrary that γ 6= β holds. Then one of γ \ β or β \ γ is inhabited. If δ ∈ γ \ β, then δ ∈ α \ β
since δ ∈ γ ∈ α, contradicting with the minimality of γ. If δ is an ∈-minimal element of β \ γ, then either
γ = δ, γ ∈ δ or γ ∋ δ by inductive hypothesis. The two former hypotheses implies γ ∈ β, which contradicts
with γ /∈ β. The latter one contradicts with δ ∈ β \γ. In total, we have a contradiction. Therefore ¬(γ 6= β),
so we have γ = β due to ∆0-excluded middle. �

Proof of Theorem 6.1. We first claim that Ord = ω holds. We will show by induction on n that if there is an
injection from n to an ordinal α, then n ⊆ α. The case n = 0 is trivial. Let assume the inductive hypothesis
holds for n and there is an injection f : n+1 → α. Since we have an injection from n to α, n ⊆ α. Moreover,
there is β ∈ α which is different from members of n. Since both n and β are ordinals, we have n ∈ β, n = β
or n ∋ β holds. However, the latter case never happens, and the remaining two implies n ∈ α.
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We will use Σ and p functions defined by [8] to show Ord ∼= V . By Lemma 4.5, we can define Σ̂ :

ω × P(ω) → ω recursively as follows: Σ̂(0, x) = 0 and

(16) Σ̂(c+ 1, x) =

{

Σ̂(c, x), if c+ 1 /∈ x,

Σ̂(c, x) + (c+ 1), if c+ 1 ∈ x,

for all c ∈ ω and x ∈ P(ω). Now take Σ(x) = Σ̂(
⋃

x, x). Finally, let

(17) p(x) = Σ({2p(y) | y ∈ x}),

where the exponentiation is a natural number exponentiation. We can see that Σ̂ is E1, thus so does Σ by
Lemma 5.7. Lemma 5.9 ensures p is well-defined and is E1. Moreover, we can show that p : V → ω is a
bijection as [8] did: injectivity uses Set induction, and surjectivity uses induction on ω. �

7. The interpretation

The main theorem of this paper is as follows:

Theorem 7.1. HA and T are bi-interpretable.

We first define an interpretation from T to HA. Work over HA, and define a primitive recursive binary
relation E as follows:

(18) a E b ⇐⇒ ∃r < 2a∃m[b = (2m+ 1) · 2a + r]

Intuitively, a E b means the ath digit of the binary representation of b is 1 as classically did. Since m in the
above formula satisfies m < b, a E b is equivalent to a decidable formula.

Define an interpretation a : T → HA as follows: the domain of the interpretation is the whole natural
numbers. Take (a ∈ b)a ≡ (a E b). We will show that every axiom of T is valid under a. The proof for
V = Fin takes more effort, so we will postpone the proof of its validity.

Theorem 7.2. If σ is an axiom of T except for V = Fin, then HA ⊢ σa.

Proof. (1) Extensionality: The interpreted Extensionality states the following: if two natural numbers
have the same binary representation, then they are the same. Since the existence and uniqueness of
binary representation only relies on division algorithm and induction, which are still valid over HA,
the interpreted Extensionality is valid.

(2) Pairing: Consider the primitive recursive function pair(a, b) defined by pair(a, a) = 2a, and pair(a, b) =
2a + 2b if a 6= b. It is easy to see that if c = pair(a, b), then ({a.b} = c)a holds.

(3) Union: Consider the following primitive recursive functions: define binunion(a, b) as binunion(a, 0) = 0
and

(19) binunion(a, 2c + b′) =











a if b′ = 0 and c E a,

a+ 2c if b′ = 0 and ¬c E a,

binunion(binunion(a, 2c), binunion(a, b′)) otherwise.

for b = 2c + b′, b′ < 2c. Now let union(0) = 0 and union(a) = binunion(c, union(a′)) for a = 2c + a′,
a′ < 2c. Then we can see that union(pair(a, b)) = binunion(a, b) holds. Moreover, if c = union(a) then
(
⋃

a = c)a holds.
(4) Binary Intersection: Define bininter(a, b) by primitive recursion on b as follows: bininter(a, 0) = 0

and

(20) bininter(a, 2c + b′) =











2c if b′ = 0 and c E a,

0 if b′ = 0 and ¬c E a,

binunion(bininter(a, 2c), bininter(a, b′)) otherwise.

for b = 2c + b′ and b′ < 2c. Then bininter(a, b) witnesses the intersection of a and b.
(5) Set induction: It directly follows from the induction of HA and the fact a E b → a < b for all a and

b.
�
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The case for V = Fin needs some preparation. We need an interpreted version of various notions to de-
scribe the interpreted axiom, so we define them. The ordered pair op(a, b) of a and b is pair(pair(a, a), pair(a, b)).
The von Neumann ordinal is defined recursively as follows: v(0) = 0 and

(21) v(n+ 1) = binunion(v(n), 2v(n)).

Lemma 7.3. If (a ∈ ω)a, then a = v(n) for some n.

Proof. We will use induction on a. If a = 0, then take n = 0. Assume that our theorem holds for all c < a,
and a satisfies (a ∈ ω)a. Since a > 0, there is γ such that

(22) ∃c[(c ∈ Ord)a ∧ a = binunion(c, 2c)]

We can see that a = binunion(c, 2c) implies c < a. By the inductive hypothesis, c = v(n) for some n. By
definition of v, we have a = v(n+ 1). �

Theorem 7.4. HA proves (V = Fin)a.

Proof. Note that the word ‘function’ in this proof means a binary relation with the definining condition
of a function. Before to describe the proof, let me define a size σ(a) of a natural number: σ(0) = 0 and
σ(a) = 1 + σ(a′) if a = 2c + a′ for some c < a and, a′ < 2c.

We will use induction on a. If a = 0, then 0 witnesses the bijection between 0 and v(0) = 0. Let a = 2c+a′

for a′ < 2c. Assume inductively that we have a function f ′ from a′ to v(σ(a′)), and the inverse g′ of f ′. We
claim that the relation

(23) f = binunion(f ′, 2(op(c,v(σ(a
′))))

is a function from a and v(σ(a)) = v(σ(a′) + 1) with the inverse function g = binunion(g′, 2op(v(σ(a
′)),c))

Since f ′ is a function of domain a′ and a′ < 2c, the domain of f ′ does not contain c. Hence f is a function.
It is obvious that the domain of g′, namely v(σ(a′)), does not contain v(σ(a′)). It shows g is a function. It
remains to show that f and g are inverses of each other, but it is clear from the properties of f ′ and g′ and
the definition of f and g. �

In summary, we have

Corollary 7.5. a is an interpretation from T to HA. �

8. The inverse interpretation

We follow the inverse interpretation given by [8]: we first define the ordinal interpretation o from HA to
T, and compose it with p.

Definition 8.1. The ordinal interpretation o is defined as follows: 0o is the empty set, So(x) = x ∪ {x}.
Interpretation of addition and multiplication employs the corresponding operation on ordinals.

Then we have

Theorem 8.2. o is an interpretation from HA to T.

Proof. The only remaining axiom we need to check its validity is the induction scheme, and it follows from
induction on ω. �

o is not an inverse interpretation of a because of the interpretation of quantifiers. The formula ∀xφ(x)
over HA is interpreted into ∀x ∈ ωφo(x) under o, and its interpretation under a is ∀x[(x ∈ ω)a → φao(x)],
which is not equivalent to the original formula even if φ(x) is atomic. Kaye and Wong resolved this problem
by relying on the bijection p : V ∼= ω.

Definition 8.3. The interpretation b is defined as follows: the domain of the interpretation is x = x. If
t(~x) is a term of HA whose variables are all expressed, then tb is defined as to(p(~x)).

Then b is an interpretation from HA to T. Moreover, a and b are inverses of each other:

Theorem 8.4. ab = 1HA and ba = 1T.
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Proof. Both ab and ba respects equality and domain, so it suffices to see that both interpretations preserve
atomic symbols.

To prove ba is the identity, it is sufficient to see that (x ∈ y)ba is equivalent to x ∈ y. Note that (x ∈ y)ba

is equivalent to (x E y)b, in other words,

(24) ∃r < 2p(x)∃m ∈ ω[p(y) = (2m+ 1)2p(x) + r].

The above formulation (x ∈ y)ba is not a ∆0-formula for the following reasons: First, we do not know ω
is a set, and it could be a proper class. Second, the definition of p is not ∆0. Despite that, (x ∈ y)ba is a
decidable formula by the fact that x E y is equivalent to a decidable formula and Lemma 4.13.

Let y = {zk | k < n} be an enumeration of y such that p(z0) > · · · > p(zn−1). We can see that for each
k < n, there are m and r < p(zk) such that p(y) = (2m + 1)p(zk) + r by induction on k and Euclidean
division algorithm. If x ∈ y, then x = zk for some k, thus it satisfies (24). If x /∈ y, then p(x) is equal to none
of the p(zk). By dividing cases, we can see that p(y) = 2m2p(x)+ r for some m and r < 2p(x). By uniqueness
of the remainder and quotient, we have the negation of (24). Since both x ∈ y and (24) are decidable, we
have the equivalence of these two formulas.

It remains to show that ab is the identity. It requires a sequel of lemmas on interpreted notions of T. We
can see that (a ∈ ω)a if and only if a = v(n) for some n by Lemma 7.3 and an easy inductive argument.
Moreover, we can show the following fact by induction on y:

Lemma 8.5. For each x and y, we have (Sa(v(y)) = v(y+1), v(x)+a v(y) = v(x+y), v(x) ·a v(y) = v(x ·y),
and (v(x)v(y))a = v(xy). �

Here the functions under a are set-theoretic functions for von Neumann ordinals, and the functions
appearing in the argument of v are functions of the language of HA. From this lemma, we have

Lemma 8.6. pa(x) = v(x); that is, (p(x) = y)a if and only if v(x) = y.

The proof uses induction on x: assume that the desired equality holds for all y < x. Let x = 2c + x′ for
x < 2c. Then 2c + x′ = binunion(2c, x′), so (x = {c} ∪ x′)a. Hence (p(x) = p(x′ ∪ {c}) = 2v(c) + v(x′))a, and
the previous lemma ensures pa(x) = v(x).

It remains to check that function symbols S, + and · are preserved under ab. We will only see the proof
for S, as the remaining cases are analogous: (S(x) = y)ab if and only if (p(x)∪{p(x)} = p(y))a, which turns
out to be equivalent to binunion(v(x), 2v(x)) = v(y). Hence v(S(x)) = v(y), which is equivalent to S(x) = y.

We will conclude this section by correcting a result of Aczel. Aczel stated in Section 11 of [2] that the
ordinal interpretation o : HA → T is a faithful interpretation if T is a subtheory of IZFfin that contains ACST.
We know that IZFfin is a classical theory, so it proves the interpreted version of semi-classical principles like
WLEM. However, we know that HA does not prove WLEM. Hence there is no faithful interpretation from
HA to IZFfin. The result holds, fortunately, if we correct IZFfin to CZFfin:

Proposition 8.7. Let T be a subtheory of CZFfin that contains ACST as a subtheory. Then o : HA → T is
a faithful interpretation.

Proof. We can see that ACST is capable of defining o, hence o : HA → T is an interpretation. We will see
that the composition ao : HA → HA is faithful: Assume that HA ⊢ φao. By applying inverse interpretation
b, we have CZFfin ⊢ φo. We can see that every quantifier of φo is of the form ∀x ∈ ω or ∃x ∈ ω. We can see
that the formula is still provable if we replace every variable x to p(x) and omit ∈ ω from quantifiers since
p is a definable bijection between V to ω. Hence CZFfin ⊢ φb, and we have HA ⊢ φ. The main result follows
directly from the previous argument. �

9. Interpretating subtheories of HA

Kaye and Wong gave not only a bi-interpretation between PA and its set-theoretic counterpart, but also
a bi-interpretation between their subtheories. It can be given by asserting the previous proof works over a
subtheory of PA and finitary set theory. We can do a similar work over HA and T under the En-hierarchy of
formulas.

Let us analyze the definitional complexity of a. As [8] pointed out, the definition of a only involves
bounded formulas except for exponentiation function. However, the exponentiation function is definable by
a E1-formula with the help of E1-induction. In fact, we can show the following general theorem:
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Proposition 9.1. Every primitive recursive function is definable by an E1-formula over IE1. �

The proof of Proposition 9.1 is the same with the classical counterpart of the theorem: namely, every
primitive recursive function is Σ1-definable over IΣ1. As a speical case of Proposition 9.1, we can see a E b
is definable by a E1-formula. Hence a sends each En (or Un) formulas of set theory to En (or Un) formulas of
arithmetic. From this, we can infer the following theorem:

Theorem 9.2. Let n ≥ 1. Then a is an interpretation from SIEn to IEn. �

The case of b involves with the complexity of o and p. We can see that the definitional complexity of Σ̂,
p and primitive recursive functions are E1 by Lemma 5.7 and Lemma 5.9. As the definition of b employs p,
b could increase the complexity of formulas. Fortunately, we can see that En-classes are stable under this
substitution since φ(F (x), y) is equivalent to ∃z(z = F (x) ∧ φ(z, y)):

Lemma 9.3. (BCST) Let φ(x, ~y) be an En-formula for n ≥ 1 and F (x) be a E1-class function. Then
φ(F (x), ~y) is an En-formula. �

Hence we have the following theorem:

Theorem 9.4. b is an interpretation from IEn to SIEn. �

We can see that the proof of Theorem 8.4 works over IEn and SIEn. Therefore, we have the following:

Corollary 9.5. Let n ≥ 1. Then the interpretations a : SIEn → IEn and b : IEn → SIEn are inverses of each
others. �

We will finish this section by showing that the previous results are exactly the constructive counterpart
of [8]. Kaye and Wong proved that a and b is bi-interpretations between IΣn and Σn-Sep. It is easy to see
that IEn with the full law of excluded middle is IΣn. The following theorem shows SIEn is the constructive
counterpart of Σn-Sep:

Theorem 9.6. Let n ≥ 1. Then SIEn with the full law of excluded middle is identical with Σn-Sep.

Proof. Let SIEc
n be SIEn with the full law of excluded middle. Since we have the full law of excluded middle,

En and Un-classes coincide with Σn and Πn-classes respectively. We will divide the proof into two parts:

Lemma 9.7. SIEc
n ⊢ Σn-Sep.

Proof. Note that SIEc
n ⊢ Σn-Strong Collection by the proof of Proposition 4.9. We can see that Σn-Strong

Collection with the full law of excluded middle proves Σn-Separation. Proving ∆0-Collection and ¬Infinity
from SIEc

n are easy. In sum, we have shown that SIEc
n proves every axioms of IΣn except for Σ1∪Π1-Induction.

Proving the induction scheme is trivial if n ≥ 2, since every Π1-formula is Σ2. However, there is another
way to prove Π1-induction from the remaining axioms, which works even if we only have E1-induction:
Let φ(x) be a Π1-formula. Assume the contrary that φ(x) does not satisfy set induction, in other words,
(∀y ∈ xφ(y)) → φ(x) holds for all x, but ¬φ(a) also holds for some a. Let n be a cardinality of TC(a), and
consider the set

(25) X = {m ∈ n+ | ∃x[¬φ(x) ∧ ∃f : m→ TC(x) such that f is a bijection.]}

(Σ1-Separation is needed to define X .) Then X is an inhabited set of ordinals, so it has a minimal element
m. Let x be a set such that ¬φ(x) and the cardinality of TC(x) is m. For each y ∈ TC(x), we have
|TC(y)| < |TC(x)|, so φ(y). Therefore φ(y) for all y ∈ x, and it implies φ(x), a contradiction. �

Lemma 9.8. Σn-Sep ⊢ SIEc
n.

Proof. Observe that ∆0-Set Induction proves the axiom of Regularity. We will see that Σn-induction scheme
holds over IΣn.

Assume that φ(x) is a Σn-formula that violates Set Induction, so that ∀y ∈ xφ(x) → φ(x) for all x, but
there is a such that ¬φ(a). Now consider the set X = {x ∈ a | ¬φ(x)}. If X is empty, then φ(a). If X
is not empty, choose an ∈-minimal element x of X , which would satisfy φ(x). In either case, we have a
contradiction. Therefore φ(x) follows Set Induction scheme.
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Finally, the negation of Infinity implies V = Fin classically: Assume that V 6= Fin holds. Let a be a set
that is not bijectable with any n ∈ ω. Since we have Σ1-Set Induction, we can apply Lemma 5.9 to define
rank function as follows:

(26) rankx =
⋃

{rank y + 1 | y ∈ x}.

Note that we proved Lemma 5.9 over SIE1, so there is a possibility that we are using V = Fin in the proof
of Lemma 5.9. However, we do not need V = Fin in this proof of Lemma 4.10 and Lemma 5.9 if we have
Σ1-Collection, which is provable from Σ1-Sep.

We can show that if every element of x has a rank smaller than n, then x is finite: it follows from that
Vn exists for each natural number n, which is a theorem of Σ1-Sep. Hence the set X = {rank y | y ∈ a} is
infinite. Since ω ⊆

⋃

X , ω is a set. Therefore, we have the axiom of Infinity. �

Combining these two lemmas, we have Σn-Sep ⊢⊣ SIEc
n �

Note that the only properties of En used in this section for proving a and b are well-defined and bi-
interpretations of each other are that En contains bounded formulas and En = E(En). Thus we can extend
our argument to any class of formulas with certain conditions. We state it without proof:

Proposition 9.9. Let Γ and Γ′ be collection of formulas over set theory and arithmetic respectively, such
that both of Γ and Γ′ contains ∆0. Assume that Γ and Γ′ satisfies E(Γ) = Γ and E(Γ′) = Γ′. Furthermore,
assume that a sends Γ-formulas to Γ′-formulas and vice versa for b.

Then a is a bi-interpretation between SIΓ, a theory obtained by restricting Set Induction in T to Γ-formulas,
and IΓ′, which is obtained by restricting induction scheme of HA to Γ′-formulas. �

10. A natural model of CZFfin: the set of hereditarily finite sets

In this section, we will work over CZF unless stated otherwise.
ZF proves that the set of sets of all finite rank Vω is a model of ZFfin. Moreover, we may regard Vω as a

natural model of ZFfin since it is countable and every set given by Ackermann’s intepretation falls into Vω .
We may ask CZF can prove the existence of a natural model of CZFfin. One candidate is Vω , but we will not
consider it for the following reasons: first, Vω could not be a set in CZF. (In fact, even the power set of 1
need not be a set in CZF.) Second, we cannot ensure Vω need not be countable even if we assume the axiom
of power set. In fact, McCarty showed that V [K0], the model given by Kleene realizability satisfies IZF with
‘P(1) is not subcountable.’ (See Corollary 3.8.3 of [9].) Aczel [2] also introduced the class of hereditarily
finite sets HF, and provide some properties of it. We have to add some remarks on finiteness and related
concepts over CZF before we can say about what HF is.

Finite sets are sets that have a bijection with a von Neumann natural number. However, this notion of
finite sets over constructive set theory is not well-behaved unlike classical finite sets. For example, a subset
of a finite set need not be finite. It does not mean we have to take another definition of finite sets. Instead,
we divide notions of finiteness:

Definition 10.1. A set x is finite if there is a bijection from n ∈ ω to x. x is finitely enumerable if there is
a surjection from n ∈ ω to x. x is subfinite if x is a subset of a finite set.

The following condition has a essential role to characterize which subsets of a finite is again finite:

Definition 10.2. Let A be a set. A subset B ⊆ A is decidable if x ∈ B ∨ x /∈ B for all x ∈ A. A is discrete
if the equality relation is a decidable subset of A×A.

Proposition 10.3. (Proposition 8.1.11 of [3], CZF) A set x is finite if and only if x is finitely enumerable
and discrete. �

Lemma 10.4. Every decidable subset of a finite set is finite.

Proof. It suffices to show that every decidable subset of n ∈ ω is finite. We can show by induction on n that
if φ(m) is decidable on n then either ∃m ∈ nφ(m) or ∀m ∈ n¬φ(m). Hence if x ⊆ n is decidable, then x is
empty or inhabited. If x is inhabited and m0 ∈ x, then the function

(27) f(m) =

{

m if m ∈ x,

m0 otherwise
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enumerates elements of x. Hence x is finitely enumerable. Since x ⊆ n is discrete, x is finite. �

Definition 10.5. Let Φ be an inductive definition given as Φfin := {({a}, a) | a is finite}. Then HF is the
least ΓΦfin

-closed class.

Aczel showed that we have the same HF if we replace Φfin to Φf.e. = {({a}, a) | a is finitely enumerable}
or Φadj = {({a, b}, a∪ {b}) | a, b ∈ V }. Moreover, Aczel showed the following facts:

Proposition 10.6. (1) HF is transitive.
(2) If ∀x ∈ HF[(∀y ∈ xφ(y)) → φ(x)], then ∀x ∈ HFφ(x).
(3) If ∀x, y ∈ HF[(∀u ∈ x∀v ∈ yφ(u, v)) → φ(x, y)], then ∀x, y ∈ HFφ(x, y). �

Proposition 10.7. = and ∈ is discrete over HF, that is, ∀x, y ∈ HF(x = y ∨ x 6= y) and ∀x, y ∈ HF(x ∈
y ∨ x /∈ y). �

See Proposition 10.9 and 10.10 of [2] for the proof.
We may ask whether HF is a set, as ZF proves Vω is a set. The answer is affirmative, and we will prove

it by constructing a hierarchy of HF:

Definition 10.8. Let Dec(A) be a set of all decidable subsets of A:

(28) Dec(A) = {B ⊆ A | ∀x ∈ A[x ∈ B ∨ x /∈ B]}.

Define Dn recursively as follows: D0 = ∅ and Dn+1 = Dec(Dn).

Lemma 10.9. 〈Dn | n ∈ ω〉 is a strictly increasing sequence of transitive discrete sets of HF.

Proof. It is easy to see that Dn ( Dn+1 by induction on n. For transitivity, observe that x ∈ Dn+1 implies
x ⊆ Dn ⊆ Dn+1. Moreover, Dec(X) and X2 have the same cardinality, so we can see each Dn is finite.

For discreteness of Dn, assume that x, y ∈ Dn+1 = Dec(Dn). Then the formula z ∈ x and z ∈ y is
decidable over Dn. Hence the formula z ∈ x↔ z ∈ y is also decidable over Dn. Since Dn is finite, we have

(29) ∃z ∈ Dn¬(z ∈ x↔ z ∈ y) ∨ ¬[∃z ∈ Dn¬(z ∈ x↔ z ∈ y)],

which implies x 6= y ∨ x = y.
It remains to show that Dn ∈ HF. It follows from finiteness of Dn and Dn ⊆ HF that will be shown by

induction on n: if Dn ⊆ HF and x ∈ Dn+1, then x ⊆ HF is finite by Lemma 10.4. Hence x ∈ HF and we
have Dn+1 ⊆ HF. �

Theorem 10.10. HF =
⋃

n∈ωDn. Especially, HF is a set provided if ω is a set.

Proof. SinceDn ∈ HF for all n and HF is transitive, we have
⋃

n∈ωDn ⊆ HF. We will show that ∀x ∈ HF(x ∈
⋃

n∈ωDn) by applying Proposition 10.6 to obtain the remaining inclusion. Assume that x ⊆
⋃

n∈ωDn holds.
Since x is finite, we can find n such that x ⊆ Dn. Choose a bijection f : m→ x for some m ∈ ω. We can see
that for y ∈ Dn, y ∈ x if and only if ∃k < m(f(k) = y), which is a decidable formula since the quantifier is
bounded by a natural number and Dn is discrete. Hence x ∈ Dec(Dn) = Dn+1. �

In classical world, Vω is a model of finitary ZF, which is bi-interpretable with PA. Since CZFfin is bi-
interpretable with HA and the classical Vω is the set of all hereditarily finite sets, we may ask HF is a model
of finitary CZF. The following theorem shows the answer is affirmative:

Theorem 10.11. HF satisfies CZFfin, that is, if σ is an axiom of CZFfin, then the relativization σHF of σ
holds.

Proof. It suffices to show that σHF holds for all axioms of T. Extensionality and Set Induction follow from
Proposition 10.6. Moreover, HF is closed under the operation x, y 7→ x ∪ {y}, and this proves HF satisfies
Pairing and Binary union. (For Binary union, we need to use the induction on the size of sets.) Since every
x ∈ HF is finite, we can see

⋃

x ∈ HF by induction on the size of x. It shows HF satisfies Union.
For Binary Intersection, let x, y ∈ HF. Take n ∈ ω such that x, y ∈ Dn. By Proposition 10.7, both z ∈ x

and z ∈ y is decidable over HF. Hence the set x ∩ y = {z ∈ Dn | z ∈ x ∧ z ∈ y} is also decidable, so
x ∩ y ∈ Dn+1.

It remains to show that V = Fin is valid in HF. We know that for each x ∈ HF there is n ∈ ω and a
bijection f : n→ x. We can see that f is a finite set and f ⊆ HF. Hence f ∈ HF, and f witnesses finiteness
of x in HF. �
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We may further ask HF satisfies finitary IZF, which is identical with ZFfin. We will see that the answer is
negative in general.

Theorem 10.12. Working over V [K0], the model of Kleene realizability, HF does not satisfy the full law of
excluded middle.

Proof. It is known by [9] and [14] that V [K0] satisfies Church’s thesis CT0. By Proposition 4.3.4 of [17], CT0

implies the following instance of the negation of weak excluded middle WLEM holds:

(30) ¬∀x ∈ ω[¬∃y ∈ ωT (x, x, y) ∨ ¬¬∃y ∈ ωT (x, x, y)],

where T is Kleene’s T -predicate, which has a E1-definition over ω. Observe that the function p defined in
Section 6 yields a definable bijection from ω to HF, which is accessible inside HF. Replacing all x and y of
(30) to p−1(x) and p−1(y) provides the formula of the form

(31) ¬∀x ∈ HF[¬∃y ∈ HFφ(x, y) ∨ ¬¬∃y ∈ HFφ(x, y)],

where φ(x, y) is a formula whose quantifiers inside this formula is bounded by HF. Hence we may regard
φ(x, y) as a relativization ψHF(x, y) of some formula ψ(x, y). Therefore, HF satisfies an instance of the
negation of WLEM. �

11. Remarks and Questions

We will finish this article with a philosophical remark and some questions. We pointed out that T is
bi-interpretable with HA, and the bi-interpretation also captures bi-interpretability between subtheories of
T and HA. Moreover, T is CZFfin, and the set of all hereditarily finite sets HF is a model of T. On the other
hand, the finitary IZF is just ZFfin, which is not bi-interpretable with HA. Moreover, Theorem 10.12 shows
HF may not be a model of finitary IZF, even though the background universe satisfies IZF: In Theorem 10.12,
the background universe is V [K0]. If V satisfies IZF, then so does V [K0]. These two facts could bolster the
viewpoint that CZF is a more natural constructive counterpart of ZF than IZF.

Classically, the negation of the axiom of Infinity proves V = Fin. We do not know whether this is possible
constructively. Instead, we postulate V = Fin as an axiom. It is natural to ask whether the negation of
Infinity proves V = Fin. Since T is an extension of Tharp’s quasi-intuitionistic set theory [16] without the
axiom of Infinity, and it contains the principle Ord-Im that states every set is an image of an ordinal. Since
V = Fin proves Ord-Im, we may also ask the question whether we can obtain an implication under Ord-Im:

Question 11.1. Does the negation of the axiom of Infinity prove V = Fin? Can we prove it with Ord-Im?

We gave a bi-interpretation between IEn and SIEn, which are subtheories of HA and T respectively. Un-
fortunately, we do not know the set-theoretic counterpart of constructive I∆0 + Exp. Pettigrew [11] char-
acterized the set-theoretic equivalent of I∆0 + Exp, which is derived from Mayberry’s set theory called EA.
Unfortunately, the auther does not know how to characterize the constructive counterpart of Pettigrew’s set
theory, hence the following question is still open:

Question 11.2. Can we identify a constructive set theory that is bi-interpretable with constructive I∆0 + Exp?

The author only noticed after finishing the draft that McCarty and Shapiro had planned to gave an
online talk on the Logic Supergroup (the detail will appear in [10]), and they independently achieved some
of the author’s result. The author was aware of their talk by chance on 21 September, only five days before
their talk. The author contacted McCarty to inform the author’s research, and he kindly responded with
their slide, the main source the author can check the detail of their research. They worked with Heyting
arithmetic with symbols for primitive recursion functions and another constructive set theory called SST,
which comprises Extensionality, the existence of adjunction x+ y := x ∪ {y}, and adjunction induction

(32) [φ(0) ∧ ∀x∀y(y /∈ x ∧ φ(x) ∧ φ(y) → φ(x + y))] → ∀xφ(x)

what they called Set Induction. They proved that the expanded HA is bi-interpretable, or definitionally
equivalent according to McCarty and Shapiro, with SST expanded by adding function symbols for primitive
recursive functions. They also present a variant of Heyting arithmetic called HABIT, and showed that it is
bi-interpretable with SST and the extended HA. Therefore, the extended HA and SST are bi-interpretable
with each other.
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Moreover, we can show that SST is identical with CZFfin. The hardest part is deriving all axioms of
CZFfin with Collection instead of Strong Collection from SST, and this is done by [10]. Hence we can see the
author’s bi-interpretability result for HA coincides with that of McCarty and Shapiro up to the difference of
the language and choice of axioms of theories.

The reviewer pointed out that Rathjen [15] provided a fragment of CZF, which has the same proof-theoretic
strength with HA. Rathjen called this theory CZF−, and is obtained by discarding Set Induction from CZF

and employing Strong Infinity instead of usual Infinity. Especially, CZF− proves Mathematical Induction
Axiom Scheme for ∆0-formulas.

Rathjen proved in [15] that CZF− is Π0
2-conservative over HA, and he used a mixture of type-theoretic

interpretation of set theory and realizability interpretation of type theory over a saturated model of PA.
Rathjen also claimed that one can establish a similar synthetic translation into the theory PAr

Ω, which is a
conservative extension of PA. However, Rathjen’s translation of CZF− to PAr

Ω is not an interpretation in
our sense because his translation remolds quantifiers and logical connectives. Thus we have the following
question:

Question 11.3. Is there an interpretation from CZF− to HA (or equivalently, CZFfin)?
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