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INDUCED AND HIGHER-DIMENSIONAL STABLE

INDEPENDENCE

MICHAEL LIEBERMAN, JIŘÍ ROSICKÝ, AND SEBASTIEN VASEY

Abstract. We provide several crucial technical extensions of the theory of sta-
ble independence notions in accessible categories. In particular, we describe
circumstances under which a stable independence notion can be transferred
from a subcategory to a category as a whole, and examine a number of appli-
cations to categories of groups and modules, extending results of [MA21a]. We
prove, too, that under the hypotheses of [LRV], a stable independence notion
immediately yields higher-dimensional independence as in [SV].

1. Introduction

We here concern ourselves with stable independence in the context of accessi-
ble categories. This notion has its origins in the model-theoretic concept of stable
nonforking, which can be thought of on one hand as a freeness property of type
extensions and, on the other, as a notion of freeness or independence for amalgams
of models. The latter perspective, taken to its logical conclusion, leads to a for-
mulation of stable independence as a property of commutative squares in a general
category, described by a family of purely category-theoretic axioms, cf. [LRV19a].
This generalization is of practical value: often in mathematics we begin with a nice
category of objects K, then restrict to a particular family of desirable morphisms
M, obtaining a subcategory, KM, which loses much of the useful structure of K.
Even if K is locally finitely presentable (say, K = Ab, the category of abelian
groups and homomorphisms), if we takeM to be a family of monomorphisms (say,
M consists of the pure monomorphisms in Ab), the category KM will no longer
have the pushouts available to us in K. A central theme of [LRV] is that stable
independence—or, rather, stably independent squares—provide a workable alter-
native to the missing pushouts, sufficient for many applications.

Of greater importance, perhaps, is [LRV, 3.1], which asserts, roughly speaking,
that given a pair (K,M), K cocomplete, KM admits a stable independence notion
just in case the family of morphisms M is cofibrantly generated; that is, gener-
ated by pushouts, transfinite compositions and retracts from a set (as opposed to
a proper class) of morphisms. In this case, the stable independence notion must
be precisely the one given byM-effective squares, generalizing the effective unions

Date: August 31, 2022.
2020 Mathematics Subject Classification. Primary: 03C45. Secondary: 03C48, 03C52, 13C60,

18C35.
Key words and phrases. Stable independence, accessible categories, classification theory, cat-

egories of modules.
The second author is supported by the Grant agency of the Czech Republic under the grant

19-00902S.

1

http://arxiv.org/abs/2011.13962v7
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of [Bar88]. This provides a useful link between stable independence and, for ex-
ample, (combinatorial, i.e. cofibrantly generated) cellular categories, which occur
naturally in topology and homological algebra. The translation it offers has already
proved fruitful: arguing by way of stable independence, one can give a very brief
proof of (a special case of) the fact that combinatorial structures are left-induced,
[LRV, 3.11]; the original proof of this fact, in [MR14], requires a great deal of heavy
category-theoretic machinery, including the good colimits of Lurie (see [MRV14]).
On the other hand, an analysis of questions involving stable independence by way
of cofibrant generation often leads to more efficient proofs, and useful new results,
particularly in algebra. For example, [LRV, 4.3] resolves an open question con-
cerning the circumstances under which Ext-orthogonality classes of modules admit
a stable independence notion, and, while the proof of the cofibrant generation of
pure monomorphisms in locally presentable additive categories in [LPRV20] does
not use stable independence, it would not have been evident were it not for this
connection.

We pursue further applications here, first deriving stable independence for a host
of algebraic categories. For this, we require an essential technical lemma. A crucial
part of the definition of a stable independence relation on a category K is that it
be accessible (Definition 2.2(2)), meaning, roughly speaking, that the independent
squares form an accessible subcategory of the arrow category, K2: without this
property, we say the independence relation is weakly stable. Accessibility, which
corresponds loosely to the local character of nonforking, is neither particularly
natural nor easy to verify in practice. For a continuous independence notion, on
the other hand, we require only that the appropriate subcategory of K2 be closed
under directed colimits—this is far more common, as we will see in Section 3. The
essential result of Section 2 is that, in many cases, we can infer the existence of a
stable independence notion from that of a continuous weakly stable independence
notion (Theorem 2.7). In particular, if an accessible category K has a continuous
weakly stable independence notion, and has a stable independence notion on a
sufficiently nicely embedded subcategory, then in fact the independence notion on
K must be stable. Thanks to recent work on stability—in the sense of Galois
types—in categories of groups and modules (e.g. [KMA20], [MA21a]), we obtain
continuous weakly stable independence notions for free in, for example, Abelian
p-groups with pure embeddings, or torsion R-modules with pure embeddings. A
model-theoretic argument shows that these weakly stable notions restrict to stable
independence on subcategories of sufficiently saturated (that is, universal injective)
objects, and Theorem 2.7 allows us to lift this stability to the categories themselves.
The results are summarised in Theorems 3.8 and 3.9.

Finally, we show that in the setting of [LRV], the existence of a stable inde-
pendence notion—essentially, a family of nice commutative squares—implies the
existence of higher-dimensional stable independence: nice families of cubes, hyper-
cubes, etc. We note that higher-dimensional amalgams of this form have played an
important role in the analysis of categoricity in Lω1,ω ([She83a] and [She83b], where
they were first introduced) and, more recently, in connection with the categoricity
conjecture for abstract elementary classes ([SV]). In the aforementioned cases, it
is a significant technical challenge to ensure that the existence of such amalgams
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in low dimensions can be pushed to higher dimensions ([SV] needs the weak gen-
eralized continuum hypothesis, for example). As our underlying category is locally
presentable—hence has arbitrary pushouts—existence is more or less automatic.

We assume a familiarity with accessible categories ([AR94], [MP89]). A pass-
ing acquaintance with the category-theoretic formulation of stable independence
relations ([LRV19a], [LRV]) would be very useful in providing motivation for the
discussion that follows.

We are grateful to Marcos Mazari-Armida for his detailed feedback on an early
draft of this paper. We are grateful, too, to the anonymous referee for comments
that have led to several important clarifications.

2. Lifting stable independence

While a much fuller picture can be given of the transfer of stable independence
notions along adjunctions, we here concern ourselves with a very limited special
case. In particular, we show that if an accessible category K has a ℵ0-continuous
weakly stable independence notion, and has a stable independence notion on a
sufficiently nice subcategory, then in fact K has a stable independence notion.
This allows us to extend certain stability results concerning classes of modules
in [MA21a]: while that paper establishes that a number of such classes are stable
in the sense of Galois types, we show that they possess stable independence notions.
This is stronger: for example, the category of ℵ1-free groups and pure embeddings
is Galois-stable (see [MA, 5.9]), but does not have a stable independence notion,
albeit for a rather trivial reason—this category does not have the amalgamation
property.

For the sake of completeness, we briefly recall the definitions of the essential
notions here. More detailed treatments can be found in [LRV19a] and [LRV].

Definition 2.1. Let K be a category.

(1) We define an independence notion (or independence relation) onK as a class

⌣ of commutatives squares (called ⌣-independent, or simply independent)
such that, for any commutative diagram

E

B //

33

D

>>
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦

A //

OO

C

OO

KK

the square spanning A, B, C, and D is independent if and only if the square
spanning A, B, C, and E is independent.

(2) We say that an independence notion on K is weakly stable if it satisfies the
following conditions:
(a) Symmetry: ⌣ is closed under reflection across the diagonal from bot-

tom left to top right.
(b) Transitivity: ⌣ is closed under vertical and horizontal composition of

squares.
(c) Existence: Any spanB ← A→ C can be completed to a⌣-independent

square.
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(d) Uniqueness: Any two completions of a span B ← A → C to ⌣-
independent squares are equivalent up to amalgamation, in the sense
of the diagram in (1) above.

In this section, we will concern ourselves largely with the tension between weakly

stable and stable independence, where the latter builds in a crucial accessibility
condition.

Definition 2.2. Let ⌣ be an independence notion on category K, satisfying the
existence and transitivity properties.

(1) We denote by K↓ the subcategory of the arrow category K2 whose objects
are K-morphisms, and whose morphisms are ⌣-independent squares. (Our
assumption on ⌣ in the preamble of this definition is needed only to ensure
that K↓ does indeed form a category.)

(2) We say that ⌣ is λ-accessible, λ an infinite regular cardinal, if the category
K↓ is λ-accessible. We say that ⌣ is accessible if it is λ-accessible for some
λ.

(3) We say that ⌣ is a stable independence notion it if is weakly stable and
accessible.

We note that in the model-theoretic context, weakenings of stability—for ex-
ample, simplicity—are obtained by weakening existence and/or uniqueness, these
being the more difficult property to verify, model-theoretically. Here accessibility
(which corresponds roughly to what model theorists might refer to as local and

finite character) is far thornier: by and large, it is easier to detect when a weakly
stable independence notion satisfies the (weaker) condition of λ-continuity:

Definition 2.3. Let ⌣ be an independence notion on category K, satisfying the
existence and transitivity properties. We say that ⌣ is λ-continuous if K↓ is closed
in K2 under λ-directed colimits.

That λ-continuity follows from λ-accessibility, incidentally, is [LRV19a, 3.26].
We now turn to the central result of this section, which ensures that if an ac-

cessible category K with all morphisms monomorphisms has a continuous, weakly
stable independence notion and a stable independence notion on a sufficiently nice
subcategory L, then in fact there is a stable independence notion on K itself.

In this context, “sufficiently nice” will mean, precisely, that L is a cofinal sub-
category of K:

Definition 2.4. We say that a functor F : L → K is cofinal if for any K ∈

K, and any finite sequence
(

FLi
fi
−→ K

)

i∈I
, there exists L ∈ L, K

g
−→ FL and

(

FLi
Fgi
−−→ FL

)

i∈I
such that Fgi = g ◦ fi for all i ∈ I.

We say that a subcategory L of a category K is cofinal if the inclusion is cofinal.

Example 2.5.

(1) If K∗ is a full subcategory of K and for every M ∈ K there exists M → N

with N ∈ K∗, then K∗ is a cofinal subcategory of K. Of course, by choosing
I = ∅, every cofinal subcategory has the latter property.

(2) The category of λ-saturated models of an elementary class is a cofinal sub-
category. This generalizes to µ-AECs, [LRV19a, 7.7].
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Remark 2.6. We note that this notion of cofinality is somewhat weaker than the
one found elsewhere in the category-theoretic literature, e.g. [AR94, 0.11]. One can
show, however, that the two definitions coincide if one assumes the amalgamation
property.

Theorem 2.7. LetK be an accessible category and let L be an accessibly embedded
cofinal full subcategory of K. If:

(1) All morphisms of K are monos.
(2) K has an ℵ0-continuous weakly stable independence notion.
(3) L has a stable independence notion.

Then K has a stable independence notion.

Proof. Let⌣ be an ℵ0-continuous weakly stable independence notion onK. The ℵ0-
continuity of ⌣ implies in particular that K has directed colimits, so L has directed
bounds. It is easy to check that ⌣ restricted to L is a weakly stable independence
notion, hence by the canonicity theorem ([LRV, A.6]) it must be stable. We wish
to show that ⌣ is stable, so must show, in particular, that K↓ is accessible. Since

⌣ restricted to L is accessible, L itself must be an accessible category. Taking µ

bigger if needed, we may assume without loss of generality that K, L, and L↓ are
µ-accessible. Let Kµ denote the full subcategory of K consisting of µ-presentable
objects. Let K∗ consist of those morphisms in K which are µ-directed colimits in
K↓ of morphisms in K2

µ. Recalling that the morphisms in K2
µ are precisely the

µ-presentable objects of K2, it suffices to see that K∗ = K2. Clearly, K2
µ = K∗

µ and

L2 ⊆ K∗.
Concretely, we will prove the following:

(i) K∗ is closed under composition.
(ii) K∗ is left cancellable in K2.
(iii) If M ∈ K, there exists M → N in K∗ with N in L.

To verify that this is sufficient, take f : M → N in K2. We will show that, under
assumptions (i) and (ii), if M satisfies the condition of (iii), then f must be in K∗.
To begin, since M satisfies (iii), there is g : M →M ′ in K∗ with M ′ in L. Without
loss of generality, f ∈ K2

λ and K2 is λ-accessible for some λ > µ. Following [Ros97],
there is a morphism h : M ′ → M∗ where M∗ is λ-saturated in K. Thus there is
t : N → M∗ such that tf = hg. Following 2.5(1), there is p : M∗ → L with L in
L. Since ph ∈ L2 ⊆ K∗, (i) implies that phg ∈ K∗. Hence, because ptf = phg, (ii)
implies that f ∈ K∗, as desired. We now prove statements (i)-(iii):

(i) Consider f : K → L and g : L→M in K∗. Let f = colimi fi and g = colimj gj
be µ-directed colimits in K↓ of morphisms in K2

µ. We may assume that (kii′ , l
1
ii′) :

fi → fi′ and (l2jj′ ,mjj′ ) : gj → gj′ are canonical diagrams of f and g with respect

to K2
λ in K↓. Given i0 ∈ I and j0 ∈ J , there is j1 ≥ j0 in J such that l1i0 : L1

i0
→ L

factorizes through l2j1 : L2
j1
→ L. Similarly, there is i1 ≥ i0 in I such that l2j1 factor-

izes through l1i1 . Continuing this procedure and taking a colimit, we get L1
iω
∼= L2

jω
.

Then fiω and gjω are composable and giωfjω is in K∗. Continuing in this way, we
obtain that gf ∈ K∗.

(ii) Consider f : K → L and g : L → M such that gf ∈ K∗. Let K→→ be the
category of composable pairs of morphisms in K and (f, g) = colimi(fi, gi) be a
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µ-directed colimit in K→→ of morphisms in K→→
µ . Let gf = colimj hj be a µ-

directed colimit in K↓ of morphisms in K2
µ. Here, fi : K1

i → Li, gi : Li → M1
i

and hj : K2
j → M2

j . As in the preceding argument, for every i0 ∈ I and j0 ∈ J

there are iω ≥ i0 in I and jω ≥ j0 in J such that K1
iω
∼= K2

jω
. In the same

way, for every i0 ∈ I and j0 ∈ J there are iω ≥ i0 in I and jω ≥ j0 in J such that
M1

iω
∼= M2

jω
. By iterating both procedures, we show that for every i0 ∈ I and j0 ∈ J

there are iω ≥ i0 in I and jω ≥ j0 in J such that M1
iω
∼= M2

jω
and K1

iω
∼= K2

jω
.

Then hjω = giωfiω , which implies that fiω → f is a morphism in K↓. Hence f ∈ K
∗.

(iii) Assume that the claim does not hold and let M have the smallest presentation
rank r among objects violating (iii). Following [BR12, 4.2], r = λ+ ≥ µ+. Under
the hypothesis of the theorem, K is well λ+-filtrable (see [LRV20, 8.8(2)], noting
that, since the morphisms in K are monos, filtrability and well-filtrability coincide).
In particular, M = colimMi can be expressed as the colimit of a smooth chain of
λ-presentable objects where i ≤ λ+. There is h0 : M0 → N0 in K∗ with N0 ∈ L.
There is a ⌣-independent square

M1
h1

// N1

M0

m01

OO

h0

// N0

n01

OO

in K and, since L is cofinal in K, we may assume that N1 is in L. Since M1 satisfies
(iii), h1 is in K

∗. We iterate this procedure, proceeding as above at successor stages.
At limit stages, we take colimits, although this requires somewhat more care: for
short chains, we must make use of the cofinality of L to ensure that the object in
the upper right corner is still in L. Taking the colimit of the resulting λ+-chain,
we have h : M → N in K∗ with N in L (thanks to the λ+-accessibility of L), which
contradicts our initial assumption.

�

3. Stable independence in categories of groups and modules

That we are able to lift stable independence in the sense of Theorem 2.7 yields
immediate benefits, namely the proof of stable independence in a host of categories
that arise naturally in algebra. This is a consequence not only of the theorem, but
the following recent developments:

(1) One of the essential ideas of [LRV19b] is that continuous weakly stable
independent relations are abundant and easily detectable in the algebraic
context, typically taking the form of effective squares. We briefly recall
some of the necessary terminology, as it will also be required in Section 4.

(2) In [KMA20] and [MA21a], a large number of algebraic categories are shown
to have precisely the model-theoretic properties required to ensure the ex-
istence of a cofinal full subcategory equipped with a stable independence
relation.

Taken together, this yields a host of algebraic categories with stable independence.



INDUCED AND HIGHER-DIMENSIONAL STABLE INDEPENDENCE 7

We begin by recalling a few pieces of necessary terminology from [LRV], which
will allow us to give sufficient conditions for the existence of a ℵ0-continuous weakly
stable independence relation.

Definition 3.1. Let K be a category, and letM be a class of morphisms in K.

(1) We say thatM is almost nice if it is satisfies the following conditions:
(a) M is normal : it contains all isomorphisms in K and is closed under

composition.
(b) M is coherent : whenever f and g are composable morphisms with

gf ∈M and g ∈M, then f ∈ M as well.
(c) M is a coclan: the pushout of any two morphisms, at least one of

which is inM, exists, andM is closed under pushouts.
Incidentally, we say thatM is nice if it is also closed under retracts in K2.
This means that if (u, v) : g → f and (r, s) : f → g are morphisms in K2

such that (r, s)(u, v) = idg then f ∈ M implies that g ∈ M.
(2) We say that M is λ-continuous, λ an infinite regular cardinal, if K has

λ-directed colimits, andM is closed under λ-directed colimits in K.
(3) We say thatM is λ-accessible if it is λ-continuous and both K and KM are

λ-accessible. M is accessible if it is λ-accessible for some λ.

Notation 3.2. Note that if M is normal, we can form a subcategory KM of K
whose objects are those of K and whose morphisms are precisely those inM.

We define a natural candidate for an independence relation on KM in the form
ofM-effective squares, following [LRV, 2.2,2.3].

Definition 3.3. Let K be a category, and letM be a class of morphisms in K. An
M-effective square is a commutative square of K-morphisms

B
h

// D

A

f

OO

g
// C

k

OO

such that the pushout P of f and g exists, and the induced morphism P → D is in
M.

We note that, in case M consists of the regular monomorphisms in K, M-
effective squares are precisely the effective unions of [Bar88].

Fact 3.4. If K has pushouts and M is almost nice, M-effective squares form a
weakly stable independence relation on KM [LRV, 2.7]. If, moreover, M is λ-
continuous, this independence relation is λ-continuous [LRV, 2.11].

This will guarantee the existence of ℵ0-continuous, weakly stable independence
relations in a number of familiar algebraic categories that have recently been the
subject of analyses using the tools of abstract model theory. The essential fact
we require, which allows us to isolate a cofinal, full subcategory equipped with
a stable independence relation—and thus apply Theorem 2.7—is fundamentally
model-theoretic.

We recall that in an abstract elementary class K, the syntactic types familiar
from classical model theory are replaced by Galois (or orbital) types : given a model
M ∈ K, Galois types over M are typically identified with orbits of tuples in a large,
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strongly homogeneous monster model under automorphisms fixing M . A class is
said to be λ-Galois stable if there are at most λ Galois (1-)types over any M ∈ K

of cardinality λ. Moreover, Galois types in a class K are said to be < ℵ0-short if,
roughly speaking, the type of any tuple is completely determined by the types of
its finite subtuples. Readers unfamiliar with these properties may wish to treat the
following as a black box:

Lemma 3.5. Let K be an abstract elementary class. If

(1) K has the amalgamation property,
(2) K is Galois-stable, and
(3) types in K are < ℵ0-short over models,

then there is a full, cofinal subcategory of K—consisting of sufficiently saturated
models—on which there is a stable independence notion.

Proof sketch. In essence, finite shortness puts us in the realm of homogeneous model
theory, where the desired result is already known. While we omit the full argument,
we hope that the following outline will be sufficient for the interested reader. In the
process, we will make free use of the technique of Galois Morleyization introduced
in [Vas1]: in an < ℵ0-short AEC one can identify types of finite sequences over
the empty set with finitary quantifier-free formulas (formally, by expanding the
language).

Following [HS00, §3], the assumptions of the lemma yield a relation p is free

over M , for p a Galois type over a model N ≤ M , that satisfies all the properties
of stable independence provided M and N are sufficiently saturated (in particular,
in the terminology of that paper, M and N must be a-saturated, a consequence of
λ-saturation in some sufficiently big λ, see [HS00, 1.9.4]). Note that the properties
of independence verified in that paper are the model-theoretic analogues of the
category-theoretic definition we discuss here, but the two definitions are equivalent,
[LRV, 8.14]. There is the issue, too, that in [HS00], p is assumed to be the type of a
finite sequence—as we are concerned with types of infinite sequences, we must show
that the existence/extension property of [HS00] can be transferred to this context.
This can be done relatively easily, making use of the compactness theorem for
homogeneous model theory: the complete type p of a sequence of arbitrary length
is satisfiable just in case its restrictions to finite subsequences are satisfiable (see
[HS00, 1.1], or, more explicitly, [ABV19, 3.8,3.9]). Given the type p of a sequence
of arbitrary length over M , and x̄ a finite subsequence, the restriction of p to x̄ has
a free extension over N . Consider the set of all such free extensions, regarded as
quantifier-free formulas (via Galois Morleyization, if necessary). The resulting set
is complete and, by the extension property of freeness for types of finite sequences,
all of its restrictions to finite sets of variables are consistent. By construction, the
resulting type is the free extension of p over N . �

We now obtain stable independence relations on a wide array of algebraic cate-
gories using Theorem 2.7, Fact 3.4, and Lemma 3.5—we note that [MA] constructs
stable independence relations in many of the same cases, by more concrete means.

As a template for our approach, consider:

Theorem 3.6. For any ring with unit R, the category of (left) R-modules and
pure monomorphisms, RModpure, has a stable independence notion.



INDUCED AND HIGHER-DIMENSIONAL STABLE INDEPENDENCE 9

Proof. By [KMA20], RModpure forms an AEC, has amalgamation, is stable, and
types are (< ℵ0)-short over models; that is, it satisfies all the hypotheses of
Lemma 3.5. Thus K must have a stable independence relation on its sufficiently
saturated models, which form a cofinal, full subcategory. By Theorem 2.7 and
Fact 3.4, then, RModpure has a stable independence relation. �

As an aside, in light of Fact 4.3 below (originally appearing as [LRV, 3.1]), it
follows that:

Corollary 3.7. Pure monomorphisms are cofibrantly generated (generated from a
set of morphisms by pushouts, tranfinite composition, and retracts) in RMod.

Note that this is a special case of [LPRV20, 3.13], which holds not just for R-
modules but arbitrary locally finitely presentable additive categories. Of greater
interest are the other applications of this style of argument. In particular,

Theorem 3.8. Let R be an integral domain. The following categories of modules
have a stable independence relation:

(1) Torsion R-modules with pure monomorphisms.
(2) R-divisible modules with pure monomorphisms (recall that a module M is

R-divisible if for any nonzero m ∈ M and nonzero r ∈ R, there is n ∈ M

with rn = m).

Proof. (1) The category of torsion R-modules and pure monomorphisms satis-
fies the condition of Lemma 3.5, by [MA21a, 4.2(4)] and [MA21a, 4.8(2)]

(2) Similarly to (1), using [MA21a, 4.2(5)] in place of [MA21a, 4.2(4)].
�

We obtain stable independence relations on an assortment of familiar categories
of groups, as well, again taking advantage of recent model-theoretic results—again,
[MA] actually obtains similar results, by different means.

Theorem 3.9. The following categories of groups all have a stable independence
relation.

(1) Abelian groups with monomophisms (respectively, pure monomorphisms).
(2) Torsion-free abelian groups with pure monomorphisms. Similarly, reduced

torsion-free abelian groups with pure monomorphisms.
(3) Abelian p-groups with monomorphisms (respectively, pure monomorphisms),

p any prime.
(4) Torsion abelian groups with monomorphisms (respectively, pure monomor-

phisms).
(5) Divisible abelian groups with monomorphisms.

Proof. As in the proof of Theorem 3.8, we satisfy ourselves with indicating the
model-theoretic sources that ensure the category satisfies the hypotheses of Lemma 3.5.

(1) [BCG+] and [MA21b, 3.12], and [KMA20, 3.16] (respectively).
(2) The reduced case is [She17, 1.2(3)]; general torsion free groups are addressed

in, e.g. [KMA20, 3.14].
(3) By [MA21a, 4.8(3)] and [MA21a, 3.5].
(4) By [MA21a, 4.8(3)] and [MA21a, 4.8(1)], respectively.
(5) By [MA21a, 4.8(3)].

�
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We expect that considerably more applications of Theorem 2.7 of this form are
within easy reach: the forthcoming paper [MA], for example, provides clear avenues
for future work along these lines.

4. Higher-dimensional independence

We turn now to a different, and perhaps more natural question: we know that if
we have a stable independence relation on a category K, we obtain a well behaved
subcategory K↓ of the category of morphisms K2 consisting of the independent
squares. Is it the case, too, that there is a stable independence notion on K↓—
consisting now of commutative cubes in K—and under what conditions? Is there,
in turn, a stable independence relation on these cubes?

We wish to examine, in short, the existence and behavior of higher-dimensional

stable independence relations.
It should be noted that this is not an exercise in abstraction: higher-dimensional

independence relations have played a significant role in recent advances in model
theory. The idea, introduced by Shelah, is vital in his analysis of the classification
theory of Lω1,ω in [She83a] and [She83b], and in his proof of the first-order Main
Gap, cf. [She90, Ch. XII]. More recently, these notions have made crucial appear-
ances in a number of categoricity transfer arguments, most notably in [Zil05], for
quasiminimal pregeometry classes, and [SV], for abstract elementary classes with
amalgamation, assuming weak GCH. Of particular interest are excellent classes,
which possess independence notions in all finite dimensions.

To be precise, we propose the following notions of n-dimensional stable inde-
pendence and excellence, adapted to our context—these should specialize to the
standard ones in the model-theoretic examples mentioned above.

Definition 4.1. Let K be a category. For n ≥ 1, we define an n-dimensional

stable independence notion on K, Γ, and its induced category, KΓ, proceeding by
induction on n:

• We say that Γ is a 1-dimensional stable independence notion on K just
in case it is the collection of all morphisms in K. In this case, we define
KΓ = K.
• An (n+ 1)-dimensional stable independence notion on K consists of a pair
(Γn,Γ), where

– Γn is an n-dimensional stable independence notion on K, and
– Γ is a stable independence notion on KΓn , in the sense of Defini-

tion 2.2(3).
• Given an (n+1)-dimensional stable independence notion Γn+1 = (Γn,Γ) on
K, we define KΓn+1 to be the category (KΓn)Γ, whose objects are morphisms
of KΓn and whose morphisms are the Γ-independent squares. Note that this
is precisely (KΓn)↓ with ⌣ = Γ.

Note that the stable independence notions considered in Sections 2 and 3 are pre-
cisely 2-dimensional independence notions—in the sense above—on the appropriate
categories. The best case scenario is the following:

Definition 4.2. We say that a category K is excellent if for all n ≥ 1, K has an
n-dimensional stable independence notion Γn so that KΓn has directed colimits.
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As noted in the introduction, excellence is far from the norm in the model-
theoretic context, as the existence property will typically fail for sufficiently high-
dimensional relations: [GKK15a] and [GKK15b] develop a comprehensive theory
of such obstructions. Here we restrict ourselves to the setting of [LRV]; that is,
with locally presentable ambient category K and well behaved class of morphisms
M. With this added structure, the obstructions disappear: if there is a stable
independence relation on KM, it is excellent.

All of the difficulty lies in the inductive step: given an n-dimensional stable
independence notion Γ on K, how do we construct a stable independence notion Γ′

so that (KΓ)Γ
′

has directed colimits?
In fact, we consider a simpler—but entirely equivalent—problem, whose solution,

Proposition 4.4 below, should be of independent interest. In particular, we take
advantage of the fact that, in this framework, existence of stable independence
notions of a particular dimension is equivalent to cofibrant generation of a suitable
family of morphisms, via the central result of [LRV]. For the sake of completeness,
we include that result here, phrased in terms better suited to the current context:

Fact 4.3. ([LRV, 3.1]) Let K be a locally presentable category, and let M be a
nice, accessible, and ℵ0-continuous class of morphisms in K. The following are
equivalent:

(1) KM has a stable independence notion.
(2) M-effective squares form a stable independence notion in KM.
(3) M is cofibrantly generated in K.

Note that we have unpacked much of the terminology used in [LRV, 3.1], for the
benefit of the reader. Recall that a class of morphismsM is cofibrantly generated

if it can be generated from a set—as opposed to a proper class—of morphisms by
pushouts, transfinite compositions, and retracts.

Proposition 4.4. Let K be locally presentable andM be nice and ℵ0-continuous
in K. Let M! consist of M-effective morphisms in K2. Then M! is nice and
ℵ0-continuous in K

2.

Proof. (a) M! is normal: Isomorphisms in K2 are commutative squares whose
horizontal arrows are isomorphisms. Such squares are pushouts, henceM-effective.
The composition of twoM-effective morphisms isM-effective (see [LRV, 2.7]).
(b)M! is coherent: see [LRV, 2.10].
(c) M! is a coclan: We have to show that pushouts of M-effective squares are
M-effective. Let

C
m2

// D

A

m1

OO

m0

// B

m3

OO
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be an M-effective square considered as a morphism (m0,m2) : m1 → m3 in K2.
Let

C
c

// C′

A

m1

OO

a
// A′

m′

1

OO

be a commutative square considered as a morphism (a, c) : m1 → m′
1. Consider

the pushout

m3
(b,d)

// m′
3

m1

(m0,m2)

OO

(a,c)
// m′

1

(m′

0,m
′

2)

OO

in K2. This means that

A′
m′

0
// B′

A

a

OO

m0

// B

b

OO

and

C′
m′

2
// D′

C

c

OO

m2

// D

d

OO

are pushouts andm′
3 is the induced morphism, i.e., m′

3m
′
0 = m′

2m
′
1 and m′

3b = dm3.
It suffices to show that the square

C′
m′

2
// D′

A′

m′

1

OO

m′

0

// B′

m′

3

OO

isM-effective.
Consider a pushout

C′
p′

0
// P ′

A′

m′

1

OO

m′

0

// B′

p′

1

OO



INDUCED AND HIGHER-DIMENSIONAL STABLE INDEPENDENCE 13

We must show that the induced morphism t′ : P ′ → D′ is inM. Returning to the
original square, we know that the induced morphism t : P → D is inM where

C
p0

// P

A

m1

OO

m0

// B

p1

OO

is a pushout. For this, it suffices to show that

P ′ t′
// D′

P

p

OO

t
// D

d

OO

is a pushout where p : P → P ′ is the induced morphism; that is, pp0 = p′0c and
pp1 = p′1b.

Consider morphisms u : P ′ → X and v : D → X such that up = vt. Then

up′0c = upp0 = vtp0 = vm2.

Thus there exists a unique q : D′ → X such that qm′
2 = up′0 and qd = v. It remains

to show that qt′ = u. We have

qt′p′0 = qm′
2 = up′0

and qt′p′1 = qm′
3. To finish the proof, we need that up′1 = qm′

3 because then qt′ = u.
We have

qm′
3m

′
0 = qm′

2m
′
1 = up′0m

′
1 = up′1m

′
0

and
qm′

3b = qdm3 = vm3 = vtp1 = upp1 = up′1b.

Hence qm′
3 = up′1.

(d)M! is nice: SinceM is closed under retracts,M! is closed under retracts.
(e)M! is ℵ0-continuous: see [LRV, 2.11]. �

Theorem 4.5. Let K be a locally presentable category, and letM be a nice, acces-
sible, and ℵ0-continuous class of morphisms in K. If KM has a stable independence
notion, it is excellent.

Proof. We have the obvious one-dimensional stable independence notion on KM,
with (KM)Γ1 = KM and Γ1 consisting precisely of M, the class of morphisms in
KM. Following Fact 4.3, M-effective squares form a stable, ℵ0-continuous inde-
pendence notion Γ on KM. Take Γ2 = (Γ1,Γ). Then

(KM)Γ2 = (KM)↓ ⊆ (KM)2 ⊆ K2

is an accessible category closed under directed colimits in K2.
Assume that we have an n-dimensional stable independence notion Γn, n > 1,

on KM where

(KM)Γn ⊆ (KM)2
n−1

⊆ K2n−1

is an accessible category closed under directed colimits in K2n−1

and a nice and

ℵ0-continuous class Mn−1 of morphisms in K2n−1

. Following Proposition 4.4,
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Mn = (Mn−1)! is nice and ℵ0-continuous class of morphisms in K2n . We have
to show thatMn-effective squares yield a stable independence notion on (KM)Γn .
Following Fact 3.4,Mn-effective squares form a weakly stable independence notion
on (K2n)Mn

which is, moreover, ℵ0-continuous. (KM)Γn is a full subcategory of
(K2n)Mn

consisting of those Mn-squares which are Mn-effective. Since Mn is
nice, the proof of [LRV, 2.7] yields thatMn-effective squares yield a weakly stable
independence notion on (KM)Γn . Similarly, the proof of [LRV, 2.11] yields that
this weakly stable independence notion is ℵ0-continuous.

It remains to show that the category (KM)Γn+1 = ((KM)Γn)↓ is accessible.
We note that anMn-square

c
(f ′

0,f
′

1)
// d

a

(g0,g1)

OO

(f0,f1)
// b

(h0,h1)

OO

is in fact a cube of the following form:

D1
d

// D2

C1
c

//

f ′

0

>>
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥

C2

f ′

1

>>
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥

B1

h0

OO

b
// B2

h1

OO

A1

f0

>>
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥

a
//

g0

OO

A2

f1

>>
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥

g1

OO

where the top, bottom, front and rear squares are allMn−1-effective.
Such anMn-square isMn-effective if and only if the derived square induced by

pushing out on the right and left hand sides of the cube is Mn−1-effective. That
is, if the following squares are pushouts

C1
p0

// P C2

p′

0
// P ′

A1

g0

OO

f0

// B1

p1

OO

A2

g1

OO

f1

// B2

p′

1

OO
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and q : P → D1, q
′ : P ′ → D2 and p : P → P ′ are the obvious induced morphisms,

the derived square

P ′
q′

// D2

P

p

OO

q
// D1

d

OO

must beMn−1-effective.
The category (KM)Γn+1 thus consists of the full subcategory of ((KM)Γn)2 on

theMn-effective squares whose derived squares areMn−1-effective. In particular,
the following is a pullback of categories:

((KM)Γn)2
F

// (KM)2
n−1

KΓn+1

Ḡ

OO

F̄

// (KM)Γn

G

OO

where F sends an Mn-square to its derived square and G is the inclusion. The
functor G is transportable because Mn−1-effective squares are closed under iso-
morphisms ofMn−1-squares. Following [MP89, 5.1.1], the pullback above is in fact
a Pullback (or bipullback) of the corresponding categories. Hence (KM)Γn+1 is an
accessible category (see [MP89, 5.1.6]). �

Remark 4.6. The category RModpure from Theorem 3.6 is excellent. Similarly,
the category RModemb of R-modules and regular monomorphisms. The latter fol-
lows from the fact that RMod has effective unions, hence regular monomorphisms
are cofibrantly generated. In fact, the same is true in any Grothendieck abelian
category or Grothendieck topos ([Bar88]).
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