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Abstract

In this paper, we present an alternative interpretation of propositional inquisitive logic as

an epistemic logic of knowing how. In our setting, an inquisitive logic formula α being sup-

ported by a state is formalized as knowing how to resolve α (more colloquially, knowing how α

is true) holds on the S5 epistemic model corresponding to the state. Based on this epistemic

interpretation, we use a dynamic epistemic logic with both know-how and know-that opera-

tors to capture the epistemic information behind the innocent-looking connectives in inquisitive

logic. We show that the set of valid know-how formulas corresponds precisely to the inquisitive

logic. The main result is a complete axiomatization with intuitive axioms using the full dynamic

epistemic language. Moreover, we show that the know-how operator and the dynamic operator

can both be eliminated without changing the expressivity over models, which is consistent with

the modal translation of inquisitive logic existing in the literature. We hope our framework can

give an intuitive alternative interpretation to various concepts and technical results in inquisitive

logic, and also provide a powerful and flexible tool to handle both the inquisitive reasoning and

declarative reasoning in an epistemic context.

1 Introduction

Inquisitive logic captures the valid reasoning patterns of statements and questions in a neat uniform
framework [12]. There are two major views on inquisitive logic: one may view it as a non-classical
logic as presented in the early days of the field (cf. e.g., [12]); alternatively, as endorsed by various
recent works, one can also view the framework as a conservative extension of classical logic taking
the inquisitive disjunction and other machinery as new additions on top of the classical ones (cf.
e.g., [6, 7]). According to the first non-classical view, the basic system InqB of propositional
inquisitive logic is a weak intermediate logic that includes all the axioms of intuitionistic logic
without the axiom of excluded middle, but is not closed under uniform substitution. Moreover,
inquisitive logic has some surprising close connections to some other logics such as Medvedev
Logic [12], and it can be viewed as a disguised propositional intuitionistic dependence logic [40, 11].
The second extension-view gives flexibility in designing logical systems combining the power of
both classical reasoning and inquisitive reasoning. As a rapidly growing field of logic, besides
being intensively studied itself, inquisitive logic has been extended widely with various modalities
and other non-classical connectives (cf. e.g., [13, 9, 19, 29]).

*An earlier draft of the paper to appear in Annals of Pure and Applied Logic with the same title. Please check the
published paper for the final version.
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The characteristic semantic feature of inquisitive logic is that it is based on the support relation
over information states (or simply states), instead of the usual satisfaction relation over possible

worlds widely used in various classical and non-classical logics. As a logic, InqB collects all the
valid propositional formulas supported by all the states. Intuitively, to a modal logician, a state in
(propositional) inquisitive semantics is simply a set of possible worlds. To an epistemic logician, a
state can be further viewed as an epistemic (S5) Kripke model, where the agent is not sure which
possible world is the actual one.1 It is very natural to ask whether there is an intrinsic connection
between epistemic logic and inquisitive logic, given both are defined over similar models. In
fact, there is a syntactic translation from inquisitive logic to modal and epistemic logic (e.g., [6,
Section 5.4]). In this paper, we focus on whether we can have an intuitive epistemic interpretation
semantically.

Our approach is based on the non-classical view of inquisitive logic. Thanks to the intimate
connection between inquisitive logic and Medvedev logic that we mentioned, we can make use of
a crucial observation about the epistemic interpretation of intuitionistic and intermediate logics.
Inspired by the original finite-problem semantics of Medvedev logic [22], Wang [37] proposed to
interpret intuitionistic truth of a formula α as knowing how to prove/solve α. Similar informal ideas
of understanding intuitionistic truth as knowledge-how appeared a few times in the literature of
intuitionistic logic in the past century (cf. e.g., [23]), starting from the very first paper by Heyting
explaining the intuitive meaning of intuitionistic statements [16]:

To satisfy the intuitionistic demands, the statement must be the realisation of the ex-
pectation expressed by the proposition p. Here, then, is the Brouwerian statement of p:
It is known how to prove p.

In contrast with the previous informal philosophical discussions, we now have a formal way to
capture this interpretation of intuitionistic truth not merely conceptually but also mathematically,
based on the techniques for epistemic logics of know-wh proposed and studied by Wang (cf. e.g.,
[36, 34]). The main idea is to introduce the so-call bundled modalities, which pack a quantifier
and an epistemic modality together to formalize the de re knowledge expressed by knowing how/

why/what and so on (cf. e.g., [35, 39]). For example, knowing how to prove α (written as Khα)
can be rendered as there exists a proof ρ such that it is known that ρ proves α. Bundled modalities
also lead to bundled fragments of first-order modal logic, which are often decidable [34, 27, 21].

Combining this technique with some formalized BHK-interpretation of intuitionistic logic may
allow us to turn intuitionistic logic and various intermediate logics into epistemic logics of knowing

how. The general method is to use a powerful epistemic language based on classical logic to
unload the implicit epistemic content hidden behind the propositional language of propositional
intuitionistic logic, foreseen by Hintikka and van Benthem viewing intuitionistic logic as an implicit

epistemic logic [18, 30]. An intuitionistic logic formula α is first translated into a know-how
formula Khα in our setting; then, depending on the structure of α and the BHK-interpretation, we
can further “decode” α by reducing its complexity within the logical language, e.g., Kh(α ∨ β) can
be decomposed to (Khα ∨ Khβ), where the connectives outside the scope of Kh are classical. This
also helps us to understand the distinct role of the negation as the bridge between the classical
and the intuitionistic settings. Such an epistemic approach can make intuitionistic logic and its
relatives more intuitive, and the existing important technical results become more transparent.

In this paper, we apply such ideas to propositional inquisitive logic as a variant of intuitionistic
logic under the non-classical view mentioned above. Note that the intended interpretation of in-
quisitive logic does not make reference to knowledge, thus what we are proposing is an alternative

epistemic interpretation. Instead of talking about proofs and solutions in intuitionistic logic, here
we are concerned with resolutions of issues raised by inquisitive formulas. Roughly speaking, a
formula can be true in various ways, e.g., α ∨ β can be true because of the truth of α or the truth
of β. We say it is resolved if it is settled with a particular way of being true. In a nutshell, we
interpret “s supports α” in inquisitive semantics as “knowing how to resolve α” (or simply “knowing

1It is interesting to note that information states in game theory are precisely those epistemically indistinguishable
possible worlds.
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how α is true”) over the epistemic model corresponding to s. For example, “s supports α ∨ β”

becomes “knowing how α ∨ β is true” over the corresponding epistemic model, which intuitively
requires either knowing how α is true or knowing how β is true, thus resolving the question raised
by α ∨ β. This interpretation is also extended to the entailment relation, i.e., α entails β in inquis-
itive logic is interpreted as knowing how α is true entails knowing how β is true, thus interpreting
the reasoning in inquisitive logic as know-how preserving. This can be considered as the analog of
correspondence of entailment in propositional logic and the standard epistemic logic of knowing
that.

Actually, the idea of interpreting inquisitive formulas in terms of knowing how first appeared in
Ciardelli’s master thesis in the early days of inquisitive logic [4]. In [12], the authors also made it
more precise by using a notion of realization (or, say, resolution) inspired by the BHK-interpretation
of intuitionistic logic, to which we will come back in Section 6 with detailed discussions.

Technically, compared to intuitionistic logic, there is a crucial simplification in inquisitive logic
that each atomic proposition p has one and only one possible resolution p. This is due to the
assumption in inquisitive semantics that atomic propositions stand for statements, and questions
are formed only via question-forming operators like the inquisitive disjunction (cf. [6, Section
2.5.5]). Translated into our epistemic interpretation, this assumes that you always know how to
resolve an atomic formula if you know that it is true. On the other hand, knowing that p is true is a
presupposition of knowing how it is true. Therefore, knowing how to resolve the atomic proposition
p is equivalent to knowing that p is resolvable in our epistemic rendering of inquisitive logic. Note
that this cannot be extended to an arbitrary formula α, which would trivialize the know-how
formulas. Nevertheless, as we will see later, this simplification leads to the characteristic features
(and the charm) of inquisitive logic. Based on this assumption about atomic propositions, we
will eventually be able to eliminate the knowing how operator in our “epistemicization” of the
inquisitive logic. All these will become more clear, after establishing our technical framework.

Here we summarize our main contributions in this paper:

• From an epistemic point of view, we propose a dynamic-epistemic logical framework of
knowing how to give an alternative interpretation of inquisitive logic.

• We show that the propositional inquisitive logic, as a weak intermediate logic, is exactly the
valid know-how fragment of our logic.

• We obtain a complete axiomatization of the full dynamic epistemic logic with intuitive ax-
ioms, which can transparently explain the axioms and results of inquisitive logic from our
epistemic perspective.

• We show that both the knowing how modality and the dynamic modality can be eliminated
in terms of expressivity, and thus inquisitive logic can be viewed as a fragment of epistemic
logic.

More conceptually, with our approach, we want to bridge:

• possible worlds and states by viewing states as epistemic models to base our semantics on.

• classical and non-classical logics by using a modal logic based on classical connectives to
interpret the non-classical inquisitive logic.

• non-modal and modal formulations by using the epistemic language of knowing how to re-
veal the rich dynamic-epistemic information behind the propositional formulas of inquisitive
logic.

• de re and de dicto knowledge by connecting the knowledge-how with knowledge-that rele-
vant to inquisitive reasoning.

We hope this epistemic approach can further enhance the power of inquisitive logic to wider
applications while keeping its spirit. This may make inquisitive logic more intuitive to an audience
who are not familiar with non-classical logics and support-based semantics. Future directions are
discussed in Section 7.
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Structure of the paper We recall the language and semantics of propositional inquisitive logic
in Section 2. Section 3 introduces the language and semantics of our dynamic epistemic logic of
knowing how, and shows that it captures the original inquisitive logic precisely as a fragment. In
Section 4, we obtain an intuitive axiomatization for the full language and show its completeness
by using the reduction axioms. Section 5 looks at the core concepts in inquisitive semantics from
our intuitive epistemic perspective. In Section 6, we discuss the related work, particularly about
inquisitive modal logic. We conclude in Section 7 with future directions.

2 Preliminaries: Inquisitive Logic

We first present some basic definitions and results of (propositional) inquisitive logic InqB fol-
lowing the expositions of [12, 6].

Definition 1 (Language PL) Given a countable set P of proposition letters, the language of propo-

sitional logic (PLP) is defined as follows:

α ::= p | ⊥ | (α ∧ α) | (α ∨ α) | (α→ α)

where p ∈ P. For abbreviations, we write ¬α for α→ ⊥, ⊤ for ¬⊥, and α ↔ β for (α→ β)∧(β → α).

P is assumed to be countable as in [6]. We write PL for PLP when P is given in the context. For
readability, in the rest of the paper, we often omit the parentheses if no ambiguity arises.

Instead of the satisfaction relation based on possible worlds, InqB adopts the following support

relation in its semantics based on states, which makes InqB behave non-classically.
While the states were initially defined via the concept of index [3], it was later defined as a

subset of the world set of a (propositional) information model in the recent literature (cf. e.g., [6]),
here we adopt the latter definition.2

Definition 2 (Information model) Given P, an (information) model is a pair M = 〈W,V 〉 where:

• W is a non-empty set of possible worlds;

• V : W → ℘(P) is a valuation function.

Given M, we refer to its components by WM and VM. A full model is a model such that V [W ] =
℘(P).

Following [12], the inquisitive semantics of PL over information models is given by the support

relation.

Definition 3 (Support) Given P and an information model M = 〈W,V 〉, an (information) state
s ⊆W is a subset of W . W and ∅ are called trivial state and inconsistent state respectively. Support
is a relation between states and formulas (written as M, s  α):

1. M, s  p iff ∀w ∈ s, p ∈ w.

2. M, s  ⊥ iff s = ∅.

3. M, s  (α ∧ β) iff M, s  α and M, s  β.

4. M, s  (α ∨ β) iff M, s  α or M, s  β.

5. M, s  (α → β) iff ∀t ⊆ s : if M, t  α then M, t  β.

We write s  α for M, s  α when no confusion arises.

2Note that in contrast with [6], we do not allow W to be empty in order to ease the later presentation without changing
any technical result.
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Definition 4 (Entailment ()) A set of PL-formulas Γ entails a PL-formula α in inquisitive se-

mantics, Γ  α, if and only if for any state s in any model M if M, s  Γ then M, s  α. We say α
is valid if  α.

Definition 5 (Inquisitive logic) Inquisitive logic, InqB, is the set of PL-formulas that are valid in

inquisitive semantics, i.e., the set of formulas that are supported by all states in all models.

It is straightforward to show:

Proposition 6 ([12]) For any PL-formula α, α ∈ InqB iff for any full model M, M,WM  α.

Now we present the proof system SINTDN and two axioms schemata KP and NDk, which in
combination give rise to two distinct axiomatizations of InqB.

System SINTDN

Axioms
INTU Intuitionistic validities
DNp ¬¬p → p for all p ∈ P

Rules:

MP
α, α → β

β

Let KP and NDk be the following axiom schemata:

KP (¬α → β ∨ γ) → (¬α → β) ∨ (¬α → γ)
NDk (¬α →

∨
1≤i≤k ¬βi) →

∨
1≤i≤k(¬α → ¬βi)

Theorem 7 (Axiomatizations of InqB [12]) SINTDN+KP and SINTDN+{NDk | k ∈ N} are both

sound and complete for InqB.

The following definitions are taken from [12] adapted with a given model M as in [6].3 These
characterize some important concepts in inquisitive semantics. Note that in the earlier literature
(c.f.[12]), the definition of proposition was the set of alternatives. But the latest definition in [8]
has been modified as the downward closure of the old one. We adopt the latest definition.

Definition 8 (Alternatives and propositions) Let α be a PL formula and let M be a model.

• An alternative for α in M is a maximal state s in M supporting α;

• The proposition expressed by α in M (call it [α]M), is the set of states in M that supports α.

That is, [α]M = {s ∈ WM | s � α}.

Definition 9 (Inquisitiveness and informativeness) Let α be a PL formula and let M be a

model.

• α is inquisitive in M if [α]M contains at least two alternatives;

• α is informative in M if there is some world in M that is not included in any alternative for α
in M.

Furthermore, we can define the relative notions of statements and questions.

Definition 10 (Questions and statements) Given a model M:

• α is a question in M iff it is not informative in M;

• α is a statement in M iff it is not inquisitive in M.

We will come back to these in Section 5 from our epistemic perspective. Before that, we shall
introduce our framework of the logic of knowing how to interpret inquisitive logic epistemically.

3Following the new notion in [6], we call possibilities (Definition 2.9 in [12]) as alternatives, and call assertions (Defi-
nition 2.14 in [12]) as statements. Note that in Definition 2.14 in [12], questions and statements (assertions) are defined
absolutely with respect to a full model with the trivial state. Here we generalized it to a relative notion as in the cases of
inquisitiveness and informativeness.
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3 Inquisitive logic as a logic of knowing how

In this section, we give a formal epistemic interpretation of inquisitive logic by using an epistemic
logic of knowing how.

3.1 Language and models

We first introduce our dynamic epistemic language of knowing how, where on top of PL we add
three modalities of know-that, know-how, and updates.

Definition 11 (Language DELKh) Given a countable set of proposition letters P, the Dynamic
Epistemic Language of Knowing How (DELKh

P) is defined as follows:

ϕ ::= p | ⊥ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) | Kϕ | Khα | ✷ϕ

where p ∈ P and α ∈ PLP. For abbreviations, we write K̂ for ¬K¬, K̂h for ¬Kh¬ and write ✸ for

¬✷¬. We denote the Kh-free fragment as DELP, and the ✷-free fragment of DELP as ELP.

Again, we often omit the P from DELKh
P when P is fixed in the context. Intuitively, Kϕ ex-

presses that “the agent knows that ϕ”, Khα says that “the agent knows how to resolve α” or simply
“the agent knows how α is true”, and ✷ϕ says that “ϕ holds, no matter what further information
is given”. Note that Kh only takes PL-formulas α whereas K and ✷ can be combined with any
DELKh-formulas ϕ. Therefore we can express K¬Khα but not KhKα in DELKh.

DELKh will be interpreted on standard single-agent epistemic models where the (implicit)
epistemic relation is the total relation. Technically speaking, such models are exactly the in-
formation models as we defined in Definition 2, when we omit the epistemic relation since it is
always total.4 For this reason, in the sequel of the paper, we will also call information models
epistemic models.

For notational convenience, we also write w ∈ M in case that w ∈ WM, M′ ⊆ M in case
that M′ is a submodel of M. If w ∈ M′ ⊆ M then we write (M′, w) ⊆ (M, w).

Although the models are simply S5 epistemic models, in order to reflect the non-classical fea-
tures of InqB, we define the semantics for Kh via the resolutions, based on the idea that knowing
how α is true means knowing a particular resolution for α, in line with the BHK-interpretation
of the intuitionistic connectives. We first define the resolution space for each formula below in
Definition 12. The actual resolutions on each world for each formula, to be defined in Definition
14, will be subsets of the resolution space.

Definition 12 (Resolution space) S is a function assigning each α its set of potential resolutions:

S(p) = {p}, for p ∈ P

S(⊥) = {⊥}

S(α ∨ β) = (S(α)× {0}) ∪ (S(β)× {1})

S(α ∧ β) = S(α)× S(β)

S(α→ β) = S(β)S(α)

Let S =
⋃

α∈PL
S(α).

Our definition is similar to the definition of realizations in [25, Part 4], which was proposed not
in the context of inquisitive logic. The definition of resolution space reflects the intuition that for
each α, there is a set of possible ways to resolve it as an issue or say to make it true. Intuitively, the
set of potential resolutions of a disjunction is the disjoint union of the potential resolutions of each
disjunct: to make a disjunction true you need to explicitly make one of the disjuncts true. The

4Nevertheless, in a multi-agent setting, explicit epistemic relations are necessary. We leave it for a future occasion.
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resolution space of a conjunction is the Cartesian product of the resolution space of each conjunct:
to make a conjunction true, you need to make both conjuncts true. The resolution space for an
implication, is the set of functions from the resolution of the antecedent to the resolution space of
the consequent: to make an implication true, you need to have a way to transform any resolution
of the antecedent to some resolution of the consequent.

Note that the potential resolutions for atomic propositions are assumed to be singletons, which
reflects the underlying assumption in inquisitive semantics that atomic propositions do not bring
inquisitiveness themselves. In other words, we always know how to resolve atomic propositions
when possible. This is the most fundamental difference between InqB and other intermediate
logics such as Medvedev logic. It will become more clear when we discuss the axioms later.
Technically speaking, the possible resolution of each atomic proposition p is not necessary p itself,
as long as it is unique, and it will become more clear when the semantics is introduced.

For technical convenience, in the line of the resolution space for atomic propositions, the reso-
lution space of ⊥ is defined as {⊥}, but as we will see later ⊥ does not have any real resolution.

It is obvious that the resolution space for each α ∈ PL are non-empty and finite :

Proposition 13 For any α ∈ PL, S(α) 6= ∅ and it is finite.

Now given a model, we can generate the (actual) resolutions of each α on each world.

Definition 14 (Resolution) Given a model M, the resolution function R : W ×PL → S is defined

as follows:
R(w,⊥) = ∅

R(w, p) =

{
{p} if p ∈ VM(w)
∅ otherwise

R(w,α ∨ β) = (R(w,α) × {0}) ∪ (R(w, β) × {1})

R(w,α ∧ β) = R(w,α)× R(w, β)

R(w,α → β) = {f ∈ S(β)S(α) | f [R(w,α)] ⊆ R(w, β)}

For U ⊆W , we writeR(U, α) for
⋂

w∈U R(w,α). When U =WM we also write R(M, α) for R(U, α).

We call R(w,α) the set of resolutions for an issue α on a given world w. It is clear that
R(w,α) ⊆ S(α).

Note that although the resolution space of ⊥ is non-empty for technical convenience, it cannot
have any actual resolution on any world. An atomic proposition p can have the resolution p only
when it is true on w. The resolutions for an implication α → β on a possible world are the
functions in the resolution space of α → β mapping a resolution of α to a resolution of β on the
same world in line with the BHK-interpretation.

Recall that ¬α is the abbreviation of α → ⊥. Since negation plays an important role in inter-
mediate logics, we have the following observation, which is useful for later discussions.

Proposition 15 For any M, w, any α, R(w,¬α) is either ∅ or a fixed singleton set independent from

w, and R(w,¬α) = ∅ iff R(w,α) 6= ∅.

PROOF By the definitions of R and S:

R(w,α → ⊥)

={f ∈ S(⊥)S(α) | f [R(w,α)] ⊆ R(w,⊥)}

={f ∈ {⊥}S(α) | f [R(w,α)] ⊆ ∅}

={f ∈ {⊥}S(α) | f [R(w,α)] = ∅}

=

{
∅ if R(w,α) 6= ∅

{fα
⊥} if R(w,α) = ∅

7



where fα
⊥ is the constant function such that fα

⊥(x) = ⊥ for any x ∈ S(α). Note that fα
⊥ only

depends on α and it is independent from w. �

It is also important that R(w,α) only depends on the valuation on w itself but not on other
worlds.

Proposition 16 For any M, w and N , v, if VM(w) = VN (v) then R(w,α) = R(v, α) for all α ∈ PL.

3.2 Semantics

Given the definition of resolutions, we can define the satisfaction relation of DELKh on possible
worlds in epistemic models. Note that the connectives outside the scope of Kh are classical and
the semantics of K is standard as in epistemic logic. The semantics of Khα on a world w is the
formalization of the idea that the agent knows how to resolve α iff it knows a particular resolution
of α. The semantics of the dynamic modality ✷ is based on taking submodels as in a version
of arbitrary announcement logic [1], representing informational updates in terms of eliminating
possibilities.

Definition 17 (Semantics) For any ϕ ∈ DELKh and a pointed model M, w where M = 〈W,V 〉,
the satisfaction relation is defined as below:

M, w 2 ⊥
M, w � p ⇐⇒ p ∈ V (w)
M, w � (ϕ ∨ ψ) ⇐⇒ M, w � ϕ or M, w � ψ
M, w � (ϕ ∧ ψ) ⇐⇒ M, w � ϕ and M, w � ψ
M, w � (ϕ→ ψ) ⇐⇒ M, w � ϕ implies M, w � ψ
M, w � ✷ϕ ⇐⇒ for any (M′, w) ⊆ (M, w),M′, w � ϕ
M, w � Kϕ ⇐⇒ for any v ∈ M,M, v � ϕ
M, w � Khα ⇐⇒ there exists a x ∈ S(α) s.t. for any v ∈ M, x ∈ R(v, α)

We say a formula is valid on M (M � ϕ) if M, w � ϕ for all w ∈ M. We say a set of DELKh-

formula Γ entails another formula ϕ (Γ � ϕ), if for any pointed model M, w, M, w � Γ implies

M, w � ϕ. We say ϕ is valid (� ϕ) if ∅ � ϕ. A formula schema is valid if all its instances are valid.

It is not hard to see that the structure of the truth condition of Kh is in terms of the bundle ∃xK as
in other know-wh logics [36, 34]. Recall that R(M, α) = (

⋂
v∈M R(v, α)) (cf. Definition 14). The

semantics of Kh can be then reformulated as below for notational brevity.

M, w � Khα ⇐⇒ R(M, α) 6= ∅

Note that the truth conditions of K and Kh do not depend on the designated world, therefore
we have:

Proposition 18 For any model M, w:

• M, w � Khα ⇐⇒ M � Khα, and M, w � ¬Khα ⇐⇒ M � ¬Khα;

• M, w � Kα ⇐⇒ M � Kα, and M, w � ¬Kα ⇐⇒ M � ¬Kα.

As a consequence, the introspection axioms Khα↔ KKhα and ¬Khα↔ K¬Khα are valid.

It is clear that the above semantics is simply classical for α ∈ PL. In particular, {α ∈ PL | � α}
is classical propositional logic (CPL). However, let InqKhL be {α | � Khα} ⊆ PL, we will show
that InqKhL = InqB. Before that, to understand the semantics of Kh better, we first show that
the classical semantics of α can be viewed from the perspective of resolutions: resolvability equals
truth. Note that for atomic formulas p, M, w � p ⇐⇒ R(w, p) 6= ∅ is obviously true, however
we need to generalize it to any formula α ∈ PL.
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Proposition 19 For any α ∈ PL and pointed model M, w. M, w � α ⇐⇒ R(w,α) 6= ∅, where α ∈
PL.

PROOF Induction on the structure of α:

M, w � p ⇐⇒ p ∈ VM(w) ⇐⇒ R(w, p) = {p} ⇐⇒ R(w, p) 6= ∅

M, w 6� ⊥ ⇐⇒ R(w,⊥) = ∅

M, w � (α ∨ β) ⇐⇒ M, w � α or M, w � β ⇐⇒ R(w,α) 6= ∅ or R(w, β) 6= ∅

⇐⇒ there exists an x ∈ R(w,α) or there exists a y ∈ R(w, β)

⇐⇒ there exists a pair 〈x, 0〉 or 〈y, 1〉 in R(w,α ∨ β)

⇐⇒ R(w,α ∨ β) 6= ∅

M, w � (α ∧ β) ⇐⇒ M, w � α and M, w � β ⇐⇒ R(w,α) 6= ∅ and R(w, β) 6= ∅

⇐⇒ there exists an x ∈ R(w,α) and there exists a y ∈ R(w, β)

⇐⇒ there exists a pair 〈x, y〉 ∈ R(w,α ∧ β)

⇐⇒ R(w,α ∧ β) 6= ∅

M, w � (α→ β) ⇐⇒ M, w � α implies M, w � β ⇐⇒ R(w,α) 6= ∅ implies R(w, β) 6= ∅

⇐⇒ S(β)S(α) 6= ∅ and f [R(w,α)] ⊆ R(w, β) is possible

⇐⇒ R(w,α → β) 6= ∅

�

For negations, based on Propositions 19 and 15, we have

M, w � ¬α ⇐⇒ R(w,α) = ∅ ⇐⇒ M, w 2 α.

Now, based on Proposition 19, we have an alternative semantics for Kα for α ∈ PL:

M, w � Kα ⇐⇒ for any v ∈ M, there exists an x ∈ R(v, α)

Compared with the truth condition of Kh, it now becomes clear that the distinction between Kh and
K is exactly the distinction between the de re and de dicto knowledge, i.e., knowing α is resolvable
vs. knowing how α is resolved.

M, w � Khα ⇐⇒ there exists an x s.t. for any v ∈ M, x ∈ R(v, α)

Based on this distinction, Khα is clearly stronger than Kα:

Proposition 20 Khα→ Kα is valid for all α ∈ PL.

The distinction disappears if we consider the atomic propositions since there can be at most one
fixed resolution for each p ∈ PL.

Proposition 21 Khp↔ Kp is valid for all p ∈ P.

However, Kα→ Khα does not hold in general.

Example 1 Kh(p ∨ ¬p) ↔ K(p ∨ ¬p) is not valid, e.g., in the model 〈{w, v}, V 〉 where p ∈ V (w) but

p 6∈ V (v), K(p ∨ ¬p) holds everywhere but Kh(p ∨ ¬p) holds nowhere.

The example also shows that the valid Kh-formulas are not closed under uniform substitution,
to which we will come back in Section 4.

It is well-known that in intermediate logics negation plays a role in bridging the classical and
the intuitionitic validities, we show that this can be understood by the fact that ¬ bridges Kh and
K in our setting.

Proposition 22 (Negative translation) Kh¬α ↔ K¬α is valid. As a consequence, Kh¬¬α ↔ Kα is

valid.
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PROOF By (the proof of) Proposition 15

R(v,¬α) 6= ∅ ⇐⇒ R(v,¬α) = {fα
⊥} ⇐⇒ R(v, α) = ∅

Thus M, w � Kh¬α ⇐⇒ R(M,¬α) 6= ∅ ⇐⇒ R(v, α) = ∅ for all v ∈ M ⇐⇒ M, w � K¬α.
Therefore M, w � Kh¬¬α ⇐⇒ M, w � K¬¬α ⇐⇒ M, w � Kα. �

Although we cannot reduce Kh to K in general, we can reduce the complexity of α in Khα step
by step, which will play an important role in the later sections.

Proposition 23 The following formulas and schemata are valid:

• Kh⊥ ↔ ⊥

• Kh(α ∨ β) ↔ Khα ∨ Khβ

• Kh(α ∧ β) ↔ Khα ∧ Khβ

• Kh(α → β) ↔ K✷(Khα→ Khβ)

PROOF We only show the non-trivial cases of Kh(α ∨ β) and Kh(α → β).

• M, w � Kh(α ∨ β) ⇐⇒ R(M, α ∨ β) 6= ∅

⇐⇒ there exists an 〈x, 0〉 ∈ R(M, α ∨ β) or there exists a 〈y, 1〉 ∈ R(M, α ∨ β)
⇐⇒ there exists an x ∈ R(M, α) or there exists a y ∈ R(M, β)
⇐⇒ M, w � Khα or M, w � Khβ ⇐⇒ M, w � Khα ∨ Khβ

• Let us now consider the case for Kh(α → β) ↔ K✷(Khα → Khβ).
=⇒: Suppose M, w � Kh(α → β), then by the semantics, there is some f ∈ R(M, α → β).
Towards a contradiction, suppose M, w 6� K✷(Khα → Khβ). That is, there is an v ∈ M and
an M′, v ⊆ M, v s.t. M′, v � Khα but M′, v 6� Khβ. So there is an x ∈ R(M′, α). Recall that
f is a function with domain S(α), and S(α) ⊇ R(u, α) for all u ∈ M′, thus x ∈ Dom(f).
Moreover, since f ∈ R(M, α → β), f ∈ R(M′, α → β). Let y = f(x). By the definition of
R(M′, α→ β), y ∈ R(u, β) for each u ∈ M′. Therefore M′, v � Khβ, a contradiction.

⇐=: Suppose M, w � K✷(Khα → Khβ), then for all v ∈ M, M, v � ✷(Khα → Khβ). By
the semantics of ✷, for any v ∈ M and for any M′, v ⊆ M, v, M′, v � Khα → Khβ (∗). By
Proposition 13, S(α) is finite and non-empty, thus we can assume S(α) = {x0, x1, . . . , xn}
for some n ∈ N. For i ∈ {0, . . . , n}, let Wi = {w | xi ∈ R(w,α)}. If Wi is not empty then
let Mi be the submodel of M such that WMi

= Wi. Clearly xi ∈ R(Wi, α), therefore for
any u ∈ Mi, Mi, u � Khα. By (∗) we have Mi, u � Khβ thus there is a yi ∈ R(Wi, β).
Now fix a y ∈ S(β) 6= ∅, let f = {〈xi, yi〉 | i ∈ {0, . . . , n} and Wi 6= ∅} ∪ {〈xi, y〉 | i ∈
{0, . . . , n} and Wi = ∅}. Clearly f ∈ S(β)S(α). Now for any v ∈ M and i ∈ {0, . . . , n}, if
xi ∈ R(w,α) then v ∈ Wi by the definition of Wi, thus yi ∈ R(v, β) by the construction
of f . Therefore f [R(v, α)] ⊆ R(v, β) for all v ∈ M. It follows that M, v � Kh(α → β) for
all v ∈ M including w. Note that the axiom of choice is not needed in the above finitary
constructions.

�

Remark 1 Propositions 21 and 23 will help us to eliminate the Kh modalities without changing

the expressive power. Actually, we can also eliminate the ✷ modality eventually. We will discuss

the reduction formally in Section 4 when discussing the axiomatization featuring the corresponding

reduction axioms.

Now we have an intuitive reading of α ∨ ¬α in inquisitive logic based on Propositions 23 and 22.

M, w � Kh(α ∨ ¬α) ⇐⇒ M, w � Khα ∨ Kh¬α ⇐⇒ M, w � Khα ∨ K¬α
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The formula Khα ∨ K¬α says either you know how to resolve α or you know it is not resolvable/
true, and it is clearly not valid in general. This explains intuitively why inquisitive logic does not
accept the law of excluded middle.

Given the validity of Kh(α → β) ↔ K✷(Khα → Khβ) and Proposition 18, we can give an
alternative compositional truth condition to Kh(α→ β), which is more handy to use.

Proposition 24 For any model M, M, w � Kh(α → β) iff for any M′ ⊆ M, M � Khα implies

M � Khβ.

PROOF It suffices to show that M, w � K✷(Khα → Khβ) iff for any M′ ⊆ M, M � Khα implies
M � Khβ, which follows directly from the semantics of K✷. Note that Given a pointed model
M, w, ✷ quantifies over all the submodels of M′ such that w ∈ M′. Since on an S5 model, K
refers to all the points w ∈ M, the combination of K✷ quantifies over all the submodels of M.
That is, for any M′ ⊆ M and v ∈ M′, M′, v � Khα implies M′, v � Khβ. By Proposition 18 the
proof is completed. �

In the following, given Γ ⊆ PL, let KhΓ = {Khγ | γ ∈ Γ}. As another consequence of the
validity of Kh(α → β) ↔ K✷(Khα → Khβ), we have:

Proposition 25 KhΓ � Kh(α → β) iff KhΓ � Khα → Khβ. As a special case, � Kh(α → β) iff

� Khα→ Khβ.

PROOF It suffices to show that KhΓ � K✷(Khα → Khβ) iff KhΓ � Khα → Khβ =⇒ is based on the
fact that Kϕ→ ϕ and ✷ϕ → ϕ are valid. ⇐= is based on the fact that if M, w � KhΓ then any for
submodel M′ of M, M′ � KhΓ by the semantics of Kh. Indeed, if for all the worlds in M, there
exists a uniform resolution for each formula in Γ, the same resolutions will certainly serve as the
uniform resolutions for worlds in M′. Therefore, supposing KhΓ � Khα→ Khβ and M, w � KhΓ, it
follows that Khα → Khβ is satisfied on all the submodels of M. By Proposition 18, that is, for any
M′ ⊆ M, M � Khα implies M � Khβ. By Proposition 24, we have M, w � Kh(α → β). �

Based on Proposition 25, we have the following theorem for Kh formulas, which is the coun-
terpart of Proposition 3.10 (deduction theorem) in [12].

Theorem 26 For any α ∈ PL and Γ,Γ′ ⊆ PL such that Γ is finite,

Kh(Γ′ ∪ Γ) � Khα ⇐⇒ KhΓ′
� Kh(

∧

γ∈Γ

γ → α).

PROOF

Kh(Γ′ ∪ Γ) � Khα ⇐⇒ for any M, w such that M, w � KhΓ′ ∪ KhΓ, then M, w � Khα

⇐⇒ for any M, w such that M, w � KhΓ′, if M, w �
∧

γ∈Γ

Khγ, then M, w � Khα

⇐⇒ for any M, w such that M, w � KhΓ′,M, w �
∧

γ∈Γ

Khγ → Khα

⇐⇒ KhΓ′ �
∧

γ∈Γ

Khγ → Khα

⇐⇒ KhΓ′ � Kh

∧

γ∈Γ

γ → Khα (by Proposition 23)

⇐⇒ KhΓ′
� Kh(

∧

γ∈Γ

γ → α) (by Proposition 25)

�

As an analog of the persistence of inquisitive formulas over sub-states [12, Prop. 2.4], we show
the persistence of Khα in our setting with ✷. Intuitively, once we know how to resolve α, we will
not forget, even given more information.
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Proposition 27 (Persistence) Khα ↔ ✷Khα is valid for any α ∈ PL.

PROOF =⇒: Suppose M, w � Khα then R(M, α) 6= ∅. It is clear that R(M, α) ⊆ R(M′, α) for
any submodel M′. Therefore R(M′, α) 6= ∅ for any submodel M′, thus M, w � ✷Khα.

⇐=: It is trivial since a model is also a submodel of itself. �

Another important interaction property between Kh and ✷ is the following, which can be com-
pared to Proposition 2.5 in [12] regarding the singleton state.

Proposition 28 α ↔ ✸Khα is valid for any α ∈ PL.

PROOF =⇒: It is valid because we can always go to a singleton submodel containing the current
world only, where Kα holds. Note that for singleton models, i.e., models with only one world,
Kα → Khα holds trivially for any α since any actual resolution on that single world will be the
uniform resolution.

⇐= is based on the fact that the updates do not change the truth values of propositional for-
mulas on the current world, and the validity of Khα → Kα and Kα → α. �

As a feature distinguishing intuitionistic logic and classical logic, disjunction property is also
an important property of inquisitive logic [12, Prop. 3.9 ]. It holds naturally in our logic.

Proposition 29 (Disjunction Property) For any formulas α, β ∈ PL, � Kh(α∨β) ⇐⇒ � Khα or �

Khβ.

PROOF =⇒: Suppose 2 Khα and 2 Khβ, then we have some models M, w and N , v such that
M, w 2 Khα and N , v 2 Khβ. Now we can simply merge the two models together as the disjoint
union M⊎N . By the semantics of Kh it is clear that M⊎N , w 2 Khα ∨ Khβ. By Proposition 23,
2 Kh(α ∨ β).

⇐= is trivial by Proposition 23. �

As some examples, we show the validity of Kh-versions of some axioms and valid formulas in
InqB (cf. Theorem 7).

Proposition 30 The following are valid:

KhDNp Kh(¬¬p → p) for p ∈ P

KhPEIRCEp Kh(((p → q) → p) → p) for p, q ∈ P

KhKP Kh((¬α → β ∨ γ) → (¬α → β) ∨ (¬α → γ))
KhNDk Kh((¬α →

∨
1≤i≤k ¬βi) →

∨
1≤i≤k(¬α → ¬βi))

PROOF For KhDNp: by Proposition 25, it suffices to check � Kh¬¬p → Khp. By Proposition 22, it
amounts to check � Kp→ Khp, which is valid by Proposition 21.

For KhPEIRCEp: by Proposition 25, it suffices to check � Kh((p → q) → p) → Khp which
amounts to � K✷(K✷(Khp → Khq) → Khp) → Khp. By Proposition 21, we just need to check
� K✷(K✷(Kp → Kq) → Kp) → Kp. Now suppose M, w 2 Kp then there is v ∈ M such that
M, v � ¬p. We need to show that M, w 2 K✷(K✷(Kp→ Kq) → Kp). Take the singleton submodel
M′ of M with the world v only, then it is clear that M′, v 2 K✷(Kp → Kq) → Kp. Therefore
M, w 2 K✷(K✷(Kp→ Kq) → Kp).

For KhKP: By Proposition 25, we only need to check � Kh(¬α → β ∨ γ) → Kh((¬α → β) ∨
(¬α → γ)). It amounts to � K✷(K¬α → (Khβ ∨ Khγ)) → K✷(K¬α → Khβ) ∨ K✷(K¬α → Khγ)
based on Proposition 23. We prove its contraposition. Suppose M, w � ¬K✷(K¬α → Khβ) ∧
¬K✷(K¬α → Khγ) then there are two submodels M′

1 and M′
2 such that M′

1 � K¬α ∧ ¬Khβ and
M′

2 � K¬α ∧ ¬Khγ. Then the union M′
1 ∪M′

2 is a submodel of M making K¬α → (Khβ ∨ Khγ)
false. Thus M, w 2 K✷(K¬α→ (Khβ ∨ Khγ)).

The validity of KhNDk can be proved similarly as in the case of KhKP. �
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Note that Peirce’s schema Kh(((α → β) → α) → α) is not valid in general. For example, take
the instance where α = p ∨ ¬p and β = p and the full model is a counterexample.

So far, we have seen the αs in the valid Khα formulas behave pretty much like the valid formulas
in the inquisitive logic, we will show it is no coincidence.

3.3 InqKhL = InqB

In this subsection, we show InqKhL = {α ∈ PL | � Khα} is exactly the inquisitive logic InqB.
We will actually prove a stronger result showing the corresponding semantics consequences are
the same.

Definition 31 Given any model M = 〈W,V 〉 and a non-empty state s ⊆W , let Ms be the submodel

〈s, V |s〉 where V |s is the restriction of V on s, that is, V (w) = V |s(w) for any w ∈ s.

Here is an easy observation that the worlds outside the given state are irrelevant according to
support semantics. This also justifies our notion of s  α without specifying the model M below.

Proposition 32 Given any two models M and M′, and a state s ⊆WM and s ⊆WM′ , if Ms = M′
s,

then for any α ∈ PL: M, s  α ⇐⇒ M′, s  α. In particular if s is non-empty and s ⊆WM, then

M, s  α ⇐⇒ Ms, s  α.

Now we establish the logical equivalence between M and (M,WM) where WM is viewed as
the trivial state.

Lemma 33 Given any α ∈ PL and any pointed model M, w,

M, w � Khα ⇐⇒ M � Khα ⇐⇒ M,WM  α.

PROOF By Proposition 18, we only need to show that for any model M, M � Khα iff WM 

α. We prove the lemma by induction on α.

M � Khp ⇐⇒ M � Kp ⇐⇒ for each w ∈ WM, p ∈ V (w) ⇐⇒ WM  p.

M 6� Kh⊥ ⇐⇒ WM 6= ∅ ⇐⇒ WM 6 ⊥.

M � Kh(α ∨ β) ⇐⇒ M � Khα ∨ Khβ ⇐⇒ M � Khα or M � Khβ ⇐⇒ WM  α or WM  β

⇐⇒ WM  α ∨ β.

M � Kh(α ∧ β) ⇐⇒ M � Khα ∧ Khβ ⇐⇒ M � Khα and M � Khβ ⇐⇒ WM  α and WM  β

⇐⇒ WM  α ∧ β.

M � Kh(α → β) ⇐⇒ for any M′ ⊆ M,M′ � Khα implies M′ � Khβ (by Proposition 24)

⇐⇒ for any non-empty s ⊆WM, s  α implies s  β (by IH)

⇐⇒ WM  α→ β.

�

Since s = W(Ms) for any non-empty state s, as a consequence of Lemma 33 and Proposition
32, we have:

Proposition 34 For each non-empty state s in M, any α ∈ PL, M, s  α ⇐⇒ Ms � Khα.

Now we are ready to establish the relation between InqB and InqKhL.

Theorem 35 Given any {α} ∪ Γ ⊆ PL, Γ  α iff KhΓ � Khα.

PROOF First, note that due to Proposition 18, KhΓ � Khα iff for any M, M � KhΓ implies
M � Khα.

=⇒: For any model M s.t. M � KhΓ, we have WM  Γ by Lemma 33. Since Γ  α, it follows
that WM  α. By Lemma 33 again, we have M � Khα. Therefore KhΓ � Khϕ.
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⇐=: For any model M and state s ⊆WM s.t. s  Γ, we need to show s  α. If s = ∅, since the
empty state supports all formulas in inquisitive semantics, it follows that s  α. If s is non-empty,
by Proposition 34, Ms � KhΓ, thus Ms � Khα. By Proposition 34 again, s  α. As a result, Γ  α.�

When Γ = ∅, it follows immediately that:

Corollary 36 InqB = InqKhL.

4 Axiomatizing the full logic

We showed in the previous section that InqKhL = InqB, thus the valid Kh-fragment can be
axiomatized by the corresponding axioms for inquisitive logic. However, the more interesting
question to answer is what the logic with respect to the full language DELKh is. In this section,
we provide a complete axiomatization and also show that the full DELKh-language is equally
expressive as the epistemic fragment with K modality only. The conceptual advantage of our
axiomatization is that all the axioms are epistemically intuitive, compared to the axioms of inquis-
itive logic. The axiomatization also shows the hidden dynamic-epistemic content of inquisitive
logic in a clear syntactic manner.

System SDELKh

Axioms
TAUT Propositional tautologies
DISTK K(ϕ→ ψ) → (Kϕ→ Kψ)
TK Kϕ→ ϕ
4K Kϕ→ KKϕ
5K ¬Kϕ→ K¬Kϕ
DIST✷ ✷(ϕ→ ψ) → (✷ϕ→ ✷ψ)
T✷ ✷ϕ→ ϕ
4✷ ✷ϕ→ ✷✷ϕ
PR K✷ϕ→ ✷Kϕ
Per α → ✷α
Ver α → ✸Khα

KhK Khα → Kα
KKhp Kp→ Khp
Kh⊥ Kh⊥ ↔ ⊥
Kh∨ Kh(α ∨ β) ↔ Khα ∨ Khβ
Kh∧ Kh(α ∧ β) ↔ Khα ∧ Khβ
Kh→ Kh(α → β) ↔ K✷(Khα→ Khβ)
4Kh Khα → KKhα
5Kh ¬Khα→ K¬Khα

EUk α ∧
∧

1≤i≤k K̂(α ∧ αi)→✸(Kα ∧
∧

1≤i≤k K̂αi)

(k ∈ N,αi ∈ PL for i ∈ N)
where p ∈ P, α, β ∈ PL, ϕ ∈ DELKh

Rules:

MP
ϕ, ϕ→ ψ

ψ
NECK

⊢ ϕ

⊢ Kϕ
NEC✷

⊢ ϕ

⊢ ✷ϕ

S5 axiom schemata/rules for K and S4 axiom schemata/rules for ✷ are expectable. PR is the
axioms of perfect recall often assumed in temporal epistemic logic and dynamic epistemic logic (cf.
e.g., [38]). Per says the truth values of propositional formulas do not change given informational
updates. Ver says that propositional truth is eventually verifiable. For any finite set of worlds in
the current model, {EUk | k ∈ N} ensures the existence of an updated submodel that contains
exactly the current world and that set of worlds. We will use EUk to prove the reduction formula
BK∨ in Appendix A. KhK says that know-how is stronger than know-that. KKhp, Kh⊥, Kh∨, Kh∧,
Kh→ are the reduction axioms decoding the inquisitive formulas. Introspection schemata 4K, 4Kh
and 5Kh can be proved from the rest of the system. In particular, 4Kh requires an inductive proof
on the structure of α. We include them for the sake of their intuitive meanings.

Theorem 37 (Soundness) SDELKh is sound over the class of all epistemic models.

PROOF The validity of S5 axiom schemeta/rules for K and S4 axiom schemata/rules for ✷ are
immediate. Based on Propositions 18, 20, 21, 28, and 23, we only need to check PR and Per. For

PR, it is easier to verify its dual form ✸K̂ϕ→ K̂✸ϕ : if there is a submodel where ϕ holds at some
world then there is a world and a submodel including it where ϕ holds. Per is valid since moving
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to any submodel does not change the valuation of the current world. EUk is valid because as long
as the current world sees a (finite) set of worlds, we can take the submodel that contains both the
current world and the set of worlds as the witness for ✸. �

Note that we do not have the rule of uniform substitution for this system in general (recall
Example 1). Moreover, even the rule of monotonicity for Kh is not valid, e.g., � ¬¬α → α but
6� Kh¬¬α → Khα. However, since we have TAUT and the modalities of ✷ and K are normal, we can
have the admissible rule rRE of replacement of equals by equals if we treat all the Khα as atomic
formulas when doing the substitutions:

rRE :
⊢ ϕ↔ ψ

⊢ χ[ϕ/ψ] ↔ χ
given that the substitution does not happen in the scope of Kh.

Due to NECK, NEC✷ and the axiom Kh→, another useful admissible rule is the syntactic analog
of (the non-trivial side of) Proposition 25:

RKh→ :
⊢ Khα→ Khβ

⊢ Kh(α→ β)

To prove the completeness we need some extra provable (technical) formulas inspired by the
reduction of the arbitrary announcement operator in [1] in the single-agent case.

Proposition 38 The following schemata are provable in SDELKh, where α ∈ PL and ϕ ∈ DEL

(i.e., Kh-free).

INV ✷α ↔ α
KINV ✷Kα↔ Kα

hKINV ✷K̂α↔ α

B∨ ✷(α ∨ ϕ) ↔ α ∨ ✷ϕ

BK∨ ✷(K̂α ∨ Kα1 ∨ · · · ∨ Kαn) ↔ α ∨ K(α ∨ α1) ∨ · · · ∨ K(α ∨ αn)

PROOF INV is the combination of Per and T✷. KINV is proved from Per and PR. hKINV is a
special instance of BK∨ when n = 0. We include the (tedious) proofs of the other two formulas in
Appendix A. �

Recall that DEL is the Kh-free fragment of DELKh, and EL is the ✷-free fragment of DEL.
By the following lemmata, we show that each DELKh-formula is provably equivalent to an EL-
formula.

Lemma 39 Each DELKh-formula is provably equivalent to a DEL formula in SDELKh.

PROOF Note that with the help of rRE, we can repeatedly apply Axioms Kh⊥, Kh∧, Kh∨, Kh→
step by step to reduce Khα to simpler Kh formulas. It is not hard to show that eventually, all the
Kh-formula can be reduced to some formulas with Khp only. By Axioms KhK and KKhp, we have
⊢ Khp↔ Kp, which will eventually eliminate any Kh modality completely. �

Lemma 40 Each DEL-formula is provably equivalent to an EL formula in SDELKh.

PROOF Here we follow the idea in [1]. We say a formula ϕ ∈ EL is in normal form if it is a

conjunction of disjunctions of the form α ∨ K̂α0 ∨ Kα1 ∨ · · · ∨ Kαn where α, α0, · · · , αn ∈ PL.
Every formula in single-agent S5 is equivalent to a formula in normal form [24]. So we only need

to prove that ✷(α ∨ K̂α0 ∨ Kα1 ∨ · · · ∨ Kαn) is provably equivalent to an EL formula in SDELKh.
Then we can eliminate the ✷ step by step from the innermost ones that do not have any ✷ in its
scope.

By B∨, ✷(α ∨ K̂α0 ∨ Kα1 ∨ · · · ∨ Kαn) is equivalent to α ∨ ✷(K̂α0 ∨ Kα1 ∨ · · · ∨ Kαn), and by

BK∨, α ∨✷(K̂α0 ∨ Kα1 ∨ · · · ∨Kαn) is equivalent to α ∨ α0 ∨ K(α0 ∨ α1) ∨ · · · ∨K(α0 ∨ αn), which
is a formula in EL. Note that B∨ and BK∨ are provable in SDELKh as shown by Proposition 38.
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�

Lemmata 39 and 40 together with Theorem 37 also tell us about the expressivity of DELKh.

Theorem 41 (Expressivity) DELKh is equally expressive as EL over epistemic models.

In particular, we have the following corollary.

Corollary 42 For each α ∈ PL, there is an epistemic formula ϕ ∈ EL such that

M,WM  α ⇐⇒ M, w � Khα ⇐⇒ M, w � ϕ.

As shown in the literature, a simple direct translation from inquisitive logic to epistemic logic
will be given in Section 6.

Theorem 43 (Completeness) SDELKh is complete over the class of all epistemic models.

PROOF We prove the completeness by translating each DELKh-formula ϕ into an equivalent
EL-formula ϕ′ and follow the strategy below.

� ϕ
expressive equivalence

=⇒ � ϕ′ completeness of S5
=⇒ ⊢S5 ϕ

′ S5⊆ SDELKh
=⇒ ⊢SDELKh ϕ

′ provable equivalence
=⇒ ⊢SDELKh ϕ

�

Strong completeness can be obtained in the similar process w.r.t. a given assumption set Γ (cf.
e.g., [2]). Decidability of SDELKh immediately follows from the proofs of the above theorems and
the decidability of S5 .

Corollary 44 SDELKh is decidable.

To demonstrate the power and the use of our system, we show that the following important
axioms can be proved based on our intuitive epistemic axioms. In particular, compared to the
semantic validity of KhDNp shown in Proposition 30, the syntactic proof of KhDNp presents the
non-trivial use of the axioms regarding ✷ and K in Proposition 38.

Proposition 45 The following are provable in SDELKh:

KKhN K¬α → Kh¬α
KhDNp Kh(¬¬p → p)
KhNDk Kh((¬α →

∨
1≤i≤k ¬βi) →

∨
1≤i≤k(¬α → ¬βi))

PROOF For KKhN:

⊢ Khα→ α KhK, TK, TAUT (1)

⊢ ¬α → ¬Khα (1)TAUT (2)

⊢ ✷¬α → ✷¬Khα (2)NEC✷ (3)

⊢ ¬α → ✷¬Khα (3)Per, TAUT (4)

⊢ K¬α→ K✷¬Khα (4)NECK (5)

⊢ K¬α→ K✷(Khα → Kh⊥) (5)Kh⊥, rRE (6)

⊢ K¬α→ Kh¬α (6)Kh→, rRE (7)

For KhDNp:

⊢ ¬¬p→ p TAUT (1)

⊢ K(¬¬p→ p) (1)NECK (2)

⊢ K¬¬p→ Kp (2)DISTK, MP (3)

⊢ Kh¬¬p → K¬¬p KhK (4)
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⊢ Kp→ Khp KKhp (5)

⊢ Kh¬¬p → Khp (4)(3)(5)TAUT (6)

⊢ Kh(¬¬p → p) (6)RKh→ (7)

For KhNDk:

⊢ Kα ∨
∨

1≤i≤k

K(α ∨ ¬βi) →
∨

1≤i≤k

(Kα ∨ K(α ∨ ¬βi)) TAUT (1)

⊢ K(α ∨
∨

1≤i≤k

K(α ∨ ¬βi)) ↔ (Kα ∨
∨

1≤i≤k

K(α ∨ ¬βi)) S5K (2)

⊢ K(α ∨ K(α ∨ ¬βi)) ↔ (Kα ∨ K(α ∨ ¬βi)) S5K (3)

⊢ K(α ∨
∨

1≤i≤k

K(α ∨ ¬βi)) →
∨

1≤i≤k

K(α ∨ K(α ∨ ¬βi)) (1)(2)(3)rRE (4)

⊢ ✷(K̂α ∨
∨

1≤i≤k

K¬βi) ↔ (α ∨
∨

1≤i≤k

K(α ∨ ¬βi)) BK∨ (5)

⊢ ✷(K̂α ∨ K¬βi) ↔ (α ∨ K(α ∨ ¬βi)) BK∨ (6)

⊢ K✷(K¬α→
∨

1≤i≤k

K¬βi) →
∨

1≤i≤k

K✷(K¬α→ K¬βi) (4)(5)(6)rRE (7)

⊢ K✷(Kh¬α →
∨

1≤i≤k

Kh¬βi) →
∨

1≤i≤k

K✷(Kh¬α → Kh¬βi) (7)KKhN, KhK, rRE (8)

⊢ K✷(Kh¬α → Kh

∨

1≤i≤k

¬βi) →
∨

1≤i≤k

Kh(¬α → ¬βi) (8)Kh∨, Kh→, rRE (9)

⊢ Kh(¬α →
∨

1≤i≤k

¬βi) → Kh

∨

1≤i≤k

(¬α → ¬βi) (9)Kh→, Kh∨, rRE (10)

⊢ Kh((¬α →
∨

1≤i≤k

¬βi) →
∨

1≤i≤k

(¬α → ¬βi)) (10)RKh→, rRE (11)

�

Note that although KhND and KhKP are very similar semantically as in the proof of Proposition 30,
deriving KhKP requires more efforts within our proof system due to the absence of negations in
front of βi, which bridged K and Kh in the above proof. Nevertheless, KhKP can be proved via a
detour using Theorem 54 that gives the equivalent

∨
Kρi form of each Kh-formula, which then

reduces the case to KhND.5

To end this section, we discuss the connections of our logic of knowing how with the planning-

based knowing how logic studied in [35, 14, 20]. In [20], Khϕ roughly says that there is a plan
such that I know that executing it will always guarantee ϕ, where ϕ can be any formula in the
language. Note that this is very different from the intuitive reading of know-how operator in
the current framework, where Khα says that knowing how α is true, where α is a propositional
formula. The fundamental difference in the semantics is reflected by the axioms regarding the Kh

modality. For example, Kh(ϕ ∨ ψ) → (Khϕ ∨ Khψ) is not valid in [14, 20], e.g., one can always use
any plan to make sure p ∨ ¬p but it does not mean one can make sure p or make sure ¬p. On the
other hand, Kϕ → Khϕ is valid in [14, 20] since you can always use the empty plan, whereas in
our framework, it does not hold in general when ϕ is not a statement.

5 Epistemic interpretation of inquisitive semantics

In this section, we look at the concepts in inquisitive semantics from our alternative epistemic
perspective.

5Instead of EUk, we may try to add an axiom K̂✸(Kα ∧ ¬Khβ) ∧ K̂✸(Kα ∧ ¬Khγ) → K̂✸(Kα ∧ ¬Khβ ∧ ¬Khγ), which
captures the possibility of merging two submodels, thus having a direct link with KhKP (cf. the proof of Proposition 30.)
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We first summarize the correspondence between our semantics and inquisitive semantics below
based on the corresponding definitions in Section 2.6

Inquisitive semantics Our epistemic semantics

Information model single-agent S5 epistemic model (with an implicit total relation)
non-empty states epistemic submodels
support (M, s  α) know-how (Ms � Khα)
alternatives for α in M maximal submodels of M satisfying Khα
proposition expressed by α in M set of submodels of M for Khα
α is inquisitive in M there are two maximal submodels satisfying Khα
α is informative in M there is one world not in any maximal submodels of M for Khα

First we give an epistemic characterization of informativeness (and questions). The idea is that
α is informative iff you do not know that α already.

Proposition 46 Given any M, α is informative in M iff M � ¬Kα. Thus α is a question in M iff

M � Kα.

PROOF Recall that α is informative in M iff there is at least one world in M that is not included
in any alternative for α in M (cf. Definition 9). This definition can be rendered intuitively (and

formally) as M � K̂¬✸Khα in our framework. Now due to Proposition 28, it is equivalent to

M � K̂¬α, namely, M � ¬Kα. �

Next, we prove an epistemic characterization of inquisitiveness and statements. The idea is that
α is inquisitive in s iff it is possible to know α while not knowing how to resolve it with the
information provided by s in a model M.

Proposition 47 Given any M, α is inquisitive in M iff M � K̂✸(Kα∧¬Khα). Thus α is a statement

in M iff M � K✷(Kα→ Khα).

PROOF Recall that α is inquisitive in M iff there are at least two alternatives for α (cf. Definition
9). In our terms, it means there is some submodel (e.g., the union of those two alternatives) such

that Kα holds but there is no uniform resolution. Formally, it amounts to M � K̂✸(Kα ∧ ¬Khα).

Therefore α is a statement in M iff α is not inquisitive iff M � ¬K̂✸(Kα∧¬Khα) iff M � K✷(Kα→
Khα).

�

Note that K✷(Kα → Khα) is equivalent to Kh(¬¬α → α) which is consistent with the characteri-
zation of statements in [12]. K✷(Kα → Khα) says that I know that if you tell me α is resolvable
then I will know how to resolve it.

In particular, when taking a full model M and the trivial state WM, then from Propositions 6,
46 and 47, we have the characterization of absolute questions and statements.

Proposition 48 α is a question iff Kα is valid iff α is a classical tautology. α is a statement iff

Kα→ Khα is valid iff Kα↔ Khα is valid.

Based on the above epistemic characterization of the relative notion of statements, we can
prove the following from a purely epistemic perspective extending the result in Proposition 2.19
in [12] about absolute statements.

Proposition 49 For any p ∈ P and α, β ∈ PL, any given model M:

1. p is a statement in M.

2. ⊥ is a statement in M.

3. If α and β are statements in M, then α ∧ β is a statement in M.

6If V [s] = ℘(P) then we have the corresponding absolute notions of inquisitiveness and informativeness as in [12].
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4. if β is a statement in M, then α→ β is a statement in M.

PROOF (1) and (2) are trivial. For (3): Suppose α and β are statements in M, by Proposition 47,
we need to show M � K✷(K(α ∧ β) → Kh(α ∧ β)), which is equivalent to M � K✷((Kα ∧ Kβ) →
(Khα ∧ Khβ)). By the assumption that α and β are statements in M, it can be easily proved.

Now for (4): Suppose that β is a statement in M. By Proposition 47, we have M � K✷(Kβ →
Khβ) (†). We need to show that M � K✷(K(α → β) → Kh(α → β)), namely, for any submodel M′

of M if M′ � K(α → β) then M′ � K✷(Khα → Khβ). Suppose M′ � K(α → β) and take any
submodel M′′ of M′ such that M′′ � Khα, we only need to show M′′ � Khβ. Since � Khα → Kα,
we have M′′ � Kα. Since M′ � K(α → β) and M′′ is a submodel of M′, we have M′′ � Kβ. Now
due to the fact that M′′ is also a submodel of M, we have M′′ � Khβ by (†), which completes the
proof. �

As an immediate consequence, any disjunction-free formula is a statement in any M.

Proposition 50 For any α ∈ PL, if α is disjunction-free, then α is a statement in M for any M.

Next, we show the epistemic proof of another result in [12] linking the three most important
concepts in inquisitive semantics.

Proposition 51 (Support, inquisitiveness, and informativeness) M, s supports a formula α if α
is neither inquisitive in Ms nor informative in Ms.

PROOF It is straightforward in our case due to the validity of Khα↔ (Kα∧K✷(Kα→ Khα)). The
right-to-left implication is due to the validity of the axioms T✷ and TK. The left-to-right implication
is due to the validity of KhK and the fact that once we have a uniform resolution for α then we still
have it in any submodel. �

As we mentioned earlier, the intended interpretation of inquisitive logic is not about knowl-
edge, and what we are presenting is an alternative interpretation. On the other hand, there
are intimate connections between the two interpretations conceptually. We conclude the section
by the following discussion on knowledge and information range. Starting from Hintikka [17],
knowledge in epistemic logic is defined based on information range: ϕ is known iff in ϕ holds
on all the epistemic alternatives of the real world. This notion of knowledge is applied to various
fields where the object to which we ascribe the knowledge statement is not an agent at all, such as
in distributed system of computer science. Note that in many applications, the so-called “agent”
is just a way of talking about the information range. It is also reflected in the technical fact that
the classical propositional reasoning can be cast in the epistemic logic such that α �CPL β iff
Kα �S5 Kβ. Intuitively we can turn a classical propositional entailment from α to β into an epis-
temic entailment by if α is known, then β is also known. As we have seen in Theorem 35, we can
generalize it to match the entailment of InqB with then entailment in our know-how variant of
epistemic logic. Moreover, when talking about general knowledge, it is not essential to ask which
specific agent the knowledge is ascribed to. Actually, the basic systems of epistemic logic are suit-
able for this kind of general reasoning, by assuming an idealized reasoner, no matter who exactly
knows. From our perspective, when we do not give any special constraints on the information that
the agent has, we can actually talk about the general semantic knowledge which is not ascribed
to a particular agent. Therefore, to us, there is no drastic conceptual gap between the information
model for the inquisitive semantics and epistemic model in our setting. Nevertheless, in concrete
applications about real agents, some more detailed constraints on what agents know and what
they can learn may be given, which may result in changes of logic (cf. e.g., [8, Section 2.8]).

6 Related work

In this section, we first connect the formula-based resolutions studied in the literature of inquisitive
logic in [12, 7] to our approach, and then compare our work to the related modal logic work in
the literature.
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6.1 Resolutions in terms of formulas in PL

In our framework, the resolutions defined in Definitions 12 and 14 are not in the object language.
It is not hard to check as long as S(p) is a singleton {x} and R(w, p) = S(p) iff p ∈ VM(w), the
semantics will not affect the logic.7 On the other hand, since the resolutions of atomic propositions
are defined simply as themselves, it is possible to express the resolutions using formulas in the
object language. In [12], the authors proposed a notion of resolutions expressed by disjunction-
free formulas in PL. Here we take the simplified version Definition 8 in [7]:8

Definition 52 (Resolutions [7])

• RL(p) = {p} for p ∈ P

• RL(⊥) = {⊥}

• RL(α ∨ β) = RL(α) ∪ RL(β)

• RL(α ∧ β) = {ρ ∧ σ | ρ ∈ RL(α) and σ ∈ RL(β)}

• RL(α → β) = {
∧

ρ∈RL(α)(ρ→ f(ρ)) | f : RL(α) → RL(β)}

For example, instead of using the explicit functions for the resolutions of α → β, RL uses a con-
junction of implications to capture the function. As proved in [12], each element of R(α) is a
statement.

The following proposition is stated without a proof in Proposition 9.3 in [12] which can be
shown by an inductive proof.

Proposition 53 ([12]) For any model M, state s and formula α ∈ PL,

M, s  α ⇐⇒ s ⊆ |ρ|M for some ρ ∈ RL(α)

where |ρ|M is the set of possible worlds that satisfy ρ classically in M.

In our know-how perspective, the above proposition actually establishes the equivalence of the
state-based inquisitive semantics to the following alternative epistemic semantics for Khα.

M, w � Khα ⇐⇒ there exists a ρ ∈ RL(α) such that M, w � Kρ

We can establish the following equivalences, without using Proposition 53.

Theorem 54 For any model M and any non-empty state s, and any α ∈ PL, the following are

equivalent:

1. M, s  α

2. Ms � Khα

3. Ms �
∨

ρ∈RL(α) Kρ.

4. Ms � Khα

PROOF (1) iff (2) is due to Proposition 34. (3) iff (4) is based on the definition of � and the fact
that RL(α) is finite. In the following, we show that (2) iff (3) by induction on the structure of α,
where the definition of RL and classical reasoning play an important role.

• α = p or α = ⊥: It is obvious since RL(α) = {α} and � Khα↔ Kα in such cases.

7Note that what exactly is the resolution of each atomic proposition does not matter, due to our BHK-like semantics for
Kh, which only checks the existence of (uniform) resolutions.

8In Definition 9.1 in [12], the resolution formulas (realizations) are based on some normal form.
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• α = α1 ∨ α2: Ms � Kh(α1 ∨ α2) ⇐⇒ Ms � Khα1 ∨ Khα2 ⇐⇒ Ms �
∨

ρ∈RL(α1)
Kρ ∨∨

ρ∈RL(α2)
Kρ ⇐⇒ Ms �

∨
ρ∈RL(α) Kρ

• α = α1 ∧ α2: Ms � Kh(α1 ∧ α2) ⇐⇒ Ms � Khα1 ∧ Khα2 ⇐⇒ Ms �
∨

ρ∈RL(α1)
Kρ ∧∨

ρ∈RL(α2)
Kρ ⇐⇒ Ms �

∨
ρ1∈RL(α1),ρ2∈RL(α2)

Kρ1∧Kρ2 ⇐⇒ Ms �
∨

ρ1∈RL(α1),ρ2∈RL(α2)
K(ρ1∧

ρ2) ⇐⇒ Ms �
∨

ρ∈RL(α) Kρ

• α = α1 → α2: Ms � Kh(α1 → α2) ⇐⇒ Ms � K✷(Khα1 → Khα2)

Based on the induction hypothesis and the definition of RL(α → β) we just need to prove
that:

Ms � K✷(
∨

ρ∈RL(α1)

Kρ→
∨

ρ∈RL(α2)

Kρ) ⇐⇒ Ms �
∨

f :RL(α1)→RL(α2)

K

∧

ρ∈RL(α1)

(ρ→ f(ρ)).

=⇒: Given Ms � K✷(
∨

ρ∈RL(α1)
Kρ→

∨
ρ∈RL(α2)

Kρ), we need to find a f : RL(α1) → RL(α2)

s.t. Ms � K
∧

ρ∈RL(α1)
(ρ→ f(ρ)). As RL(α2) is not empty, let ρ0 be a fixed element of RL(α2)

to be used to define the function f . There are two cases to be considered.

– For any ρ ∈ RL(α1) such that Ms � K¬ρ, we have Ms � K(ρ→ ρ′) for any ρ′ ∈ RL(α2).
We can safely define f(ρ) = ρ0.

– For any ρ ∈ RL(α1) such that Ms � K̂ρ, let Mρ
s be the maximal submodel of Ms s.t.

Mρ
s � Kρ. By the semantics of K and ✷, if Ms � K✷(

∨
ρ∈RL(α1)

Kρ →
∨

ρ∈RL(α2)
Kρ),

Mρ
s �

∨
ρ∈RL(α1)

Kρ →
∨

ρ∈RL(α2)
Kρ, then Mρ

s �
∨

ρ∈RL(α2)
Kρ, which means that there

is a ρ′ ∈ RL(α2) such that Mρ
s � Kρ′. As Mρ

s is the maximal submodel of Ms s.t.
Mρ

s � Kρ, Ms � K(ρ→ ρ′). We let f(ρ) = ρ′.

Now we have defined an f : RL(α1) → RL(α2) s.t. Ms �
∧

ρ∈RL(α1)
K(ρ → f(ρ)), which is

equivalent to Ms � K
∧

ρ∈RL(α1)
(ρ→ f(ρ)).

⇐=: Suppose Ms �
∨

f :RL(α1)→RL(α2)
K
∧

ρ∈RL(α1)
(ρ → f(ρ)) then there is a f : RL(α1) →

RL(α2) s.t. Ms � K
∧

ρ∈RL(α1)
(ρ → f(ρ)). This amounts to Ms �

∧
ρ∈RL(α1)

K(ρ → f(ρ)),

thus for any submodel M′ of Ms, M
′ �

∧
ρ∈RL(α1)

(K(ρ → f(ρ))). By the usual distribution

axiom by of K, M′ �
∧

ρ∈RL(α1)
(Kρ → Kf(ρ)). Weakening the consequent, we have M′ �∧

ρ∈RL(α1)
(Kρ →

∨
ρ∈RL(α2)

Kρ). Therefore M′ �
∨

ρ∈RL(α1)
Kρ →

∨
ρ∈RL(α2)

Kρ. Since M′ is

an arbitrary submodel of Ms, it follows that Ms � K✷(
∨

ρ∈RL(α1)
Kρ→

∨
ρ∈RL(α2)

Kρ).

�

As an immediate consequence, we have the modal translation from InqB to the epistemic logic
S5 and the modal logic K. The translation to modal logic K (and other normal modal logics) was
mentioned by Ciardelli in [6, Section 6.6], and also in [7, Section 5.4] when discussing the modal
approach of [26] to the semantics of questions. Through the correspondence with the know-how
semantics (w.r.t. �) shown in the above theorem, we can see more intuitively what the translation
below is doing.

Corollary 55 (InqB to S5 and K [6, 7]) For α ∈ PL, α ∈ InqB iff
∨

ρ∈RL(α) Kρ ∈ S5 iff
∨

ρ∈RL(α) Kρ ∈
K

PROOF The last iff is due to the fact that for each pointed Kripke model M, w � ¬
∨

ρ∈RL(α) Kρ

there is an epistemic model N , w � ¬
∨

ρ∈RL(α) Kρ where N = 〈WM,∼, VM〉 and ∼ is the reflexive,

symmetric, transitive closure of the accessibility relation in M. Note that ¬
∨

ρ∈RL(α) Kρ is equiva-

lent to
∧

ρ∈RL(α) K̂¬ρ. �
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Note that although it is natural to think this translation can be compared to Gödel’s translation
of intuitionistic logic to S4, the nature of the two translations are quite different in terms of how
to read the modality. In Gödel’s translation, the modality is actually a temporal-epistemic one,
namely K✷ in our perspective [37], but the modality here is merely a purely epistemic one.

As another corollary of Theorem 54, the following important property of InqB follows.

Corollary 56 ([12, 5]) Any α ∈ PL is equivalent to a disjunction of statements/negations in in-

quisitive logic.

PROOF From Theorem 54, � Khα ↔
∨

ρ∈RL(α) Kρ. Due to Proposition 50, ρ ∈ RL(α) is a

statement. Therefore by Proposition 48, � Khα ↔
∨

ρ∈RL(α) Khρ, thus � Khα ↔ Kh
∨

ρ∈RL(α) ρ.

By the validity of the Rule RKh→, we have � Kh(α ↔
∨

ρ∈RL(α) ρ). By Corollary 36, we have

α↔
∨

ρ∈RL(α) ρ ∈ InqB. �

The above corollaries show that inquisitive logic can be viewed as a fragment of normal epis-
temic logic technically. However, as argued in [7] regarding the modal approach of [26], those
modal formulas do not preserve the surface structure of sentences and questions in the natural
language. Actually, as shown by our approach, such a reduction to standard epistemic logic is
the result of the assumption in inquisitive logic that each atomic proposition has a unique res-
olution. In similar settings such as intuitionistic logic and Medvedev logic, this is not possible.
Using our powerful language InqKhL, we can keep the structure of statements and questions as
they are in the natural language by Khα on the one hand, and reveal its epistemic meaning by the
reductions on the other hand. We do not need to take sides between the technical and conceptual
convenience.

Yet another consequence of Theorem 54 is about the limitation of inquisitive logic over models.

Corollary 57 Inquisitive logic is less expressive than EL.

PROOF Note that inquisitive logic can only say things in terms of disjunction over positive Kα

formulas, thus formulas like K̂p are simply not expressible. �

With the classical connectives in hand, we can express various things which were not express-
ible in the standard inquisitive logic, such as the classical negation of an inquisitive formula α
(simply by ¬Khα) (cf. [28] for the study within the framework of inquisitive logic). The classical
connectives and normal know-that modality give us lots of flexibility in capturing mixed reasoning
with both inquisitive and classical propositions.

6.2 Comparison with inquisitive modal logic

In the literature, inquisitive modal logic is proposed as a conservative extension of normal modal
logic by introducing the modality in the language and separating the inquisitive disjunction 0 with
the classical disjunction ∨ (cf. e.g., [6]). To avoid potential confusion with our ✷ modality, we
denote the inquisitive modality as � in this subsection. With � at hand, one can naturally express
formulas combining the modality and questions, such as �(p 0¬p), which says knowing whether p
in an epistemic setting. Correspondingly, the information model is extended with a binary relation
R, not to be confused with the resolution function R, to interpret the modality with the following
extra semantic clause in Definition 6.1.3 in [6]:

M, s  �α ⇐⇒ for all w ∈ s, M,R[w]  α

where R[w] = {v | wRv in M}. When s is a singleton set, we can derive the following semantics
for � over worlds (Proposition 6.1.4 in [6]):

M, w  �α ⇐⇒ M,R[w]  α

By the above support-based semantics, �α is always truth-conditional, i.e., s supports �α iff it is
true at each world w ∈ s (cf. [6]). When α is also truth-conditional, the above semantics of �α
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over worlds clearly boils down to the Kripke semantics for �: �α is true at w if α is true at each
v accessible from w. In [6], a general method of axiomatizating the logic is provided that works
with various frame conditions.

Since this is another way of combining modalities and inquisitive connectives, it deserves a
comparison with our approach, in particular about the semantics of � under an epistemic reading
and our Kh.

By definition, � relies on the support relation, while Kh has the ∃K-shape semantics that relies
on the resolutions as in Definition 14. However, they are connected deeply and come down to the
same truth condition on pointed models. To see this, first let us consider the special case where R
is the total-relation in a model M for inquisitive modal logic. Therefore, for any w ∈ WM, R[w]
is exactly the set of possible worlds WM. Given M, let st be the trivial state WM, and let w ∈ st,
the support semantics of �α over st collapses into the one for the non-modal α:

M, st  �α ⇐⇒ M, st  α ⇐⇒ M, w  �α

Note that by Lemma 33, we have:

M, st  α ⇐⇒ M � Khα ⇐⇒ M, w � Khα

From the above two observations, we can establish that for any α ∈ PL:

M, w  �α ⇐⇒ M, w � Khα

The above equivalence still holds on models with an arbitrary relation R, 9 not just the total one,
given that we generalize our Kh semantics naturally to models with R, as in logics of know-wh (cf.
e.g., [36]).

M, w |= Khα ⇐⇒ there exists an x s.t. for any v ∈ R[w], x ∈ R(v, α)

Under this more general semantics of Kh over models with an arbitrary relation R, we can estab-
lish:

M, w  �α ⇐⇒ M, R[w]  α ⇐⇒ M, w |= Khα

The second equivalence is again an application of Lemma 33 under the help of Proposition 32.
Essentially, the equivalence is due to the fact that the intended function of Kh is exactly to cap-
ture the support relations between a state and an inquisitive formula, and the truth conditional
semantics of � gave R[w] as such a state. Thus the two different routes that Kh and � take in
their apparent differently semantics converge to the same truth condition eventually. This equiv-
alence is also suggested by Propositions 53 and Theorem 54 showing that the support semantics
can be viewed as a resolution-based semantics. However, in general, it is not guaranteed that
the (re)solution-based semantics, such as the one for Medvedev’s logic, can be transformed into
an equivalent state-based semantics over information models, for the structure of resolutions for
(atomic) propositions is richer than the mere truth values on each world. In the case of inquisitive
logic, the situation is very much simplified by assuming the atomic propositions have one and only
possible resolution.

There is also an interesting mismatch between our work and inquisitive modal logic. In our
setting, we explicitly separate the different roles of the modalities by using both K and Kh. On the
other hand, we use the same symbol ∨ for inquisitive and classical disjunctions. In contrast, in
inquisitive modal logic, the modality has a double role to play depending on what is in the scope,
while the two disjunctions are differentiated explicitly by distinct symbols.

The difference is firstly conceptual. From our epistemic perspective, the non-classical behavior
of logical connectives are due to the implicit epistemic modality Kh. From the more recent per-
spective of inquisitive logic [6], the separation of the two disjunctions makes it more clear that the
inquisitive logic can be viewed as an extension of classical logic with the inquisitive operators. The

9It is observed by the anonymous reviewer.
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difference also leads to various logical properties. For example, since we use the same symbol ∨
for these two disjunctions, it can function differently inside and outside the scope of Kh. It follows
that the usual unconditional rule of replacement of equals in the scope of a modality is invalid,
thus making Kh a hyperintensional operator. On the other hand, by having K and Kh explicitly, we
can differentiate them in the axioms and reveal how negation and atomic propositions can act as
bridges to connect the two types of knowledge, as in Kp ↔ Khp and Kh¬α ↔ K¬α. Note that,
thanks to our choice of using the same ∨ symbol, the axioms such as Khα → Kα can be written in
a natural way, without introducing unnecessary translations of formulas. We think each approach
has its features and advantages. In particular, the inquisitive modality has the very elegant feature
of deriving the semantics of statements in terms of know+embedded questions compositionally (cf.
[6, Section 6.2]). The combination of the two approaches can be explored in the future.

Beyond the above connections and differences, Kh and � are very different in the motivation
behind them. The point of our Kh operator is to capture the epistemic content already in the
support semantics, while the modality in inquisitive modal logic is to add the modal information
into the picture. Moreover, in our framework, further modalities and connectives are used to “open
up” the Kh formulas to reveal their intuitive epistemic readings. In a nutshell, we want to turn
the inquisitive formulas into classical ones with also epistemic and dynamic modalities to obtain
intuitive epistemic readings of them. For example, our approach also features a dynamic modality
✷ to open up Kh(α→ β) by the equivalent K✷(Khα→ Khβ), i.e., knowing how α implies β means
knowing that whenever one knows how α is true, one also knows how β is true. All these extra
modalities and the classical connectives helped us to “decode” the non-classical behaviors of the
inquisitive logic, from our epistemic perspective. As our intuitive axioms showed, the information
behind the innocent-looking propositional formulas of inquisitive logic is very rich, under the
epistemic view of point. Interestingly, as we also showed in the paper, ✷ and Kh can be eliminated
eventually.

There is one more distinction to be pointed out. In our setting, the modalities cannot occur in
the scope of Kh operators, but this may not be an essential restriction (at least for the modality K),
given the discussion on the resolutions for inquisitive modalities (cf. [6, Section 6.3]). We leave
the study of the extended language for a future occasion.10

As another incarnation of inquisitive modal logic with dynamics, Inquisitive Dynamic Epistemic

Logic (InqDEL) is proposed and studied in [13, 32]. Since our approach is also dynamic-epistemic
in nature, it also deserves some comparison with InqDEL. Again, our approach is to reveal the
dynamic-epistemic structure implicitly in the existing inquisitive logic from the epistemic perspec-
tive, whereas InqDEL extends the version of inquisitive semantics with extra epistemic structures
and dynamics. In the models of InqDEL, there is an issue function Σ assigning each possible world
an issue Σ(w), i.e., a non-empty, downward closed set of states, satisfying some intuitive epistemic
conditions. At each world w, the set of epistemically indistinguishable worlds σ(w) is then defined
as

⋃
Σ(w). Moreover, the work of [13] is based on a specific version of inquisitive semantics in

[10] where a dichotomous syntax, distinguishing declarative and interrogative sentences is used
instead of the unified framework of [12]. On top of this dichotomous language, the know-that
modality and an extra modality of entertain are added, where the latter modality can describe the
issue currently in concern.11 In contrast, as we mentioned, the dynamic operator ✷ in our setting
is merely to capture the inquisitive implication. In the model, we also do not have the structures
of issues.

7 Conclusions

This paper is a case study of the general research programme proposed in [37] on “epistemi-
cizating” intuitionistic logic and its relatives. We showed that, as an alternative interpretation, the

10We also thank the anonymous reviewer for pointing out this to us.
11A similar dynamic epistemic approach handling issues is [31] (cf. [13] for a detailed comparison between [13] and

[31]).
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propositional inquisitive logic InqB can be viewed as a (dynamic) epistemic logic of knowing how
over standard S5 epistemic models. In our approach, an inquisitive formula α being supported
by a state s is formalized as it is known how to resolve α (or simply knowing how α is true).
We start by turning an inquisitive formula α into the equivalent know-how formula Khα in our
framework. Then by using modalities of know-that K and informational updates ✷ based on clas-
sical connectives, we can unload the epistemic contents hidden in such know-how formulas Khα
by reducing the complexity of α step by step. From the point of view of the general programme of
[37], InqB is a particularly interesting case since the corresponding know-how modality can be
eventually eliminated based on the fact that the resolution of each atomic proposition is unique,
which is the reason that the axiom ¬¬p → p holds for atomic propositions p in inquisitive logic.
In our framework, it amounts to the crucial axiom Kp → Khp, i.e., knowing that p is true implies
the apparently stronger knowing how it is true, which can help to reduce the know-how operator
eventually. Given such a simplification, technically, we can view inquisitive logic as a fragment of
standard epistemic logic.

What we have presented so far is clearly only the beginning of an interesting story regarding
the classical “epistemicization” of the intuitionistic logic and its friends. Here we just list a few
further directions.

• Given the close connections between inquisitive logic and dependence logic (cf. e.g., [5]),
it is definitely interesting to see how we can give epistemic interpretations of dependence
logic in various forms, where in the semantics a team can be viewed as an epistemic model.
Note that as observed by [9], the crucial notion of disjunction in dependence logic, i.e., the
tensor, is not directly definable in inquisitive logic. This also presents a challenge to the
epistemicization of dependence logic in our framework since we would like to unload the
epistemic content of tensor disjunction in a compositional manner. See [33] for the first
attempt.

• As in intuitionistic logic, quantifiers may bring extra complications, so it is interesting to see
how we can extend our work to capture the first-order inquisitive logic [3].

• Our approach also opens a natural way to extend inquisitive logic to a multi-agent setting.
However, our reduction of the dynamic operator relies on the single-agent setting. It remains
to see whether we can still reduce the multi-agent epistemicization of inquisitive logic to the
multi-agent S5.

• The interpretation of inquisitive formulas in our setting as knowing how α is true has an
obvious connection with truthmaker semantics based on the intuitionistic spirit [15]. The
exact connections invite close investigations.

• It is also interesting to see how we can combine the idea of inquisitive modal logics with our
work to benefit from both frameworks.
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A Remaining proof for Proposition 38

PROOF In the following, let S5K be the proof system of S5 including TK, 4K, and 5K. For B∨:

⊢ α ↔ ✷α Per, T✷, (1)

⊢ α ∨ ✷ϕ↔ ✷α ∨ ✷ϕ (1)rRE (2)

⊢ ✷α ∨ ✷ϕ→ ✷(α ∨ ϕ) S4✷ (3)

⊢ α ∨ ✷ϕ→ ✷(α ∨ ϕ) (2)(3)rRE (4)

⊢ ✷(α ∨ ϕ) → (α ∧ ✷(α ∨ ϕ)) ∨ (¬α ∧✷(α ∨ ϕ)) TAUT (5)

⊢ ¬α ↔ ✷¬α Per, T✷ (6)

⊢ (¬α ∧ ✷(α ∨ ϕ)) ↔ (✷¬α ∧ ✷(α ∨ ϕ)) (6)rRE (7)

⊢ (✷¬α ∧ ✷(α ∨ ϕ)) ↔ ✷(¬α ∧ (α ∨ ϕ)) S4✷ (8)

⊢ ✷(¬α ∧ (α ∨ ϕ)) ↔ (✷¬α ∧ ✷ϕ) S4✷ (9)

⊢ (¬α ∧ ✷(α ∨ ϕ)) → ✷ϕ (7)(8)(9)TAUT (10)

⊢ ✷(α ∨ ϕ) → (α ∧ ✷(α ∨ ϕ)) ∨ ✷ϕ (5)(10)S4✷ (11)

⊢ ✷(α ∨ ϕ) → α ∨ ✷ϕ (11)TAUT (12)

⊢ ✷(α ∨ ϕ) ↔ α ∨ ✷ϕ (4)(12)TAUT (13)

For BK∨: Let ϕ be (K̂α ∨ Kα1 ∨ · · · ∨ Kαn) and let ψ be (α ∨ K(α ∨ α1) ∨ · · · ∨ K(α ∨ αn)) below.

⊢ α→ ✷α Per (1)

⊢ ✷α→ ✷K̂α S5K, S4✷ (2)

⊢ α→ ✷K̂α (1)(2)TAUT (3)

⊢ α→ ✷ϕ (3)S5K, S4✷ (4)

⊢ α→ (ψ → ✷ϕ) (4)TAUT (5)

⊢ (α ∨ α1) → ✷(α ∨ α1) Per (6)

⊢ K(α ∨ α1) → K✷(α ∨ α1) (6)S5K (7)

⊢ K✷(α ∨ α1) → ✷K(α ∨ α1) PR (8)

⊢ K(α ∨ α1) → ✷K(α ∨ α1) (7)(8)TAUT (9)

⊢ K(α ∨ α1) → (K̂α ∨ Kα1) S5K (10)

⊢ ✷K(α ∨ α1) → ✷(K̂α ∨ Kα1) (10)S4✷ (11)

⊢ K(α ∨ α1) → ✷(K̂α ∨ Kα1) (9)(11)TAUT (12)

⊢ K(α ∨ α1) → ✷ϕ (12)S4✷ (13)

⊢ K(α ∨ αi) → ✷ϕ (i ∈ {1, . . . , n}) (13) (14)

⊢ ψ → ✷ϕ (4)(14)TAUT (15)

⊢ ¬α ∧
∧

1≤i≤k

K̂(¬α ∧ ¬αi)→✸(K¬α ∧
∧

1≤i≤k

K̂¬αi) EUk (16)

⊢ ¬✸(K¬α ∧
∧

1≤i≤k

K̂¬αi)→¬(¬α ∧
∧

1≤i≤k

K̂(¬α ∧ ¬αi)) (16)TAUT (17)

⊢ ✷(K̂α ∨
∨

1≤i≤k

Kαi)→(α ∨
∨

1≤i≤k

K(α ∨ αi)) (17)S4✷ (18)

⊢ ✷ϕ→ ψ (18) (19)

⊢ ✷ϕ↔ ψ (15)(19)MP (20)

�
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