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Abstract
General delay dynamical systems in which uncertainty is present in the form of probability measure
dependent dynamics are considered. Several motivating examples arising in biology are discussed.
A functional analytic framework for investigating well–posedness (existence, uniqueness and
continuous dependence of solutions), inverse problems, sensitivity analysis and approximations of
the measures for computational purposes is surveyed.
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1 INTRODUCTION
The purpose of this presentation is to survey recent as well as forthcoming results in our
research efforts on models with delays and hysteresis where probabilistic uncertainty is present
in a significant way. While we focus our motivation here on examples arising in biological
applications (Banks and Bihari, 2001; Banks and Holte, 2003; Banks and Potter, 2003; Banks
and Bortz, 2005a; Banks and Bortz, 2005b; Banks and Davis, to appear; Banks and Pinter,
2005; Banks and Allnutt, to appear; Banks and Nguyen, to appear; Banks and Nguyen,
2006), similar systems arise in other applications as diverse as materials (Banks and Medhin,
submitted; Banks and Webb, 1997a; Banks and Webb, 1997b; Banks and Pinter, 2004; Banks
and Pinter, to appear; Banks and Pinter, submitted; Banks and Pinter, 2005), electromagnetics
(Banks and Gibson, 2005; Banks and Gibson, to appear), physics, communication networks,
etc. As is explained here, there are a wide class of models related to cellular level population
dynamics that lead to systems of the form
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(1)

where P is a generally unknown probability measure that must be estimated from aggregate or
population level (as opposed to individual level) observations or data. The probability measure
P (which we shall also refer to as a probability distribution when no confusion results) may be
discrete, absolutely continuous (continuous) or a combination of both. In addition to the
obvious inverse problems, there are fundamental questions related to modeling of uncertainty,
well-posedness, sensitivity, estimation and approximation. The primary goal of this note is to
outline a theoretical and computational framework to treat these problems.

2 EXAMPLE FROM CELLULAR PATHWAYS: HIV INFECTION
Our first example is typical of delay systems that arise in biochemical pathways and cellular
level kinetics of drug metabolism as well as other synthesis models. In (Banks and Holte,
2003; Banks and Bortz, 2005a) the authors study a model for progression of Human
Immunodeficiency Virus (HIV) at the cellular level. The model involves compartments T, A,
C, and V for in vitro blood level counts in mice of target (CD4+) cells, acutely infected cells,
chronically infected cells and active viral particles, respectively. Free virus V infects target
cells T, transforming them into acutely infected cells A which at some time later become
chronically infected cells C. The basic pathway for infection and production of virus for acutely
infected cells is schematically depicted in Figure 1. For models in which the individual kinetics
for loss of envelope and capsid, integration, transcription, and assembly are not detailed, it is
necessary (see (Banks and Holte, 2003)) to include a delay τ1 from the time of infection of a
target cell T until it first produces free virus V. There is also some delay τ2 before an acutely
infected cell A becomes a chronically infected cell C.

Here we outline a brief derivation from first principles (with assumptions based on the biology)
that supports a mathematical model in which the delays are treated as probabilistically
distributed across the population of cells found in a typical in vitro culture.

First consider the delay between initial acute infection and the cell becoming what is termed
a chronically infected cell characterized by differences in cell dynamics (see (Banks and Holte,
2003)). It is biologically unrealistic (and unacceptable in the modeling to biologists) to expect
an entire population of cells to simultaneously change infection characteristics precisely τ2
(τ2 > 0) hours after initial viral infection. Therefore, one might suppose that the delay between
initial acute infection and chronic infection varies across the cell population (thus
mathematically characterizing the intercellular variability) according to a probability
distribution P̄2 (which is not assumed to necessarily possess a density p̄2 – it could have point
masses). Denote by C(t; τ) the subpopulation consisting of chronically infected cells that either
maintained their acute infection characteristics for τ time units or are the progeny of those same
cells. In other words, for some τ > 0, there exists a subpopulation C(t; τ) of the chronically
infected cells which either spent τ hours as acutely infected cells (before converting to
chronically infected cells) or are descendants of cells that spent exactly τ hours as acutely
infected cells. Thus, the rate of change in this subpopulation of cells is governed by

where
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is the total number of CD4+ cells (infected and uninfected). The expected value of the
population of chronic cells is given by integrating with respect to the distribution P̄2, over all
possible delay values, obtaining

(2)

Here the parameters rv, δC, δ and γ are appropriate rate parameters (for details, see (Banks and
Holte, 2003)). Therefore, the rate of change in the total population of chronic cells is governed
by

where C0 is the initial condition for the total chronically infected cell population.

Next consider the delay between viral infection and viral production for the acutely infected
cells A(t). Again, it is unreasonable to expect the entire population of acutely infected cells to
simultaneously commence viral production τ1 (τ1 > 0) hours after infection. Suppose that the
delay between infection and production (for acutely infected cells A(t)) varies across the
population with probability distribution P̄1 (again we do not assume absolute continuity of the
associated measure). We also partition the expected total viral population V into those virions
VA produced by acutely infected cells and those virions VC produced by chronically infected
cells so that

Then we denote by VA(t; τ) the subpopulation of virus which are produced by an acutely infected
cell τ hours after being infected. Thus, the rate of change in this subgroup of virions is governed
by

To obtain the (expected) number of virus at time t that have been produced by acutely infected
cells, we must integrate with respect to the distribution P̄1, over all possible delays

which yields the governing equation for this larger subpopulation of virions
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To account for the chronically infected cells as a source of virions, we denote by VC the
subpopulation of virions produced by chronically infected cells. Thus the equation describing
the rate of change in the size of this subpopulation is

where the expected value C of the total population of chronically infected cells is defined in
equation (2). Therefore, the governing equations for the total population of virus are described
by

where V0 is the initial condition for the total virions population.

Moreover, we assume that the A and T subclasses have no subpopulation structures, and are
therefore governed by

with initial conditions A0 and T0. Note that in equation (3), the rate term with the delay
(representing the delayed conversion of A to C) is simply the negative of the corresponding
delay rate term in equation (3).

Finally, we make the change of variables Pi(ξ) = P̄i(−ξ) so that the distributions are now defined
on (−∞, 0) instead of (0, ∞) (we do this to be consistent with the standard notation in the FDE
literature), and obtain the system

(3)
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which is a vector system of the form (1). Special cases of such systems include those in which
the probability measures are defined on some finite interval Q = [−r, 0] of possible delay values
θ as in (1).

This model was successfully used (see (Banks and Holte, 2003)) to describe in vitro mice data
from Dr. Michael Emerman’s lab at Fred Hutchinson Cancer Research Center. Using inverse
problem methodology and statistical analysis it was shown that improvement of fit to data by
inclusion of the delays τ1 or P1 is statistically significant while inclusion of delays τ2 is less
important. Indeed, it was found that the experimental data could not be properly fit with an
ODE version (i.e., with the delays omitted) of the model.

3 EXAMPLE FROM A VACCINE PRODUCTION MODEL
A second class of models (Banks and Allnutt, to appear) that illustrate the type of problems
focused on here involve the use of shrimp grown in production “raceways” (essentially large
growth chambers where environmental factors such as temperature, oxygen, nutrient levels,
etc., can be carefully controlled) artificially infected to efficiently produce large quantities of
an associated vaccine. Scientifically, this entails recruiting the biochemical machinery in an
existing biomass for the production of a vaccine or antibody by infection using a virus carrying
a passenger gene for the desired antibody response.

While the model of (Banks and Allnutt, to appear) is specific to virus growth and vaccine
production in shrimp, the implications for other crustaceans are obvious. And of course the
shrimp models we investigate can serve as a foundation for understanding viral progression in
other species important to marine agriculture. The mathematical goal is to model a system
wherein one uses shrimp as a scaffold organism to produce biological countermeasures. In
such a system one might first stock shrimp postlarvae and allow them to grow normally in the
controlled environment. Then one infects them with a recombinant viral vector (e.g.,
recombinant Taura Syndrome virus or rTSV in the example developed in (Banks and Allnutt,
to appear)) expressing a foreign antigen, resulting in vaccine production in live infected shrimp.

To mathematically demonstrate the feasibility of this approach one considers a hybrid model
of the shrimp biomass/countermeasure production system which has two components: biomass
production, and production of countermeasure (antibody/vaccine). The output of the biomass
production model is input to the vaccine production model. For initial investigations the amount
of vaccine produced is assumed equal to the total infected biomass. Thus, the vaccine
production model will essentially follow the course of the viral dynamics in the shrimp.

The effort requires modeling the dynamics of shrimp at the population level. In such models
ignoring structure in constructing mathematical models for the dynamics of shrimp is
unrealistic, since shrimp have size dependent characteristics as well as responses to external
environment. An appropriate beginning model is based on the classical McKendrick-von-
Foerster/Sinko-Streifer size-structured population equations (Kot, 2001; Metz and Diekmann,
1986) with mass as the structure variable, i.e., one equates the size variable with the mass in
the model.

While there appears to be a dearth of literature on modeling epidemics in shrimp populations,
in (Lotz and Breland, 2003) the authors develop a non-structured five compartment epidemic
model of TSV that includes a Reed-Frost transmission process in closed populations of shrimp
(Litopenaeus vannamei). However, structure can play an important role in the study of viral
epidemiology in shrimp. Moreover, experimental results (Hasson and White, 1999) suggest
that the mortality rate in acutely infected shrimp depends on the length of time that the shrimp
remain acute. Also, individuals in the latent phase have varying residency times before they
progress into the acute phase. To incorporate all of these features, the authors of (Banks and
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Allnutt, to appear) attempted to model the progression of TSV in shrimp in a system of delay
PDEs. However, it is difficult to correctly account for the different residency periods of
individual shrimp in this fashion as the size of the shrimp is a function of time. Instead of
tracing back in time to incorporate delays, a different approach involves recording the variable
residency times in the different stages by introducing a new variable which one calls the class
age of an individual. The class age of an individual in a given stage represents the length of
time that the individual spends in that stage and serves as a surrogate for time delays. A similar
approach has been used to investigate a linear cell population model. In such models, cells are
assumed capable of simultaneous proliferation and maturation where in the proliferating phase,
cells are committed to undergo cell division some time units after entering this phase (Adimy
and Pujo-Menjouet, 2003).

In the vaccine production stage the shrimp are infected by distributing chopped dead shrimp
infected with a recombinant virus evenly throughout the raceway. This transfected biomass is
sufficiently large so that most of the shrimp can be infected in a short period of time, such as
one day. There are other modes of transmission of virus in shrimp, such as cohabitation with
infected shrimp that may be shedding the virus into the surrounding medium (waterborne
infection). However, compared to the probability of shrimp becoming infected via ingestion,
these modes of transmission can be assumed (reasonably for a first investigation) to be
negligible. Hence one might only assume infection via ingestion of dead transfected biomass.
It might be further assumed that all the shrimp have an equal chance of becoming infected by
eating the infected biomass. A reasonable time interval for infection is 7 to 10 days. From
(Lotz and Breland, 2003) and (Dhar and Walker, 2004) one knows that during this time interval
almost no shrimp progress into the chronic state. Therefore it is reasonable to consider the
following three compartment states: susceptible (S), latently infected (L) and acutely infected
(A) in a model. In this model, it is assumed that shrimp will become instantly infected (i.e.,
progress into latent state) as soon as they ingest some of the infected biomass. As we have
noted earlier, however, experimental observations suggest that there exists a temporal delay
between the initial latent infection and initial acute infection (Hasson and White, 1999).
Moreover, it is biologically unrealistic to expect all members of the shrimp population to
progress into the acute phase at a fixed number of days after initial latent infection. In addition
the shrimp in the acute phase have varying mortality rates because of the different times that
they progress into the acute phase and also due to the differences in genetic make-up of the
host. As we have already noted, it is difficult to account for the class age history (i.e., the length
of time that shrimp spend in a state) of shrimp in a particular (latent or acute) state using a
system of delay PDE’s with only size as the structure variable. This is because it is not obvious
how to correctly represent the integral involving the delay. As an alternative, in order to model
variable residency times one may keep track of the class age and the size of shrimp by
incorporating both size structure and class age structure into the latent and acute states.

Based on experimental findings, it is reasonable to assume that there is a positive probability
that shrimp can stay in each the latent and acute state for more than 7 to 10 days. Thus one can
assume that the class age interval for both states is the same as the time interval TV that we
consider in our model. Note that all shrimp from the biomass production raceway are healthy;
there are no latently infected or acutely infected shrimp in the raceway at time t = 0. We also
know that shrimp in the acute state stop growing, which means that the growth rate in this state
is g = 0.

Based on the above discussions, the vaccine production model developed in (Banks and Allnutt,
to appear) is given by
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(4)

where (x, t, θ) ∈ [xmin, xmax] × [0, TV] × [0, TV]. In the above S(x, t) denotes the density of

individuals having mass x at time t and . The function L(x, t, θ) denotes the density of
individuals having mass x at time t that have spent θ days in the latent state, whereas the function
A(x, t, θ) denotes the density of individuals having mass x at time t that have spent θ days in
the acute state. The quantity gS(x) denotes the growth rate of individuals in the susceptible
state, gL(x) denotes the growth rate of individuals in the latent state. The function mS(x) denotes
the mortality rate of individuals in the susceptible state, and the function mL(x) denotes the
mortality rate of individuals in the latent state, and mA(θ) denotes the mortality rate of the
shrimp that spend θ days in the acute state. The latent to acute probability density rate function

 defined for θ ∈ [0, TV] denotes the rate at which the shrimp in the latent state that
have spent θ days in the latent state become acutely infected, while the quantity λ denotes the
infection rate due to ingestion of chopped infected shrimp. Finally S0(x) denotes the initial
population density of susceptible shrimp produced from the biomass production model.

We note that this is again a probability distribution (PL) dependent dynamical system (in this
case a complicated system of partial differential equations) for which the distribution PL must
be estimated in some type of inverse problem.

4 PROBLEM FORMULATION FOR DISTRIBUTION DEPENDENT DYNAMICS
In both the examples cited above as well as in many others, a major effort involves estimation
of the probability distributions P from data. A typical inverse problem consists of minimizing
the output least squares criterion

(5)

where {d̂i} is the data and x(t; P) represents the solution to the distribution dependent dynamics
such as (1), (3), or (4). The minimization is to be carried out over the space (Q) of probability
measures defined on a set Q of possible parameter values. For example, in the systems presented
above, the delay times or residency times are restricted to some finite interval Q = [−r, 0] or
Q = [0, TV], respectively. In addition to such inverse or estimation problems, we are also
concerned with other questions for problems that have distribution dependent dynamics
including the existence and uniqueness of solutions to the dynamical system, continuous
dependence of solutions, sensitivity of solutions with respect to the probability distributions,
and numerical approximations. In order to deal with such questions (either theoretical or
computational) one needs a topology on the measure space (Q). Indeed, one needs a number
of items to develop theoretical and computational foundations including

i. A topology on (Q),
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ii. Continuity of P → J(P) in this topology,

iii. Compatible compactness results (for well-posedness),

iv. Approximations in this topology (for computations).

It is fortunate that probability theory offers significant conceptual help toward a possible
complete, tractable computational methodology (Billingsley, 1968). The primary tool is the
Prohorov metric, which can be formally defined as follows. Suppose (Q, d) is a complete metric
space. For any closed subset F ⊂ Q and ε > 0, define

Define the Prohorov metric ρ: (Q) × (Q) → ℝ+ by

This can be shown to be a metric on (Q) that satisfies

a. ( (Q), ρ) is a complete metric space,

b. If Q is compact, then ( (Q), ρ) is a compact metric space.

We note that the definition of ρ is not intuitive. It is not clear, for example, what “Pk → P” in
ρ metric means. One finds the following important characterization (Billingsley, 1968).

Theorem 1
Given Pk, P ∈ (Q), the following convergence statements are equivalent:

i. ρ (Pk, P)→ 0,

ii. ∫QfdPk(q) → ∫QfdP(q) for all bounded, uniformly continuous f: Q → ℝ1,

iii. Pk[A] → P[A] for all Borel sets A ⊂ Q with P[∂A] = 0:

Additional useful results include:

• Let  denote the topological dual of CB(Q), where CB(Q) is the usual space of
bounded continuous functions on Q with the supremum norm. If we view

, convergence in the ρ topology is equivalent to weak* convergence in
(Q),

• Convergence in the ρ metric is equivalent to convergence in distribution.

Considering (ii) of Theorem 1, it is readily argued that the dynamics of systems such as (1)
(and (3), (4)) are ρ–continuous in P on (Q). Standard arguments from the theory of differential
equations can then be used to argue that the mapping P → x(t; P) is also continuous on ( (Q),
ρ). This yields immediately that
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is continuous in the ρ topology. Continuity of P → J(P) and compactness of (Q) (each with
respect to the ρ metric) allows one to assert the existence of a solution to min J(P) over P ∈ 
(Q).

As we shall see below, the Prohorov metric is also fundamental to development of a sensitivity
theory as well as “finite element” type approximation schemes for the systems of interest here.

4.1 Abstract Formulation—Before we present some theoretical results on a class of
distribution dependent problems, we illustrate how to derive an abstract Cauchy formulation
in a complex Banach space for a typical delay system example such the HIV model above.
First, we assume the HIV system derived in Section 2 only depends on absolutely continuous
(continuous) distributions; that is, dPi(τ) = pi(τ)dτ for i = 1, 2 where pi(τ) are probability
densities. A more general framework for discrete distributions and mixed (a combination of
continuous and discrete) distributions is discussed in the next section where one assumes the
form

(6)

and

(7)

Here Δτis the Dirac measure with atom (mass) at τ for the discrete and mixed measures,
respectively.

Returning to the HIV model we let v = (V, A, C, T)T and x(t) = (v(t), vt) ∈ X = ℝ4 × L2(−r, 0;
ℝ4). For 0 < r < ∞, we denote the parameter space ℳ = L2(−r, 0) × L2(−r, 0) and ℳc = {(p1,

p2) ∈ ℳ | p1, p2 ≥ 0 and }. Then the HIV system derived in equation (3) can be
rewritten as an abstract Cauchy problem

(8)

where f2(t) = ((0, 0, 0, S)T, 0) ∈ X, and x0 = (η, φ) ∈ X. Here  is a nonlinear operator such

that : ( ) ⊂ X → X and  where ( ) = {(η, φ) ∈ X | φ ∈
H1(−r, 0; ℝ4) and η = φ (0)}. Furthermore, for ((η, φ) ∈ ℝ4 × L2(−r, 0; ℝ4),
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where [δ(i, j)](4;4) is a 4 × 4 matrix with a one in the (i, j)th component and zeros everywhere
else. In (Banks and Bortz, 2005a), (Banks and Holte, 2003) the mass action product
nonlinearities in f1 are replaced by saturating nonlinear functions – see the definition of f̄1 in
(Banks and Bortz, 2005a), (Banks and Holte, 2003).

Once an abstract Cauchy formulation is constructed, existence and uniqueness of solutions for
equation (8) follow from the results in (Banks and Bortz, 2005b; Banks and Nguyen, to
appear) which are summarized in Section 4.2 below. Moreover, theoretical results in (Banks
and Nguyen, to appear) also provide continuous dependence of solutions along with the
derivation of the sensitivity function for general nonlinear ordinary differential equations
(ODEs) in a Banach space. Here we only show the construction of the abstract Cauchy problem
for delay systems with continuous probability measures. However, an abstract Cauchy
formulation for delay systems with discrete and mixed distributions of the form (6) and (7),
respectively, can also be constructed using similar concepts but with different parameter
spaces. These theoretical results and associated parameter spaces of probability measures are
the focus of the next section.

4.2 Theoretical Results—In this section we recall theoretical results that treat delay systems
with absolutely continuous (continuous) distributions. Interested readers can find more details
on the theories and the proofs in (Banks and Nguyen, to appear). As one can see from the
previous section, time delay problems with absolutely continuous (continuous) distributions
are a special case of an abstract nonlinear ODE where the state space is a general Banach space
X and the parameter space ℳc is a convex subset of a Banach space ℳ such as ℳ = L2 × L2.
Therefore, consider a general nonlinear ODE of the form

(9)

where f: ℝ+ × X × ℳ → X and X and ℳ are complex Banach spaces. We define the successive
approximations for system (9) to be the functions, x0, x1, …, given recursively by
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for k = 0, 1, 2, …. Then one can establish the following theoretical results.

Lemma 1
(Existence and Uniqueness of Solutions) Let f: ℝ+ × X × ℳ → X be continuous and

for some constant C > 0. Then the successive approximations xk converge uniformly for t ∈
[t0, T] to a unique solution x of (9) such that x(t0, t0, x0, μ) = x0.

Lemma 2
(Continuous Dependence of Solutions on Parameters) Let f ∈ C[ℝ+ × X × ℳ, X] and for μ =
μ0, let x(t, t0, x0, μ0) be the solution of

existing on [t0, T]. Assume further that

uniformly in (t, x) and for (t, x1, μ); (t, x2, μ) ∈ ℝ+ × X × ℳ,

for some constant C > 0. Then the differential system

has a unique solution x(t, t0, x0, μ) satisfying

Even though the results given here are under the assumed global Lipschitz condition, similar
results can also be established under the weaker assumptions of a local Lipschitz condition and
f being dominated by an affine function. We let B(X, Y) denote the space of bounded linear
operators from X onto Y and summarize a sensitivity theory for delay systems with absolutely
continuous (continuous) measures in Theorems 2 and 3.

Theorem 2
Suppose the function f(t, x, μ) of (9) has continuous Frechet derivatives fx(t, x, μ) with respect
to x and fμ(t, x, μ) with respect to μ with
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for some constants M0 > 0 and M1 > 0. Then the Frechet derivative  exists
with y(t) in B(ℳ, X) satisfying the equation

for t ≥ t0.

With the parameter space of probability density functions ℳc, which is a convex subset of a
Banach space ℳ, the sensitivity theory (Theorem 2) above can also be applied using directional
derivatives instead of the Frechet derivative. However, it is shown in (Banks and Nguyen, to
appear) that the directional derivative of a continuous function g is the Frechet derivative on
ℳ restricted to q − p where p, q ∈ ℳc.

In order to accommodate delay problems with Dirac (discrete) measures or measures with a
continuous component and a saltus component, the theoretical results above are extended to a
general convex metric space. This is necessary because the parameter space associated with
the Prohorov metric is no longer a Banach space but only special case of a convex metric space
(ℳ1, dℳ1). For discrete measure delay systems where the measures are defined in (6), the
parameter space (ℳ1, dℳ1) is normally chosen to be a topology with the Prohorov metric (
(Q), ρ). Although the Prohorov metric is not conceptually easy to use, it generates a similar
topology to the weak L2 topology (e.g., see (Banks and Pinter, 2005)) which is of course the
same as the weak* topology in this case. Therefore, the Prohorov metric may be applied in
numerical approximation in distribution dependent problems taking advantage of its relation
in convergence to the weak L2 convergence. For delay systems with mixed measures as defined
in (7), the parameter space can be based on a combination of the Prohorov metric topology and
the weak L2 topology for compatibility. Therefore, Banks, Dediu and Nguyen have extended
the theoretical results mentioned above to the case where the parameter space is a convex metric
space. Let (ℳ1, dℳ1) denote a general convex metric space with distance dℳ1 and X denote a
general complex Banach space. Consider a general nonlinear abstract ODE

(10)

where f: ℝ+ × X × ℳ1 → X is continuous in all three variables and Frechet differentiable in x.
Here the solution x ∈ X and the parameter μ1 ∈ ℳ1. The conditions for and statement of
existence and uniqueness of solutions of equation (10) along with continuous dependence of
solutions for the general convex metric parameter space are similar to those for the situation
detailed above where the parameter space is a general complex Banach space; therefore, those
theoretical results are not repeated here. When deriving the sensitivity theory for the convex
metric parameter space case, the directional derivative is used instead of the Frechet derivative
with respect to the measures.

Given any two arbitrary points μ1, ν ∈ (ℳ1, dℳ1), we define the directional derivative δf (t, x,
μ1; ν − μ1) of f at μ1 in the direction ν −μ1 to be the value of the limit
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provided this limit exists in X. A sensitivity theory for a convex metric parameter space is stated
next; more details and proofs can be found in (Banks and Nguyen, 2006).

Theorem 3
Suppose the function f(t, x, μ1) of (10) has a Frechet derivative fx(t, x, μ1) with respect to x such
that fx ∈ C[ℝ+ × X × ℳ1, B(X, X)] and |fx(t, x, μ1)| ≤ M0 for some constant M0 > 0. Moreover,
assume f also has a continuous directional derivative δf(t, x, μ1; ν − μ1) with respect to μ1 in
the direction of (ν − μ1) such that |δf(t, x, μ1; ν − μ1)| ≤ M1 where M1 > 0. Then the directional
derivative y(t) = δx(t, μ1; ν − μ1) exists, with y: ℝ+ × X × ℳ1 → X, and y satisfies the equation

(11)

Having presented theoretical results to deal with delay differential equations where the time
delay is distributed with different types of probability measures (i.e, absolutely continuous,
continuous, discrete and mixed measures), we next discuss some numerical approximation
issues for this class of problems.

4.3 Approximation Issues—We first note that even when the parameter set Q is finite
dimensional, the metric space ( (Q), ρ) is infinite-dimensional and hence one must use finite-
dimensional approximations to obtain tractable computational algorithms. To this end, one
may prove (see (Banks and Bihari, 2001))

Theorem 4
Let Q be a complete, separable metric space with metric d, ℬ the class of all Borel subsets of
Q and (Q) the space of probability measures on (Q, ℬ). Let  be a countable, dense
subset of Q. Then the set of P ∈ (Q) such that P has finite support in Q0 and rational masses
is dense in (Q) in the ρ metric. That is,

is dense in ( (Q), ρ), where δqj is the Dirac measure with atom at qj.

It is straight forward to use the ideas and results associated with this theorem to develop

computationally efficient schemes. Given  with  (a “partition” of Q)
chosen so that Qd is dense in Q, define
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Then we find

i. M(Q) is a compact subset of (P(Q), ρ),

ii. M(Q) ⊂ M+1(Q),

iii. “ M(Q) → (Q)” in the ρ topology; that is, elements in (Q) can be approximated
in the ρ metric by elements of PM for M sufficiently large.

These ideas and results can then be used to establish a type of “stability” of the inverse problem
(see (Banks and Bihari, 2001), (Banks and Kunisch, 1989)). We first define a series of
approximate problems consisting of minimizing

over PM ∈ M(Q). Then we have

Theorem 5
Let Q be a compact metric space and assume solutions x(t, P) are continuous in P on ( (Q),

ρ). Let Qd be a countable dense subset of Q with  and M(Q) as above so that (i)–

(iii) holds. suppose  is the set of minimizers for J(PM) over PM ∈ M(Q) corresponding
to the data {d̂k} and P*(d̂) is the set of minimizers over P ∈ (Q) corresponding to d̂, where

d̂k, d̂k ∈ ℝn are the observed data such that d̂k → d̂. Then dist ( , P*(d̂)) → 0 as M →
∞ and d̂k → d̂. Thus, the solutions depend continuously on the data and the approximate
problems are method stable as formulated in (Banks and Kunisch, 1989).

Of course, for infinite dimensional state systems such as (1), (3) and (4), one would also
approximate the solutions x(t, PM) by finite dimensional approximate solutions xN(t; PM) to
obtain a completely finite dimensional problem. A version of the above theorem can be given
for this simultaneous state/parameter approximation using the approach for state/parameter
approximation found in (Banks and Kunisch, 1989).

The “delta measure” approximations given above are essentially zero–order splines. As one
might expect, higher order schemes can readily be developed. An example of linear spline
schemes has been developed in (Banks and Pinter, 2005) and further investigated in (Banks
and Davis, to appear) and can be summarized in the following theorem.

Theorem 6
Let ℱ be a weakly compact subset of L2(Q), Q compact and let ℱ(Q) ≡ {P ∈ (Q): P′ = p,

p ∈ ℱ}. Then ℱ(Q) is compact in ( (Q), ρ). Moreover, if we define { } to be the linear

splines on Q corresponding to the partition QM, where  is dense Q, and define
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Then if

we have  is dense in ( ℱ (Q), ρ).

5 CONCLUDING REMARKS
The framework outlined above, while most useful, is not complete. Statistical aspects of the
inverse problems for estimation of measures as discussed above are still under investigation.
The approximations (delta and splines) lead to finite dimensional inverse problems for which
standard asymptotic theory (see Chapter 12 of (Seber and Wild, 1989)) for standard errors and
confidence intervals (using the sensitivity functions discussed above) can be applied. However,
an analogous asymptotic theory for the original infinite dimensional problems involving (5)
of Section 4 has yet to be rigorously developed.
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Figure 1.
HIV infection pathway in acutely infected cells.
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