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Abstract: This paper examines the opportunities arising from the use of optimiza-
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1. INTRODUCTION

Arguably every design problem involves some
form of optimization. However, often the opti-
mization is implicit rather than explicit. We argue
here that making optimization explicit has many
advantages including the provision of a clear ar-
ticulation of the design objectives and trade-offs.

Optimization can play a role at many levels in an
enterprise including design of elementary feedback
loops, coordination of feedback loops, interconnec-
tion of unit operations, supply chain management
and long term corporate investment strategies.

Examples of the use of optimization to solve real
world design problems can be found in many
areas. Our goal in this paper is to give a brief
overview of optimization. We will also reflect on
several case studies arising from our own experi-

1 Originally presented as a plenary paper with the title
”Optimization: A key tool for advanced design in schedul-
ing, estimation and control” at IFAC MMM ’07.

ence in the fields of mining, metal and mineral
processing.

2. BACKGROUND TO MODERN
OPTIMIZATION

2.1 General Issues

A general formulation of a typical optimization
problem is as follows (Bazaraa et al., 1993; Boyd
and Vandenberghe, 2003; Nocedal and Wright,
1999; Nash and Sofer, 1996; Floudas, 1995; Fi-
acco and McCormick, 1990; Fletcher, 2000; Lu-
enberger, 1989; Gill et al., 1981; Abadie, 1967;
Borwein and Lewis, 2000):

Minimize f(x)
subject to:
gi(x) ≤ 0 for i = 1, . . . , m

hi(x) = 0 for i = 1, . . . , !

x ∈ X

(1)

The set X can contain continuous variables or in-
teger variables. Note that there are many ways of



setting up an optimization problem including the
choice of the optimization variable, x, the inequal-
ity constraints {gi(x)}, the equality constraints
{hi(x)} and the allowable set X . For example, a
given set of constraints could be described using
{gi(x)} and/or {hi(x)} or using the set X .

Different names are associated with different
forms of the optimization problem, e.g.,

LP: when f , gi, and hi are linear functions of x.
QP: when f , is quadratic in x and gi and hi are
linear.
MILP: when f , gi, and hi are linear and x can
take integer and/or real values.
MINLP: when f , gi, and hi are (possibly) non-
linear and x can take integer and/or real values.

An important class of problems arises when some
of the variables defining the problem are uncer-
tain. In this case, probabilistic descriptions can be
used for the uncertain variables. This leads to the
class of problems known an “stochastic optimiza-
tion” for which special techniques are available.

Engineering design problems typically fall into the
MINLP class since one is often required to make
architectural choices (i.e., select from a discrete
set of alternatives) and then to specify a number
of continuous variables (i.e., select variable com-
ponent sizes).

In all optimization problems, convexity is an im-
portant issue. Indeed, modern theory shows that
suitably structured convex optimization problems
(including most linear and quadratic problems)
are tractable. Indeed, Interior Point Algorithms
utilizing Newton type iterations often find an ac-
ceptable solution with relatively few iterations.
Clearly this is a major “selling point” for using
optimization strategies.

2.2 Modelling

One of the key challenges in applying optimiza-
tion to engineering problems is that of modelling.
Indeed, the judicious choice of variables, con-
straints and cost function is a crucial, and often
formidable, step. In recent years, the key step of
modelling has been facilitated by the advent of
interface software including GAMS (Brooke et al.,
1998), CUTE (Bongartz et al., 1995), and AMPL
(Fourer et al., 1993).

Naturally, there exists a strong interplay between
the problem formulation (i.e. modelling) and the
solution method. We advocate that it is often a
good idea to start simple and add extra features
as one gains confidence in both the problem and
its solution. We also advocate the judicious use of
“toy problems” to gain a feel for the question and
its solution. (A “toy problem” is one with just a

few variables but which captures important fea-
tures of the problem under study.) Toy problems
can give valuable insight and avoid wasted effort
dealing with the thousands (or even millions) of
variables that typically occur in real world design
problems.

2.3 Solution Methods

Once one has modelled the problem, then the
next step is to seek a suitable solution strategy.
The solution strategy is a function of the nature
of the variables, cost function and constraints. A
brief overview is given below. Further details may
be found in, for example, Biegler and Grossmann
(2004).

2.3.1. Continuous Variable Optimization When
only continuous variables appear in an optimiza-
tion problem then this is a substantial advantage.
The simplest class of problems of this type are LP
problems for which the standard algorithm is the
simplex algorithm. Another simple class is when
the cost is quadratic and the constraints linear.
These problems are termed quadratic programs
(QP) and can typically be solved in a finite num-
ber of steps.

For more general nonlinear programs (NLP) one
must rely upon iterative solvers such as those
that utilize Newton type steps to satisfy necessary
conditions of optimality. There is a wide variety
of algorithms available (active set, interior point,
etc.), see for example the package TOMLAB!

(Holmströn et al., 2006). Having a large number
of constraints can be problematic. However, prob-
lems with a large number of nonlinear inequality
constraints may often have few active constraints.
This issue can be addressed in certain cases. For
example, Polak et al. (2007) has described spe-
cially designed algorithms for on-line MPC (see
Section 3.1) which selects a small number of active
constraints using outer approximations.

Another important class of algorithm (termed
Simulated Annealing (Kirkpatrick et al., 1983)) is
motivated by a thermodynamic cooling analogy.
In these algorithms a “temperature” parameter
is used to adjust the probability of accepting
new points even though they do not improve the
cost function. Thus, one can “jump out of” local
minima.

Another class of algorithms (termed Genetic Al-
gorithms (GA) (Goldberg, 1989)) is motivated by
genetics. In this type of algorithm, new trial so-
lutions are generated by crossover (i.e. randomly
swapping elements in given vector trial solutions)
or by mutation (i.e. randomly adding components
to elements of trial solutions).



2.3.2. Discrete Variable Optimization When
discrete choices appear in optimization problems
then this leads to inherent difficulties. For ex-
ample, these problems are certainly non-convex.
Branch and Bound methods (Biegler and Gross-
mann, 2004) are commonly deployed to solve these
problems. A tree search is typically used such that
the integer space is successively partitioned into
relaxed problems (i.e. where the integer constraint
is replaced by an interval constraint) at each
node of the tree. Simplifications are introduced
by preprocessing, e.g. by eliminating variables or
by removing certain constraints.

2.3.3. Stochastic Optimization Uncertainty is
often a key issue in optimization. In this case,
there are different modelling approaches that one
can use. For example, one can deploy determin-
istic uncertainly bounds or probabilistic descrip-
tions. Either approach will tend to add significant
complexity to the underlying optimization prob-
lem. A simple strategy is to base the solution only
on the nominal (or expected) value for the un-
certain variable. However, this can be misleading
since the resultant solution will, almost certainly,
be non-optimal, or, indeed, even infeasible (i.e.,
violate key constraints), under certain reasonable
realizations for the uncertain variables. If there
are hard constraints then one must examine each
possible realization to ensure constraints are not
violated for this realization.

2.3.4. Receding Horizon Optimization Many
optimization problems have a temporal character
(i.e. one wants to optimize over some future time
horizon). Also, it is often true that actions planned
for the far future have a diminishing effect on
what is the best action now. In this case, it makes
sense to reduce the time window to capture the
horizon over which the current decision has its
greatest impact. Having carried out the optimiza-
tion over this restricted horizon, one can lock in
the current action and then move the window
forward starting at the next time step. The set
of decisions designed with one horizon becomes
a good initial guess for the decisions over the
next displaced horizon. Surprisingly, it turns out
that it is sometimes possible to use very short
planning horizons. For example, it is known that
horizon one optimization in control correspond to
widely used anti-windup strategies to deal with
actuator saturation. The latter are very simple
but are known to give excellent performance in
many cases (Goodwin et al., 2005b).

The idea of receding horizon optimization opens
up many other possibilities for simplifying compu-
tations. For example, within a given optimization
window, one need not use uniform time discretiza-

tion. Based on the idea that future actions have
only a second order effect on the best action
to take now, then one can use time steps that
grow larger towards the end of the interval. If
one locks in the current action and moves the
horizon forward a small time step followed by
another non-uniform quantization of time, then
one can design a finely quantized policy by solving
a (rolling horizon) sequence of simpler problems.

2.3.5. Optimization Software There exists a
substantial body of software for solving opti-
mization problems; some commercial, some free-
ware. A good first step for practitioners look-
ing for optimization software is the NEOS server
(www-neos.mcs.anl.gov). Control engineers often
first try the optimization routines available in
Matlab!. These are generic routines and typically
work well at least on simple problems. However,
they are not tailored to capitalize on the structure
inherent in specific problem classes. In some cases
it makes sense for users to code their own software.
However, it is usually preferable to use well-tested
and well-designed software rather than trying to
code ad-hoc algorithms oneself.

2.3.6. Caveats A user of optimization needs to
be cautious of the blind application of nonlinear
optimization methods. For example, typical al-
gorithms are iterative in nature and thus there
always exists the possibility of non-optimality of
solutions due to bad initialization or premature
termination. Also, one can easily get trapped in
a local (as opposed to global) optimum. Special
precautions are necessary to safeguard against
these possibilities.

3. SOME OPTIMIZATION PROBLEMS
ARISING IN MINING, METAL AND

MINERAL PROCESSING

In this section we briefly review several classes
of optimization problems that frequently arise in
mining, metal and mineral processing.

3.1 Constrained Control

One of the best known, and most successful appli-
cations of optimization in mining, metal and min-
eral processing has been constrained Model Pre-
dictive Control (MPC) (Camacho and Bordons,
1999; Maciejowski, 2002; Borrelli, 2003; Rossiter,
2003; Goodwin et al., 2005b). Many thousands
of successful applications have been reported and
hundreds of vendors sell general tools for carrying
out the required computations (Qin and Badgwell,
1997). For example, the PACTmpc! software sold



by Matrikon provides a complete solution ranging
from estimating models from closed loop data to
implementing controllers that account for both
input and state constraints. Similar packages are
sold by other companies.

A core idea used in MPC is that of receding hori-
zon optimization (see Section 2.3.4). This idea can
be summarized as follows for control problems:

(1) At time i and for the current state xi, solve
an optimal control problem over a fixed fu-
ture interval, say [i, i + N − 1], taking into
account the current and future constraints.

(2) Apply only the first step in the resulting
optimal control sequence.

(3) Measure the state reached at time i + 1.
(4) Repeat the fixed horizon optimisation at time

i + 1 over the future interval [i + 1, i + N ],
starting from the (now) current state xi+1.

In particular, for time-invariant systems and func-
tions in the optimization problem, we can set
i = 0 in the formulation of the open loop control
problem without loss of generality. Then at the
current time, and for the current state x, we solve:

PN (x) : V opt
N (x) ! min VN ({xk}, {uk}), (2)

subject to the equations describing the system,
e.g.,

xk+1 = f(xk, uk) for k = 0, . . . , N − 1, (3)
x0 = x, (4)

together with

input constraints: uk ∈ U for k = 0, . . . , N − 1,
(5)

state constraints: xk ∈ X for k = 0, . . . , N, (6)
terminal constraints: xN ∈ Xf ⊂ X. (7)

The cost function typically takes the following
form:

VN ({xk}, {uk}) ! F (xN ) +
N−1∑

k=0

L(xk, uk), (8)

where {xk}, xk ∈ Rn, {uk}, uk ∈ Rm, de-
note the state and control sequences {x0, . . . , xN}
and {u0, . . . , uN−1}, respectively, and U ⊂ Rm,
X ⊂ Rn, and Xf ⊂ Rn are constraint sets.
All sequences {u0, . . . , uN−1} and {x0, . . . , xN}
satisfying the constraints (3)–(7) are called fea-
sible sequences. A pair of feasible sequences
{u0, . . . , uN−1} and {x0, . . . , xN} constitute a fea-
sible solution of (2)–(8). The functions F and
L in the objective function (8) are the terminal
state weighting and the per-stage weighting, re-
spectively. Typical choices for the weighting func-
tions F and L are quadratic functions of the form
F (x) = xtPx and L(x, u) = xtQx + utRu, where
P = P t ≥ 0, Q = Qt ≥ 0 and R = Rt > 0. More
generally, one could use functions of the form
F (x) = ‖Px‖p and L(x, u) = ‖Qx‖p + ‖Ru‖p ,

where ‖y‖p with p = 1, 2, . . . ,∞, is the p-norm of
the vector y.

If we denote the minimising control sequence,
which is a function of the current state xi, by

U opt
xi

! {uopt
0 , uopt

1 , . . . , uopt
N−1} ; (9)

then the control applied to the plant at time i is
the first element of this sequence, that is,

ui = uopt
0 . (10)

Time is then stepped forward one instant, and the
above procedure is repeated for another N -step-
ahead optimisation horizon. The first element of
the new N -step input sequence is then applied.
The above procedure is repeated endlessly. We can
see that one is continually looking ahead to judge
the impact of current and future decisions on the
future response before one “locks in” the current
input by applying it to the plant.

The above receding horizon procedure implicitly
defines a time-invariant control policy KN : X →
U of the form

KN (x) = uopt
0 . (11)

If the model and objective function are time in-
variant, then it is clear that the same input uopt

0

will result whenever the state takes the same
value. That is, the receding horizon optimisation
strategy is really an “alibi” for generating a partic-
ular time-invariant feedback control law. Indeed,
in some cases, it makes sense to evaluate KN (x)
off-line and then to use a table look up for on-line
use (Goodwin et al., 2005b).

An important aspect of receding horizon con-
strained control is that closed loop stability can
often be guaranteed provided one chooses the fi-
nal state weighting and final constraint set ap-
propriately (Sznaier and Damborg, 1987, 1990;
Keerthi and Gilbert, 1988; Mayne and Michalska,
1990; Rawlings and Muske, 1993; Bemporad et al.,
1995; Scokaert and Rawlings, 1998; Mayne et al.,
2000). The key idea is to utilize the value func-
tion of the optimisation problem as a Lyapunov
function. In early work, stability analyses were
restricted to the nominal case (known model and
zero disturbances). More recent work has focused
on guaranteeing robust stability in the presence
of disturbances and model uncertainty. For exam-
ple, recent work reported in Løvaas et al. (2007),
shows how one can guarantee robust stability in
the presence of model error and disturbances.
These kinds of results give theoretical support for
(and hence comfort to users of) MPC.

3.2 Constrained State Estimation

Constraints can also be important in state esti-
mation problems. For example, it may be a-priori



known that certain variables lie in given ranges.
Clearly, it can be helpful to build this kind of
a-priori knowledge into the associated algorithm
(Michalska and Mayne, 1995; Rao et al., 2001,
2003; Goodwin et al., 2005a). This represents
a natural extension of unconstrained (Jazwinski,
1970; Kalman, 1960; Bryson and Frazier, 1963;
Cox, 1964) state estimation.

To illustrate the key ideas, we consider the case
of a linear system satisfying the following linear
Markov Model:

xk+1 = Axk + Bwk,

yk = Cxk + vk,
(12)

where xk ∈ Rn, wk ∈ Rm, yk ∈ Rr and vk ∈ Rr.
Suppose that {wk}, {vk}, x0 are i.i.d. sequences
having truncated Gaussian distributions, where
wk ∈ Ω1, vk ∈ Ω2, x0 ∈ Ω3.

We consider estimation using data from time 1 to
N and define

yN =
[
yt
1 . . . yt

N

]t
, (13)

yd
N =

[
yd
1
t

. . . yd
N

t
]t

, (14)

xN =
[
xt

0 . . . xt
N

]t
, (15)

x̂N =
[
x̂t

0 . . . x̂t
N

]t
. (16)

where {yd
k} denotes the observed output sequence

and x̂k denotes the state estimates. When the ma-
trix B in (12) is nonsingular, the joint probability
density function for yN and xN satisfies

pyN ,xN (yN = yd
N ,xN = x̂N )

= constant × exp

{
−1

2

N−1∑

k=0

ŵt
kQ−1ŵk

}

× exp

{
−1

2

N∑

k=1

v̂t
kR−1v̂k

}

× exp
{
−1

2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0)
}

,

(17)

whenever

ŵk ∈ Ω1 for k = 0, . . . , N − 1,

v̂k ∈ Ω2 for k = 1, . . . , N,

x̂0 ∈ Ω3,

where

x̂k+1 = Ax̂k + Bŵk for k = 0, . . . , N − 1,

v̂k = yd
k − Cx̂k for k = 1, . . . , N.

The estimation problem is: Given the observations
yd

N = [yd
1
t
. . . yd

N
t]t, make some statement about

the states xN = [xt
0 . . . xt

N ]t. From the joint
probability density function (17), we can express
the a posteriori distribution of xN given yN as
follows:

pxN |yN
(x̂N |yd

N ) =
pyN ,xN (yd

N , x̂N )
pyN (yd

N )
, (18)

where pyN (yd
N ) is a data dependent term which

does not depend on xN . The a posteriori dis-
tribution pxN |yN

(x̂N |yd
N ) summarises “what we

know about xN given the observations yd
N .” Our

aim is to find the joint a posteriori most probable
[JAPMP] state estimates x̂N = [x̂t

0 . . . x̂t
N ]t given

the observations ŷd
N ; that is,

x̂∗
N ! arg max

x̂N

pxN |yN
(x̂N |yd

N ). (19)

Note that (19) is equivalent to maximising the
joint probability density function, since, as no-
ticed in (18), both functions are related by a
term that does not depend on xN . Thus, the joint
maximum a posteriori estimate is given by

x̂∗
N ! arg max

x̂N

pxN |yN
(x̂N |yd

N )

= arg max
x̂N

pyN ,xN (yd
N , x̂N )

= arg min
x̂N

− ln pyN ,xN (yd
N , x̂N ). (20)

The preceding discussion leads to the following
constrained optimisation problem.

Estimation Problem: Given the observations
{yd

1 , . . . , yd
N} solve:

Pe : V opt
N (µ0, {yd

k}) ! min VN ({x̂k}, {v̂k}, {ŵk}),
(21)

subject to:
x̂k+1 = Ax̂k + Bŵk for k = 0, . . . , N − 1,

(22)
v̂k = yd

k − Cx̂k for k = 1, . . . , N, (23)
ŵk ∈ Ω1 for k = 0, . . . , N − 1, (24)
v̂k ∈ Ω2 for k = 1, . . . , N, (25)
x̂0 ∈ Ω3, (26)

where
VN ({x̂k}, {v̂k}, {ŵk})

! 1
2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0)

+
1
2

N−1∑

k=0

ŵt
kQ−1ŵk +

1
2

N∑

k=1

v̂t
kR−1v̂k.

(27)

The above problem can be seen to be a standard
QP problem and is closely related to the con-
strained control problem described in section 3.1.

Further to the above developments one can also
utilize rolling horizon ideas for constrained state
estimation. For example one can use the obser-
vation interval (1, N) to estimate the state x(N).
Then one can move the estimation interval for-
ward one step and consider data on the interval
(2, N + 1) to estimate x(N + 1) and so on. When
doing this, a key factor becomes the “entry cost”
i.e. the last term in equation (17). For example,



one could remember the state estimate for x(0)
obtained using data from (N − 1) to 0 and use
this for µ0. In principle one also needs P0. One
option is to use an unconstrained Kalman filter to
supply P0.

3.3 Scheduling Problems

Another class of problems of interest in mining,
mineral and metal processing is that of scheduling.
These problems typically involve discrete vari-
ables and thus fall into the MILP or MINLP
categories.

To illustrate, let xt
i(i = 1, . . . , N) denote a vari-

able which takes the value ’1’ if a resource is used
in periods 1 to t and is zero otherwise. Let ct

i

denote the value returned by utilizing resource xi

at time t. Then, over a horizon of T , the net value
returned is

f(x) =
N∑

i=1

cT
i xT

i +
T∑

t=2

N∑

i=1

(
ct−1
i − ct

i

)
xt−1

i (28)

Also, in typical problems, there will be constraints
on the xi’s of the form

gi(x) =
T∑

t=2

N∑

i=1

dt−1
i xt−1

i ≤ 0; j = 1, . . . , M1

(29)

h!(x) =
T∑

t=2

N∑

i=1

et−1
i xt−1

i ≤ 0; ! = 1, . . . , M2

(30)
The fact that {xt

i} can take only integer values
renders this an MILP.

4. DUALITY

An important concept in optimization is that of
duality. Duality often gives insight into optimiza-
tion problems and is exploited in some optimiza-
tion algorithms. In this section, we will briefly
review the idea of duality and illustrate it by
describing the symmetric dual relationship that
exists between constrained control and estima-
tion.

4.1 Brief Introduction to Lagrangian Duality

Consider the primal problem as in (1).

The Lagrangian dual problem is then defined as
the following nonlinear programming problem:

Lagrangian Dual Problem D

maximise θ(α,β)
subject to :
α ≥ 0

(31)

where θ(α,β) is the solution of the Lagrangian
dual subproblem defined by

θ(α,β) =inf{f(x) +
m∑

i=1

αigi(x)

+
!∑

i=1

βihi(x) : x ∈ X}
(32)

In the dual problem (31)-(32), the vectors αi and
βi have, as their components, the Lagrange mul-
tipliers αi for i = 1, . . . , m, and βi for i = 1, . . . , !.
Note that the Lagrange multipliers αi, corre-
sponding to the inequality constraints gi(x) ≤ 0,
are restricted to be nonnegative, whereas the La-
grange multipliers βi, corresponding to the equal-
ity constraints hi(x) = 0, are unrestricted in sign.

Given the primal P (1), several Lagrangian dual
problems D of the form of (31)-(32) can be de-
vised, depending on which constraints are handled
as gi(x) ≤ 0 and hi(x) = 0, and which constraints
are handled by the set X . Hence, an appropriate
selection of the set X must be made, depending
on the nature of the problem and the goal of
formulating or solving the dual problem D.

An interesting geometric interpretation of the
dual problem can be made by considering a sim-
pler problem with only one inequality constraint
and no equality constraint. Consider the following
primal problem P:

Primal Problem P
Minimize f(x)
subject to:
g(x) ≤ 0
x ∈ X

(33)

where f : Rn → R and g : Rn → R, and define
the following set in R2:

G = {(y, z) : y = g(x), z = f(x) for some x ∈ X}
(34)

that is, G is the image of X under the (g, f) map.
Figure 1 shows an example of the set G. Then,
the primal problem consists of finding a point
in G with y ≤ 0 that has minimum ordinate z.
Obviously this point in Figure 1 is (ȳ, z̄).

Now, consider the Lagrangian dual problem D:

maximise θ(α)
subject to :
α ≥ 0

(35)

where

θ(α) = inf{f(x) + αg(x) : x ∈ X} (36)



X

x

z

(g, f)

g

(ȳ, z̄)

[g(x), f(x)]

y

θ(α) Slope −α

Slope −ᾱ

z + αy = γ

Fig. 1. Geometric interpretation of Lagrangian
duality: case with no duality gap.

Given α ≥ 0, problem (36) is equivalent to
minimising z + αy over points (y, z) in G. Note
that z + αy = γ is the equation of a straight
line with slope −α that intercepts the z-axis at γ.
Thus, in order to minimise z +αy over G we need
to move the line z +αy = γ parallel to itself as far
down as possible, whilst it remains in contact with
G. The last intercept on the z-axis thus obtained
is the value of θ(α) corresponding to the given
α ≥ 0, as shown in Figure 1. Finally, to solve the
dual problem (35), we have to find the line with
slope −α(α ≥ 0) such that the last intercept on
the z-axis, θ(α), is maximal. Such a line is shown
in Figure 1. It has slope −α and supports the set
G (see equation (34)) at the point (ȳ, z̄). Thus, the
solution to the dual problem (35) is ᾱ. It can be
seen that, in the example illustrated in Figure 1,
the optimal primal and dual objective values are
equal. In such cases, it is said that there is no
duality gap. More generally, it is readily seen that
any feasible solution to the dual problem always
provides a lower bound for the objective functions
for any feasible solution to the primal problem.
This is established below:

Theorem 1. (Weak Duality Theorem). Consider the
primal problem P given by (1) and its Lagrangian
dual problem D given by (31), (32). Let x be a
feasible solution to P; that is, x ∈ X, g(x) ≤ 0,
and h(x) = 0. Also, let (α,β) be a feasible solution
to D; that is, α ≥ 0. Then:

f(x) ≥ θ(α,β) (37)

PROOF. We use the definition of θ given in (32),
and the facts that x ∈ X,α ≥ 0, g(x) ≤ 0 and
h(x) = 0. We then have

θ(α,β) = inf{f(x̄) + αT g(x̄) + βT h(x̄) : x̄ ∈ X}
≤ f(x) + αT g(x) + βT h(x) ≤ f(x)

(38)

Optimal dual objective

Optimal primal objective

Duality gap

X

x

z

(g, f)

g

[g(x), f(x)]

y

Fig. 2. Geometric interpretation of Lagrangian
duality: case with duality gap.

and the result follows.

Corollary 2.

inf{f(x) : x ∈ X, g(x) ≤ 0, h(x) = 0}
≥ sup{θ(α,β) : α ≥ 0} (39)

Note from (39) that the optimal objective value
of the primal problem is greater than or equal to
the optimal objective value of the dual problem.
If (39) holds as a strict inequality, then it is said
that there exists a duality gap. Figure 2 shows an
example for the primal and dual problems defined
in (33) and (35)–(36), respectively. Notice that,
in the case shown in the figure, there exists a
duality gap. We see, by comparing Figure 2 with
Figure 1, that the presence of a duality gap is
due to the nonconvexity of the set G. Indeed if
some suitable convexity conditions are satisfied,
then there is no duality gap between the primal
and dual optimization problems.

4.2 Duality between Constrained Estimation and
Control

We have argued in Section 3, that two major
application areas of optimization in mining, metal
and mineral processing are constrained control
(see Section 3.1) and constrained state estimation
(see Section 3.2). It is thus of considerable interest
to further study these two classes of problems.
It is obvious from the brief description of these
problems given in Section 3 that they are closely
related. What is perhaps less obvious is that the
two problems actually bear a beautifully symmet-
ric dual relationship. This result has only recently
been established (see Goodwin et al. (2005a)). To
outline the key ideas, we refer to the finite horizon
constrained state estimation problem described by
equations (21) to (27).



For simplicity, we consider only the case where
ωk is constrained to a convex set Ω. However,
similar results also hold when vk and x̂k are also
constrained (Müller et al., 2006). The following
result establishes (Lagrangian) duality between
the constrained estimation problem Pe and a
particular optimal control problem with projected
variables.

Theorem 3. (Dual Problem). Assume Ω is a non-
empty closed convex set. Given the primal con-
strained fixed horizon estimation problem Pe de-
fined by equations (21)–(27), the Lagrangian dual
problem is

De : φopt(µ0, {yd
k}) ! min

λk,uk

φ({λk}, {uk}),

(40)

subject to:
λk−1 = Atλk + Ctuk for k = 1, · · · , N,

(41)
λN = 0, (42)
ζk = Btλk for k = 0, · · · , N − 1, (43)

ζ̄k = Q−1/2ΠΩ̃Q1/2ζk for k = 0, · · · , N − 1.
(44)

In (40) the objective function is:

φ({λk}, {uk})

! 1
2
(Atλ0 + P−1

0 µ0)tP0(Atλ0 + P−1
0 µ0)

+
1
2

N∑

k=1

(uk − R−1yd
k)tR(uk − R−1yd

k)

+
N−1∑

k=0

[
1
2
ζ̄t
kQζ̄k + (ζk − ζ̄k)tQζ̄k

]
+ γ (45)

where γ is the constant term given by

γ ! −1
2
µt

0P
−1
0 µ0 −

1
2

N∑

k=1

(yd
k)tR−1yd

k. (46)

In (44), ΠΩ̃ denotes the minimum Euclidean dis-
tance projection onto Ω̃ ! {z : Q1/2z ∈ Ω}, that
is,

ΠΩ̃ : Rm −→ Ω̃
s *−→ s̄ = ΠΩ̃s ! arg min

z∈Ω̃

‖z − s‖. (47)

Moreover, there is no duality gap, that is, the
minimum achieved in (21) is equal to minus the
minimum achieved in (40).

Proof: See Goodwin et al. (2005a).

We can think of (41)–(44) as the state equations
of a system (running in reverse time) with input
uk and output ξk. The above theorem then shows
that the dual of the estimation problem with con-
straints on the system inputs (the process noise
ωk) is a control problem having projected outputs

in the objective function. A striking symmetry
between the two problems is revealed (see Good-
win et al. (2005a)) when one realizes that the
estimation problem with constraint ωk ∈ Ω can
also be described by an equivalent optimization
problem (as below) based on the use of projected
inputs :

Equivalent Estimation Problem
(with Projected Variables)

P ′
e : min

x̂k,v̂k,ŵk

{1
2
(x̂0 − µ0)tP−1

0 (x̂0 − µ0)

+
1
2

N∑

k=1

v̂t
kR−1v̂k +

N−1∑

k=0

[1
2
w̄t

kQ−1w̄k

+ (ŵk − w̄k)tQ−1w̄k

]}
,

subject to:
x̂k+1 = Ax̂k + Bw̄k for k = 0, · · · , N − 1,

v̂k = yd
k − Cx̂k for k = 1, · · · , N,

w̄k = Q1/2ΠΩ̃Q−1/2ŵk for k = 0, . . . , N − 1.

Comparison of Problem De and P ′
e reveals the

remarkable symmetry that exists between the two
problems.

5. ILLUSTRATIVE CASE STUDIES

In this section we will briefly overview three case
studies drawn from the mining, mineral and metal
processing area. We will utilize these case studies
to highlight some of the general points made in
previous sections. In particular, we will discuss the
interplay between modelling and solution method-
ology. Various other observations arising from the
case studies will be highlighted.

5.1 Air knife Control in Continuous Galvanizing
Lines

This case study is an example of continuous vari-
able optimization. Earlier attempts to solve this
problem were based on conventional control meth-
ods. However, the fact that the problem is in-
herently nonlinear with hard constraints makes
optimization a natural choice. Further details may
be found in Rojas et al. (2006).

Continuous strip hot-dip galvanizing lines repre-
sent a significant and complex industrial control
application (Edwards et al., 1976; Jacobs, 1995).
Some of the main difficulties associated with these
types of processes is that they are multivariable
with a large number of inputs and outputs, (30×
30 transfer functions are typical) they are nonlin-
ear and are required to operate subject to tight
input constraints and at fast sampling rates. This
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Fig. 4. Gain variation from nozzle aperture to
coating density deviation on the strip.

suggests that nonlinear MPC could be a suitable
strategy.

A simplified diagram of a continuous strip hot-
dip galvanizing line is depicted in Figure 3. To be
specific, we consider a metal strip with a width
of 0.75 m. The air knife comprises a set of 10 air
nozzles spaced at equal intervals of 10 cm. The
scanning sensor that measures the coating density
on the metal strip is positioned downstream from
the air knife and the spatial separation between
the measurements is 10 mm.

An interesting aspect of the problem is that the
gain relationship between the aperture of one
nozzle on the air knife and the coating mass
density on the strip is nonlinear. This nonlinear
gain is determined by several variables including
the strip speed, the separation between the air
knife and the strip, the air jet pressure, etc. The
nonlinear gain is usually approximately known
(say within an error of less than 5%). A typical
curve is shown in Figure 4.

In addition, the pressurised air blown by each
nozzle not only affects the coating mass directly
underneath the nozzle but it also affects the
coating mass density at nearby positions on the
strip. This phenomenon is typical of systems with
a spatial distribution similar to that exhibited
by the galvanizing line process. Figure 5 shows a
typical spatial profile of the gain associated with a
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Fig. 5. Spatial gain profile generated by one noz-
zle.

single nozzle. Physical limitations impose a series
of constraints on the nozzle apertures. Typical
constraints include:

(1) input amplitude constraint:

0.5 ≤ ui ≤ 4 (mm) i = 1, . . . , 10 (48)

(2) first difference constraint:

|ui+1 − ui| ≤ 1 (mm) i = 1, . . . , 9 (49)

(3) second difference constraint:

|ui+2−2ui+1+ui| ≤ 1.5 (mm) i = 1, . . . , 8
(50)

The air pressure in the system is regulated
by a separate control loop. To minimise the
interaction between the coating mass control
loop and the air pressure control loop, the
following equality constraint is imposed on
the air nozzle aperture:

(4) constant average nozzle opening:

1
10

10∑

i=1

ui = rn (51)

where rn is the desired value of the average
nozzle opening.

Similarly, the average coating density across
the strip is mainly controlled by the sepa-
ration between the air knife and the strip.
Thus, in order to prevent the coating mass
control loop from modifying the average
coating density across the strip, the following
equality constraint is imposed:

(5) constant average coating density:

1
N

N∑

i=1

yi = rc (52)

where N is the number of components in the
measurement vector y and rc is the desired
average coating density across the strip.

A mathematical model relating the nozzle aper-
tures with the coating density on the strip can
be derived directly from the available information
on the spatial interaction shown in Figure 5 and
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+ŷ(t)Plant and

delay model

Control Gauge and
signal proc.

Fig. 6. Control architecture for the air knife con-
trol problem.

the nonlinear gain relation shown in Figure 4. In
particular, let u be a column vector that contains
the aperture for each nozzle on the air knife and
let y be a column vector containing the coating
density measurements across the strip. Then, we
can write:

y = Gg{u} + d (53)

where g{·} is the nonlinear gain and d is an
unknown output disturbance. In addition, G is a
constant matrix that models the combined effect
of all nozzles on the coating density profile. Each
column of the matrix G is a shifted version of the
profile shown in Figure 5. Notice that the model
in (53) does not include dynamics, since any
longitudinal or actuator dynamics are assumed to
be faster than the controller sampling period of
0.1 s. Potential picketing difficulties (i.e. adjacent
actuators “fighting each other”) exist in these
types of problems. There are, in general, several
ways of dealing with picketing. We rely on the first
and second difference constraints in (49) and (50)
to avoid large changes in the profile of the nozzle
apertures to mitigate these effects.

A difficulty is that the system has a complex delay
structure due to the nature of the scanning gauge
that provides the coating density measurements.
At a given sampling time, the coating density
measurements all have different time delays. It
is thus a challenging modelling problem to deal
with these delays. We adopted an internal model
approach to this problem as shown in Figure 6. We
observe that since the process model contains also
a model of the system’s delay structure we have
that the signal fed-back to the controller is essen-
tially an estimation of the output disturbance vec-
tor d. Some on-line filtering of d may be desirable
to isolate different components. Constrained state
estimation (see Section 3.2 is a potentially useful
tool in this regard. However, at the current time,
we have only used simple methods in this particu-
lar application. For example, pre-filtering is used
to ensure that the estimated output disturbance
profile d̂ contains no constant nor tilt components.
These components are removed and used as dis-
turbance data for separate control loops.

Having modelled the problem, the next step is to
specify a suitable algorithm. Our first choice was
to approximate the nonlinearity by a set of piece-
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Fig. 7. Coating density profile across the strip (cir-
cles and continuous line) and applied output
disturbance profile (continuous line).
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wise linear models. Piecewise affine ideas were
then used to convert the optimization problem
into a set of interconnected QP problems (Bor-
relli, 2003). This gave a satisfactory solution save
for one major issue, namely, the required compu-
tation time for each step in the rolling horizon
optimization far exceeded the available sampling
time of 0.1 seconds. Hence, the real time aspects
of the problem were not satisfactorily addressed.

A very simple suboptimal strategy was then tried
where a gradient of the cost function was eval-
uated and a linear search was employed in the
gradient direction to minimize the cost whilst re-
specting the constraints. Only one gradient evalu-
ation was conducted per time step. Of course, this
is a highly suboptimal strategy. However, for this
particular problem, it was found to give results
that were very close to those obtained by the much
more complex piecewise affine strategy.

Typical output and input profiles are shown in
Figures 7 and 8, respectively. We observe that
the controller has successfully compensated the
output disturbance profile. Owing to the higher
spatial modes included in the disturbance, we
see in Figure 8 how the nozzle first and second
difference profiles have larger variations. However,
these variations are still inside the constraint



limits. In conclusion, this provided a satisfactory
solution to the practical problem.

5.2 Deterministic Optimal Mine Planning

These problems contain integer variables and thus
fall into the MILP framework. We will provide a
brief introduction to the problem below [see also
Appiah et al. (1990); Appiah and Sturgul (1990);
Ataei and Osanloo (2003); Brazil et al. (2003);
Caccetta and Hill (2003); Clement and Vage-
nas (1994); Darwen (2001a); Denby and Schofield
(1994, 1995a,b); Denby et al. (1998); Stone et al.
(2004); Thomas (1996)]. The essence of the prob-
lem is as follows: One has preliminary available
data on the location of an ore-body in a par-
ticular geological volume. Given the data, one
would like to know ‘where’ and ‘when’ to dig so
as to optimize the ‘net present value’. A typical
mining operation can span 15 to 20 years (or
more) and hence there is a temporal aspect to
these questions. Also, the optimization needs to
respect a host of constraints, e.g., mining capacity
in each year and slope constraints on the mine
walls (to avoid collapses), mining constraints (e.g.,
on the order that material can be mined), mining
capacity constraints, etc.

The basic idea of open cut mining can be visu-
alised in Figure 9, which shows the ultimate pit
of a typical mine, that is, the opening left in the
ground after mining operations have been com-
pleted. For simplicity of exposition, we represent
the potential mine by the ‘box’ shown in Figure
10, where the ‘surface’ is divided into (J + 1) ×
(K + 1) rectangles.

Fig. 9. Illustration of a typical mine ultimate pit.

The above mine planning problems are typically
formulated as MILP problems Darwen (2001b),
Denby and Schofield (1994), Denby and Schofield
(1995a). One can also model the problem as a
(large scale) control problem. An advantage of
using the “control” model formulation is that the
problem then appears more familiar to control
engineers (including the authors of the paper). In

z

x

y

Fig. 10. Simplified representation of the mine.

the sequel, we use the term ‘control’ to describe
those variables that can be selected (at each time
step) by the optimizer.

Accordingly, we define the mine state as the set
of pit depths at the locations of the surface. We
represent the evolution of this state via a lin-
ear, discrete-time dynamic model where mining
action is the control input. Specifically, we de-
note by xjk(t) the mine depth at location jk at
time t. Similarly, we denote by ujk(t) the action
to mine (or not) at time t in the location jk,
j ∈ {0, . . . , J}, k ∈ {0, . . . , K}. We thus think
of ujk(t) as an (J + 1) × (K + 1) input vector. A
state model for the system can then be written as

xjk(t + 1) = xjk(t) + b1ujk(t); t ∈ N0

xjk(0) = 0; j ∈ {0, . . . , J}, k ∈ {0, . . . , K}
(54)

where b1 is a constant that reflects the effect of
one unit of mining action. The model (54) will
appear very familiar to control engineers.

Constraints can be incorporated in a natural way
in the state-space formulation presented. For ex-
ample, note that ujk(t) can take either the value 1
or 0 indicating the action of mining or not at
location jk at time t. Thus, ujk(t) is nonnegative
and the model (54) readily ensures that the mine
depth cannot decrease at any location. Also, slope
constraints on the mining depth can be directly
incorporated by means of state constraints of the
form

|x!n(t)−xjk(t)| ≤ b2; t ∈ N0, |!−j| = 1, |n−k| = 1
(55)

The mining capacity constraint can be easily han-
dled by imposing an input constraint such that
only a certain number of ujk(t) can be nonzero at
any t. Other constraints, such as processing plant
constraints, can also be modelled by introducing
functions to model ore content. Finally, the state-
space formulation presented here can be extended
to more complex situations, such as multiple pro-
cessing plants with variable capacities, multiple
material stockpiles, variable material price, etc.

The value of the body of ore at different locations
is typically obtained by preliminary drilling work.
Using this information one can construct a value
function Vjk(xjk) which represents the value as-
signed to the material in location jk at depth xjk.
We also introduce a time discounting function dt



to yield net present value and assume that the
price of ore at time t is ct. The cost function to use
for mine planning, representing the net present
value achieved by a given mining strategy over a
planning horizon T , then takes the form

J :=
T∑

t=1

J∑

j=1

K∑

k=1

dtct Vjk(xjk(t))ujk(t − 1) (56)

Note that we multiply by ujk(t − 1) in (56) since
the value is only liberated after mining.

A key point about this problem is that it is too
complex (in its raw form) to be solved in any
reasonable sense. (The raw “block model” has 104

variables.) Hence, one must simplify the problem
substantially before setting out to solve it. These
simplifications amount to quantizing in both space
and time. Some “art” as well as science is involved
in this step. In our own work we have deployed
many different approaches to solving the problem.
Brief reflections are outlined below.

(1) We have made extensive use of GA’s in the
context of mine optimization. We have found
GA’s give rapid initial reduction in the cost
function followed by slow final convergence.
Thus, in this context, GA’s seem to provide
a useful way of getting good initial estimates
for other solvers.

(2) We have tried several MILP solvers. In
particular, we have made extensive use of
CPLEX!. We have found these solvers to
give good performance.

(3) We have also developed specific software our-
selves based on the control orientated model.
In developing our own software, we made
several important observations. For example,
we found that non-uniform time quantization
(see Section 2.3.4) was extremely beneficial.
This sped up the computations by an order
of magnitude. This idea was subsequently
adopted in the MILP based modelling ap-
proach since it allowed such larger problems
to be solved in realistic time frames. (Typ-
ically real mine optimization problems can
take several hours to solve on a fast com-
puter.)

(4) As our confidence in the problem grew, so
more challenging features were added to
the model, e.g. ensuring proper access for
trucks and adequate space at the bottom of
each phase for mining equipment to operate.
These required additional attention to mod-
elling.

5.3 Optimal Mine Planning with Uncertainty

We recall that the model used in Section 5.2 as-
sumed that Vjk(xjk) and ct were known functions.

More realistically, however, one will not know the
exact value of ore in the ground nor the future
price that the ore will bring. Thus, one should,
in principle at least, introduce this uncertainty
into the problem. Since the deterministic problem
is already very difficult to solve one needs to be
rather careful how one models uncertainty so as
not to render the problem intractable. Another
important decision is to specify what information
will be available and when this information will
become available (Bertsekas, 2005). Three possi-
ble solution strategies are as follows:

Open Loop: Here one calculates the future “con-
trols” based purely on the expected future value
of uncertain variables. One then implements the
control sequence blindly (irrespective of what ac-
tually happens).

Reactive: Here one calculates the future “con-
trols” as for the open loop case. However, one
only implements the first step. One then takes
new measurements and updates the estimate of
the current “state” and repredicts the value of the
uncertain variables. One then redoes the optimiza-
tion over another future horizon and implements
the first step, as for MPC see section 3.1.

Closed Loop (or with recourse (Marti et al., 2004;
Uryasev and Pardalos, 2001)). Here one calculates
the control action based on the knowledge that
in the future additional information will become
available. This is usually a nontrivial exercise
since one must effectively map all possible fu-
ture “states” into control outcomes; i.e., one is
designing a mapping from the information state
to controls rather than a simple control sequence.

It is heuristically reasonable that the performance
improves in the order open loop, reactive and
closed loop. However, the difficulty of solving
the problem increases in the same order. Thus,
one needs to be sure that the more sophisticated
strategies are truly worthwhile. This is problem
dependent.

Three key issues arose in the context of applying
stochastic optimization to the mining problem
namely:

(i) how to formulate a closed loop solution,
(ii) how to model uncertainty and
(iii) whether reactive planning would suffice or

whether one should consider a closed loop
solution.

These issues are briefly addressed below.

5.3.1. Formulation of Closed Loop Strategies
To fix ideas, we will begin with a simplified prob-
lem. (Recall the comments made about “toy”
problems in section 2.2.)



Consider a grossly simplified situation where the
planning horizon has only 3 stages. Also, let us as-
sume that there is only one uncertain variable and
that there are 4 possible realizations (“scenarios”)
for this variable as shown in Figure 11.

In this figure, the price at stage 1 can only take
the value c1 = v1; at stage 2, price can take the
value c2 = v2, with probability α, or c2 = v3,
with probability 1−α; at stage 3, if price at stage
2 was v2, then price can take either the value c3

= v4, with conditional probability β, or c3 = v5,
with conditional probability 1 − β; and similarly
for the values v6 and v7. The price scenarios are
then defined by each of the four branches of the
scenario tree (for example, scenario 1 corresponds
to c1 = v1, c2 = v2 and c3 = v4).

Stage 1 Stage 2 Stage 3

1v

2v

3v

4v

5v

6v

7v

1

1

1

Scenario 1

Scenario 2

Scenario 3

Scenario 4

1c 2c 3c

Fig. 11. An example of a scenario tree structure
for closed-loop mine planning.

Next we consider the associated optimisation
problems. To begin let us conceptually think of us-
ing 4 optimisation problems (each corresponding
to a separate price scenario). Note that the scenar-
ios have a tree like structure, i.e., c1(1) = c1(2) =
c1(3) = c1(4), c2(1) = c2(2) and c2(3) = c2(4).

Following the above reasoning, we introduce four
corresponding optimisation problems with inputs
u(t, s), for s ∈ {1, 2, 3, 4}, where

• u(t, s) = 1 is the value of u(t) under price
scenario s.

It is important that we do not use information
about price until it becomes available. This is
captured by adding constraints that ensure that
the optimisation variables are equal at each node
of the price scenario tree. For the example above,
these constraints have the form:

u(0, 1) = u(0, 2) = u(0, 3) = u(0, 4)
u(1, 1) = u(1, 2) (57)
u(1, 3) = u(1, 4) (58)

We see from the above “toy” example that one
needs to, in effect, solve the optimization prob-
lem for all possible realizations of the uncertain
variables. Obviously, in a complex problem, such
as mine planning, one must restrict attention to a
few “representative” realizations of the uncertain
variables to make the overall problem tractable.
This leads to the problem of scenario generation
as discussed in the next section.

5.3.2. Scenario Generation Following the com-
ments made in the previous section, we see that
it is highly desirable that one approximate the
uncertain variables by a small set of “represen-
tative” realizations. For example, if we consider
the price of copper over a 10 year horizon, then
this is potentially a real random variable in R10.
Thus, one needs to think rather carefully how one
will model the variable in the context of stochastic
optimization. We have studied two alternatives.

(i) Monte Carlo’s simulation: Here one simply
draws realizations from the underlying prob-
ability distribution function for the uncer-
tain variable. Unfortunately in the context
of mine planning we have found that one
needs to draw several thousand realizations
to obtain a representative set in the sense
that drawing another set of realizations of
the same cardinality gives an answer to the
overall problem within the required accuracy.
Noting that a realistic deterministic mine
planning problem can take several hours to
solve, then dealing with 1000 realizations of
the uncertain variable, potentially extends
the solution time into many months which
is unrealistic.

(ii) Deterministic scenario generation: In view of
the time constraints outlined above, there is
strong motivation to more carefully choose
the “representative” realizations of the ran-
dom variable than simply “tossing a coin”.
This problem is often called “scenario gener-
ation”.

We refer the reader to the literature on the topic of
scenario generation available in the mathematical
finance and operations research fields (Beltratti
et al., 1999; Dupac̆ová, 1996; Dupac̆ová et al.,
2000; Høyland and Wallace, 2001; Keefer, 1994;
Miller and Rice, 1983; Mulvey and Vladimirou,
1992; Pflug, 2001a, 1996, 2001b; Takriti et al.,
1996; Yu et al., 2003).

The choice of best scenarios is a difficult problem.
Indeed, it could be argued that the ultimate test



of whether a given set of scenarios is “good” is
to try them on the real problem. However, one is
usually only motivated to consider scenario design
when the real problem is very complex. Thus using
the real problem as the “test bed” is usually not
a feasible option. One is then forced to simplify
the question of choosing scenarios to a related
approximation problem. To illustrate, we refer
to an algorithm for scenario generation which is
related to “code book” design in signal processing.

Let X ∈ Ω be a random variable and say that
we fix the cardinality of the set of scenarios as K.
Denote the scenarios as y1, . . . , yk. Then a possi-
ble strategy for designing scenarios is to choose
y1, . . . , yk such that each possible realization of
X is close to at least one scenario. For example,
one could choose and optimal set of scenarios,
{yo

i } ! {yo
1, . . . , y

o
k}, by solving the following ap-

proximation problem:

{yo
i } = arg min

{yi}

k∑

!=1

E
X∈V!

[
‖X − y!‖2

]
, (59)

where

V! ! {x ∈ Ω : ‖x − y!‖2 ≤ ‖x − yj‖2 for
j ∈ {1, . . . , k}, j += !} \ {x ∈ Ω : ∃ j < !

such that ‖x − y!‖2 = ‖x − yj‖2
}

.

By way of illustration, we refer to the problem of
generating scenarios for the future price of cop-
per. (Clearly this is motivated by mine planning
problems.)

The USA copper price over the years 1965-2005 is
shown in Figure 12.
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Fig. 12. USA Copper price (normalised by the
CPI) and its exponential trend.

We will choose 125 scenarios and we will initially
assume that the year is 1993. This will give us
9 further years (from 1994 to 2002) in which
we can compare the generated scenarios with the
actual price changes. (Of course, in practice, the
scenarios are used to describe future uncertain
variables.)

Figure 13 shows a set of 125 prices scenarios
designed by using a criterion closely related to
(59). Also shown is the true copper price over
the years 1994 to 2002 and the best fitting (in
a mean-square sense) scenario compared with the
real copper price.
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Fig. 13. Scenarios (thin lines) for the copper price,
from 1994 to 2002, with the actual copper
price (thick light line) and the closest fitted
scenario in a mean-square sense (thick dark
line).

The scenario tree shown in Figure 13 is in a form
whereby one could use closed loop planning.

5.3.3. Reactive Versus Closed Loop Planning
From Sections 5.3.1 and 5.3.2, we see that closed
loop planning represents a significant increase in
modelling and solution complexity compared to
open loop planning. Thus, one needs to have
strong evidence that closed loop brings signifi-
cant benefits to the problem of interest. We have
carried out several trials in the context of mine
planning to study this question. Our trials covered
the following:

(i) A simple mine planning problem: Here the
geometry of the mine was very simple and
thus, one might anticipate that closed loop
might not yield significant benefits compared
with reactive planning. Indeed, this turned
out to be the case (Rojas et al., 2007).

(ii) A very simple toy example: So as to gain
insight into the condition under which closed
loop planning would yield significant benefits
over reactive, we took a “toy” mining prob-
lem consisting of a one-dimensional verti-
cal homogenous ore-body with uncertain ore
price. Details are given in Rojas et al. (2007).
Surprisingly, it turned out that, for this “toy”
problem, reactive solutions were often iden-
tical to closed loop solutions. Indeed, closed
loop only showed a major difference for very
special (and arguably unlikely) scenario sets.
Thus, one might conclude that closed loop
planning is not beneficial.



Nonetheless, this conclusion needs to be
viewed with some caution. Indeed, we have
studied other problems (e.g. Networked con-
trol with random packet loss) where closed
loop planning gives major benefits over
open loop and/or reactive planning (Quevedo
et al., 2008). Thus, one needs to evaluate each
problem carefully before adopting a simpli-
fied approach.

6. GOOD, BAD OR OPTIMAL?

Before concluding the paper, we wish to caution
against blind adherence to “optimality” as a de-
sign criterion. The point here is that the word
“optimal” is a loaded word. In reality it simply
means that one has found the maximum (or mini-
mum) of some mathematical criterion. An entirely
different question is whether or not the criterion
adequately captures important practical features
of the problem. Our point is that it is often better
to have a deep understanding of a vague ques-
tion then an exact answer to the wrong question.
This idea is related to old ideas presented in the
control literature in Rosenbrock and McMorran
(1971). Indeed, the authors of the current paper
believe that it is always a good idea to have a
firm comprehension of fundamental limitations in
design so that the space of possible ‘answers’ can
be understood before blindly accepting an, ‘opti-
mal’ solution. For example, in control, it is very
important to understand limitations imposed by
non-minimum phase behaviour, time delays and
model uncertainty - see, for example, Freudenberg
and Looze (1985); Seron et al. (1997). As an
illustration, we point to the recent interest by in-
dustry in Nonlinear Model Predictive Control. We
applaud the use of this sophisticated tool that will
undoubtedly lead to practical control solutions
which would otherwise be totally unobtainable.
However, we urge users to always perform checks
on fundamental limits, bandwidths, robustness etc
before blindly accepting the output of a computer
programme.

Some questions (amongst other) that a user of
optimization tools might ask are

(i) How should I model the problem? What
variables are important? What are the key
constraints? What is the cost function?

(ii) Is uncertainty a major factor, and if so, how
should I model uncertainty?

(iii) Are we interested in average performance,
worst case performance, average performance
subject to constraints on worst case etc etc?

(iv) Has the software reached the global optimum
or terminated prematurely?

(v) How sensitive is the solution to key variables
(typical optimization software provides infor-
mation on sensitivity as part of the solution)?

(vi) Are there benchmarks (e.g., ad-hoc solutions
or bounds) which can be used to evaluate the
answers provided by optimization routines?

(vii) Does my model capture key issues of impor-
tance?

(viii) Are the nonlinearities that I have included
sensible?

(ix) Do we understand all of the performance lim-
itations applicable to the problem (e.g. “op-
timization” will not prevent a non-minimum
phase plant from exhibiting undershoot)?

(x) Would a radically different approach give a
better answer? For example, we have several
examples in rolling mill control, where one
can only achieve the desired level of perfor-
mance by using a radically different “archi-
tecture” for the controller. This takes one
outside the realm of optimization.

7. CONCLUSIONS

This paper has examined the opportunities that
arise from the application of optimization in the
mining, metal and mineral processing field. Sev-
eral examples, drawn from the authors’ experi-
ence, have been used to illustrate the interplay
between modelling and solution strategies. Also,
we have used these examples to reflect on the
pluses and minuses of using optimization. We
believe that optimization offers huge potential in
mining, metal and mineral processing, provided it
is used thoughtfully and in the context of wider
knowledge of performance limits.
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