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Abstract

Trajectory planning and trajectory tracking constitute two important functions

of an autonomous overtaking system and a variety of strategies have been pro-

posed in the literature for both functionalities. However, uncertainties in envi-

ronment perception using the current generation of sensors has resulted in most

proposed methods being applicable only during low-speed overtaking. In this

paper, trajectory planning and trajectory tracking approaches for autonomous

overtaking systems are reviewed. The trajectory planning techniques are com-

pared based on aspects such as real-time implementation, computational re-

quirements, and feasibility in real-world scenarios. This review shows that two

important aspects of trajectory planning for high-speed overtaking are: (i) in-

clusion of vehicle dynamics and environmental constraints and (ii) accurate

knowledge of the environment and surrounding obstacles. The review of trajec-

tory tracking controllers for high-speed driving is based on different categories

of control algorithms where their respective advantages and disadvantages are

analysed. This study shows that while advanced control methods improve track-
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ing performance, in most cases the results are valid only within well-regulated

conditions. Therefore, existing autonomous overtaking solutions assume precise

knowledge of surrounding environment which is not representative of real-world

driving. The paper also discusses how in a connected driving environment,

vehicles can access additional information that can expand their perception.

Hence, the potential of cooperative information sharing for aiding autonomous

high-speed overtaking manoeuvre is identified as a possible solution.

Keywords: autonomous vehicles, overtaking, trajectory planning, trajectory

tracking, connected vehicles

1. Introduction

Modern cars are equipped with various sensors and electronic systems to

reduce the workload of a driver by providing emergency assistance (e.g., ABS,

traction control, stability control, etc.), ADAS (e.g., cruise control, lane keep-

ing, crosswind assistance, blind spot detection, etc.), and navigational assistance5

(e.g., trip planning, route selection, regular traffic update, etc.). However, the

next generation of intelligent vehicles are expected to have increased capabilities

which allow automated manoeuvring in various driving scenarios [1, 2]. Over-

taking is one of the most common driving manoeuvre and any vehicle capable

of end-to-end autonomy must have the ability to determine if, when, and how10

to perform this driving task.

Overtaking is a complex driving task as it involves both lateral and longitu-

dinal motions of an overtaking vehicle (subject vehicle) while avoiding collisions

with a slower moving vehicle (lead vehicle) [3]. Additional complexity arises due

to different environmental conditions (e.g., road legislations, visibility, weather,15

etc.) and diversity of road-users (e.g., small cars, buses, trucks, etc.) [4]. Typ-

ically, an overtaking manoeuvre is considered successful on proper completion

of three sub-manoeuvres namely, (i) lane change to overtaking lane, (ii) pass

lead vehicle(s), and (iii) lane change back to original lane [5]. The lane change

sub-manoeuvre which indicates the start and the end of an overtake can be20
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classified under two categories; (i) Discretionary Lane Change (DLC) and (ii)

Mandatory Lane Change (MLC) [6]. A DLC sub-manoeuvre is performed when

the immediate traffic situation in the faster lane is deemed to be better than

the current lane and thus, the lane change is performed in anticipation of an

improvement in the immediate driving conditions. On the other hand, an MLC25

sub-manoeuvre is performed due to compulsion arising from traffic rules (e.g.,

stalled vehicle, need to follow desired route, etc.). Moreover, the lane change

to return back to the original lane can also be either DLC or MLC based on

traffic conditions in each lane, legislation, etc. thus, transforming an overtaking

manoeuvre into a complex task of dynamically choosing the best driving lane30

based on (i) legislation, (ii) driving intentions, and (iii) instantaneous traffic

situation. This inference that the choice of lane is affected by both; (i) driving

intention, and (ii) neighbourhood traffic conditions was verified in [7] using an

integrated model (combining MLC and DLC) for lane changing behaviour based

on gap acceptance (lead and lag gap). Therefore, it is noted that due to the35

dynamic nature of driving environments (i.e., traffic conditions in original and

fast lane, speed limits, road conditions, etc.) overtaking is not standardised ma-

noeuvre and thus, each overtaking manoeuvre in real-world scenarios is unique.

This uniqueness arises from variations in number of overtaken vehicles, dura-

tion of overtake, relative velocity between concerned vehicles, distance between40

concerned vehicles, etc. [8–15]. For an autonomous vehicle, feasibility of an

overtaking manoeuvre is evaluated on the basis of safety based on subject vehi-

cle’s states as well as surrounding information leading to a discrete outcome for

making tactical decisions (i.e., either perform lane-change or do not perform lane

change) which form a part of planning and decision making process. A variety45

of techniques for decision making are available in literature with (i) multi-level

decision trees [16], (ii) probabilistic weighted comparison of concurrent goals

[17], and (iii) higher award seeking Markovian Decision Process algorithms [18]

being among the prominent methods.

A schematic representation of an overtaking manoeuvre is shown in Fig-50

ure 1 with each sub-manoeuvre labelled with roman numerals. As discussed
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above, the lane change back to the original lane depends on the traffic condi-

tions and thus both possibilities are are depicted in the schematic. Despite the

innumerable variations present due to the factors discussed above, overtaking

manoeuvres can be classified under the four categories listed below [10]:55

• Normal: The subject vehicle approaches the lead vehicle and waits for a

suitable opportunity to perform the manoeuvre

• Flying: The subject vehicle does not adjust its longitudinal velocity and

is directly able to overtake the lead vehicle

• Piggy backing: The subject vehicle follows a preceding vehicle as they60

both overtake the lead vehicle

• 2+: The subject vehicle overtakes two or more lead vehicles in a single

manoeuvre

SV LV

safe approaching distance safe merging distance

safe lateral distance Direction of Travel

(i)

(ii)

(iii.a)

(iii.b)

Traffic

Figure 1: Basic schematic of an overtaking manoeuvre. Note: Different sub-manoeuvres are

(i) lane-change; (ii) pass lead vehicle; (iii.a) merge back into original lane; (iii.b) continue in

faster lane to pass traffic

For the aforementioned scenarios, the duration of a completed overtake has

been found to be in the range of 5.4 to 12.5 seconds (subject to dynamic na-65

ture of the surrounding traffic and environment) using recording the trajecto-

ries of vehicles on typical European highways [3, 14, 19–23]. Performing an

autonomous overtaking manoeuvre based on any of scenarios mentioned above

within a given time range requires accurate information of surrounding envi-

ronment, traffic, and weather conditions along with sophisticated sensing and70
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perception, planning, and control systems [24]. The surrounding environment

of a vehicle is populated by different features; (i) permanent (road and lane

limits), (ii) slowly changing (e.g., temporary speed limits, road works, traffic

density, etc.), and (iii) fast changing (surrounding vehicle velocity, position,

heading, etc.). A modern day vehicle uses a host of on-board sensors to discern75

the environment and the placement of an on-board sensor suite used to per-

form this task can be seen in Figure 2. The information from these sensors is

combined and used for tasks such as; (i) classify objects, (ii) track stationary

and moving obstacles, (iii) identify safe driving zones, etc. Currently, there are

some production vehicles that utilise vehicle-to-everything (V2X) information80

to provide updates on permanent (e.g., road and lane limits, road inclination,

etc.) or slowly changing features (e.g., temporary speed limits, road works,

traffic updates, etc.) of surrounding environment via a combination of cellular

data and Local Dynamic Map (LDM) updates. However, despite an elaborate

sensor suite and first generation V2X communication systems the capabilities85

of the contemporary autonomous vehicles is limited to low-speed overtaking.

This is due to limitations such as; (i) range of sensors, (ii) blind spots , (iii)

small time-scales for predicting motion of traffic participants, (iv) sensor im-

perfections, and (v) possible V2X network outages. The combination of one

or more of these limitations result in significant uncertainty while planning90

complex highway manoeuvres (e.g., overtaking) which span several seconds at

high-speeds [25, 26]. Moreover, unless all the traffic participants are connected

and autonomous the uncertainty arising from predicting the motion of traffic

vehicles cannot be brought down to negligible levels even with the advent of

perfect on-board sensors and/or V2X communication network. Thus, predict-95

ing the motion of traffic participants for risk assessment forms a vital part of

manoeuvre planning and this domain has witnessed a lot of research and a large

number of techniques are present in literature. The different methods for mo-

tion planning for intelligent autonomous vehicles based on abstraction levels of

traffic motion are classified as; (i) Physics-based [27–29], (ii) Manoeuvre-based100

[30], and (iii) Interaction-aware [31, 32]. A comprehensive survey discussing the
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advantages and limitations of each of these techniques is presented in [33] and

an interested reader is directed towards it.

250 m90 m70 m

4.5 m

40 m80 m

STEREO CAMERAMULTI MODE RADAR LONG RANGE RADAR

250 m range/opening angle 20o

70 m range/opening angle 90o
3D capability over a range of
90 m/opening angle 50o

80 m range/opening angle 30o

40 m range/opening angle 140o

ULTRASONIC SENSORS

1.5/4.5 m range

SV

TV

TV

TV

Figure 2: Visibility of an autonomous vehicle. Note: SV: Subject Vehicle, TV: Traffic Vehicle.

Sensor performance specifications are based on [34]

Recent research has highlighted the potential use of off-board information

via V2X communications in expanding the sensory and perception horizon of105

a vehicle through the communication systems [35–37]. In the context of au-

tonomous overtaking, initial research has been largely focused on the integration

of V2X information to: (i) manoeuvre feasibility check, and (ii) decision making

stages [9, 10, 35]. However, the potential enhancements that can be achieved

in trajectory planning and trajectory tracking of an overtaking manoeuvre by110

exploiting V2X information are yet to be studied. In this paper, a review of var-

ious techniques for trajectory planning and trajectory tracking for autonomous

overtaking systems is presented. The aim of this paper is twofold: (i) to gain

insight on techniques suitable for autonomous overtaking systems, and (ii) to

investigate how V2X information can enhance both trajectory planning and115

tracking techniques of an autonomous overtaking system.

The paper is structured as follows: Section 2 introduces the system overview

of an autonomous driving system and discusses how a 2-tier control architecture

can be used to perform autonomous overtaking. In Section 3, an extensive

literature review of trajectory planning methods used for generating overtaking120
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trajectories is presented. Comparison of key aspects pertaining to vehicle models

and a review of different control strategies for trajectory tracking applications

is performed in Section 4. Finally, the concluding remarks are presented in

Section 5.

2. System Architecture125

An autonomous overtaking manoeuvre requires consideration of a variety of

factors such as subject vehicle states and constraints, lead vehicle states, envi-

ronment limits, safety, and comfort. An overview of an intelligent autonomous

driving system capable of performing autonomous overtaking is shown in Fig-

ure 3. For an autonomous vehicle to successfully perform different tasks (e.g.,130

lane change, pass lead vehicle, and merge) pertaining to overtaking, it is ex-

pected that the vehicle can carry out each sub-task within the sensing and

perception, planning, and control blocks. Sensing and perception includes gath-

ering information about the driving conditions to determine if and when the

conditions are favourable to perform the overtaking [20]. An autonomous ve-135

hicle utilises information from on-board sensors (Radar, LiDAR, camera, etc.)

and/or off-board information via V2X communications to generate a real-time

environmental representation [38], see Figure 3. The main objectives of the

sensing and perception system are lane-level localisation, neighbouring vehicle

detection, static obstacle/constraint detection and safe drivable area represen-140

tation [38].

The planning module utilises the perception information along with the sub-

ject vehicle states and dynamic constraints to compute safe collision free local

trajectory for the subject vehicle at each time instant [39]. To plan an overtaking

manoeuvre the vehicle uses perception data (position and velocity estimates of145

neighbouring vehicles, infrastructure limits, road geometry, headway time) and

subject vehicle data (current state, lateral and longitudinal dynamics) to check

feasibility of the manoeuvre and design a collision free and safe local reference

trajectory for an overtaking manoeuvre [3, 15, 40–44].
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Data ProcessingSend/Receive Sensors

Sensing and Perception

Planning/Decision

Control

Collision Free Trajectory

Vehicle Dynamics

V2X

Environment
Representation

Local Reference Trajectory

Trajectory Tracking Controller

Actuators

Actuator Inputs

Path Planner

Off-board information

Figure 3: Overview of an autonomous driving system

The local trajectory generated via the planning module is used as a reference150

trajectory to be tracked while performing an overtake (e.g., lane change, pass

lead vehicle, lane-merge), and a closed-loop control system is designed to track

it by controlled manipulation of steering, throttle and/or brake [3, 5, 15, 40, 41,

43, 45–48].

To preserve the modular nature of the architecture presented in the section155

above, the different driving tasks can be translated to a control architecture

for an autonomous vehicle as shown in Figure 4, i.e. trajectory planning con-

troller and trajectory tracking controller [38, 43, 49–51]. The objective of the

trajectory planning controller is to perceive the environment, monitor vehicle

states (longitudinal and lateral positions, longitudinal and lateral velocities, lon-160

gitudinal and lateral accelerations, and heading) and compute safe trajectories

(e.g., Xref , Yref , and vref) for the vehicle to track [42]. The trajectory tracking
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controller then computes, via feedback algorithms based on the tracking error,

the necessary torque (τref) and steering inputs (δref) required to track the ref-

erence, despite possible measurement noise, un-modelled dynamics, parametric165

uncertainties which may or may not be accounted for by the trajectory planning

controller.

Vehicle

Trajectory tracking control

Inner-loop Control

Estimation

τref

δref

Trajectory planning control

Trajectory Update

LocalizationLDM

GPS

V2X

vref

Xref ; Yref

longitudinal speed
& Actuation

e.g., yaw-rate, acceleration, velocity, etc.e.g., heading angle, position, etc.

reference (vx;des)

Figure 4: General control architecture for an autonomous vehicle [38, 43, 49–51]. (V2X block

with dot-dash boundary: optional functionality)

3. Trajectory Planning

An autonomous vehicle relies on real-time vehicle state and environment in-

formation (e.g., surrounding vehicles, road conditions) to derive a local trajec-170

tory that ensures a safe passage while minimising the deviation from the overall

journey trajectory (global trajectory). Local trajectory planning can be defined

as − real-time planning of the vehicle’s transition from one feasible state to the

next while satisfying the vehicle’s kinematic limits based on vehicle dynamics

and constrained by occupant comfort, lane boundaries and traffic rules, while, at175

the same time, avoiding obstacles [39]. Technical literature shows that the vast

majority of trajectory planning methods for an overtaking application employ

one of the four well known techniques i.e., potential fields, cell decomposition,

interdisciplinary methods and optimal control. In this section, these techniques

are reviewed to gain insight into their performance for different specifications180

such as computational requirements, safety, feasibility in high-speed overtaking

and real-time implementation.
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Potential field algorithms assign repulsive fields to obstacles and attractive

fields to safe zones of the vehicle and then use an algorithm to compute tra-

jectories along the steepest potential gradient in the resulting field [42, 43], see185

Figure 5a. The computed path is guaranteed to follow the lowest potential

(i.e., find collision free trajectory) in a given space but its safety and accuracy

depends heavily on the accuracy of the generated potential field (i.e., definite

knowledge of position of stationary and moving obstacles). However, due to the

high computation costs and need for very accurate surrounding environment190

information, the method has only been experimentally verified for low speed

(i.e., urban) manoeuvres [43]. Additionally, it is seen that the algorithm cannot

handle vehicle kinematic constraints which may cause safety issues in high-speed

driving scenarios [42, 52].

Cell decomposition algorithms such as Rapidly-exploring Random Tree (RRT)195

is a method used for collision free path planning [53, 54], see Figure 5b. These

algorithms can be modified to incorporate the vehicle constraints but they also

suffer from computational and memory costs [42, 53, 54]. The computational

complexity of such algorithms increases with increasing traffic density and fre-

quency of road curvature thus jeopardizing the on-board computation of an200

autonomous vehicle on busy roads [53]. Furthermore, the paths created by

RRT’s are jerky and tracking such a trajectory will have an adverse effect on

the comfort of the occupants [39].

Inter-disciplinary techniques inspired by robotics and missile guidance sys-

tems [5, 55, 56] for vehicle path-planning are also reported in literature. One205

of the novel approaches proposed was to use motion primitives (combination of

steady-state equilibrium trajectories and pre-specified manoeuvres) [57]. The

experimental results demonstrated that collision free and feasible trajectories

can be generated in real-time using this approach [57]. Ghumman et al. de-

signed a trajectory planning method based on Rendezvous Guidance technique210

(passing vehicle is guided in real-time to match the position and velocity of a

shadow target during an overtaking manoeuvre) inspired from missile guidance

systems [55, 56], see Figure 5c. Similarly, an approach for overtaking manoeu-
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vre consisting of consecutive tracking of virtual reference points positioned a

priori at known distances from the lead vehicle is proposed in [5]. Simulation215

results of both these approaches demonstrated acceptable real-time capabilities

for generating feasible trajectories but tracking performance was validated using

low order models in computer simulations. Thus, in the absence of experimental

validation it is difficult to form conclusions on the efficacy of such approaches.

Optimal control methods minimise a performance index (e.g., change in ki-220

netic energy [15], jerk [24, 52], lateral acceleration [52]) under a set of constraints

(e.g., vehicle lateral and longitudinal limits, environment constraints, neigh-

bouring vehicles) to obtain a trajectory for a safe overtaking manoeuvre. The

results from literature demonstrate that the method is successful in generating

collision free trajectories without high computational requirements [15, 24, 52].225

The autonomous vehicle Junior developed by Stanford University has success-

fully demonstrated the effectiveness of optimal control based trajectory planning

techniques at the DARPA Urban Challenge [58]. In this control framework, the

researchers design two sets of trajectories, one for lateral motion and another

for longitudinal motion each optimised for safety and occupant comfort. A set230

of combined lateral and longitudinal motion is obtained by combining these two

sets. The final trajectory that is provided to the trajectory tracking controller is

computed by following the steps; (i) filter out trajectories that breach safety and

comfort limits, (ii) use filtered set of trajectories to identify ideal trajectory that

minimises deviation from the road centre. However, most of these techniques235

do not take into account the non-linearities in the vehicle and tire dynamics

resulting in unfeasible trajectories under high-speeds and/or low road friction

conditions which pose a safety risk for autonomous vehicles [50]. Additionally,

trajectories obtained by such open-loop single stage optimisation do not account

for uncertainties in a dynamic environment and therefore these trajectory plan-240

ning methods have limited potential unless used in either extremely controlled

or structured environments.

Recently, Model Predictive Control (MPC) methodology has also been used

by researchers for local trajectory planning, due to its ability to better handle
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system constraints and nonlinearities, see Figure 5d. The approach involves245

solving a constrained finite-time optimal control problem to determine a se-

quence of control inputs that minimise a performance index (cost function) and

applying the optimal inputs (e.g., steering wheel angle, throttle, and brake)

using a receding horizon principle [47]. However, the presence of (i) nonlinear

vehicle dynamics, and (ii) time-varying state and input constraints while nav-250

igating in a dynamic environment, leads to a nontrivial control problem thus

presenting a computational burden to solve the optimisation problem in real-

time [47]. Researchers have attempted to reduce the computational complexity

arising due to the nonlinear vehicle dynamics by using (i) point mass vehicle

model [38, 46, 51], (ii) linear kinematic bicycle vehicle model [45, 48, 50] and (iii)255

iterative linearisation of nonlinear vehicle model [47], in the prediction model.

It is noted that the collision avoidance constraints are non-convex in nature

which means that the feasibility and uniqueness of the optimisation cannot be

guaranteed. Researchers have proposed different techniques (translating prob-

lem from time-dependent system to position-dependent system [38, 46, 50, 59],260

relaxing collision avoidance constraints [51], approximate linearisation [47] to

guarantee uniqueness of solution and reduce the computing and memory re-

quirements of the controller. The experimental results demonstrate the ability

of these approaches to generate safe collision free trajectories around static or

moving obstacles (i.e. overtaking manoeuvre) but it should be noted that these265

path-planner methods required exact knowledge of the states, of the obstacles

(stationary, moving) and/or a high performance computing platform (desktop

class computer) to calculate safe collision free trajectories [38, 45–48, 50, 51].

It is noteworthy that recent publications have demonstrated that computing

constraints may soon become an issue of the past as highly efficient algorithms270

for implementing MPC controllers on real-time prototyping systems and vehicle

electronic control units have been developed and a few successful implementa-

tions are discussed in [60–62]. Among the reviewed approaches, MPC provides a

promising approach for trajectory planning due to its ability to: (i) include sys-

tem dynamics and constraints, and (ii) perform receding horizon control which275
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(a) (b)

(c) (d)

Figure 5: Trajectory planning via (a) Potential Fields [43]; (b) RRT [63]; (c) Virtual Reference

Tracking [5]; (d) Model Predictive Control [47]

allows it to plan feasible trajectories over a larger operating range.

It is noteworthy that all methods discussed above operate under the as-

sumption that accurate knowledge of the environment and lead vehicle states

are available on-demand to the trajectory planning system. The advantages

and disadvantages of the various trajectory planning methods discussed above280

are summarised in Table 1. However, due to limitations of on-board sensing

systems, the following situations may arise. First, the measurements of the lead

vehicle states (e.g., position, velocity, and heading) might have errors, missing

information, low accuracy, etc. resulting in inaccurate environmental represen-

tation. Second, variations in external conditions (e.g., road legislation, road285

surface condition, road width, weather, etc.) which are not captured might im-

pact the subject vehicle dynamic limits (e.g., lateral acceleration, longitudinal

speed, lateral acceleration, etc.). Trajectory planning methods that are not ro-

bust to environmental variations and sensor inaccuracies might lead to unfeasible

and/or unsafe reference trajectories, posing a major safety risk especially during290

high-speed driving. The various trajectory planning techniques discussed above

propose different ways for dealing with the uncertainty in current environment
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perception and limited future prediction capabilities. Potential field and cell

decomposition based methods assign additional buffer zones (based on headway

time, instantaneous relative velocity, etc.) around each obstacle and thus the295

search for feasible trajectories is performed in a constrained search space [64].

Similarly, the trajectory planning techniques in [5, 55, 56] also compute virtual

target points conservatively by expanding the margins of the virtual reference

points in accordance with the relative velocities of the subject and lead vehicle.

On the other hand, a type of MPC control technique known as Scenario-Based300

MPC (SCMPC) has been proposed in literature to mitigate the uncertainty

arising due to traffic interactions in a systematic manner [45, 60, 65, 66]. In

this approach either an interaction-aware traffic prediction model [45] or ma-

noeuvre based traffic prediction model [60] is incorporated within the MPC

framework to simulate traffic scenarios as a probability distribution and a finite305

horizon optimal control problem is solved to generate a trajectory that is safe,

feasible, and admissible under a selected set of traffic scenarios. The efficacy

of the SCMPC trajectory planning technique for generating safe lane change

manoevures has been demonstrated numerically and its real-time capability has

been experimentally validated [45, 60, 65, 66]. However, the effectiveness of this310

method has a dependence on the accuracy of the modelled traffic scenarios which

makes obtaining large quantity of actual traffic data a necessity. Recently, it has

been proposed by researchers that a V2X communication system can augment

a vehicle’s sensing and perception capabilities to potentially mitigate the issues

discussed above [9, 10, 35, 45, 67, 68]. Initial studies for trajectory planning us-315

ing the information obtained through V2X systems, suggest that the safety and

feasibility of a manoeuvre can be enhanced by incorporating off-board informa-

tion [69–71]. Nonetheless, tangible benefits of using off-board information (e.g.,

lead vehicle states, road conditions, etc.) in trajectory planning methods are

not very clearly understood and thus such studies are open to further research.320

Nonetheless, how a V2X system capable of providing accurate surrounding (e.g.,

lead vehicle states, road conditions, etc.) information in real-time can improve

trajectory planning methods needs to be understood and is a question open to
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further research. Moreover, a wireless information sharing system induces addi-

tional dynamics related to communication delays, packet losses, and connection325

drop-outs which adds to the complexity of a control system [72]. Therefore,

meticulous studies are required to ensure that the trajectory planning methods

are robust and fault-tolerant against such network imperfections [73].

Control Strategy Strength(s) Weakness

Potential fields • Optimality of searched path

guaranteed

• Collision free path guaranteed

• High computation cost

• Inability to handle system con-

straints

• No systematic procedure to

consider environmental uncer-

tainties

Cell Decomposi-

tion

• Guaranteed collision free tra-

jectories

• Computation requirements

sensitive to traffic density

• Computed paths are jerky

• No systematic procedure to

consider environmental uncer-

tainties

Interdisciplinary

Techniques

• Reduced complexity of collision

avoidance as trajectory planning

converted to reference tracking

problem

• Real-time capable

• Experimentally unproven

• No systematic design proce-

dure

• Do not consider uncertainties

in environment perception while

generating reference points

Optimal Control • Generate collision free trajec-

tories

• Ability to include kinematic

constraints

• Unsuitable for high-speed driv-

ing manoeuvres with large angles

of tire slip

• Inability to consider tire dy-

namics

Model Predictive

Control (MPC)

• Include vehicle and tire dynam-

ics

• Systematic handling of con-

straints and traffic uncertainties

• Computational requirements

independent of environment

• Optimisation sensitive to num-

ber of constraints

• Computation complexity scales

quickly with high-order system

models, non-linearity, and non-

convexity of constraints

Table 1: Summary of techniques for trajectory planning to avoid a moving obstacle

15



4. Trajectory Tracking

Vehicle trajectory tracking (lateral-longitudinal control) is a mature scientific330

field with a plethora of control methodologies available in literature dating all the

way back to the middle of the 20th century. Some useful properties for assessing

tracking controllers for autonomous vehicle applications are listed below [74].

• Real-time capability: The control law needs to be implementable on a ve-

hicle’s Electronic Control Unit (ECU) and function within the calculation335

time

• Robustness: The designed controller should be robust against system non-

linearities, model parameter variations, and external disturbances

• Operating Range: The tracking controller should ideally work across the

entire range of vehicle speeds (0−120 km/h)340

• Controller parameter tuning: A systematic tuning procedure for the con-

troller parameters allows for a structured controller design procedure

The performance of closed-loop tracking controllers depends on the accuracy of

the modelled system dynamics. Vehicle models used for capturing the dynamics

should provide a trade-off between model accuracy and fidelity. In literature a345

variety of vehicle models (ranging from low dimension point mass-models to

high-fidelity multi-body models) are presented. Different vehicle models that

have been developed over the years to capture the longitudinal, lateral and yaw

dynamics of a vehicle have been documented in [75]. Out of the wide variety

of vehicle models available in literature a kinematic bicycle model and dynamic350

bicycle model have been found to provide a good compromise between model

complexity and accuracy for controller design related to highway driving appli-

cations [61, 76]. A comprehensive review of trajectory tracking control on the

aspects of choice of vehicle model, control strategies, and controller performance

criteria has been performed in [77]. The review demonstrated that geometric355

models based on Ackermann steering are not suitable for high-speed trajectory
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tracking due to their inability to include vehicle dynamics (e.g., acceleration

and velocity). Additionally, it is highlighted that kinematic models (bicycle,

four-wheel) are also unsuitable for high-speed trajectory tracking as they are

inaccurate in regions of tire force saturation. Both linear and non-linear dy-360

namic vehicle models (full vehicle model, half vehicle model, and bicycle model)

were found to mitigate these limitations and furthermore providing a more ac-

curate representation of a vehicle during high-speed driving [77]. However, it

was also shown that a dynamic bicycle model (linear) was suitable for driving

tasks (lane-change manoeuvre, overtaking manoeuvre, highway driving) with365

small lateral acceleration (≤ 0.5g) and low vehicle side-slip angle (5◦) [77, 78].

Most of the papers in literature have used a single-track vehicle model (bicycle

model) for developing a tracking controller for performing overtaking manoeu-

vres since an overtaking manoeuvre is performed well within the dynamic limits

of the vehicle (i.e., lateral acceleration, vehicle side-slip, and yaw-rate) where370

both the vehicle as well as tire dynamics can be approximated by linear models.

However, at high-speeds and/or under low road friction overtaking scenarios, it

is quite possible that the system (i.e., vehicle, and tires) may exhibit significant

non-linear behaviour and therefore for appropriate scenarios either nonlinear

models, linear parameter varying (LPV) models or multiple models can be used375

to capture the relevant dynamic behaviour of the system [78, 79]. For a detailed

review of different vehicle models the reader is directed towards the work by

[77, 80–82].

4.1. Tracking Controllers

A comparison of different tracking controllers for autonomous vehicles was380

performed in [77, 80–82]. Some relevant observations of these comparisons along

with other examples of tracking controllers for autonomous overtaking are dis-

cussed below.

Geometric controllers are designed using geometric vehicle models [77, 80–

82]. Pure-pursuit and Stanley method are two prevalent geometric controllers385

[77, 80–82]. Pure-pursuit is a technique where the vehicle is in constant pursuit
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of a virtual moving point in front of the vehicle and ‘Stanley’ controller is based

on non-linear geometric controller which considers heading and lateral error to

compute steering angle corrections [77]. These type of controllers (pure pursuit,

Stanley, etc.) are easy to implement but are suitable only for applications that390

do not need to consider vehicle dynamics. Furthermore, since this approach

does not follow a systematic control parameter tuning method, it is difficult

to achieve a trade-off between stability and tracking performance [80–82]. It

is observed that over-tuning of both pure-pursuit and Stanley controllers leads

to poor tracking performance during cornering [80]. Kinematic controllers are395

alternative control techniques for trajectory tracking. They are feedback con-

trollers which are designed considering the vehicle kinematics (e.g., longitudinal

velocity, lateral velocity, yaw-rate, etc.). Kinematic controllers have been shown

to improve the tracking performance provided by geometric controllers but the

gains over a geometric controllers are not high enough to justify the additional400

effort involved in designing and tuning the controller [77, 80, 81]. Moreover,

since these methods ignore vehicle dynamics, their applicability in critical driv-

ing environments (e.g., high-speed driving, extreme path curvature, etc.) cannot

be assured.

Examples of classical control algorithms (e.g., PID, sliding mode controller)405

are also found in literature. Tracking controllers using classical techniques (PID)

are shown to have good tracking performance but tuning of the parameters

was found to be major challenge due to the presence of vehicle and tire non-

linearities. Sliding Mode Control (SMC), a well-established classical non-linear

state-feedback controller has also been used to design vehicle trajectory track-410

ing controllers and shows good tracking accuracy due to the non-linear control

law [77, 83]. However, it suffers from a few drawbacks namely: (i) performance

is sensitive to the sampling rate of the controller (ii) chattering problems, (iii)

robustness only on the sliding surface, and (iv) needs prior knowledge of distur-

bance and uncertainty bounds [77, 82, 83].415

Dynamic state feedback (linear and nonlinear) based control methods demon-

strate better performance that geometric and kinematic controllers as they con-
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sider the dynamics of the vehicle and tires while computing the control law.

Linear Quadratic Regulator (LQR) based control law is easy to design but while

tracking trajectories with varying curvature feedforward control is required to420

achieve error-free tracking. However, adding feedforward control makes the

tracking controller sensitive to discontinuities in the reference trajectory which

requires additional tuning to attenuate [80]. On the other hand, optimal control

based methods can provide accurate trajectory tracking even at high-speeds but

this is achieved only when certain assumptions (e.g., velocity of the subject ve-425

hicle remains constant during the optimisation horizon) are fulfilled. Recently,

nonlinear adaptive control techniques such as Inversion & Immersion (I&I) have

also been used for vehicle trajectory tracking controllers. Initial studies demon-

strate that this method provides robust closed-loop tracking performance but

the controller is sensitive to parameter uncertainties [83]. In the same body of430

work, an adaptive Proportional-Integral (PI) with non-linear gains controller

for trajectory tracking was also proposed. [83]. Simulation results indicate

that the controller provides tracking performance at par with an SMC and I&I

controller with added advantage in the form of insensitivity to parameter un-

certainties. However, in presence of large curvature variations or when operated435

in non-linear region of vehicle dynamics, the controller gains have a tendency

to become high which may have a detrimental effect on the actuators.

There are also examples of advanced model based control techniques such as

MPC being used for vehicle trajectory tracking [38, 46–48, 50, 51, 57]. Nonlinear

MPC was found to provide very accurate tracking performance but at the same440

time suffer due to computational requirements of online optimisation [84]. To

reduce the computational burden researchers use a linear vehicle model but

such controllers are applicable only in linear region of vehicle and tire behaviour

[45, 48]. Designing a MPC framework based on iterative linearisation of a non-

linear model has been proposed as a way to expand the working range of linear445

MPC controllers for trajectory tracking and has been experimentally validated

[47]. This approach helps in meeting the compromise between computational

requirements and modelling errors.
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Neural network and fuzzy logic based approaches have also been proposed

in literature and demonstrate tracking performance similar to LQR controllers.450

However, in the absence of formal stability proofs and exception handling, such

approaches cannot be suggested for real-world implementation [81, 85]. The

advantages and disadvantages of the different controllers discussed above are

summarised in Table 2. Since, an overtaking manoeuvre is not standardized and

every researcher demonstrates their tracking controller under a unique setting,455

it is difficult to perform a direct comparison between the different controllers

proposed in literature. However, in [82], five different trajectory tracking con-

trollers (Stanley, LQR, SMC, Fuzzy, and MPC) were designed to simulate an

overtaking manoeuvre performed at 120 km/h. This setup provides a basis for

direct comparison of different control algorithms since they were applied on an460

identical system. The tracking performance was assessed by comparing lateral

errors and angular errors. Additionally, the actuation effort was compared using

steering angle induced during the manoeuvre. The results from this preliminary

comparison (i.e., trajectory tracking, and actuation) demonstrated that MPC

resulted in the smallest tracking errors (i.e., lateral position and heading angle)465

with smooth actuation of the steering angle.

All the controllers discussed above are validated in well controlled environ-

ments where parameter variations (e.g., vehicle mass, moment of inertia, road

friction, etc.) and environmental uncertainties (e.g., headwind, tailwind, etc.)

are kept to a minimum. While such practices allow researchers in benchmark-470

ing different controllers, most of the proposed controllers are operational in a

narrow operating window which is not a realistic representation of real-world

driving. The operating window of a controller subject to large variations in

system dynamics can be increased in the following three ways: (i) control ro-

bustness against all uncertainties, (ii) design a ‘bank’ of controllers to cover475

possible different operational regimes, or (iii) update parameters in real-time to

prevent performance drop-off. However, the order of a controller rises with the

number robustness criteria that are incorporated and the number of controllers

in a ‘bank’ scales exponentially with the number of varying parameters making
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both these approaches unviable for practical application [77]. On the other hand480

using a V2X system to update required parameters based on the surrounding

conditions can potentially provide a practical solution. Some attempts to use

V2X to update control parameters for improving tracking performance have

been presented in literature. For instance, in [19], an automated emergency

braking (AEB) system that exploits V2X communication to update the road485

friction co-efficient parameter in the control system model has been proposed.

This allows for modification in real-time key constraints such as minimum brak-

ing distance and time-to-collision (TTC) making the system suitable for use

under a wider range of conditions. Using a similar strategy, a communication

system that updates the vehicle model parameters (e.g., road-friction [86], mass,490

etc.) and system constraints (e.g., road width, speed limit, cross-wind, traffic

state and future trajectory) can enhance the usability of model based tracking

controller in diverse driving conditions. Hence, V2X communication systems

can update relevant parameters of a controller with accurate and real-time in-

formation thus preventing the applicability of a designed tracking controller495

to be limited to certain pre-set conditions and scenarios. However, the range

of benefits (e.g., tracking performance, safety improvements, etc.) that can be

gained by such a system needs further investigation resulting in an open research

question.

Control Strategy Strength(s) Weakness

Geomteric & Kine-

matic

• Adequate performance (experi-

mentally validated) in conditions

without disturbances (e.g., wind,

road banking)

• Good tracking performance

and robustness at moderate

speeds (e.g., kinematic)

• Do not consider vehicle dynam-

ics

• Steady-state error increases for

high-speed driving (e.g., geomet-

ric)

• Unsuitable for high-speed driv-

ing as dynamics are neglected

(e.g., kinematic)

• Requires smooth and continu-

ous reference trajectories
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Classical • Established method with good

performance for non-linear sys-

tems

• Robust closed-loop perfor-

mance against uncertainties and

noise (e.g., SMC)

• Tuning of controller parame-

ters is tricky (e.g., PID)

• Robust performance only in

limited scenarios (e.g., SMC)

• Control law is sensitive to path

curvature variations (e.g., SMC)

Dynamic state

feedback

• Consider vehicle dynamics in

calculating control law

• Optimisation shifted offline re-

sulting in simple implementation

of control law

• Obtaining vehicle states (e.g.,

wheel forces, slip angles, torques

etc.) is non-trivial

• Control law is sensitive to path

curvature variations (e.g., LQR)

Neural Network • Sufficient training can make

the behaviour very human-like to

make the automated car feel nat-

ural

• Controller tuning requires sim-

ulation with large amounts of

real world (training) data

• No failure explanations possi-

ble

Fuzzy Logic • Closed-loop system acts simi-

lar to a human-driver (because of

human-like rules)

• Controller tuning is not sys-

tematic with no formal stability

analysis

• Rules can become unmanage-

able if number of variables is

large

Model Predictive

Control (MPC)

• Systematic design procedure

• Ability to include system and

actuator constraints in design

procedure

• Inclusion of vehicle and tire dy-

namics in control problem

• Non-linear MPCs with have

high computing requirements

making them unsuitable for

high-speed driving environments

• The tracking performance is

sensitive to the accuracy of pre-

diction model

• Larger tuning parameter set

compared to industry standard

PID

Table 2: Summary of control strategies for vehicle trajectory tracking [74, 77, 80, 81, 83]

22



5. Conclusion500

This paper reviewed different approaches towards trajectory planning track-

ing for autonomous overtaking. The review of trajectory planning methods

brings forth the following important aspects. First, vehicle dynamics, con-

straints and surrounding environment information needs to be considered while

designing a trajectory for an overtaking manoeuvre and methods that incor-505

porate these requirements within their framework are suitable candidates for

real-world applications. Second, the trajectory planning techniques depend on

accurate surrounding environment information, and off-board information via

V2X communication can aid in expanding the accuracy and perception horizon

thereby reducing safety concerns that might arise due to diverse driving condi-510

tions. For tracking controllers, the review showed that: (i) control algorithms

that considered vehicle and tire dynamics over large speed ranges provided ac-

curate tracking even at high-speeds and/or large trajectory variations, and (ii)

the effectiveness of such controllers hinges on the accuracy of the modelled sys-

tem dynamics which has difficulty in capturing the large variations encountered515

typically in daily driving with one low order system. Examples from litera-

ture showed that off-board information via V2X systems can be used to update

controller parameters in real-time which can prevent drop-off in tracking perfor-

mance when operated in conditions with variations in system dynamics. How-

ever, integration of off-board information into a multi-tier control architecture520

needs to be seamless as well as capable of graceful degradation on occasions of

wireless communication failure. This added complexity in control design can

pose significant challenges that will need to be addressed to develop a safe,

dependable, and robust control system.

It is noteworthy that the study of potential benefits that can be achieved525

by leveraging off-board information via V2X communication systems for au-

tonomous trajectory planning and tracking is in a nascent stage and marks a

new chapter of study in the field of autonomous vehicles.
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[33] S. Lefèvre, D. Vasquez, C. Laugier, A survey on motion prediction and risk

assessment for intelligent vehicles, ROBOMECH Journal 1 (1).

[34] Radar, Stereo Camera, Ultrasound All-round Protection by Networking635

Sensors, [Online; accessed 06-February-2018].

27

http://www.caricos.com/cars/m/mercedes-benz/2018_mercedes-benz_s-class/images/41.html
http://www.caricos.com/cars/m/mercedes-benz/2018_mercedes-benz_s-class/images/41.html
http://www.caricos.com/cars/m/mercedes-benz/2018_mercedes-benz_s-class/images/41.html


URL http://www.caricos.com/cars/m/mercedes-benz/2018_

mercedes-benz_s-class/images/41.html

[35] Y. Luo, Y. Xiang, K. Cao, K. Li, A dynamic automated lane change maneu-

ver based on vehicle-to-vehicle communication, Transportation Research640

Part C: Emerging Technologies 62 (2016) 87–102.

[36] S. Andrews, Vehicle-to-Vehicle (V2V) and Vehicle-to- Infrastructure (V2I)

Communications and Cooperative Driving, in: Handbook of Intelligent Ve-

hicles, 2012, pp. 1121–1144.

[37] L. Guzzella, Automobiles of the future and the role of automatic control in645

those systems, Annual Reviews in Control 33 (1) (2009) 1–10.

[38] B. Kim, D. Kim, S. Park, Y. Jung, K. Yi, Automated Complex Urban

Driving based on Enhanced Environment Representation with GPS / map,

Radar, Lidar and Vision, IFAC-PapersOnLine 49 (11) (2016) 190–195.

[39] C. Katrakazas, M. Quddus, W.-H. Chen, L. Deka, Real-time motion plan-650

ning methods for autonomous on-road driving: State-of-the-art and future

research directions, Transportation Research Part C: Emerging Technolo-

gies 60 (2015) 416–442.

[40] P. Saengpredeekorn, J. Srinonchat, A new technique to define the overtake

distance using image processing, in: 2009 6th International Conference655

on Electrical Engineering/Electronics, Computer, Telecommunications and

Information Technology, Vol. 02, 2009, pp. 1142–1145.

[41] R. Kala, K. Warwick, Motion planning of autonomous vehicles in a non-

autonomous vehicle environment without speed lanes, Engineering Appli-

cations of Artificial Intelligence 26 (5-6) (2013) 1588–1601.660

[42] S. Glaser, B. Vanholme, S. Mammar, D. Gruyer, L. Nouvelière, Maneuver-

based trajectory planning for highly autonomous vehicles on real road with

traffic and driver interaction, IEEE Transactions on Intelligent Transporta-

tion Systems 11 (3) (2010) 589–606.

28

http://www.caricos.com/cars/m/mercedes-benz/2018_mercedes-benz_s-class/images/41.html
http://www.caricos.com/cars/m/mercedes-benz/2018_mercedes-benz_s-class/images/41.html
http://www.caricos.com/cars/m/mercedes-benz/2018_mercedes-benz_s-class/images/41.html


[43] S. Kitazawa, Control Target Algorithm for Direction Control of Au-665

tonomous Vehicles in Consideration of Mutual Accordance in Mixed Traf-

fic Conditions, in: International Symposium on Advanced Vehicle Control

2016, 2016.
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