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Abstract

Today, there is a great tendency toward using fractional calculus to solve engi-

neering problems. The control is one of the fields in which fractional calculus

has attracted a lot of attention. On the one hand, fractional order dynamic

models simulate characteristics of real dynamic systems better than integer or-

der models. On the other hand, Fractional Order (FO) controllers outperform

Integer Order (IO) controllers in many cases. FO-controllers have been stud-

ied in both time an frequency domain. The latter one is the fundamental tool

for industry to design FO-controllers. The scope of this paper is to review re-

search which has been carried out on FO-controllers in the frequency domain.

In this review paper, the concept of fractional calculus and their applications in

the control problems are introduced. In addition, basic definitions of the frac-

tional order differentiation and integration are presented. Then, four common

types of FO-controllers are briefly presented and after that their representative

tuning methods are introduced. Furthermore, some useful continuous and dis-

crete approximation methods of FO-controllers and their digital and analogue

implementation methods are elaborated. Then, some Matlab toolboxes which
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facilitate utilizing FO calculus in the control field are presented. Finally, advan-

tages and disadvantages of using FO calculus in the control area are discussed.

To wrap up, this paper helps beginners to get started rapidly and learn how

to select, tune, approximate, discretize, and implement FO-controllers in the

frequency domain.

Keywords: Fractional order PID, Fractional order lead/lag compensators,

CRONE generations, Tuning methods for fractional order controllers,

frequency domain analysis, Fractional calculus, Toolboxes for fractional order

controllers

1. Introduction

Fractional Order (FO) calculus has attracted attention from academic and

industrial associations because its applications have been increased in many

aspects of science and engineering [1, 2, 3, 4]. The control field is no exception

and utilizing of FO-calculus has been raised in the modelling and controlling of

dynamic systems. Basically, in control applications, there are four combinations

for closed-loop systems: Integer Order (IO) plants with IO controllers, IO plants

with FO controllers, FO plants with FO controllers and FO plants with IO

controllers [5, 6].

Using FO-calculus in the modelling of system dynamics is increased since

many phenomena such as the voltage-current relation of a semi-infinite lossy

transmission line, the diffusion of heat through a semi-infinite solid, viscoelastic-

ity, damping and chaos, fractals etc. inherently show fractional order behaviour

[5, 7, 8, 9]. Particularly, when the dynamic of a system has a distributed parame-

ter nature, the best solution for modelling is using FO-calculus [5, 6]. Moreover,

it has been reported that FO-calculus models the behaviour of biomimetic sys-

tems the best [6]. Furthermore, in the electrical engineering field, there are

some electrical devices which show intermediate properties between resistances

and capacitances. These devices are known as ”fractance” and are modelled by

means of FO-calculus [10]. Hence, FO-models can help engineers to simulate
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the dynamic behaviour of many systems more precisely than IO-ones.

FO-calculus has high potential to improve performances of controllers since

designers have more flexibility in selecting power of FO-controllers in comparison

with IO-controllers [11, 12, 13, 14, 15]. Moreover, since FO-calculus can provide

a proper trade-off between the first and second order integrator or differentiator

part of controllers , linear FO-controllers particularly the FO-PID types become

very popular among control engineers. In this manner, researchers have tried

to develop FO-linear controllers in both time [1, 16, 17, 18, 19, 20, 21, 22]

and frequency domain [8, 2, 23, 24, 25, 10, 26]. In the time domain, most of

research is based on optimization methods and in the frequency domain, the

most widely-used methods are H∞ norm, loop-shaping, iso-damping, etc.

Despite all the comments, IO-controllers are predominately used in the con-

trol field [27]. Apart from the water-bed effect from which all linear controllers

are suffered [28], there are other significant barriers which confine development

of FO-controllers. First, direct analytical methods for solving fractional order

differential and integral equations are very complicated [5]. Secondly, the im-

plementation of FO-controllers is more difficult than IO ones owing to certain

reasons which are elaborated in the next sections. Finally, the existing tun-

ing methods are sophisticated and proper for specialists and most of them are

applicable for process control problems (first order plant with low bandwidth

requirement).

During these years, several investigations have been done about reviewing

FO-controllers [29, 5, 6, 30]. Chen et al. introduced and compared four common

types of FO-controllers [5]. Also, investigation [5] presents several realization

methods for FO-controllers. Moreover, they talked about potential advantages

of FO-controllers and their application in [6]. In [29], aspects of linear and

non-linear Fractional Order Proportional Integral and Derivatives (FO-PID)

controllers such as tuning, history, and toolboxes are discussed in both time

and frequency domains. These review paper give general insight about the

FO-controllers; however, some of them are very specific which do not cover all

aspects about these controllers, or some of them are very abroad that cannot give
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enough information about each concept. Thus, this article focuses on the linear

FO-controllers in the frequency domain. This paper gives enough information

efficiently and comprehensively about linear FO-controllers in the frequency

domain by which beginners can understand FO-calculus, select a proper type

for their application, tune and implement these controllers.

This review paper is organized so that, the basic definitions of the fractional

order derivative and integral are presented in the first section. Then, common

types of FO-controllers which are introduced in the literature are commented

in Section 3 and their representative tuning methods are delineated in Section

4. Section 5 is devoted to the realization of FO-controllers in which approx-

imation methods in the S, Z and δ domain, and analogue and digital imple-

mentation methods are presented. Then, some useful toolboxes are introduced

which facilitate design, approximation and realization of FO-controllers in the

frequency domain in Section 6. Finally, the advantages and disadvantages of

FO-controllers are discussed in Section 7 and some conclusions and remarks are

given in Section 8.

2. Definitions of fractional order derivative and integral

Although fractional order calculus which means the generalization of the

integration and differentiation operator to a fractional order operator is a 300-

years-old topic [31], it has only gained attention in the last two decades to

facilitate modelling and control problems. There are various definitions like

Riemann, Letnikov, Liouville, Caputo for fractional order derivative and integral

[28, 5, 32, 33, 34]. Based on the Cauchy’s formula, Riemann defined the general

fractional order integral as below for a general complex order ν [28, 33, 35, 36]:

Iνtof(t) ,
1

Γ(ν)

∫ t

to

f(τ)

(t− τ)1−ν
dτ


t > to

to ∈ R

ν ∈ C

(1)
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In which Γ(ν) is Gamma function:

Γ(ν) =

∫ ∞
0

e−xxν−1dx (2)

When ν is a real fractional order, (1) can be re-written as [28, 33, 35, 36]:

Iνtof(t) ,
∫ t

to

f(τ)(t− τ)ν−1

Γ(ν)
dτ =

∫ t

to

gν(t− τ)f(τ)dτ = g ∗ f (3)

where:

gν(t− τ) =
(t− τ)ν−1

Γ(ν)
(4)

Now, the Laplace transform of the fractional order integral can be interpolated

from the convolution (3) [28]:

L {Iνtof(t)} = L { (t)ν−1u(t)

Γ(ν)
}L {f(t)} =

1

sν
F (s) (5)

Liouville simply calculated fractional order derivative. In his method, the expo-

nential presentation function f(t) =
∞∑
n=0

cne
ant is used for this purpose. In this

respect, the fractional order derivative is obtained as [33, 35]:

Dνf(t) =

∞∑
n=0

cna
ν
ne
ant (6)

The Riemann-Liouville’s definition of the general fractional order derivative is

as below [5, 28, 33, 35, 36]:

Dν
tof(t) ,

1

Γ(n− ν)

dn

dtn
(

∫ t

to

f(τ)

(t− τ)1+ν−n
dτ), n = [integer real part of ν] + 1

(7)

The second popular definition of fractional order derivative is given by Caputo

[33, 35, 36]:

Dν
tof(t) =

1

Γ(ν − n)

∫ t

to

f (n)(τ)dτ

(t− τ)ν+1−n (n− 1 ≤ ν < n) (8)

This definition is improved as [37]:

Dνto =
M(ν)

1− ν

∫ t

to

ḟ(τ)e−
ν(1−τ)
1−ν dτ (9)

where M(ν) is a normalized function so that M(0) = M(1) = 1. Another gen-

eral definition of the fractional order derivative is given by Grünwald-Letnikov
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[5, 28, 33, 35, 36, 29]:

Dνf(t) = lim
h→0

∞∑
k=1

(−1)k
(
ν
k

)
f(t− kh)

hν
,

(
ν

k

)
=

Γ(ν + 1)

k!Γ(ν − k + 1)
(10)

Eventually, the Laplace transform of a real fractional order derivative can be

achieved by using the Riemann-Liouville’s and Caputo’s definition ((7) and (8))

[5, 28]:

L {Dν
0f(t)} = sF (s)−

n−1∑
k=0

skDν−k−1
0 f(t)

∣∣
t=0

(n− 1 < ν ≤ n) (11)

L {Dν
t0f(t)} = sF (s)−

n−1∑
k=0

sν−k−1Dk
t0f(t)

∣∣
t=0

(n− 1 < ν ≤ n) (12)

By considering definitions of the fractional order derivative and integral which

are described above, the continuous integro-diffrential operator for a general

complex value of ν is introduced as [5]:

Dν
to =



dν

dtν
Re(ν) > 0

1 Re(ν) = 0∫ t

to

(dτ)−ν Re(ν) < 0

(13)

The two main properties of the continuous integro-diffrential operator are listed

as [5, 28]:

1. This is a linear operator:

Dν
to(af(t) + bg(t)) = aDν

tof(t) + bDν
tog(t)

2. It follows the additive index law:

Dν
toD

α
tof(t) = Dα

toD
ν
tof(t) = Dα+ν

to f(t)

Note, in the next sections, the frequency analyses of the FO-controllers will be

presented. Initial condition is not considered in the following equations since

the frequency analysis is performed in the steady state.
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3. Common types of linear fractional order controllers

In this section, four common types of linear FO-controllers which are repre-

sented in the literature are described shortly. In what follows, Tilted Integral

Derivative (TID) controllers, CRONE controllers, FO lead/lag compensators

and Fractional Order Proportional and Derivative (FO-PID) controllers shall

be introduced.

Note, from practical viewpoint, controllers must have a proper transfer func-

tion to be realizable. Controllers which are not proper in the following sections

should be made proper by adding an extra low pass filter.

3.1. TID controller

By substituting the proportional component in the PID controller with the

fractional order integrator (s−
1
n , n ∈ N), the TID controller was introduced [38].

The configuration of TID controllers is shown in figure 1. Figure 2 compares

the frequency response of TID and PID controllers such that both controllers

provide the same phase margin and gain values at high frequencies. As was

shown, the TID controller has better performance in rejecting disturbances than

the PID controller since it has higher gain before the cross-over frequency (i.e

ωi−TID ≤ ω ≤ ωd). A method for tuning of TID controller parameters will be

elaborated in Section 4.1.

r(t) y(t)
+
− Plant

kT

sn

TID

∑∑∑

kDs

kI

s

Figure 1: Block diagram of TID controller
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Figure 2: Bode diagram of TID controller

3.2. CRONE controllers

CRONE (French abbreviation for Commande Robuste d’Ordre Non Entier,

which means non-integer robust control) controllers have been established by

Oustaloup since the 1980s in tracking fractal robustness [28]. Three CRONE

generations were proposed in the frequency domain in which the open-loop

transfer function has fractional order integrators and differentiators. These

three generations are used for controlling robustly against plant uncertainties.

The first generation of CRONE has the simplest configuration among CRONE

generations and can be considered as a simple FO-PID controller. As it is shown

in figure 3, the open-loop transfer function of the second generation is shaped

following the Bode’s ideal cut-off frequency characteristic.
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Figure 3: Open-loop transfer function in the second generation of CRONE while nF = nI

The third generation of CRONE widens the application of the second gener-

ation of CRONE so that it is applicable to plants which have general uncertain-

ties than just gain-like perturbations. The configurations and tuning methods

of CRONE generations will be delineated in Section 4.2.

3.3. lead/lag compensators

The generalization of classical lead/lag compensators to FO lead/lag com-

pensators has been studied in some investigations [28, 6, 5]. Fractional order

lead/lag compensators are obtained by:

C(s) = kp

(1 + s
ωL

1 + s
ωh

)µ
, ωL < ωh,

Lead µ ∈ (0,+∞)

Lag µ ∈ (−∞, 0)

(14)

Sometimes, fractional order lead/lag compensators are also defined as [39, 2]:

C(s) = kpx
µ
( 1 + ∆s

1 + ∆xs

)µ
, 0 < x < 1,

Lead µ > 0

Lag µ < 0

(15)

9



Another configuration of these compensators is as [40]:

C(s) = kp(
1 + x∆sµ

1 + ∆sµ
), 0 < µ < 2,

Lead x > 1

Lag 0 < x < 1

(16)

where ∆ is a tuning knob which determines corner frequencies of these compen-

sators. It must be recalled that it is not possible to consider µ ≥ 2 because the

transfer function of the controller is not bounded-input bounded-output (BIBO)

stable [41]. The bode plot of a lead compensator is shown in figure 4.

M
a
g
n

it
u

d
e(

d
B

)

20  (dB/decad)

L h
Frequency(rad/s)

0

90

P
h

a
se

(°
)

Figure 4: Bode diagram of FO-lead compensator

In the lead compensators, the more distance between ωL and ωh, the more

robustness and stability (phase margin) for the controller. Also, the phase mar-

gin can be increased by increasing µ and the maximum achievable phase by

FO lead compensators is µ90◦. However, increasing µ or the distance between

the corner frequencies (ωL and ωh) leads to have high magnitudes in high fre-

quencies. Consequently, the controller has the less noise rejection characteristic

which may cause practical complications. So, similar to integer lead/lag com-

pensators, the stability and robustness have conflict with the precision in this

type of FO-controllers. In Section 4.3, tuning methods of these controllers will

be discussed.
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3.4. Fractional order PIλDµ controllers

Podlubny was the first to use the FO-PID name for a kind of FO controllers

in 1994 [42]. FO-PID controllers are the general form of the conventional integer

order PID controllers. The parallel or ideal form of this controller is:

C(s) = kp +
ki
sλ

+ kds
µ λ, µ ∈ R (17)

. Figure 5 shows the various types of controller (17) versus λ and µ. It can be

stated that all families of (PID) controller can be derived from (17) as follows:

1. P controllers can be obtained when λ = µ = 0.

C(s) = kp (18)

2. IO-PI controllers can be obtained when µ = 0, λ = n ∈ N

C(s) = kp(1 +
ki
sn

) (19)

3. FO-PI controllers can be obtained when µ = 0, λ 6∈ N

C(s) = kp(1 +
ki
sλ

) (20)

4. IO-PD controllers can be obtained when λ = 0, µ = m ∈ N

C(s) = kp(1 + kds
m) (21)

5. FO-PD controllers can be obtained when λ = 0, µ 6∈ N

C(s) = kp(1 + kds
µ) (22)

6. IO-PID controllers can be obtained when (λ = n, µ = m) ∈ N

C(s) = kp +
ki
sn

+ kds
m (23)
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FO-PID

FO-PI

FO-PD

Figure 5: Various types of PID controllers

There are some drawbacks of parallel FO-PID controllers. First, if λ ∈ (0, 1)

in the integration part of this controller, the settling time is very high. So,

sometimes
1

sλ
is replaced with

1

s
s1−λ to decrease the settling time value [28,

43, 2]. Also, it is necessary to tame the derivative part of the parallel FO-

PID controller for avoiding saturation phenomenon and having the better noise

rejection feature. Hence, (17) becomes:

C(s) = kp +
ki
sλ

+
kds

µ

1 + τfsγ
γ ≥ µ (24)

If µ 6= γ a memory with a high capacity is required for implementing the discrete

time or continuous-time approximation of this controller. So, it is better to

consider (γ−µ = n, n ≥ 0) [28]. By increasing n, the phase margin decreases

and the system has the better noise rejection feature and vice versa. In most

cases, n is equal to zero. The most widely-used parallel FO-PID controller is:

C(s) = kp +
ki
sλ

+
kds

µ

1 + τfsµ
(25)

Moreover, for the ease of practical implementation, FO-PID controllers can be

represented in the series form (which is very similar to the first generation of
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CRONE):

C(s) = kp(1 +
ki
sλ

)(
1 +

s

ωl

1 +
s

ωh

)µ (26)

Bode plot of FO-PID controllers is shown in figure 6. As was shown, the maxi-

mum phase which is achievable by these controllers is about 90µ degree.

M
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n
it

u
d

e(
d

B
)

-  20dB/decade  20dB/decade

i d t
Frequency(rad/s)

- 90

0

90

P
h

a
se

(°
)

D  action T  actionP actionI  action

Tracking and

disturbance rejection rejection
Noise

Stability

Figure 6: Bode plot of FO-PID controllers

In [44, 45], the FO-[PD] and and FO-[PI] controller is defined as (27) and

(28), respectively.

C(s) = kp(1 + kds)
µ (27)

C(s) = kp(1 +
ki
s

)λ (28)

The comparison between FO-PD (22) and FO-[PD] controller is performed in

figure 7. It was observed that the FO-[PD] controller has less overshoot for a

step response than FO-PD controller for FO-systems [44] while the FO-PI and

FO-[PI] do not have significant differences in the performance for the fractional

order process systems[45].

13



M
a
g
n

it
u

d
e(

d
B

)

FO-[PD]

FO-PD

d
Frequency(rad/s)

0

90

P
h

a
se

(°
)

FO-[PD]

FO-PD

Figure 7: Bode plot of FO-PD and FO-[PD] controllers

Another type of FO-controllers which is presented in the literature is D1−λIλ

[43, 46, 47]:

C(s) =
ki + kds

sλ
(29)
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Frequency(rad/s)
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a
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(°
)

PD

=0.3

=0.5

PI

Figure 8: Bode plot of D1−λIλ controller for various values of λ

The bode plots of controller (29) for several values of λ are drawn in figure 8.
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It is obvious that when λ = 0, this is an IO-PD controller and when λ = 1 this

is an IO-PI controller. So, the D1−λIλ controller is a trade-off between IO-PD

and IO-PI controllers. When λ increases, the gain at low frequencies increases

while the phase at cross-over frequency decreases. Having higher gains at low

frequencies (increasing integral action of the controller) leads to improving the

tracking performance of this controller. Consequently, stability decreases and

precision improves for this controller by increasing λ and vice versa. Therefore,

it can be said that this controller is a trade-off between stability and precision.

4. Tuning methods of FO-controllers

In this section, representative tuning methods for FO-controllers which are

developed in the frequency domain are discussed. Similar to Section 3, tun-

ing methods are fallen down into four categories including tuning methods for

TID controllers, tuning methods for CRONE generations, tuning methods for

FO lead/lag compensators, and tuning methods for PIλDµ controllers. Let’s

describe some general equations and constraints which are used in a lot of lit-

erature in order to tune FO-controllers [28, 48, 8, 39, 49, 50, 17, 51]. These

constraints are:

1. The phase margin definition:

Arg[G(jωc)C(jωc)] = −π + ϕm (30)

where G(jω) and C(jω) are the plant and control transfer functions re-

spectively.

2. The cross-over frequency definition:

|G(jωc)C(jωc)| = 1 (31)

3. The flatness of the phase curve of the open-loop transfer function near the

cross-over frequency which leads to the robustness of the system against

gain variations in a specific range (iso-damping):

d(Arg[G(jω)C(jω)])

dω

∣∣∣
ω=ωc

= 0 (32)
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4. The gain margin definition:

Arg(G(ωcp)C(ωcp)) = −π ⇒

|G(ωcp)C(ωcp)| =
1

Mg

(33)

5. The complementary sensitivity constraints [28]:

inf |T (jω) =
CG

1 + CG
| ≥ Tl(ω) (34)

Mr = sup |T (jω)| ≤ Tu(ω) (35)

Frequency (Hz)

0

M
a

g
n

it
u

d
e(

d
B

)

T
u

T

T
l

Figure 9: Frequency domain constraints on complementary sensitivity function

As it was shown in figure 9, Tl and Tu are two frequency constraint func-

tions so that low frequency characteristics of bound Tl and Tu are used to

avoid slow response of the system to a step variation of reference signals

or disturbances. Middle frequency behaviours of Tl and Tu confine the

highest value of the settling time (enhance the speed of the system) and

high values of the resonant peak. Sometimes, high frequency properties

of Tu increases the noise rejection feature of the system.

6. The modulus margin constraint (the sensitivity function constraint):

Ms = sup |S(jω) =
1

1 + CG
| ≤ Su(ω) (36)

16



where the S(jω) is the sensitivity transfer function and Su is a desired

bound. This constraint can be used for improving the disturbance rejec-

tion characteristic of the system. The lower values of the modules margin,

the more robustness of the system against disturbances.

7. The control sensitivity constraint:

sup |CS(jω)| ≤ CSu(ω) (37)

where CSu is a desired bound.This constraint limits the control effort in

respect of noises and disturbances, so this increases the energy efficiency

of the controller.

8. The process sensitivity constraint:

sup |GS(jω)| ≤ GSu(ω) (38)

where GSu is a desired bound. This constraint improves disturbance re-

jection of the plant, so it leads to enhancing the precision of the system.

4.1. Tuning methods for TID controller

As discussed in section 3.1, TID controller has the simplest configuration

among FO-controllers. It is noteworthy to recall that auto-tuning methods for

PID controllers are applicable for TID controllers since they are very similar to

PID controllers. Apart from this fact, there is one explicit tuning method in the

frequency domain for this type of FO-controllers [38]. As it was shown in figure

1, three parameters kI , kT and kD must be tuned for these controllers. In this

respect, these three simple steps must be followed:

1. Assume kI = kD = 0 and set kT in order to satisfy constraint (31)

2. kI = kT
4 (ωc2π )1−

1
n

3. At the end, considering the phase margin 5◦ above the desired phase

margin, kD is obtained using (30)
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4.2. Tuning Methods for CRONE generations

As was described in section 3.2, three generations of CRONE controllers

exist and each generation has its tuning method and can be used in a special

condition. The first generation of CRONE is used to robustly control a plant

with an uncertain gain but constant phase around the cross-over frequency. In

other words, if the cross-over frequency (ωc) of a controlled system changes

due to gain variation of the plant in a frequency range [ωA, ωB ], its phase stays

unchanged within this frequency range. The configuration of the first generation

of CRONE controller is [28, 48]:

CR1(s) = k(1 +
ωI
s

)nI (
1 +

s

ωL

1 +
s

ωh

)n(
1

1 +
s

ωf

)nF ,

nI , nf ∈ N, n ∈ R, ωI < ωL < ωA < ωB < ωh < ωf

(39)

It is suggested that ωL and ωh must be set so that they ensure a constant phase

for the open loop response within the range of [ωA, ωB ] (for more details, see

[28]). Parameters n and k are obtained by using constraints (30) and (31) [28]:

n =

−π + ϕm − arg(G(jωc)) + nF arctan(
ωc
ωf

) + nI(
π

2
− arctan(

ωc
ωI

))

arctan(
ωc
ωL

)− arctan(
ωc
ωh

)
(40)

k =

(1 +
ω2
c

ω2
F

)0.5nF

|G(jωc)|(
ωh
ωL

)0.5n(1 +
ω2
I

ω2
c

)0.5nI
(41)

When, in a frequency range [ωA, ωB ], there is perturbation in the gain behaviour

of a plant, and its phase is function of the frequency and is not constant, the

second generation of CRONE must be used to make the system robust against

uncertainties. The configuration of the second generation of CRONE controller

is [28, 52, 53, 48]:

CR2
(s) = kG−1(s)(1 +

ωI
s

)nI (
1 +

s

ωh

1 +
s

ωL

)ν(
1

1 +
s

ωf

)nF ,

nI , nf ∈ N, ν ∈ R, ωI < ωL < ωA < ωB < ωh < ωf

(42)
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Similar to the first generation of CRONE, ν and k are obtained using (30) and

(31):

ν =

−π + ϕm + nF arctan(
ωc
ωf

) + nI(
π

2
− arctan(

ωc
ωI

))

arctan(
ωc
ωh

)− arctan(
ωc
ωL

)
(43)

k =

(1 +
ω2
c

ω2
f

)0.5nF

(
ωL
ωh

)0.5ν(1 +
ω2
I

ω2
c

)0.5nI
(44)

Parameters nI and nF must be set so that nI ≥ npl and nF ≥ nph if the order

of plant at low frequencies (ω < ωI) and high frequencies (ω > ωf ) is npl and

nph, respectively (for more details see [28]).

Although the second generation of CRONE controller extends the frequency

range for choosing the cross-over frequency, in some cases such as existing delay

on the system, this configuration is not able to ensure robustness of a system.

Hence, the third generation of CRONE is utilized when uncertainties of a plant

are more general than just gain-like perturbations. In the basic idea of the

third generation of CRONE, the open-loop transfer function (45) has a complex

integration order (ν = a + ib) which leads to have a general template in the

Nichols chart [28, 48].

β = k
(
cosh(b

π

2
)
)(ωc

s

)a(
Re/i

(
(
ωc
s

)ib
))−sign(b)

(45)

Tuning of the third generation of CRONE controller is the most complicated

among all CRONE generations (for more information see [28]). A designer can

set the number of tuning parameters by considering more general templates

based on how a plant is sophisticated.

βT =

N∏
j=1

βj ⇒ CR3
(s) = G−1βT (46)

When the number of tuning parameters are determined, a designer must select a

proper cost function and solve an optimization problem under some constraints

which definitely include constraints (30) and (31). CRONE recommends four
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optimization problems for tuning the third generation of CRONE controller

[28, 54].

1. Considering J = sup |T (jω)| −Mr as the cost function in which Mr is the

desired resonant peak. Minimization must be done under constraint (34)

to (38).

2. Considering J = 20
2π log(

∫ ωmax

ωmin

max|e(jω)|2dω) as the cost function in

which e(t) = yref (t) − y(t). Minimization must be done under the con-

straints (37).

3. Considering J = max sup |G(jω)S(jω)

jω
|dB . Minimization must be done

under the constraints (35) to (37).

4. Considering J = max sup |S(jω)

jω
|dB . Minimization must be done under

the constraints (35) to (37).

CRONE generations have been successfully applied to some practical systems

[55]. The second generation was implemented mechanically to a suspension sys-

tem of a vehicle [25]. The third generation was applied to a resonant plant

(flexible transmission) [24], a four mass-spring system with low damping [56],

and a nonlinear hydraulic actuator [23]. To sum up, it appears that the CRONE

generations are very useful for designing a robust controller against plan uncer-

tainties.

4.3. Tuning methods for fractional order lead/lag compensators

In this part, tuning methods which are applicable for tuning FO-lead lag

compensators are presented. Monje et al. obtained a method for auto-tuning

of these compensators (controller (15)) [39]. The magnitude of |G(jωc)| and

arg(G(jωc)) are found by using the relay test (see [39] for more information).

For this purpose, the constraints (30), (31), and the definition of the static error

constant:

kss = lim
s→0

snC(s)G(s), (47)

where n is type of the plant are used for tuning of an FO-lead/lag compensator.

There are four unknown parameters (x, µ,∆, kp) with three equations, so an
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optimization problem has to be solved. The objective function has chosen to

minimize the µ since the less value of µ, the less value of x which results in more

robust compensator. Following the trial and error approach is taken to solve

this optimization problem:

1. Consider a minimum value for µ (for instance, µ = 0.05)

2. Calculate the x, ∆, and kp

3. If x is positive, the compensator is tuned. Otherwise, the µ is increased

with a fixed value and repeat steps (2)-(3)

In a similar way, Tavazoei and Tavakoli-Kakhki obtained a general method for

tuning controller (16). In this way, the constraints (30), (31) and the definition

of the static error constant (47), and the maximum value of the controller output

(to avoid saturation) are considered for tuning of its four parameters [40].

4.4. Tuning methods for PIλDµ

As discussed before, the most popular type of FO-controller is the FO-PID

controller. In this section, tuning methods for these controllers in the frequency

domain are reviewed.

Several researchers proposed tuning methods using optimization techniques.

Zhao et al. tuned FO-PID controller (controller (17)) for on type of FO-plants

(G(s) =
1

a1sα + a2sβ + a3
) [8]. For a given phase and gain margin, (30), (31),

and (33) are accounted for tuning. This leads to four equations with seven

unknown parameters (ωc, ωcp, kp, ki, kd, µ, λ) :

(i) f(ωc, ωcp, µ, λ, ϕm,Mg) = 0

(ii) kp = g(ωc, ωcp, µ, λ, ϕm,Mg)

(iii) ki = y(ωc, ωcp, µ, λ, ϕm,Mg)

(iv) kd = z(ωc, ωcp, µ, λ, ϕm,Mg)

This problem is solved through an optimization method in which four parame-

ters (ωc, ωcp, µ, λ) form a desired cost function J = L(ωc, ωcp, µ, λ) based on the

required performance (robustness, stability, etc). The optimization problem is
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solved under constraint (i). After finding these four parameters through a suit-

able optimization algorithm, parameters (kp, ki, kd) are obtained using equations

(ii)-(iv). This method is flexible and users are able to add their requirements

as an objective function in the optimization part. They also concluded that

FO-PID controller has better performance than IO-one for FO-plants.

In addition, Zhong and Li proposed a tuning method for FO-PID controllers

for a specific type of FO-plants (G(s) =
1

a1sα1 + a2sα2 + a3sα3 + a4
, ai > 0)

[57]. In this method, constraints (30), (31), and (32) are used for tuning, so

there are seven unknown parameters (ωc, ϕm, kp, kd, ki, µ, λ) and three equa-

tions. Then, the feasible region for unknown parameters based on the sta-

bility analyses is found. Next, one of the suggested cost functions including

(IAE=J =

∫ ∞
0

|e(t)|dt) , (34), and (36) is used for optimization under con-

straints (30), (31), and (32). A fixed-step search method is utilized for solving.

If the obtained controller satisfies the desired performances, the tuning is fin-

ished; otherwise, two narrow intervals for µ and λ are taken so that previous

obtained optimal λ and µ are placed in the middle of intervals. After that, the

step-size is reset to a smaller value the procedure is repeated, and the controller

is finally tuned. The tuned controller is robust against gain variations and shows

iso-damping behaviour.

Valério and da Costa obtained a tuning method similar the Ziegler-Nichols

method for FO-PID controllers (controller (17)) [49]. It is assumed that each

plant frequency response can be approximated by an S-shaped response (G(s) =
e−Ls

1 + Ts
). Then, to solve the problem, (30) is supposed as the minimization cost

function and (31), (32), (35), and (36) are counted for constraints. For many

different L and T , the Nelder-Mead’s simple optimization method is applied to

solve this optimization problem for a specific requirement and then the least-

square method is used to find a relation between L, T and tuning parameters

for the given specifications. For any requirement, this procedure can be done

to find a relation between dynamic parameters of the system and tuning knobs.

They reported that the FO-PID which is tuned by this method is more robust

than IO-PID (controller (23)) which is tuned by the Ziegler-Nichols method.
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Similarly, Saidi et al. proposed a tuning method for FO-PID controllers for any

general plants [58]. In the proposed approach, (30), (31), (32), (35), and (36)

are considered for tuning. Also, they assumed flatness of the phase in a desired

band [ωl, ωh] and then considered N frequencies belong to this band. They

changed constraints (30) and (32) to (48) (phase margin constraint) and (49)

(iso-damping), respectively.

N∑
i=1

(arg[C(jωi)G(ωi)] + π − ϕm)
2

= 0, ∀ωi ∈ [ωl, ωh] (48)

N∑
i=1

(
d arg[C(jω)G(jω)]

dω

∣∣∣
ω=ωi

)
2

= 0, ∀ωi ∈ [ωl, ωh] (49)

Then, they supposed (31) as the minimization cost function under constraints

(30), (32), (35), and (36) to tune the controller. Both methods have robustness

against gain variations.

Chen et al. generalized Modulus margin constrained Integral Gain Optimization

(MIGO) based controller tuning method for FO-PI controllers (20) and called it

F-MIGO method [59]. In this respect, they faced with an optimization problem

which is:

• R =
Ms +Mr − 1

2Ms(M2
r − 1)

. Mr and Ms are respectively the resonant peak (35)

and the modules margin (36)

• f(kp, ki, ω, λ) = |1 + C(jω)G(jω)|2

• Constraints: f(kp, ki, ω, λ) ≥ R2

• Objective function: max{ki}

This optimization problem is solved for a fixed value of λ through this mathe-

matical method:

f(kp, ki, ω, λ) = R2,
∂f

∂ω
= 0,

∂f

∂kp
= 0,

d2f

dω2
> 0 (50)

Then, this procedure is performed for a range of λ and best λ is selected to min-

imize (ISE =

∫ ∞
0

e2(t)dt) for a step response. This method is applied to a first
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order system plus time delay (G(s) =
ke−Ls

1 + Ts
) and relations between controller

parameters and process parameters (L and T ) are obtained. This method is

compared with IO-PI controllers (controller (19)) tuned by the Ziegler-Nichols,

modified Ziegler-Nichols and AMIGO [60] for six different plants. It is concluded

that if the relative dead time (
L

L+ T
) is very small, the FO-PI controllers are

better than IO-PI controllers, for systems with a balanced lag and delay values

(L ≈ T ), there is no difference between IO-PI and FO-PI controllers and for a

systems with high relative dead time, FO-PI controller responses are faster with

higher values of the overshoot than IO-PI controller responses.

Vu and Lee developed this tuning method and introduced a new tuning guideline

[61]. In this approach, the open-loop transfer function is considered as (
s

ωc
)γ ,

and then, λ is selected based on the previous method. Next, kp, γ, and ωc are

tuned based on one of the suggested optimization criteria under constraint (34).

In the end, ki is found through CG(jω) = (
jω

ωc
)γ .

Padula and Visioli found tuning methods for integral (G(s) =
k

s
e−Ls), sta-

ble (G(s) =
k

Ts+ 1
e−Ls), and unstable (G(s) =

k

Ts− 1
e−Ls) process plants

[50, 17]. Three types of controllers including the tamed series FO-PID (similar

to the controller (26)), the tamed series IO-PID controller (controller (26) with

λ = µ = 1 and ωh = 10ωl) and the ideal or parallel tamed FO-PID (controller

(25) with a low-pass filter) are tuned for this purpose. For tuning integral and

stable plant, IAE and(36) are respectively selected as the cost function and

constraint for an optimization problem. For tuning the unstable plant, the cost

function remains the same but the constraint is substituted with checking sta-

bility. In this respect, the stability condition of the closed-loop transfer function

is checked at the first step for each trial. If the trial makes the system unstable,

the objective function will get a high value, so it is discarded automatically. This

tuning method is performed for a step disturbance and reference signal response

separately and relations between controller parameters, L and T are found for

each controller in each scenario (disturbance rejection or reference tracking).

They recognized that FO calculus has significant effects on differentiator part of
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FO-PID and does not provide any advantages for integral part since the integral

order became one in all optimization solution. In addition, FO-PID controllers

outperforms IO-PID controllers in three considered systems.

Monje et al. proposed a method for tuning FO-PI controllers (controller (20))

robustly against plant uncertainties and changing the time delay for the second

order plus time delay process systems (G(s) =
ke−Ls

(T1s+ 1)(T2s+ 1)
) [43]. In the

robust design against the time delay variation (L), (31) is assumed as the cost

function and (30) and (32) are considered as constraints. In the robust design

against the variation of time constants (T1 or T2), the cost function remains the

same as time delay variation and constraints are replaced with (30) and (33).

The nonlinear optimization method (FMINCON in MATLAB) is used for solv-

ing these optimization problems. As it was discussed before,
1

sλ
was replaced

with
1

s
s1−λ in their controller to improve the settling time. In a similar way,

they tuned FO-PID controller (controller (17)) for the first order systems plus

time delay (G(s) =
ke−Ls

1 + Ts
). In this respect, they use the same cost function

under constraints (30), (32), (35), and (36) [2].

Moreover, similar to their method for FO-lead/lag compensator [39], they

proposed an auto-tuning method for series FO-PID controller (controller (26))

[2]. The magnitudes of |G(jωc)| and Arg(G(jωc)) are found by using the relay

test and FO-PID is reshaped as an FO-PI controller (controller (20)) multiplied

to an FO-lead compensator (controller (15)). First, the FO-PI part is designed

so that it makes the slope of the phase of the open loop-transfer function to

zero while ki =
1

ωc
(in order to minimize the value of λ). Next, the FO-

lead compensator is tuned for the plant multiplied FO-PI part using method

described in [39] (elaborated in Section 4.3).

In addition, De Keyser et al. developed an auto-tuning for FO-PD (22) and FO-

PI (20) controllers [62]. In this method,
d(Arg[G(jω)])

dω

∣∣∣
ω=ωc

, Arg[G(jωc)], and

|G(jωc)| are found through a novel experiment for an unknown plant, and then,

the controller is tuned using constraints (30), (31), and (32) (for more details

see [62]). Also, these auto-tuning methods are robust against gain variations of
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the plant.

Some people try to tune FO controllers utilizing loop-shaping tools. Krij-

nen et al. combined the loop-shaping with optimization methods for tuning a

series FO-PID controllers (51) for a precision positioning system (a mass-spring

damper system) to maximize crossover frequency (bandwidth frequency) [26].

Controller (51) is a FO-PID controller which is multiplied by a FO-low pass

filter as:

C(s) = kp(1 +
ωi
s

)
(1 +

s

ωz

1 +
s

ωp

)µ
LP(n,r)(s)

LP(n,r)(s) =



n = 1
1

1 +
s

ωlp

n = 2 (
1

1 + (
s

ωlp
)r

)(
1

1 +
s

ωlp

)

n = 3 (
1

1 + (
s

ωlp
)r + (

s

ωlp
)2r

)(
1

1 +
s

ωlp

)

(51)

In their method, tuning parameters x = [kp, ωi, ωz, ωp, ωlp, n, r, µ] are found

through an optimization procedure in which min{ωc,bm
ωc(x)

} (ωc,bm is the target

bandwidth) is considered as a cost function under constraints (30), (31), and

(33). The tuned FO-PID controller is compared with an IO-PID controller

(controller (26) with λ = µ = 1) which is tuned by an empirical method [63]

and it is revealed that the FO-PID controller increases the achievable bandwidth

frequency in comparison with IO-PID controller.

Dastjerdi et al. proposed an industrially applicable tuning method using the

loop-shaping method for controller (51) without FO-low pass filter (LP(n,r))

[64]. In that method, knowing the value of the phase and gain margin, the

controller is tuned using some curves which are obtained based on the loop-

shaping approach (for more details see [64]). The advantage of this method is

that it does not need to solve complicated equations, so it is very convenient for

industrial applications. Moreover, this method is less sensitive to gain variations

of the plant.
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Moreover, another tuning method based on the combination of Internal Model

Control (IMC), loop-shaping, and second generation of CRONE is proposed in

[65]. This method is very simple and straightforward and FO-PID controllers

are tuned for all process plants based on the phase margin, cross-over frequency,

and type of the plant. In addition, Cervera et al. considered combination of FO

lead compensator (controller (15)), FO-PI (controller (20)), and an IO low-pass

filter and tuned it upon constraints (30), (31), (35), and (36) using loop-shaping

tools [66].

Some researchers introduced tuning methods based on solving these non-

linear equations ((30) to (38)) by utilizing mathematical methods such as the

graphical method, the Newton-Raphson numerical iterative algorithm and so

on. Feliu-Batlle et al. carried out research to tune controller D1−λIλ (con-

troller (29)) for the second order plus time delay process systems (G(s) =
ke−Ls

(T1s+ 1)(T2s+ 1)
) [46]. It is noteworthy to say that the controller is mul-

tiplied by (1 +
α

s
) where α is very small and set by the trial and error method

in order to decrease the settling time value. The constraints (30), (31) and (33)

were solved using the Newton-Raphson numerical iterative algorithm. They as-

sert that D1−λIλ controllers are more robust and stable than IO-PID controllers

(23) against changes in T1. Moreover, Chen et al. used an accurate approxima-

tion method to directly solve constraints (30), (31), and (32) to tune FO-PI

controllers (controller (20)) robust against gain variations for any general plant

[67].

Luo and Chen tuned three controllers including IO-PID (23), FO-PD (con-

troller (22), µ ∈ (0, 2)), and FO-[PD] (controller (27), µ ∈ (0, 2)) controllers

for fractional order plants (G(s) =
1

s(Tsα + 1)
) [44]. The constraints (30), (31)

and (32) are solved using the graphical method for designing a robust controller

against gain variations. It is concluded that IO-PID controllers are not proper

for some cases because they cause systems to become unstable and also FO-

[PD] controllers are more robust and have better performances than FO-PD

ones. Moreover, they used this approach for tuning FO-PI and FO-[PI] for the
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similar type of fractional order plants [45]. They concluded that there are no dif-

ferences between FO-PI (20) and FO-[PI] (28) controllers for this type of plant

[45]. Similarly, Luo et al. followed this method to tune the FO-PD controller for

a servo hard disk drive [68]. This method is also used to tune FO-PI controllers

(20) for the first order plants [69].

5. Realization of fractional order controllers

Control engineers are faced with a big difficulty which is the realization of

FO-controllers when they want to utilize this type of controllers. Implementa-

tion of FO-controllers will be done in two steps. First, the irrational function

sν must be approximated with a rational function. There are some methods for

obtaining the rational approximation functions of sν in the S, Z and δ domain.

In other words, there are continuous approximation functions (S domain) and

discrete approximation functions (Z and δ domain). Second, the rational trans-

fer functions can be implemented by analogue circuits (for continues transfer

functions) or by special digital devices such as PLC, PIC, FPGA and so forth

(for discrete approximation functions).

5.1. Continuous approximation methods (S domain)

One of the important problems in implementing of fractional order con-

trollers can be addressed as finding a way for the rational approximation of the

irrational transfer function sν . There are several mathematical methods for the

rational approximation of sν . In the control theory, the Continuous Fractional

Expansion (CFE) method, which is a well-known method for function evalua-

tion, is a proper way among many other mathematical methods. In this way,

any irrational function G(s) can be expressed as [70, 71]:

G(s) ≈ a0(s) +
b1(s)

a1(s) +
b2(s)

a2(s) +
b3(s)

a3(s) + ...

(52)
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This technique yields to approximate the irrational function G(s) by a rational

function which is achieved by dividing two polynomial functions of the variable

s:

G(s) ≈ Pn(s)

Qm(s)
=

p0 + p1s+ ...+ pns
n

q0 + q1s+ ...+ qmsm
(53)

which is passed through these points (s1, G(s1)), ..., (s1+a, G(s1+a)) where a =

m+ n+ 1.

A method upon the CFE technique is suggested by Matsuda in selected log-

arithmically spaced points (sk, k = 0, 1, 2, ...). His approximation method is

[70, 71]:

H(s) ≈ a0 +
s− s0

a1 +
s− s1

a2 +
s− s2
a3 + ...

(54)

where:

• V0(s) = H(s), Vi+1(s) =
s− si

Vi(s)− ai
, ai = Vi(si)

The most widely applicable method for the approximation of sν in a limited

frequency range is the Oustaloup’s method [72, 70, 73, 71, 28]:

sν ≈ Co
k=N∏
k=−N

(1 +
s

ω′k
)

(1 +
s

ωk
)

(55)

where:

• Co = (

√
ωh
ωb

)ν , ω′k = ωb(
ωh
ωb

)
k+N+1−ν

2
2N+1 , ωk = ωb(

ωh
ωb

)
k+N+1+ν

2
2N+1 , ωh >

ωb

• ωh and ωb are frequency bands on which sν is acted.

Quality of the Oustaloup’s method near frequency bands may not be satisfactory

when ωh is very high and ωb is very low. So, an extension of this method

is proposed to overcome this problem by combining the Taylor’s series and

Oustaloup’s method [72]:

sν ≈ Co(
ds2 + bωhs

d(1− ν)s2 + bωhs+ dν
)

k=N∏
k=−N

s+ ω′k
s+ ωk

(56)

in which:
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• Co = (
dωb
b

)ν
∏k=N
k=−N

ωk
ω′k

The suggested values for b and d are respectively 10 and 9 [72].

Similar to the Oustaloup’s method, Chareff proposed an approximation for func-

tions in the form of G(s) =
1

(1 +
s

PT
)ν

as [71]:

1

(1 +
s

PT
)ν
≈

∏N−1
i=1 (1 +

s

zi
)∏N

i=1(1 +
s

pi
)

(57)

where:

• a = 10
y

10(1−ν) , b = 10
y

10ν

• p0 = PT
√
b, pi = p0(ab)i, zi = ap0(ab)i

• N = [
log(ωmaxp0

)

log(ab)
] + 1 in which ωmax is the desired bandwidth

These coefficients are computed so that deviation from the original magnitude

response in the frequency domain becomes less than y(dB). Yüce et al. intro-

duced an approximation method based on Laplace transform of FO integrator

(4) by utilizing the least square fitting tool of Matlab. In this way [74]:

L −1{ 1

sν+1
} =

tν

νΓ(ν)
= F (t) (58)

It is assumed that function Y (59) is fitted properly to the function F and

then mi and ni parameters are achieved by using the least square fitting tool in

Matlab.

F (t) ≈ Y (t) = m1e
−n1t +m2e

−n2t +m3e
−n3t +m4e

−n4t +m5e
−n5t + c (59)

Then, the inverse Laplace transform is applied to (59) and the approximation

function is obtained as:

L {Y } =
m1

s+ n1
+

m2

s+ n2
+

m3

s+ n3
+

m4

s+ n4
+

m5

s+ n5
+
c

s
≈ 1

sν+1
(60)

Upon the Newton’s iterative method for solving nonlinear equations, Carlson

introduced an approximation method for FO transfer functions. In this respect
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[75, 73, 76]:

(G(s))ν ≈ Hn(s) = Hn−1(s)
(a− 1)(Hn−1(s))a + (a+ 1)G(s)

(a+ 1)(Hn−1(s))a + (a− 1)G(s)
(61)

where:

• a =
1

ν
, H0(s) = 1

It is obvious that this method is restricted to that a must be an integer number.

So, some researchers tried to overcome this limitation. Shrivastava and Varshney

considered that the Carlson’s method is applicable for ν = 0.1, 0.2, and 0.5.

Then, they built other ν values in the range of [0.1, 0.9] by combination of these

three values (for example, 0.3 = 0.1 + 0.2 or 0.8 = 0.3 + 0.5) and obtained a

table for approximation of (sν , ν ∈ [0.1, 0.9]) [75]. Moreover, Tepljakov et al.

modified the Carlson’s method in order to approximate sν in a frequency range.

They declared that the behaviour of the sν in a frequency band is similar to an

FO lead/lag compensator (15). If the ν−1 is not an integer number, it will be

decomposed by a special algorithm (for more information see [76]) as:

ν =

i=k∑
i=1

1

mi
(62)

Then, the approximation function in the frequency band is obtained as:

(G(s))ν ≈
i=k∏
i=1

( 1 + ∆s

1 + x∆s

) 1
mi ≈

i=k∏
i=1

H

(
1
mi

)
n (63)

where H

1

mi
n is calculated through (61) while a = mi.

In addition, Aware et al. introduced a new method for approximation of sν in

the frequency band of (ωL, ωH) [77]. They obtained this method by optimizing

the number of poles and zeros to maintain the phase value of sν within the ε◦

tolerance of its actual value as follows:

sν ≈ (s− z1)(s− z2)...(s− zn)

(s− p1)(s− p2)...(s− pn)
, (64)

in which:
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• p1 = 102ν+log(ωL)+1, pn = 10log(pn−1)+2−µ, z1 = 10ωL,

• zn = 10log(zn−1)+2−µ, µ = 0.64ε, n = min(n)
pn>ωH

.

Lino and Maione obtained an approximation method for FO lead/lag compen-

sator (15) which is [78]:

C(s) = kpx
µ
( 1 + ∆s

1 + ∆xs

)ν
≈

N∑
k=0

BN−ks
k

N∑
k=0

AN−ksk
, ν > 0,

Lead 0 < x < 1

Lag 1 < x

(65)

where:

• AN−k =
N∑
i=1

aN−iL
C
ki, BN−k =

N∑
i=1

bN−iL
C
ki, LCki = T k

j2∑
j=j1

(
i
j

)(
N−i
k−j
)
xk−j

• j1 = max{0, k + i−N}, j2 = min{i, k}

• ai =
(
N
i

)
(N−i+1+ν)(i)(N−ν)(N−i)∗ , bi =

(
N
i

)
(i+1+ν)(N−i)(N−ν)(i)∗

• (ν + i+ 1)(N−i) = (ν + i+ 1)(ν + i+ 2)...(ν +N)

• (N − ν)(i)∗ = (N − ν)(N − ν − 1)...(N − ν − i+ 1)

• (ν +N + 1)(0) = (ν −N)(0) = (N − ν)(0)∗ = 1

As it asserts that the sν in a frequency band can be considered as an FO lead/lag

compensator [76], this method can be applied to approximate sν in a frequency

range.

5.2. Discrete approximation methods (Z domain)

In this age, using digital logic in some applications such as controller im-

plementation has been increased because of development of digital computers.

FO-controllers are not exceptional and there are many investigations for digital

implementation of these controllers. Tenreiro Machado was one of the pioneer

researchers who proposed an algorithm for the digital implementation of FO-

controllers [79]. The first step in digital implementation is the discretization of

the FO-transfer function. For this purpose, there are several methods which are

categorized into two main groups: direct discretization and indirect discretiza-

tion methods [80].
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Table 1: β and γ tuning parameters

Methods Forward Euler Tustin Al-Alaoui Backward Euler Implicit Adams

β 1

γ 0 0.5
7

8
1 1.5

5.2.1. Direct discretization methods

In these methods, two steps must be taken for obtaining a discrete function

of fractional order differentiators. At first, it is important to select a proper

generating function. Generating functions express the discretization of frac-

tional order differentiators (s = ω(z−1)) and usually have the below general

configuration [81]:

ω(z−1) =
1− z−1

βT
(
γ + (1− γ)z−1

) (66)

In which β, γ, and T are respectively the gain tuning parameter, phase tuning

parameter, and sample period. The most commonly used generating functions

are most usable for the discretization are listed in table 2. Most of these gener-

ating functions can be obtained using (66) by considering gain and phase tuning

parameters listed in table 1.

Table 2: Discrete Time Conversion Rules

Methods s→ z Conversion Taylor series [7]

Backward-Difference

(Euler) [80, 7, 5, 71]
sν ≈

[1− z−1

T

]ν
(

1

T
)ν [1− νz−1 +

ν(ν − 1)

2!
z−2 + ...]

Trapezoidal

(Tustin) [80, 7, 5, 71]
sν ≈

[ 2(1− z−1)

T (1 + z−1)

]ν
(

2

T
)ν [1− 2νz−1 + 2ν2z−2 + ...]

Al-Alaoui [80, 5]
sν ≈

[ 8(1− z−1)

7T (1 +
z−1

7
)

]ν
-

Simpson [7] sν ≈
[3(1− z−1)(1 + z−1)

T (1 + 4z−1 + z−2
)
]ν

(
3

T
)ν [1− 4νz−1 + 2ν(4ν + 3)z−2 + ...]

Obviously, the generating functions which are listed in table 2 are irrational.

So, in the second step, it is necessary to approximate these irrational formulas

with finite order rational formulas. To obtain this goal, two most applicable

mathematics methods (Power Series Expansion (PSE) and CFE) are utilized in

direct discretization methods in many studies. In other words, it can be said
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that:

D±ν(z) ≈ CFE{ω(z−1)ν} or D±ν(z) ≈ PSE{ω(z−1)ν} (67)

As it was shown in table 2, Machado et al. proposed some discrete approximation

functions by applying the Taylor series, which is one of the mostly used PSE

methods, to several generating functions [7].

One of the well-known approximation function is obtained based on the PSE

method by utilizing the Euler generating function and the Grünwald-Letnikov

definition (10). In this respect, the discrete approximation of the FO integro-

diffrential operator is gotten by using the short memory principle [80, 5, 71]:

(s)±ν = T∓νz−[
L
T ]

[LT ]∑
j=0

cνj z
[LT ]−j (68)

in which:

• L is the memory length, cνj = (1− (1 + ν)

j
)cνj−1, cν0 = 1

In order to improve the accuracy of the discrete approximation functions in high

frequencies, Chen et al. introduced a new generating function by combining the

Tustin and Simpson generating functions. Their new generating function is [80]:

sν ≈ k0(
1− z−2

1 + r2z−1
)ν (69)

where:

• k0 =
6r2

T (3− a)
, r2 =

3 + a− 2
√

3a

3− a
a ∈ [0, 1] is a weighting factor or a

tuning knob

Then, this generating function is expanded rationally by the implementation of

the CFE method using MATLAB Symbolic Toolbox [80].

Chen et al. proposed a discrete approximation method upon the Muir-recursion

formula, which is applicable in the geophysical data processing, in order to

express the Tustin generating function rationally [5] and claimed that their

method is as accurate as the Taylor series expansion method. In this method:

sν ≈ (
2

T
)ν(

1− z−1

1 + z−1
)ν = (

2

T
)ν lim
n→∞

An(z−1, ν)

An(z−1,−ν)
(70)

In which:
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• A0(z−1, ν) = 1, An(z−1, ν) = (1−cnzn)An−1(z−1, ν), cn =


ν

n
n : is odd

0 n : is even

Similar to (65), a closed-form formula is obtained for discrete approximation of

FO lead/lag compensators [78] as:

C(s) = kpx
µ
( 1 + ∆s

1 + ∆xs

)ν
≈

N∑
h=0

DN−hz
h

N∑
h=0

CN−hzh
, ν > 0,

Lead 0 < x < 1

Lag 1 < x

(71)

with:

• CN−h =
N∑
k=0

AN−kL
D
hk, DN−h =

N∑
k=0

BN−kL
D
hk, j2 = min{h, k}

• LDhk = (
2

T
)k

j2∑
j=j1

(−1)k−j
(
k
j

)(
N−k
h−j

)
xk−j , j1 = max{0, k + h−N}

• AN−k and BN−k are described in (65)

5.2.2. Indirect discretization methods

There are two stages in indirect discretization methods. At the first stage,

the irrational transfer function sν is approximated by a rational transfer function

by using methods which are described in Section 5.1. Then, by replacing s in

the approximation function with generating functions which are represented in

table (2) (s → ω(z−1)), the discrete approximation function is obtained. In

other words,

sν ≈ Pn(s)

Qm(s)

s=ω(z−1)
======⇒ sν ≈ G(z). (72)

For instance, Folea et al. approximated sν with Oustaloup’s method (55) firstly.

Then, to obtain the discrete approximate transfer function, they replaced s with

s =
(1 + α)(z − 1)

T (z + α)
, (73)

where T is sampling period and α ∈ [0, 1]) is a weighting factor [82, 83]. This

method is generalized for any non-rational continuous-time transfer function
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by passing following steps or a general [84]. After replacing s with (73), the

frequency response is obtained replacing z = ejωt where ω is a vector of equally-

spaced frequencies. Then, the impulse response of the discrete-time fractional

order system is obtained using the inverse Fast Fourier Transform (FFT) to the

previous calculated frequency response. The approximated transfer function

is achieved from the impulse response using some techniques such as Steiglitz-

McBride in the form of

G(z−1) =
a0 + a1z

−1 + ...+ anz
−N

b0 + b1z−1 + ...+ bnz−n
, n is the order of approximation. (74)

5.3. δ domain approximation methods

Although the digital implementation is widely used in this era because of

the development of digital computers, there is a big concern in discrete ap-

proximation methods. As it is known, stable poles and minimum-phase zeros

in the s-plane are lain inside the unit circle in the z-plane when the bilinear

transformed is utilized. So, the high resolution presentation of compensators

with long words are essential for ensuring stability. But, it is impossible to get

infinite accuracy in designing values of coefficients in a software and hardware

implementation because a finite number of bits are available [78]. Furthermore,

when the sampling rate is increased, zeros and poles of discrete approximation

functions get close to each other and concentrate at the point (1,0). Hence,

discrete approximation functions are very sensitive to small variations of coef-

ficients in high sampling rates and even may lose their stability in some cases

[85, 78]. To overcome these dilemmas, the δ operator can be a proper solution

because it allows a gradual transformation from the discrete to continues time

domain. For this purpose, the continues transfer function is converted to the δ

domain through the below equation [85, 78]:

s =
1

T
ln(δT + 1) ≈ δ

0.5δT + 1
(75)

where T is the sampling period. Similar to indirect discretization methods, it

is possible to approximate irrational transfer functions with presented methods
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in Section 5.1 and then use the preceding equation to obtain δ domain approx-

imation functions.

Moreover, some researchers introduced some direct methods to obtain rational

δ domain transfer functions. Similar to (71) and (65), a closed-form formula is

obtained for the approximation of FO lead/lag compensators δ domain as [78]:

C(s) = kpx
µ
( 1 + ∆s

1 + ∆xs

)ν
≈

N∑
h=0

FN−hδ
h

N∑
h=0

EN−hδh
, ν > 0,

Lead 0 < x < 1

Lag 1 < x

(76)

with:

• EN−j =
j∑

k=0

(
N−k
j−k

)
(0.5T )j−kAN−k, FN−j =

j∑
k=0

(
N−k
j−k

)
(0.5T )j−kBN−k

• AN−k and BN−k are described in (65)

As it has been explained, all methods (65), (71), and (76) can be used for sν

which acts on a frequency band. In addition, Maione introduced a formula to

approximate sν in δ domain as [85]:

sν ≈ G(N)
δ =

N∑
k=0

ckδ
N−k

N∑
k=0

dkδN−k
(77)

In which:

• c(N−j)(ν) =
j∑
r=0

p(N−r)(ν)(0.5T )j−r
(
N−r
j−r
)

• d(N−j)(ν) =
j∑
r=0

q(N−r)(ν)(0.5T )j−r
(
N−r
j−r
)

• pj(ν) = q(N−j)(ν) = (−1)j
(
N
j

)
(ν + j + 1)(N−j)(ν −N)(j)

• (ν + j + 1)(N−j) = (ν + j + 1)(ν + j + 2)...(ν +N)

• (ν −N)(j) = (ν −N)(ν −N − 1)...(ν −N + j − 1)

• (ν −N)(0) = 1, N is the order of approximation
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It must be noted that for the implementation of the δ transfer functions, the

following equation is used [85].

δ−1 =
Tz−1

1− z−1
(78)

5.4. Digital implementation

The first step in the digital implementation is getting the finite difference

equation which is achieved by the discrete approximation methods elaborated in

Sections 5.2 and 5.3. Then, all discrete approximation of FO transfer functions

can be implemented directly to any microprocessor based devices like as PLC,

PIC, PCL I/O card, FPGA, FPAA, switched capacitors, etc [86, 87]. Figure

10 shows the implementation of the canonical form (74) of discrete approxima-

tion of FO transfer functions. To implement this form, two codes are needed:

initialization and loop code (see the pseudo-code in [5, 88]).

e
+ a0 b0

z−1

a1 b1

z−1

+

+ an bn

z−1

+

+

+
U

Figure 10: Block diagram of the canonical representation

5.5. Analogue implementation

Although digital controllers are used widely nowadays because of the rev-

olution of cost-effective digital computers, they have some limitations in some

aspects. The first problem comes from the nature of the discretization. This is

related to the sampling period which must be significantly more than the time
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of computation length. Also, a memory with high capacity is needed for high

order discrete approximations. Digital controllers are not as fast as analogue

controllers. As a result, although several digital controllers have been recently

used to control relatively high modes of systems, they are not proper for very

fast processes such as vibration control [70]. As some limitations are mentioned,

analogue realization is the only solution in some cases. Although there are sev-

eral ways for analogue realization such as hydraulics, mechanical, electronics

etc, this section focuses on electronics implementation.

Y2n

Z2n−1

Y2

Z1

Y4

Z3

Figure 11: Finite ladder circuit

A circuit which represents fractional order behaviour is termed a ”fractance”.

Basically, there are three fractance devices: domino ladder network, tree struc-

ture of electrical elements and transmission line circuit [5]. It asserts that ladder

lattice networks can approximate FO transfer functions more accurate than the

lumped networks [89]. Consider the finite ladder circuit which is depicted in

figure 11, in which Z2k−1(s), Y2k(s), k = 1, ..., n are the impedance of circuit

elements. The equivalent impedance of the whole circuit Z(s) is obtained by

[70]

Z(s) = Z1(s) +
1

Y2(s) +
1

Z3(s) +
1

Y4(s) +
1

...

1

Y2n−2(s) +
1

Z2n−1(s) +
1

Y2n(s)

, (79)

so, first, continuous approximation function of FO-controllers must be expressed
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in the form of (79). Then, Z2k−1(s) and Y2k(s), k = 1, ..., n will give the type of

necessary electrical elements using the first Cauer’s canonic LC circuit [90] (for

more information, see examples in [70]). If bi < 0, then the circuit is depicted

in figure 12 is considered [70]. The entire circuit has equivalent impedance of

−Z in which Z can be a resistor, capacitor or coil.

+

−

R

Iin

Z

Iout

R

Figure 12: Negative-impedance converter

There are also some methods for the direct implementation of fractional or-

der derivatives sν which lead to increase the accuracy of the realization of FO

controllers. In these methods, there is no need for approximation of FO transfer

functions. Bohannan found some electrical elements, named as ”fractor”, ex-

hibit fractance attributes [91]. It is revealed that Lithium Hydrazinium Sulfate

(LiN2H5SO4) behaves in a wide range of temperatures and frequencies like an

electrical element with the impedance of [91]:

ZF =
k

s0.5
(80)

Figure 13 shows a circuit which implements the half order integrator by using a

fractor made from (LiN2H5SO4) material [91]. It is hoped that many investiga-

tions will be done in the future in materials to build fractors with a wide range

of exponents. Then, it facilitates introducing fractional order control elements

to engineering applications without using approximation methods.
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+

−
Vout

R
ZF

Vin

Figure 13: Schematic of a simple circuit of half order integrator

Another way for direct realization of fractional order controllers is using new

electrical element whose name is ”Memristor” [92]. Memristor is an electrical

element which exhibits a fractional order behaviour with the impedance of [92]:

ZMS = Ksν (ν,K) ∈ R (81)

Two configurations which are shown in figure 14a and 14b are considered for

the analogue implementation of fractional order controllers. The equivalent

impedance of the entire circuit figures 14a and 14b are respectively Z(s) =

−
M

K
s−ν and Z(s) = −

K

M
sν , (ν ∈ R) in which M called memristance with

the physical unit of Ohm [92]. Although this method is promising, further re-

search has to be conducted to prove this method can implement the FO transfer

functions.

+

−

VoutZMS

Vin

M

(a) Type I

+

−

Vout

ZMS

Vin
M

(b) Type II

Figure 14: Analogue fractional-order operators

In addition, Aware et al. developed an analogue implementation technique

based on their approximation method (64) [77]. In this technique, first, sν is

approximated using (64), and then, each set of zero and pole (zi, pi) is imple-

mented as shown in figure 15. In figure 15, firstly, any available capacitor (Ci)
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is selected. Then, 
Ri =

1

piCi
, R′i =

1

zi − pi
ν < 0

Ri =
1

ziCi
, R′i =

1

pi − zi
ν > 0

(82)

+

−
VI(si)

VO(si)
R′i

R′iCi

Ri

Figure 15: Schematic of implementing each set of zero-pole pair of sν

6. Several useful codes for fractional order controllers

Now, it is noteworthy to introduce some Matlab codes which simplify using

FO calculus in control field. One of these toolboxes is CRONE CSD toolbox

which is designed for tuning all generations of CRONE controllers [28]. The

online version of this toolbox is available through this link.

Valério and Sa da Costa introduced a general and user friendly toolbox which

is termed Ninteger [73]. It has three identification methods. Also, it has many

approximation methods which have been described in this article. Moreover, it

is proper for tuning all generations of CRONE and FO-PID controllers (con-

troller (17)) in both time and frequency domain.

One of the useful open source software for tuning FO-PID controllers (con-

troller (17)), FO-lead/lag compensators and all IO-filters in both time and fre-

quency domain is FLOreS which is designed at the mechatronic system design

group of TU Delft University by S.H. HosseinNia et al [93]. Also, it has several

approximation methods like Ninteger software and is available through the link.

Furthermore, there are some simple codes for the frequency domain analysis of

fractional order functions in [5]. Lachhab et al. designed a FO toolbox which au-

tomatically tune an FO-PID controller based on given specifications and dynam-

ics of the plant. Moreover, this software includes some approximation methods
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[94]. Tepljakov et al. developed a very general toolbox whose name is FOMCON

[95] which has several options including both time and frequency analysis, frac-

tional order controllers in the state-space, CRONE controllers, approximation

methods, optimization criteria for tuning FO-controllers, and identification with

FO-models. In addition, it has some FO-blocks which can be added in Simulink

library of Matlab. It can be downloaded through this link.

Dingy wrote a book about FO controllers and also designed a toolbox which

contains every method which is described in his book [96]. This toolbox which

is termed FOTF includes several approximation methods, functions for ana-

lyzing FO controllers in both time and frequency domain, Simulink blocks for

FO functions, and tuning methods for FO controllers. This toolbox is available

through the link.

7. Discussion

In this section, the advantages and disadvantages of using FO calculus in

the control area are commented based on the literature reviewed in this article.

Many researchers believe that FO controllers outperform IO ones [10, 49, 43, 97,

98, 99, 100, 101, 102]. In the case of linear controllers, on the one hand, it can be

asserted that FO-PID controllers give more flexibility to designers to select the

tuning parameters due to two important factors. First, the orders of integration

and differentiator of the controller are not restricted to integer numbers. Second,

the stability region of tuning knobs (kp, ki, and kd in controller (17)) which

guarantees the stability of the whole system for a specific phase margin value

is bigger than one for IO-PID controllers as proposed by Hamamci in [103]. On

the other hand, the tuning knobs of FO-PID controllers are more than classical

IO ones, so, designers can consider more efficient constraints for tuning FO-

PID compared to classical IO ones. In comparison with high order IO-PID

controllers, since FO-PID controllers are approximated with several zeros-and

poles, their performances are similar with high order IO-PID. But the tuning of

FO-PID is easier because two extra orders must be tuned in FO-PID instead of
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determining places of several zeros-poles in high order IO-PID controllers.

Among several constraints, iso-damping behaviour (constraint (32)) has at-

tracted a lot of attention from researchers in tuning FO controllers. It is reported

that FO-PID controllers are more robust against plant uncertainties than IO-

PID ones [10, 49, 43, 104]. It is asserted that the third generation of CRONE

is one of the most appropriate solutions when uncertainties of a plant are more

general than just gain-like perturbations [24, 56, 23]. Hence, from robustness

viewpoint, FO controllers are more effective in comparison with IO ones.

Furthermore, some researchers believe that it is possible to consider the

energy efficiency constraint for tuning FO-PID controllers [105, 106, 107]. As

a result, from the energy perspective, FO-PID can outperform classical IO-

PID controllers; for instance, using FO-PID decreases averagely 20% power

consumption of a DC motor [105]. Another example, it is showed that using FO-

PID controllers for a magnetic levitation system leads to a better fuel efficiency

in comparison with classical IO-PID controllers [106].

In addition, FO controllers can properly compensate disturbances due to

undesired nonlinearities such as dead zone, backlash, hysteresis, and static dis-

tortion in the systems which results in increasing the precision of the systems

[108, 109, 110]. Moreover, some research manifests that using FO transfer func-

tions for describing the dynamic characteristics of some special plant is more

precise than IO ones [5, 7, 8, 6, 111]. Also, it is concluded that FO controllers

are more proper than IO controllers for FO plants [10, 103]. Therefore, for some

special plants, it is necessary to use FO calculus in both modelling and control.

It can be concluded that FO controllers have better performance than IO

ones and improve significantly the performance of systems. However, there are

two big barriers which confine the adoption of FO controllers in the industry.

Firstly, tuning of the FO controllers is more complex than IO ones. This prob-

lem is solved to some extent by present tuning methods and toolboxes which

are elaborated in Sections 4 and 6, respectively. Even though, based on the

knowledge of the author, there are few reports about tuning of FO controllers

for motion systems (high cross-over frequency is required). Secondly, realiza-
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tion of FO controllers need devices with high memory capacity because FO

controllers are approximated with high order transfer functions. Since there is

no direct method for realization of FO controllers, approximation methods must

be used for this purpose. In order to increase accuracy of the approximation

methods, the order of estimated functions must be increased which leads to a

high order controller. Although some researchers are trying to solve this prob-

lem, their methods need further efforts to be complete [91, 92]. It is hoped that

researchers can propose a direct method for realization of FO controllers using

some special materials such as Memristor and (LiN2H5SO4).

To wrap up, FO calculus advances the control area in many aspects. It can be

claimed that FO calculus facilitates modelling of complicated dynamic systems

such as distributed parameter systems, biomimetics materials, smart materials,

etc. [98, 6, 99, 112]. Moreover, it improves performance of both linear and

nonlinear controllers particularly from the robustness viewpoint. In addition,

it is claimed that FO calculus has potential to shape the phase and gain of the

frequency response independently and achieve the Bode ideal transfer function

[6]. However, nobody attempted to solve this significant problem. All in all, it

is predicted that overcoming mentioned barriers leads to substitution of IO-PID

controllers with FO ones in the near future.

8. Conclusion

FO controllers have attracted much attention from academia and industrial

associations. In this article, linear FO controllers are reviewed with the focus on

the frequency domain. In this respect, FO calculus including basic definitions

of FO derivative and integrator were introduced. Next, four well-known lin-

ear FO controllers which are TID controller, CRONE generations, FO lead/lag

compensators, and FO-PID controllers were commented and after that, their

representative tuning methods were elaborated. Although many simple tuning

methods for FO controllers were reported, most of them are useful for process

control problems (low bandwidth and high time delay systems) and motion
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control problems (high bandwidth systems) have not been considered much

in the literature yet. Then, continues and discrete approximation methods of

FO controllers and their analogue and digital implementation were explained.

Approximation methods lead to high order functions which makes the imple-

mentation of FO controllers to be more difficult than IO ones. Although much

of recent research resolved this problem to some extend, further investigations

are required. Then, some useful codes which facilitate using FO calculus in the

control field were presented. Finally, It is anticipated that IO-PID controllers

are replaced with FO ones in the near future by finding a direct method for im-

plementation of FO controllers. All in all, this review paper helps beginners to

get started rapidly and learn how to select, tune, approximate, and implement

FO-controllers.
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[49] D. Valério and J. S. da Costa, “Tuning of fractional PID controllers with

ziegler–nichols-type rules,” Signal Processing, vol. 86, no. 10, pp. 2771–

2784, 2006.

[50] F. Padula and A. Visioli, “Optimal tuning rules for proportional-integral-

derivative and fractional-order proportional-integral-derivative controllers

for integral and unstable processes,” IET Control Theory &amp; Applica-

tions, vol. 6, no. 6, pp. 776–786, 2012.

[51] F. Merrikh-Bayat, N. Mirebrahimi, and M. R. Khalili, “Discrete-time

fractional-order pid controller: Definition, tuning, digital realization and

some applications,” International Journal of Control, Automation and

Systems, vol. 13, no. 1, pp. 81–90, 2015.

[52] J. Cervera and A. Baños, “Automatic loop shaping in qft by using crone

structures,” IFAC Proceedings Volumes, vol. 39, no. 11, pp. 207–212, 2006.

[53] J. Sabatier, A. Oustaloup, A. G. Iturricha, and P. Lanusse, “Crone con-

trol: principles and extension to time-variant plants with asymptotically

constant coefficients,” Nonlinear Dynamics, vol. 29, no. 1-4, pp. 363–385,

2002.

[54] P. Lanusse, M. Lopes, J. Sabatier, and B. Feytout, “New optimization

criteria for the simplification of the design of third generation crone con-

trollers,” IFAC Proceedings Volumes, vol. 46, no. 1, pp. 355–360, 2013.

[55] A. Oustaloup, J. Sabatier, P. Lanusse, R. Malti, P. Melchior, X. Moreau,

and M. Moze, “An overview of the crone approach in system analysis,

modeling and identification, observation and control,” IFAC Proceedings

Volumes, vol. 41, no. 2, pp. 14 254–14 265, 2008.

[56] J. Sabatier, S. Poullain, P. Latteux, J. L. Thomas, and A. Oustaloup,

“Robust speed control of a low damped electromechanical system based

on crone control: application to a four mass experimental test bench,”

Nonlinear Dynamics, vol. 38, no. 1-4, pp. 383–400, 2004.

52



[57] J. Zhong and L. Li, “Tuning fractional-order PIλDµ controllers for a

solid-core magnetic bearing system,” IEEE transactions on control sys-

tems technology, vol. 23, no. 4, pp. 1648–1656, 2015.

[58] B. Saidi, M. Amairi, S. Najar, and M. Aoun, “Bode shaping-based de-

sign methods of a fractional order pid controller for uncertain systems,”

Nonlinear Dynamics, vol. 80, no. 4, pp. 1817–1838, 2015.

[59] Y. Chen, T. Bhaskaran, and D. Xue, “Practical tuning rule development

for fractional order proportional and integral controllers,” Journal of Com-

putational and Nonlinear Dynamics, vol. 3, no. 2, p. 021403, 2008.
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[70] I. Podlubny, I. Petraš, B. M. Vinagre, P. O’leary, and L. Dorčák, “Ana-
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