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Abstract

Many different rules for decision making have been introduced in the literature. We show
that a notion of generalized expected utility proposed in [Chu and Halpern 2003] is a universal
decision rule, in the sense that it can represent essentially all other decision rules.

1 Introduction

A great deal of effort has been devoted to studying decision making. A standard formalization
describes the choices a decision maker (DM) faces as acts, where an act is a function from states
to consequences. Many decision rules (that is, rules for choosing among acts, based on the tastes
and beliefs of the DM) have been proposed in the literature. Some are meant to describe how
“rational” agents should make decisions, while others aim at modeling how real agents actually
make decisions. Perhaps the best-known approach is that of maximizing expected utility (EU).
Normative arguments due to Savage [1954] suggest that rational agents should behave as if their
tastes are represented by a real-valued utility function on the consequences, their beliefs about the
likelihood of events (i.e., sets of states) are represented by a probability measure, and they are
maximizing the expected utility of acts with respect to this utility and probability.

Despite these normative arguments, it is well known that EU often does not describe how
people actually behave when they make decisions [Resnik 1987]; thus EU is of limited utility if we
want to model (and perhaps predict) how people will behave. As a result, many alternatives to
EU have been proposed in the literature (see, for example, [Gul 1991; Gilboa and Schmeidler 1989;
Giang and Shenoy 2001; Kahneman and Tversky 1979; Luce 2000; Quiggin 1993; Schmeidler 1989;
Tversky and Kahneman 1992; Yaari 1987]). Some of these rules involve representations of beliefs
by means other than a (single) probability measure; in some cases, beliefs and tastes are combined
in ways other than the standard way which produces expected utility; yet other cases, such as
Maximin and Minimax Regret [Resnik 1987], do not require a representation of beliefs at all.

In [Chu and Halpern 2003], we propose a general framework in which to study and compare
decision rules. The idea is to define a generalized notion of expected utility (GEU), where a DM’s

∗Work supported in part by NSF under grants IIS-0090145 and CTC-0208535 and by the DoD Multidisciplinary
University Research Initiative (MURI) program administered by ONR under grant N00014-01-1-0795. A preliminary
version of this paper appeared in Proceedings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI 2003), 2003.
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beliefs are represented by plausibility measures [Friedman and Halpern 1995] and the DM’s tastes
are represented by general (i.e., not necessarily real-valued) utility functions. We show there that
every preference relation on acts has a GEU representation. Here we show that GEU is universal in
a much stronger sense: we show that essentially all decision rules have GEU representations. The
notion of representing one decision rule using another seems to be novel. Intuitively, decision rules
are functions from tastes (and beliefs) to preference relations, so a representation of a decision rule
is a representation of a function, not a preference relation.

Roughly speaking, given two decision rules R1 and R2, an R1 representation of R2 is a function
τ that maps inputs of R2 to inputs of R1 that contain the same representation of tastes (and
beliefs) such that R1(τ(x)) = R2(x). Thus, τ models, in a precise sense, a user of R2 as a user
of R1, since τ preserves tastes (and beliefs). We show that a large collection of decision rules
have GEU representations and characterize the collection. Essentially, a decision rule has a GEU
representation iff it is uniform in a precise sense. It turns out that there are well-known decision
rules, such as maximizing Choquet expected utility (CEU) [Schmeidler 1989] that have no GEU
representations.1 This is because τ is not allowed to modify the representation of the tastes (and
beliefs). We then define a notion of ordinal representation, in which τ is allowed to modify the
representation of the tastes (and beliefs), and is required to preserve only the ordinal aspect of the
tastes (and beliefs). We show that almost all decision rules, including CEU, have ordinal GEU
representations.

It is important to distinguish the result of [Chu and Halpern 2003], which shows that every
preference relation can be represented by GEU, from the results of this paper, which show that
many decision rules can be represented by GEU, and almost all decision rules can be ordinally
represented by GEU. Representing a preference relation is not the same as representing a decision
rule. Recall that a decision rule is a function from tastes (and possibly beliefs) to preference
relations on alternatives. Decision rule R represents a preference relation � if there are some tastes
and beliefs such that, with these as input, R returns �. On the other hand, R1 represents R2

if, roughly speaking, for all possible inputs of tastes (and beliefs), R1 and R2 return the samqe
preferencerelation. That is, R1 and R2 act essentially the same way as functions.

There seems to be no prior work in the literature that considers how one decision rule can
represent another. Perhaps the closest results to our own are those of Lehmann [2001]. He pro-
poses a “unified general theory of decision” that contains both quantitative and qualitative decision
theories. He considers a particular decision rule he calls Expected Qualitative Utility Maximization,
which allows utilities to be nonstandard real numbers; he defines a certain preorder on the non-
standard reals and makes decisions based on maximizing expected utility (with respect to that
preorder). That his framework has EU as a special case is immediate, since for the standard reals,
his preorder reduces to the standard order on the reals. He argues informally that Maximin is a
special case of his approach, so that his approach can capture aspects of more qualitative decision
making as well. It is easy to see that Lehmann’s approach is a special case of GEU; his rule is
clearly not universal in our sense.

The rest of this paper is organized as follows. We cover some basic definitions in Section 2:
expectation domains, decision problems, GEU, and decision rules (some of this material is taken
from [Chu and Halpern 2003]). We show that GEU can simulate any decision rule in Section 3,
using Savage’s act framework. In Section 4, we show how these results can be applied to the
lottery framework originally introduced by von Neumann and Morgenstern [1947] and Anscombe
and Aumann’s [1963] horse lotteries. We conclude in Section 5 with some discussion of these results.

1The CEU decision rule is the appropriate one to use if belief is represented by a Dempster-Shafer belief function;
see Section 2.4 for more discussion.
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Proofs are deferred to the appendix.

2 Preliminaries

To make this paper self-contained, much of the material in the first three subsections of this section
is taken (almost verbatim) from [Chu and Halpern 2003].

2.1 Plausibility, Utility, and Expectation Domains

Since one of the goals of this paper is to provide a general framework for all of decision theory,
we want to represent the tastes and beliefs of the DMs in as general a framework as possible. To
this end, we use plausibility measures to represent the beliefs of the DMs and (generalized) utility
functions to represent their tastes.

A plausibility domain is a set P , partially ordered by �P (so �P is a reflexive, antisymmetric,
and transitive relation), with two special elements ⊥P and ⊤P , such that (We often omit the
subscript P in ⊥P and ⊤P when it is clear from context.) ⊥P �P x �P ⊤P for all x ∈ P . A
function Pl : 2S → P is a plausibility measure iff

Pl1. Pl(∅) = ⊥,

Pl2. Pl(S) = ⊤, and

Pl3. if X ⊆ Y then Pl(X) � Pl(Y ).

As pointed out in [Friedman and Halpern 1995], plausibility measures generalize, not only prob-
ability, but a host of other representations of uncertainty as well. A utility domain is a set U
endowed with a reflexive binary relation -U . Intuitively, elements of U represent the strength of
likes and dislikes of the DM while elements of P represent the strength of her beliefs.

Once we have plausibility and utility, we want to combine them to form expected utility. To
do this, we introduce expectation domains, which have utility domains, plausibility domains, and
operators ⊕ (the analogue of +) and ⊗ (the analogue of ×).2 More formally, an expectation domain
is a tuple E = (U,P, V,⊗,⊕), where (U,-U ) is a utility domain, (P,�P ) is a plausibility domain,
(V,-V ) is a valuation domain (where -V is a reflexive binary relation), ⊗ : P × U → V , and
⊕ : V × V → V . We have four requirements on expectation domains:

E1. (x⊕ y)⊕ z = x⊕ (y ⊕ z);

E2. x⊕ y = y ⊕ x;

E3. ⊤⊗ x = x;

E4. (U,-U ) is a substructure of (V,-V ).

E1 and E2 say that ⊕ is associative and commutative. E3 says that ⊤ is the left-identity of ⊗ and
E4 ensures that the expectation domain respects the relation on utility values.

The standard expectation domain, which we denote E, is (R, [0, 1],R,+,×), where the ordering
on each domain is the standard order on the reals.

2We sometimes use × to denote Cartesian product; the context will always make it clear whether this is the case.
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2.2 Decision Situations and Decision Problems

A decision situation describes the objective part of the circumstance that the DM faces (i.e., the
part that is independent of the tastes and beliefs of the DM). Formally, a decision situation is a
tuple A = (A,S,C), where

• S is the set of states of the world,

• C is the set of consequences, and

• A is a set of acts (i.e., a set of functions from S to C).

An act a is simple iff its range is finite. That is, a is simple if it has only finitely many consequences.
Many works in the literature focus on simple acts (e.g., [Fishburn 1987]). We assume in this paper
that A contains only simple acts; this means that we can define (generalized) expectation using
finite sums, so we do not have to introduce infinite series or integration for arbitrary expectation
domains. Note that all acts are guaranteed to be simple if either S or C is finite, although we do
not assume that here.

A decision problem is essentially a decision situation together with information about the tastes
(and beliefs) of the DM; that is, a decision problem is a decision situation together with the sub-
jective part of the circumstance that faces the DM. Formally, a nonplausibilistic decision problem
is a tuple (A, U,u), where

• A = (A,S,C) is a decision situation,

• U is a utility domain, and

• u : C → U is a utility function.

A plausibilistic decision problem is a tuple (A, E,u,Pl), where

• A = (A,S,C) is a decision situation,

• E = (U,P, V,⊗,⊕) is an expectation domain,

• u : C → U is a utility function, and

• Pl : 2S → P is a plausibility measure.

We could have let a plausibilistic decision problem be simply a nonplausibilistic decision prob-
lem together with a plausibility domain and a plausibility measure, without including the other
components of expectation domains. However, this turns out to complicate the presentation (see
below).

We say that D is standard iff its utility domain is R (and, if D is plausibilistic, its plausibility
measure is a probability measure and its expectation domain is E).

2.3 Expected Utility

Let D be a decision problem with S as the set of states, U as the utility domain, and u as the utility
function. Each act a of D induces a utility random variable ua : S → U as follows: ua(s) = u(a(s)).
If in addition D is plausibilistic with P as the plausibility domain and Pl as the plausibility measure,
then each a also induces a utility lottery ℓPl,ua : ran(ua) → P as follows: ℓPl,ua (u) = Pl(u−1

a (u)).

Intuitively, ℓPl,ua (u) is the likelihood of getting utility u when performing act a. If D is in fact
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standard (so E = E and Pl is a probability measure Pr), we can identify the expected utility of act
a with the expected value of ua with respect to Pr, computed in the standard way:

EPr(ua) =
∑

x∈ran(ua)

Pr(u−1
a (x)) × x. (2.1)

As we mentioned earlier, since acts are assumed to be simple, this sum is finite. We can generalize
(2.1) to an arbitrary expectation domain E = (U,P, V,⊗,⊕) by replacing +, ×, and Pr by ⊕, ⊗,
and Pl, respectively. This gives us

EPl,E(ua) =
⊕

x∈ran(ua)

Pl(u−1
a (x))⊗ x. (2.2)

We call (2.2) the generalized EU (GEU) of act a. Clearly (2.1) is a special case of (2.2).

2.4 Decision Rules

Intuitively, a decision rule tells the DM what to do when facing a decision problem in order to
get a preference relation on acts—e.g., compare the expected utility of acts. Just as we have
nonplausibilistic decision problems and plausibilistic decision problems, we have nonplausibilistic
decision rules and plausibilistic decision rules. As the name suggests, (non)plausibilistic decision
rules are defined on (non)plausibilistic decision problems.

We do not require decision rules to be defined on all decision problems. For example, (standard)
EU is defined only on standard plausibilistic decision problems. More formally, a (non)plausibilistic
decision rule R is a function whose domain, denoted dom(R), is a set of (non)plausibilistic decision
problems, and whose range, denoted ran(R), is a set of preference relations on acts. If D ∈ dom(R)
and a1 and a2 are acts in D, then we write

a1 -R(D) a2 iff (a1, a2) ∈ R(D).

Here are a few examples of decision rules:

• GEU is a plausibilistic decision rule whose domain consists of all plausibilistic decision prob-
lems. Given a plausibilistic decision problem D = (A, E,u,Pl), where E = (U,P, V,⊕,⊗),
we have

a1 -GEU(D) a2 iff EPl,E(ua1) -V EPl,E(ua2)

for all acts a1, a2 in A. Note that GEU would not be a decision rule according to this definition
if plausibilistic decision problems contained only a utility function and a plausibility measure,
and did not include the other components of expectation domains.

• Of course, standard EU is a decision rule (whose domain consists of all standard plausibilistic
decision problems).

• Maximin is a nonplausibilistic decision rule that orders acts according to their worst-case
consequence. It is a conservative rule; the “best” act according to Maximin is the one with the
best worst-case consequence. Intuitively, Maximin views Nature as an adversary that always
pick a state that realizes the worst-case consequence, no matter what act the DM chooses.
The domain of (standard) Maximin consists of nonplausibilistic decision problems with real-
valued utilities. Given an act a and a real-valued utility function u, let wu(a) = mins∈S ua(s).
Then given a decision problem D = (A,R,u),

a1 -Maximin(D) a2 iff wu(a1) ≤ wu(a2).
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Clearly the domain of Maximin can be extended so that it includes all nonplausibilistic
decision problems where the range of the utility function is totally ordered.

• Minimax Regret (REG) is based on a different philosophy. It tries to hedge a DM’s bets, by
doing reasonably well no matter what the actual state is. It is also a nonplausibilistic rule.
As a first step to defining it, given a nonplausibilistic decision problem D = ((A,S,C),R,u),
let u : S → U be defined as u(s) = supa∈A ua(s); that is, u(s) is the least upper bound of
the utilities in state s. The regret of a in state s, denoted r(a, s), is u(s) − ua(s); note that
no act can do better than a by more than r(a, s) in state s. Let r(a) = sups∈S r(a, s). For
example, suppose that r(a) = 2 and the DM picks a. Suppose that the DM then learns that
the true state is s0 and is offered a chance to change her mind. No matter what act she picks,
the utility of the new act cannot be more than 2 higher then ua(s0). REG orders acts by
their regret and thus takes the “best” act to be the one that minimizes r(a). Intuitively, this
rule tries to minimize the regret that a DM would feel if she discovered what the situation
actually was: the “I wish I had done a2 instead of a1” feeling. Thus,

a1 -REG(D) a2 iff r(a1) ≥ r(a2).

Like Maximin, Nature is viewed as an adversary that would pick a state that maximizes
regret, no matter what act the DM chooses. It is well known that, in general, Maximin,
REG, and EU give different recommendations [Resnik 1987].

• The Maxmin Expected Utility rule (MMEU) [Gilboa and Schmeidler 1989] assumes that a
DM’s beliefs are represented by a set P of probability measures. Act a1 is preferred to a2
if the worst-case expected utility of a1 (taken over all the probability measures in P) is at
least as large as the worst-case expected utility of a2. Thus MMEU is, in a sense, a hybrid
of EU and Maximin. To view MMEU as a function on decision problems, we must first show
how to represent a set of probability measures as a single plausibility measure. We do this
using an approach due to Halpern [2001]. Let the plausibility domain P = [0, 1]P , that is, all
functions from P to [0, 1], ordered pointwise; in other words, p �P q iff p(Pr) ≤ q(Pr) for all
Pr ∈ P. Thus, in this domain, ⊥ is the constant function 0 and ⊤ is the constant function 1.
For each X ⊆ S, let fX ∈ P be the function that evaluates each probability measure in P at
X; that is, fX(Pr) = Pr(X) for all Pr ∈ P. Let PlP(X) = fX ; it is easy to verify that PlP is
a plausibility measure. We view PlP as a representation of the set P of probability measures;
clearly P can be recovered from PlP . The domain of MMEU consists of all plausibilistic
decision problems of the form D = ((A,S,C), (R, [0, 1]P , V,⊕,⊗),u,PlP), where P is a set of
probability measures on 2S , and

a1 -MMEU(D) a2 iff infPr∈P EPr(ua1) ≤ infPr∈P EPr(ua2).

Note that this definition ignores ⊕, ⊗, and V .

• A nonadditive probability [Schmeidler 1989] ν is just a function associating with each subset
of a set S a number between 0 and 1, where ν(∅) = 0, ν(S) = 1, and ν(X) ≤ ν(Y ) if
X ⊆ Y . (Roughly speaking, a nonadditive probability is just a plausibility measure whose
range is [0, 1], where ⊥ = 0 and ⊤ = 1.) Schmeidler [1989] used a notion of expected
utility for nonadditive probability that was defined by Choquet [1953]. (Choquet applied
his notion of expectation to what he called capacities; nonadditive probabilities generalize
capacities.) Given an act a, a real-valued utility function u such that ran(ua) = {u1, . . . , un}
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and u1 < · · · < un, and a nonadditive probability ν, define

Eν(ua) = u1 +
n∑

i=2

ν(Xi)× (ui − ui−1), (2.3)

where Xi = u−1
a ({ui, . . . , un}). It is easy to check (2.3) agrees with (2.1) if ν is a probability

measure. The Choquet expected utility (CEU) rule has as its domain decision problems of
the form D = (A,E,u, ν), and it orders acts as follows:

a1 -CEU(D) a2 iff Eν(ua1) ≤ Eν(ua2).

A special case of a nonadditive probability is a Dempster-Shafer belief function [Dempster 1967].
Belief functions also generalize probability. That is, every probability measure is a be-
lief function, but the converse is not necessarily true.3 Given a belief function Bel, it is
well-known that there exists a set PBel of probability measures such that for all X ⊆ S,
Bel(X) = infPr∈PBel

Pr(X) [Dempster 1967]. Moreover, if we use the CEU rule to compute
expected belief, then it follows from results of Schmeidler [1986] that

EBel(ua) = infPr∈PBel
EPr(ua). (2.4)

Let D = (A,E,u,Bel) and let DPBel
be the decision problem that results from D by replacing

Bel by PlPBel
, It is immediate from (2.4) that if DPBel

is the decision problem that results from
D by replacing Bel by PlPBel

, and replacing the plausibility domain [0, 1] in the expectation
domain by [0, 1]PBel , then a1 -CEU(D) a2 iff a1 -MMEU(DPBel

) a2.
4

3 Representing Decision Rules

Given a decision rule R and a preference relation -A on the set of acts A, an R representation of
-A is basically a decision problem D ∈ dom(R) such that R(D) = -A (and the set of acts in D is
A). In other words, an R representation of -A makes R relate acts in A the way -A relates them,
so we can model a DM whose preference relation is -A as a user of R. In [Chu and Halpern 2003]
we prove the following:

Theorem 3.1 Every preference relation -A has a GEU representation.

We then go on to show how constraints on GEU can be used to capture various postulates on
preference relations, such as Savage’s postulates [Savage 1954].

In this paper, we go in a somewhat different direction. We start by extending the notion of
representation to decision rules. Intuitively, we want an R1 representation of R2 to allow us to
model a user of R2 as a user of R1. We then investigate the extent to which GEU can represent
arbitrary decision rules. To make this precise, we need a few definitions.

Two (plausibilistic) decision problems D1 and D2 are congruent, denoted D1
∼= D2, iff they in-

volve the same decision situation, utility domain, and utility function (and, if both are plausibilistic,
the same plausibility domain and plausibility measure as well). Note that if D1

∼= D2, then they

3We assume that the reader is familiar with belief functions; see [Shafer 1976] for details. In any case, a knowledge
of belief functions is not necessary for understanding the results of this paper.

4It follows from results of Schmeidler [1986] that a similar result holds, not just for belief functions, but for a larger
set of nonadditive probability measures. Say that a probability measure Pr dominates a nonadditive probability ν

on S if Pr(X) ≥ ν(X) for all X ⊆ S. The result holds for all ν such that ν = inf{Pr : Pr dominates ν}.
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agree on the tastes (and beliefs) of the DM, so if they are both nonplausibilistic, then D1 = D2,
and if they are both plausibilistic, then they differ only in the V , -V , ⊕, and ⊗ components of
their expectation domains.

A decision rule transformation τ is a function that maps inputs of one decision rule R2 to
the inputs of another rule R1. A decision rule transformation τ is an R1 representation of R2 iff
dom(τ) = dom(R2) and for all D ∈ dom(R2),

• τ(D) ∼= D and

• R1(τ(D)) = R2(D).

Thus a DM that uses R2 to relate acts based on her tastes (and beliefs) behaves as if she is using
R1, since τ(D) ∼= D and R1(τ(D)) = R2(D).

Note that τ(D) = D is a GEU representation of EU. We now consider some less trivial examples.

Example 3.2 To see that Maximin has a GEU representation, let Emax = (R, {0, 1},R∪{∞},min,⊗),
let Plmax be the plausibility measure such that Plmax(X) is 0 if X = ∅ and 1 otherwise, and
define 1 ⊗ x = x and 0 ⊗ x = ∞. If D = (A,R,u), where A = (A,S,C), then it is easy
to check that EPlmax,Emax

(ua) = wu(a). Take τ(D) = (A, Emax,u,Plmax). Clearly τ(D) ∼= D:
the decision situation and utility function have not changed. Moreover, it is immediate that
GEU(τ(D)) = Maximin(D).

Example 3.3 To see that Minimax Regret (REG) has a GEU representation, for ease of exposition,
we take dom(REG) to consist of standard decision problems D = ((A,S,C),R,u) such that MD =
sups∈S u(s) < ∞. (If MD = ∞, given the restriction to simple acts, it is easy to show that all acts
have infinite regret.) Let Ereg = (R, [0, 1],R ∪ {∞},min,⊗), where

x⊗ y =

{
y − log(x) if x > 0 and
∞ if x = 0.

Note that ⊥ = 0 and ⊤ = 1. Clearly, min is associative and commutative, and ⊤⊗r = r−log(1) = r
for all r ∈ R. Thus, Ereg is an expectation domain.

For ∅ 6= X ⊆ S, define MX = sups∈X u(s). Note that MS = MD < ∞; also if X ⊆ Y , then
MX ≤ MY . Let PlD(∅) = 0 and PlD(X) = eMX−MS . It is easy to verify that PlD is a plausibility
measure. It is also easy to check that

EPlD,Ereg
(ua) = MD − r(a)

for all acts a ∈ A. Let τ(D) = (A, Ereg,u,PlD). Clearly, τ(D) ∼= D, since the decision situation
and utility function have not changed; furthermore, GEU(τ(D)) = REG(D), since higher expected
utility corresponds to lower regret.

Example 3.4 To see that MMEU has a GEU representation, let D ∈ dom(MMEU) such that
D = (A, (R, [0, 1]P , V̂ , ⊕̂, ⊗̂),u,PlP). Let EP = (R, [0, 1]P ,RP ,⊕,⊗), where ⊕ is pointwise function
addition, ⊗ is scalar multiplication, and

f -RP g iff infPr∈P f(Pr) ≤ infPr∈P g(Pr).

Note that we can identify R with the constant functions in R
P , so R can be viewed as a substructure

of RP . With these definitions, EP is an expectation domain. Let τ(D) = (A, EP ,u,PlP). It is
immediate from the definition of -RP that

a -GEU(τ(D)) b iff infPr∈P EPr(ua) ≤ infPr∈P EPr(ub).

8



Thus GEU(τ(D)) = MMEU(D); furthermore, it is clear that τ(D) ∼= D, since the decision situation,
utility function, and plausibility measure have not changed.

Although it can represent many decision rules, GEU cannot represent CEU. We can in fact
characterize the conditions under which a decision rule is representable by GEU.

There is a trivial condition that a decision rule must satisfy in order for it to have a GEU
representation. Intuitively, a decision rule R respects utility if R relates acts of constant utility
according to the relation between utility values. Formally, a decision rule R respects utility iff for
all D ∈ dom(R) with A as the set of acts, S as the set of states, U as the utility domain, and u as
the utility function, for all a1, a2 ∈ A, if uai(s) = ui for all states s ∈ S, then

a1 -R(D) a2 iff u1 -U u2. (3.5)

We say that R weakly respects utility iff (3.5) holds for all constant acts (but not necessarily for
all acts of constant utility). It is easy to see that GEU respects utility, since ⊤ ⊗ u = u for all
u ∈ U and (U,-U ) is a substructure of (V,-V ). Thus if R does not respect utility, it has no GEU
representation. While respecting utility is a necessary condition for a decision rule to have a GEU
representation, it is not sufficient. It is also necessary for the decision rule to treat acts that behave
in similar ways similarly.

Two acts a1, a2 in a decision problem D are indistinguishable, denoted a1 ∼D a2 iff either

• D is nonplausibilistic and ua1 = ua2 , or

• D is plausibilistic, and ℓPl,ua1 = ℓPl,ua2 ,

where u is the utility function of D and Pl is the plausibility measure of D. In the nonplausi-
bilistic case, two acts are indistinguishable if they induce the same utility random variable; in the
plausibilistic case, they are indistinguishable if they induce the same utility lottery.

A decision rule R is uniform if it respects indistinguishability. More formally, R is uniform iff
for all D ∈ dom(R) and a1, a2, b1, b2 acts of D such that ai ∼D bi,

a1 -R(D) a2 iff b1 -R(D) b2.

Intuitively, we can think of utility random variables and utility lotteries as descriptions of what
an act a does in terms of the tastes (and beliefs) of the DM. If R is uniform, we can view R as
relating the acts indirectly by relating their descriptions.

As the following theorem shows, all uniform decision rules that respects utility have GEU
representations.

Theorem 3.5 For all decision rules R, R has a GEU representation iff R is uniform and R
respects utility.

Proof: See the appendix.

Most of the decision rules we have discussed are uniform. However, CEU is not, as the following
example shows:

Example 3.6 Let D∗ = ((A,S,C),E,u,Bel), where

• A = {a1, a2}; S = {s1, s2, s3}; C = {1, 2, 3};

9



• u(j) = j, for j = 1, 2, 3;

• a1(sj) = j and a2(sj) = 4− j, for j = 1, 2, 3; and

• Bel is the belief function such that Bel(X) = 1 if {s1, s2} ⊆ X and Bel(X) = 0 otherwise.

Since u−1
ai

(j) is a singleton, Bel(u−1
ai

(j)) = 0 for i = 1, 2 and j = 1, 2, 3; thus a1 ∼D∗
a2. On the

other hand, by definition,

EBel(ua1) = 1 + Bel(X23)(2 − 1) + Bel(X3)(3− 2) = 1,

while
EBel(ua2) = 1 + Bel(X12)(2 − 1) + Bel(X1)(3− 2) = 2,

where Xij = {si, sj} and Xk = {sk}. It follows that CEU is not uniform, and so has no GEU
representation.

The reader may have noticed an incongruity here. Example 3.4 shows that MMEU has a
GEU representation; moreover, as shown earlier, MMEU produces essentially the same order on
acts as CEU restricted to belief functions. However, CEU has no GEU representation. There is
no contradiction to Theorem 3.5 here: There is no decision problem D such that D ∼= D∗ (from
Example 3.6) and GEU(D) = CEU(D∗). However, GEU((A,S,C), EPBel

,u,PlPBel
) = CEU(D∗).

Of course, ((A,S,C), EPBel
,u,PlPBel

) 6∼= D∗; PlPBel
and Bel are not the same, and they in fact

represent related but different beliefs. (It is easy to show that sets are partially preordered by
PlPBel

but totally preordered by Bel.)
The key reason that GEU cannot represent nonuniform decision rules is because they do not

respect the indistinguishability relations imposed by the utility function (and the plausibility mea-
sure). Recall that we require that τ(D) ∼= D because we want a user of one decision rules to appear
as if she were using another, without pretending that she has different tastes (and beliefs). So we
want τ to preserve the tastes (and beliefs) of its input.

There is a long-standing debate in the decision-theory literature as to whether preferences should
be regarded as ordinal or cardinal. If they are ordinal, then all that matters is their order. If they
are cardinal, then it should be meaningful to talk about the differences between preferences—
that is, how much more a DM prefers one consequence to another. Similarly, if representations of
likelihood are taken to be ordinal, then all that matters is whether one event is more likely than
another. As we show below, if we require only that τ(D) and D describe the same ordinal tastes
(and beliefs), then we can in fact express almost all decision rules, including CEU, in terms of GEU.

Two utility functions u1 : C → U1 and u2 : C → U2 represent the same ordinal tastes if for all
c1, c2 ∈ C,

u1(c1) -U1
u1(c2) iff u2(c1) -U2

u2(c2).

Similarly, two plausibility measures Pl1 : 2S → P1 and Pl2 : 2S → P2 represent the same ordinal
beliefs iff for all X,Y ⊆ S,

Pl1(X) �P1
Pl1(Y ) iff Pl2(X) �P2

Pl2(Y ).

Finally, two decision problems D1 and D2 are similar, denoted D1 ≃ D2, iff they involve the same
decision situations, their utility functions represent the same ordinal tastes, and their plausibility
measures represent the same ordinal beliefs. Note that D1

∼= D2 implies D1 ≃ D2, but the converse
is false in general. A decision rule transformation τ is an ordinal R1 representation of R2 iff
dom(τ) = dom(R2) and for all D ∈ dom(R2),
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• τ(D) ≃ D and

• R1(τ(D)) = R2(D).

We want to show next that almost all decision rules have an ordinal GEU representation.
Doing so involves one more subtlety. Up to now, we have assumed that plausibility domains are
partially ordered. This implies that two plausibility measures that represent the same ordinal beliefs
necessarily induce the same indistinguishability relation (because of antisymmetry). Thus, in order
to distinguish sets that have equivalent plausibilities when computing expected utility using ⊗ and
⊗, we need to allow plausibility domains to be partially preordered. So, for this result, we assume
that -P is a reflexive and transitive relation that is not necessarily antisymmetric (i.e., we could
have that p1 -P p2 and p2 -P p1 but p1 6= p2).

Theorem 3.7 A decision rule R has an ordinal GEU representation iff R weakly respects utility.

Proof: See the appendix.

Theorem 3.7 shows that GEU can ordinally represent essentially all decision rules. Thus, there
is a sense in which GEU can be viewed as a universal decision rule.

4 Related Frameworks

Note that so far we have worked exclusively in the act framework used by Savage [1954]. There are
some other well-known frameworks in the decision-theory literature; perhaps the two best-known
such frameworks are the lottery framework introduced by von Neumann and Morgenstern [1947],
and Anscombe and Aumann’s [1963] horse lotteries, which can be viewed as a combination of
the act and lottery frameworks. Since our goal is to provide a single framework for almost all of
decision theory, in this section we briefly discuss how the act framework can model these, in much
the same way as Turing machines can model other notions of computation. We begin with the
lottery framework.

4.1 The Lottery Framework

As the name suggests, the alternatives in the lottery framework are lotteries, or probability distri-
butions over consequences. Standard lotteries are functions of the form ℓ : C → [0, 1] such that∑

c∈C ℓ(c) = 1. A standard lottery is simple iff {c | ℓ(c) > 0}, which is typically called the support
of ℓ and is denoted supp(ℓ), is finite. Note that the support of a standard lottery is nonempty.

In general, we want to allow assignments of plausibilities to sets of consequences. Given a set of
consequences C and a plausibility domain P , a lottery is a plausibility measure ℓ : 2Q → P , where
Q is a nonempty subset of C. We denote Q as supp(ℓ). In the standard case, we take Q to consist
of those consequences c such that ℓ(c) > 0, so

∑
c∈supp(ℓ) ℓ(c) = 1. We say that ℓ is degenerate if

|supp(ℓ)| = 1, and we say that a lottery ℓ is simple iff supp(ℓ) is finite. Just as we focus on simple
acts, we focus on simple lotteries (as did von Neumann and Morgenstern [1947]). Though lotteries
are functions that assign plausibility values to consequences, we follow a common convention in the
literature that lists plausibilities first (e.g., see [Sarin and Wakker 1997; Wakker and Zank 2002]).
So {(p1, c1), . . . , (pn, cn)} denotes the lottery ℓ such that supp(ℓ) = {c1, . . . , cn} and ℓ(ci) = pi.
(Note that this is the reverse of the usual notation for functions.)

Many notions we defined in the act framework have counterparts in the lottery framework. For
example, the counterpart of a decision situation is a lottery decision situation. Formally, a lottery
decision situation is a tuple L = (L,C, P ), where
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• C is a set of consequences,

• P is a plausibility domain, and

• L is a (nonempty) set of simple lotteries over C.

Note that a lottery decision situation does not contain any information about the tastes of the
DM. A lottery decision problem is essentially a lottery decision situation together with information
about the tastes of the DM. Formally, a lottery decision problem is a tuple (L, E,u), where

• L = (L,C, P ) is a lottery decision situation,

• E = (U,P, V,⊕,⊗) is an expectation domain, and

• u : C → U is a utility function.

Note that the plausibility domain of the expectation domain is the same as the plausibility domain
of the lottery decision situation.

A standard lottery decision problem is a lottery decision problem with the standard expectation
domain; these are the ones that are studied extensively in the literature. Perhaps the best-known
lottery decision rule is von Neumann and Morgenstern’s expected utility rule: choosing the lottery
that maximizes expected utility—that is, choosing the lottery ℓ that maximizes

Eℓ(u) =
∑

c∈supp(ℓ)

ℓ(c)× u(c). (4.6)

As in the act framework, we can generalize (4.6) to arbitrary expectation domains:

Eℓ,E(u) =
⊕

c∈supp(ℓ)

ℓ(c)⊗ u(c). (4.7)

Some other well known lottery decision rules include disappointment aversion (DA) [Gul 1991],
rank-dependent expected utility (RDEU) [Quiggin 1993; Yaari 1987], and cumulative prospect the-
ory (CPT) [Wakker and Zank 2002].

Our goal in this section is to show that the act framework can model the lottery framework,
so that it suffices for the rest of the paper to focus only on the act framework. To facilitate this,
we introduce one other notion in the act framework. A plausibilistic decision situation is a tuple
(A, P,Pl), where

• A = (A,S,C) is a decision situation,

• P is a plausibility domain, and

• Pl : 2S → P is a plausibility measure.

Like a lottery decision situation, a plausibilistic decision situation describes the beliefs but not the
tastes of the DM. The difference is, of course, that the belief of the DM is described by a single
plausibility measure as opposed to a set of lotteries. Note that a plausibilistic decision problem is
essentially a plausibilistic decision situation together with a utility function.

Given a plausibilistic decision situation S = ((A,S,C), P,Pl), each a ∈ A induces a lottery ℓPla
as follows: supp(ℓPla ) = ran(a) and ℓPla (Y ) = Pl(a−1(Y )) for Y ⊆ ran(a). Note that if a is simple,
then ℓPla is also simple. We say that a plausibilistic decision situation S induces the lottery decision
situation LS = ({ℓPla | a ∈ A}, C, P ).

12



This mapping from plausibilistic decision situations to lottery decision situations is clearly not
1-1. It is possible to have S0 6= S1 but LS0

= LS1
, since different acts could induce the same

lotteries (in fact, S0 and S1 may even involve different sets of states). However, as the following
result shows, the mapping from plausibilistic decision situations to lottery decision situations is
onto.

Proposition 4.1 Every lottery decision situation L = (L,C, P ) is induced by some plausibilistic
decision situation SL.

Proof: See the appendix.

Corollary 4.2 Every preference relation in the lottery framework can be modeled by a preference
relation in the act framework.

Proof: Let S = ((A,S,C), P,Pl) be a plausibilistic decision situation and let L = (L,C, P ) be the
lottery decision situation it induces. Note that every preference relation -L on the lotteries in L
induces a preference relation -A on the acts in A as follows:

a1 -A a2 iff ℓPla1 -L ℓPla2 .

In other words, -A relates acts by the way -L relates the lotteries they induce. Since every lottery
decision situation is induced by some plausibilistic decision situation (by Proposition 4.1), every
preference relation in the lottery framework can be modeled in the act framework.

Note that an arbitrary preference relation -A on the acts in A does not correspond to a pref-
erence relation -L on the lotteries in L in general, since -A could treat acts that induce the same
lottery differently. In order for -A to correspond to some -L, it must be lottery-uniform, in the
sense that, for all acts a1, a2, b, if ℓ

Pl
a1

= ℓPla2 , then

a1 -A b iff a2 -A b and b -A a1 iff b -A a2.

It is not hard to see that lottery-uniform preference relations on acts are exactly those induced by
preference relations on the lotteries. It is also not hard to see that not all preference relations on acts
are lottery-uniform. So, some preferences that can be described by relating acts in a plausibilistic
decision situation S cannot be described by relating the lotteries in the lottery decision situation
S induces.

Turning now to decision problems and decision rules, we say that a plausibilistic decision prob-
lem DA = (A, E,u,Pl) induces the lottery decision problem DL = (L, E,u), where L is the lottery
decision situation induced by the the plausibilistic decision situation of DA, (A, P,Pl). Since every
plausibilistic decision problem induces a unique lottery decision problem, every lottery decision rule
RL induces a plausibilistic decision rule RA as follows:

a1 -RA(DA) a2 iff ℓPla1 -RL(DL) ℓ
Pl
a2
,

where DL is the lottery decision problem induced by DA. Basically, RA relates acts by relating the
lotteries they induce using RL. The domain of RA is {DA | DA induces some DL ∈ dom(RL)}.
Thus every lottery decision rule can be modeled by a plausibilistic decision rule.

Using these observations, it is not hard to show that most of our results in previous sections also
hold in the lottery framework. For example, it is easy to show that GEU when applied to lotteries
yields a lottery decision rule that can represent all preference relation on lotteries and almost all
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lottery decision rules. (More precisely, lottery GEU can represent all uniform lottery decision rules,
where the notion of uniformity is completely analogous to the one presented in Section 3.) However,
as we have just seen, all lottery decision rules can be modeled by plausibilistic decision rules. Thus
it suffices, from a technical perspective, to focus exclusively on the act framework, as we have done
in this paper, when considering the foundations of decision theory.

4.2 The Anscombe-Aumann Framework

Anscombe and Aumann [1963] define a framework that is essentially a combination of the act
framework and the lottery framework: basically, it takes the consequences in the act framework
and replaces them by lotteries, so acts (also known as horse lotteries) map states to lotteries (also
known as roulette lotteries) The probabilities that the roulette lotteries assign to consequences are
typically regarded as “objective” (in the sense that they are determined by the properties of the
devices, such as fair coins or unloaded dice, used to generate them), while the probabilities (if any)
associated with the sets of states are regarded, as in the act framework, as “subjective” (in the
sense that these describe the beliefs of the DM).

We can formalize the AA framework in much the same way we formalized the act and lottery
frameworks. As usual, we begin with decision situations. An AA decision situation is a tuple
H = (H,S,L), where

• S is a set of states of the world,

• L = (L,C, P ) is a lottery decision situation, and

• H is a nonempty set of horse lotteries (i.e., a nonempty subset of LS).

A nonplausibilistic AA decision problem is a tuple (H, Ê,u), where

• H = (H,S, (L,C, P̂ )) is an AA decision situation,

• Ê = (Û , P̂ , V̂ , ⊕̂, ⊗̂) is an expectation domain, and

• u : C → Û is a utility function.

Finally, a plausibilistic AA decision problem is a tuple (H, Ê,u, E,Pl), where

• H = (H,S, (L,C, P̂ )) is an AA decision situation,

• Ê = (Û , P̂ , V̂ , ⊕̂, ⊗̂) is an expectation domain (for roulette lotteries),

• u : C → Û is a utility function,

• E = (V̂ , P, V,⊕,⊗) is an expectation domain (for horse lotteries), and

• Pl : 2S → P is a plausibility measure.

We need two expectation domains, since in general the objective uncertainties and subjective un-
certainties could be expressed in different languages. Note that the utility domain of E is the
valuation domain of Ê, so the expected utility values with respect to the roulette lotteries are the
utility values for E. While the formalization above is somewhat involved, in the standard setting,
Ê = E, and for the plausibilistic case, E = E as well.

In the standard setting, it is quite common to have the utility function map roulette lotteries,
rather than just the (deterministic) consequences, to real numbers—that is, the domain of u is
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L rather than C; see, for example, [Anscombe and Aumann 1963; Gilboa and Schmeidler 1989;
Schmeidler 1989]. This is because a utility function u defined on C can easily be extended to L by
taking u(ℓ) = Eℓ(u). We can similarly extend u to L in our framework, by taking u(ℓ) = E

ℓ,Ê
(u).

Note that if ℓ is degenerate with supp(ℓ) = {c}, then

u(ℓ) = E
ℓ,Ê

(u) = ⊤
P̂
⊗̂u(c) = u(c),

as one would expect.
Once we extend u to L and treat lotteries as consequences, we can essentially view the AA

framework as a special case of the act framework. As usual, a horse lottery h induces the random
variable uh : S → V̂ as follows: uh(s) = u(h(s)). The expected utility of a horse lottery h is then

EPl,E(uh) =
⊕

x∈ran(uh)

Pl(u−1
h (x))⊗ x.

Thus, again, for the purpose of studying the foundations of decision theory, it suffices to focus on
the act framework, since all decision rules in the AA framework can also be modeled by decision
rules in the act framework.

5 Discussion

We have shown that (almost) all decision rules can be represented by GEU. So what does this
result buy us? For one thing, decision rules are typically viewed as compact representations of
how a DM makes decisions. Our results suggest a uniform way of representing decision rules that,
in many cases of interest, will be compact. (How compact the representation is depends on how
compactly we can describe ⊕, ⊗, and -V . While natural choices for these functions and relations
typically do have a compact description, this is clearly not the case for all possible choices.) Our
results also suggest a general approach for constructing decision rules. This may be particularly
relevant as we search for rules that are both adequate descriptively, in terms of describing what
people actually do, and computationally tractable.
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A Proofs

Theorem 3.5 For all decision rules R, R has a GEU representation iff R is uniform and R
respects utility.

Proof: We first show that if R has a GEU representation, then it is uniform and respects utility.
So, suppose that τ is a GEU representation of R and let D0 ∈ dom(R) be arbitrary. Suppose that
a1, a2, b1, b2 are acts of D0 such that ai ∼D0

bi. It is easy to check that if D = (A, E,u,Pl) ∼= D0,
then EPl,E(uai) = EPl,E(ubi). Thus for all plausibilistic D, if D ∼= D0, then

a1 -GEU(D) a2 iff b1 -GEU(D) b2.

Since τ is a GEU representation of R, τ(D0) ∼= D0 and R(D0) = GEU(τ(D0)). It follows then that

a1 -R(D0) a2 iff b1 -R(D0) b2;
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thus R is uniform.
Now suppose that a1 and a2 are two acts of constant utility, say u1 and u2, respectively, of D0.

Since τ(D0) ∼= D0, ai is still an act of constant utility ui in τ(D0). Note that

a1 -R(D0) a2 iff a1 -GEU(τ(D0)) a2 iff u1 -U u2,

where U is the utility domain of D0, since τ is a GEU representation of R. Thus R respects utility.
We now show that, if R is uniform and respects utility, then it has a GEU representation. We

begin with the nonplausibilistic case.
Suppose R is a uniform nonplausibilistic decision rule that respects utility. Fix some decision

problem D = ((A,S,C), U,u) ∈ dom(R). Let E = (U,P, V,⊕,⊗), where P = (2S ,⊆), V = 2S×U ,
x⊕ y = x ∪ y, and X ⊗ u = X × {u}. Now define -V as follows: x -V y iff

1. x = y, or

2. x = S × {u} and y = S × {v} for some u, v ∈ U such that u -U v, or

3. x = ua and y = ub for some a, b ∈ A such that a -R(D) b.

We need to check that -V is well defined. To see that 3 does not introduce any inconsistencies by
itself, we need to show that whenever we have a1, b1, a2, b2 ∈ A such that ua1 = ua2 and ub1 = ub2 ,
then a1 -R(D) b1 iff a2 -R(D) b2. Here is where we use the assumption that R is uniform. Note that
ua1 = ua2 and ub1 = ub2 implies that a1 ∼D a2 and b1 ∼D b2. Thus a1 -R(D) b1 iff a2 -R(D) b2,
since R is uniform. Note that 2 is essentially relating constant utility random variables; since R
respects utility, 2 and 3 are consistent with one another. Thus -V is well defined. We identify
u ∈ U with S × {u}, so we have ⊤⊗ u = u, and it is clear that ⊕ is associative and commutative.
Given 2, it is easy to see that (U,-U ) is a substructure of (V,-V ). Thus, E is an expectation
domain.

Let Pl(X) = X and τ(D) = ((A,S,C), E,u,Pl). It is clear that τ(D) ∼= D, since the decision
situation and utility function have not changed. Given the definitions of EPl,E(ua), E, Pl, and u,
we have

EPl,E(ua) =
⊕

u∈ran(ua)

Pl(u−1
a (u)) ⊗ u

=
⋃

u∈ran(ua)

u−1
a (u)× {u}

= {(s, u) | u ∈ ran(ua) and s ∈ u−1
a (u)}

= ua.

Given the definition of -V and the fact that EPl,E(ua) = ua for all a ∈ A, it is immediate that
GEU(τ(D)) = R(D). Thus τ is a GEU representation of R.

The argument for the plausibilistic case is completely analogous, so we give a sketch here and
leave the details to the reader. The key difference is that, instead of having P = (2S ,⊆) and
Pl(X) = X, the plausibility domain and plausibility measure are already givens. So, instead of
making EPl,E(ua) = ua (which is not possible in general, since we have to use the given plausibility

measure), we make EPl,E(ua) = ℓPl,ua ; that is, EPl,E(ua) is the utility lottery induced by a instead
of the utility random variable induced by a.

Suppose R is a uniform plausibilistic decision rule that respects utility. Fix some plausibilistic
decision problem D = ((A,S,C), E1,u,Pl) ∈ dom(R). Let E2 = (U1, P1, V,⊕,⊗), where U1 is
the utility domain of E1, P1 is the plausibility domain of E1, V = 2P1×U1 , x ⊕ y = x ∪ y, and
p⊗ u = {(p, u)}. Define -V as follows: x -V y iff
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1. x = y, or

2. x = {(⊤, u)} and y = {(⊤, v)} for some u, v ∈ U1 such that u -U1
v, or

3. x = ℓPl,ua and y = ℓPl,ub for some a, b ∈ A such that a -R(D) b.

Again, we need to check that -V is well defined. As in the nonplausibilistic case, it is easy to
check that 3 does not introduce inconsistencies by itself, since R is uniform. Also, since R respects
utility, 2 and 3 are consistent with one another. We identify u ∈ U with {(⊤, u)}, so ⊤ ⊗ u = u;
given 2, it is easy to see that (U,-U ) is a substructure of (V,-V ). Again, ⊕ is associative and
commutative. Thus E2 is an expectation domain.

Let τ(D) = (A, E2,u,Pl). Obviously, τ(D) ∼= D, since the decision situation, utility function,

and plausibility measure have not changed. It is easy to verify that EPl,E2
(ua) = ℓPl,ua for all

a ∈ A. Thus it is immediate that GEU(τ(D)) = R(D), given the definition of -V , so τ is a GEU
representation of R.

Theorem 3.7 A decision rule R has an ordinal GEU representation iff R weakly respects utility.

Proof: We first show that if R has an ordinal GEU representation, then it is weakly respects
utility. So, Suppose that τ is an ordinal GEU representation of R. Let D1 ∈ dom(R) be arbitrary.
Suppose that ac1 ac2 are constant acts in D1 (where aci(s) = ci for all states s). We need to show
that

ac1 -R(D1) ac2 iff u1(c1) -U1
u1(c2),

where u1 is the utility function of D1 and U1 is the utility domain of D1. Let D2 = τ(D1); since τ
is an ordinal GEU representation of R, D2 ≃ D1 and GEU(D2) = R(D1). So

ac1 -R(D1) ac2 iff ac1 -GEU(D2) ac2 iff u2(c1) -U2
u2(c2),

where u2 is the utility function of D2 and U2 is the utility domain of D2. Since D2 ≃ D1,

u2(c1) -U2
u2(c2) iff u1(c1) -U1

u1(c2),

and we see that R weakly respects utility.
Now we show that if R weakly respects utility, then it has an ordinal GEU representation. As

in Theorem 3.5, there are two cases, plausibilistic and nonplausibilistic. They are almost identical,
so we do just the plausibilistic case here.

Suppose that R is a plausibilistic decision rule that weakly respects utility. Fix a plausibilistic
decision problem D = ((A,S,C), E1,u1,Pl1) ∈ dom(R). Let U1 and P1 be the utility domain and
plausibility domain of E1, respectively. Let E2 = (U2, P2, V,⊕,⊗) be defined as follows (note that
× denotes Cartesian product in this proof):

• U2 = (U1 × C,-U2
), where (u1, c1) -U2

(u2, c2) iff u1 -U1
u2.

• P2 = (P1 × 2S ,-P2
), where (p1,X1) -P2

(p2,X2) iff p1 -P1
p2. (Note that -P2

is a partial
preorder, although it is not a partial order.)

• V = (2S×U2 ,-V ), where x -V y iff x = y or

1. x = S × {(u1, c1)}, y = S × {(u2, c2)}, and (u1, c1) -U2
(u2, c2), or

2. x = {(s, (u1(a(s)), a(s))) | s ∈ S}, y = {(s, (u1(b(s)), b(s))) | s ∈ S}, and a -R(D) b, for
some a, b ∈ A.
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• (p,X) ⊗ (u, c) = X × {(u, c)}.

• x⊕ y = x ∪ y for all x, y ∈ V .

Note that (⊥P1
, ∅) -P2

(p,X) -P2
(⊤P1

, S), so we have ⊥P2
= (⊥P1

, ∅) and ⊤P2
= (⊤P1

, S); thus,
P2 is a plausibility domain. SinceR weakly respects utility, 1 and 2 are consistent with one another.
We identify (u, c) ∈ U2 with S × {(u, c)} in V ; with this identification, ⊤ ⊗ (u, c) = (u, c) for all
(u, c) ∈ U2 and, given 1 in the definition of -V , (U2,-U2

) is a substructure of (V,-V ). Furthermore,
⊕ is clearly associative and commutative, so E2 is indeed an expectation domain.

Now we need to define a utility function and a plausibility measure. Let u2(c) = (u1(c), c) for
all c ∈ C and let Pl2(X) = (Pl1(X),X) for all X ⊆ S. Note that

Pl2(X) -P2
Pl2(Y ) iff Pl1(X) -P1

Pl1(Y ). (1.8)

Thus Pl2 is a plausibility measure, since Pl1 is a plausibility measure. Also,

u2(c) -U2
u2(d) iff u1(c) -U1

u1(d). (1.9)

Let τ(D) = ((A,S,C), E2,u2,Pl2). Note that, by (1.8) and (1.9), τ(D) ≃ D; furthermore, it is easy
to check that EPl2,E2

((u2)a) = {(s, (u1(a(s)), a(s))) | s ∈ S}; so GEU(τ(D)) = R(D), given the
definition of -V . Thus τ is an ordinal GEU representation of R.

Proposition 4.1 Every lottery decision situation L = (L,C, P ) is induced by some plausibilistic
decision situation SL.

Proof: We first prove the proposition for the standard case. Suppose that L = (L,C, [0, 1]). Let
S = [0, 1). Suppose that ℓ ∈ L and supp(ℓ) = {cℓ1, . . . , c

ℓ
k}. Let aℓ be defined as follows: aℓ(s) = cℓk

for all s ∈ S such that
∑k−1

i=1 ℓ(cℓi) ≤ s <
∑k

i=1 ℓ(c
ℓ
i). Let SL = ((AL, S, C), [0, 1],Pr), where

• Pr is the uniform distribution on S and

• AL = {aℓ | ℓ ∈ L}.

It is easy to check that ℓPraℓ = ℓ, so SL induces L.
The construction is more complicated for general plausibility domains, since we must make sure

S is rich enough to allow us to use a single plausibility measure to induce all the lotteries. Given
a lottery decision situation L = (L,C, P ), let SL = {f | f ∈ CL and f(ℓ) ∈ supp(ℓ)}. Intuitively,
each state f assigns to each lottery ℓ some consequence in supp(ℓ). Let aℓ be defined by taking
aℓ(f) = f(ℓ). Now we need to specify a plausibility measure. The idea is to construct Pl so that
Pl(a−1

ℓ (X)) = ℓ(X). Clearly this guarantees that ℓPlaℓ(X) = ℓ(X) for all X ∈ 2supp(ℓ), so that aℓ
induces ℓ.

To make the definition of Pl more concise, let ϕ(ℓ, Y ) be the following statement: there exists
some nonempty X ⊆ supp(ℓ) such that a−1

ℓ (X) ⊆ Y . Given Y ⊆ SL, we define Pl(Y ) as follows:

1. If there does not exist ℓ ∈ L such that ϕ(ℓ, Y ), let Pl(Y ) = ⊥.

2. If there exists a unique ℓ ∈ L such that ϕ(ℓ, Y ), let Pl(Y ) = ℓ(Z), where

Z =
⋃

{X | X ⊆ supp(ℓ) and a−1
ℓ (X) ⊆ Y }.

3. If there exist two distinct ℓ1, ℓ2 ∈ L such that ϕ(ℓ1, Y ) and ϕ(ℓ2, Y ), let Pl(Y ) = ⊤.
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Note that for each Y ⊆ SL, exactly one of the three cases applies, so Pl is well defined.
To see that Pl is a plausibility measure, note that clearly Pl(SL) = ⊤ (since L 6= ∅) and

Pl(∅) = ⊥. Now suppose that Y1 ⊆ Y2. We have three cases:

• Case 1 applies to Y2. Then it must apply to Y1 as well, so Pl(Y1) = ⊥ � Pl(Y2).

• Case 2 applies to Y2; let ℓ2 be the unique lottery such that ϕ(ℓ2, Y2). Since Y1 ⊆ Y2, for all
ℓ ∈ L, ϕ(ℓ, Y1) implies ϕ(ℓ, Y2). Thus, if there is some ℓ ∈ L such that ϕ(ℓ, Y1), it must be
ℓ2. So either case 1 applies to Y1, then we are done as above, or ϕ(ℓ2, Y1). Since Y1 ⊆ Y2, if
a−1
ℓ2

(X) ⊆ Y1 then a−1
ℓ2

(X) ⊆ Y2; thus Z1 ⊆ Z2, where

Zi =
⋃

{X | X ⊆ dom(ℓ2) and a−1
ℓ2

(X) ⊆ Yi},

and so Pl(Y1) = ℓ2(Z1) � ℓ2(Z2) = Pl(Y2).

• Case 3 applies to Y2. Then Pl(Y1) � ⊤ = Pl(Y2).

So Pl is a plausibility measure.
Now we want to show that Pl(a−1

ℓ (X)) = ℓ(X) for all X ⊆ supp(ℓ). Clearly this is true if
X = ∅ or X = supp(ℓ). So suppose that X is a nonempty proper subset of supp(ℓ). Note that
ϕ(ℓ, a−1

ℓ (X)), so either case 2 or case 3 of the definition of Pl applies. Suppose that ϕ(ℓ0, a
−1
ℓ (X))

for some ℓ0 ∈ L. Then there exists some nonempty X0 ⊆ supp(ℓ0) such that a−1
ℓ0

(X0) ⊆ a−1
ℓ (X).

We want to show that ℓ0 = ℓ, so that case 2 applies. Note that there exists some c ∈ supp(ℓ)−X
and there exists some c0 ∈ X0 by assumption. Suppose that ℓ0 6= ℓ; then there exists some f ∈ SL

such that f(ℓ) = c and f(ℓ0) = c0 by construction. However, it is clear that f ∈ a−1
ℓ0

(X0) and

f /∈ a−1
ℓ (X). Since a−1

ℓ0
(X0) ⊆ a−1

ℓ (X), no such f exists; it follows that ℓ0 = ℓ and so case 2 applies.

Thus Pl(a−1
ℓ (X)) = ℓ(X) and so SL induces L.
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