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Abstract

Cooperation logics have recently begun to attract attention within the multi-agent systems com-
munity. Using a cooperation logic, it is possible to represent and reason about the strategic powers
of agents and coalitions of agents in game-like multi-agent systems. These powers are generally
assumed to be implicitly defined within the structure of the environment, and their origin is rarely
discussed. In this paper, we study a cooperation logic in which agents are each assumed to control a
set of propositional variables—the powers of agents and coalitions then derive from the allocation of
propositions to agents. The basic modal constructs in this Coalition Logic of Propositional Control
(CL-PC) allow us to express the fact that a group of agents can cooperate to bring about a certain
state of affairs. After motivating and introducing CL-PC, we provide a complete axiom system for the
logic, investigate the issue of characterising control in CL-PC with respect to the underlying power
structures of the logic, and formally investigate the relationship between CL-PC and Pauly’s Coali-
tion Logic. We then show that the model checking and satisfiability problems for CL-PC are both
PSPACE-complete, and conclude by discussing our results and how CL-PC sits in relation to other
logics of cooperation.
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1. Introduction

Cooperation logics are logics that are intended to enable reasoning about coalitions
in multi-agent systems, and in particular, the powers that such coalitions have. Probably
the two best known examples of cooperation logics are Pauly’s Coalition Logic [36–38],
and the Alternating-time Temporal Logic (ATL) of Alur, Henzinger, and Kupferman [5].
Both of these systems are based upon the notion of a cooperation modality: a unary modal
operator, indexed by a set of agents, which is used to represent the fact that this set of agents
can cooperate so as to make true the state of affairs given as an argument to the operator.
In Coalition Logic, for example, a formula [1,2](p ∧ q) is used to express the fact that the
coalition {1,2} can cooperate in such a way as to make the formula p ∧ q true. Although
they differ on technical details, the semantics of both logics are essentially equivalent [19]:
coalition C are able to achieve ϕ if there exists a collective strategy for C such that, by
following this strategy, C can enforce ϕ (that is, ϕ is true in every outcome that could
arise by following the strategy). In both logics, the strategies available to a coalition, and
the outcomes consistent with these strategies, are implicitly enumerated within the logic’s
models: in the case of Coalition Logic, by means of effectivity functions (cf. [1]), and in
the case of ATL, by means of a system transition function.

In this paper, we study a variant of cooperation logic that we refer to as the Coalition
Logic of Propositional Control (CL-PC). The key idea in CL-PC is that each agent is as-
sumed to control a set of propositional variables. The strategies, or choices available to
an agent then correspond to the different possible assignments of truth or falsity to these
propositions. On top of that, the ability of a coalition to bring about some state of affairs
derives from the propositional variables that are under the overall control of the coalition.

There are at least two reasons why CL-PC is a system worthy of study in its own right:

• First, and perhaps most importantly, if we are interested in building software agents,
then it is extremely natural to think of the ability of these agents in terms of setting
and unsetting bits in some digital control system. Indeed, this is arguably the most
fundamental kind of control that can be imagined.

• Second, in implemented systems for reasoning about cooperation in game-like multi-
agent scenarios, the individual powers of agents are actually specified by allocating
agents propositions that lie under their control. For example, this is exactly the ap-
proach taken in the MOCHA model checking system for ATL, where the keyword
controls is used to indicate the fact that an agent (or “module”, in the terminol-
ogy of MOCHA) is uniquely able to determine the value of a propositional variable
[3,6].

Against this background, the present paper makes four main contributions to the study of
cooperation logics.

First, although we have taken inspiration and some methodology from ATL and Coali-
tion Logic, we note that the basic cooperation modalities of these logics have a rather
unusual modal flavour, which is neither wholly universal nor wholly existential. This is
because these logics are intended to capture ∃∀-ability, or α-ability [1, pp. 11–12], the idea
being that a coalition C have the α-ability to achieve some state of affairs ϕ if C have
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a collective choice such that, no matter what the agents outside C do, ϕ will hold as a
consequence of this choice. This type of ability is entirely natural when we wish to study
the circumstances under which a coalition can “reliably” bring about some state of affairs.
However, the ∃∀ nature of cooperation modalities in these logics, and the fact that they are
neither conventionally existential nor conventionally universal, means that (i) they are hard
for “logic users” to understand, as they have some counterintuitive properties (particularly
in their dual forms); and (ii) from a technical standpoint, the fact that they are a combina-
tion of existential and universal modality makes them somewhat awkward to work with,
at least compared with conventional “box” and “diamond” modalities. In CL-PC, however,
the basic cooperation modalities capture contingent ability—a weaker notion of ability
than the α-ability of Coalition Logic and ATL. Contingent ability is the ability to achieve
some state of affairs under the assumption that, apart from our actions, the world remains
static. This is the type of ability that is implemented in classic AI planning systems such as
STRIPS [17,28]. Although contingent ability is perhaps not of great interest in its own right,
it turns out that the contingent ability constructs of CL-PC are sufficient to define α-ability
(as well as a related type of ability known as β-ability). Thus, although we appear to start
with a weaker notion of ability than those of Coalition Logic and ATL, it turns out that this
is in fact all we need to define these stronger types of ability. Moreover, the contingent
ability operators of CL-PC have the advantage of being “true modal diamonds”: they thus
have a much simpler semantics than α-ability operators, and are easier to work with from a
technical point of view (for example, when using such conventional modal logic constructs
such as canonical models to prove completeness [11, pp. 59–61]).

Second, although our basic cooperation modalities are conventional modal diamonds,
and hence we can give them a more-or-less conventional Kripke semantics [9, p. 42], we
are also able to give an alternative semantics to CL-PC, which is directly based on the
power structures that underpin the logic. We show that the two semantics are, in a precise
sense, equivalent, and that we can thus move between the two semantics as we see fit. The
advantage of this is that we can work with whichever semantics seems most appropriate to
the task at hand.

Third, although complete axiomatizations are known for both ATL [19] and Coalition
Logic [36–38], we are able to provide an axiomatization for CL-PC that draws upon the
simple underlying power structures of the logic. As a consequence, our axiomatization of
CL-PC has a rather different flavour to those of Coalition Logic and ATL.

Fourth, and finally, we present an analysis of control in CL-PC: when a coalition controls
some state of affairs. In particular, we show how the control that a coalition is able to exert
with respect to some state of affairs is related to the power structure underlying the logic.

The remainder of this paper is structured as follows. Following a formal definition of
CL-PC, in Section 3 we present a complete axiomatization for the logic. In Section 4.1,
we show how α- and β-ability modalities can be defined in terms of the basic constructs
of CL-PC, and in Section 4.2, we investigate the characterisation of control in CL-PC, with
particular reference to the underlying power structures. In Section 5, we investigate the
computational complexity of the model checking and satisfiability problems for the logic,
and show that both problems are PSPACE-complete. We conclude with a discussion on the
implications of our results, and how the logic stands in relation to other similar systems.
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2. The coalition logic of propositional control

In this section, we give a formal definition of CL-PC. We begin with an informal in-
troduction to the main features of the logic (readers familiar with Coalition Logic or ATL

may wish to skip or skim through this section). We then formally define the syntax of
CL-PC, and give two alternative semantics. The first is a “direct” or “propositional” seman-
tics, which has the advantages of being both simple and closely related to the intuitions
underpinning the language, but has the disadvantage of being rather unconventional in the
modal logic sense, and hence rather hard to work with from the point of view of prov-
ing properties such as completeness. In the second semantics, we employ the conventional
Kripke-style relational structures of modal logic [9,11], making it possible to represent
both the current situation and those that the agents can bring about in one and the same
model. In Section 2.5, we show that these two semantics are equivalent. The obvious ad-
vantage of having two equivalent semantics for our logic is that we can choose to work
with whichever semantics is most convenient for the problem at hand.

2.1. Informal introduction

The components of the systems of interest to us are as follows. First, we assume a
vocabulary At of propositional variables, which represent attributes of the systems that we
model. Next, we assume a finite, non-empty set Ag of agents; a coalition is simply a subset
of Ag. The only property that we assume of agents is that they are each able to control a
part of their environment. We capture this by assuming that every propositional variable
is controlled by exactly one agent. Thus we associate with every agent i ∈ Ag a (possibly
empty) subset Ati of At, representing those propositional variables under its control. The
following example illustrates these ideas in more detail, and also informally introduces the
language of CL-PC.

Fig. 1. In CL-PC, each agent is assumed to have unique control over the value of a set of propositional variables.
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Table 1
Comparing the notation of Coalition Logic, ATL, and CL-PC for
different types of ability

Coalition Logic ATL CL-PC

Contingent ability �Cϕ

α-ability [C]ϕ 〈〈C〉〉 �ϕ 〈〈C〉〉αϕ

β-ability 〈〈C〉〉βϕ

Example 2.1. Fig. 1 illustrates the kind of scenario that we have in mind for CL-PC. Here,
we have four agents, (named 1 through to 4), and eight propositional variables (p to w).
Agent 1 controls propositions p and q , agent 2 controls r , agent 3 controls s, t , and u, and
agent 4 controls v and w.

Agent 1 has assigned the value “1” to variables p and q—that is, both these variables
have the value “true” (hereafter denoted by “tt”). Similarly, the variables s and w have
been set to tt by agents 3 and 4 respectively, while all remaining variables have been set
to 0 (i.e., “ff”). Now, given this scenario, we say that agent 1 has the contingent ability
for ¬p ∧ s. That is, assuming that all those propositions not under the control of agent 1
retain their current value, then agent 1 can choose values for its propositions so as to make
¬p ∧ s true. We express this in CL-PC by the following formula.

�1(¬p ∧ s)

Thus the CL-PC expression �Cϕ means “coalition C have the contingent ability to achieve
ϕ”. (As an aside, we note that, unfortunately, there is no standard notation in the literature
of cooperation logics: in Table 1, we compare our notation to that of Coalition Logic and
ATL.)

As we noted above, contingent ability corresponds quite closely to “STRIPS-style” plan-
ning ability [17,28], in the sense that agent 1 has a plan to achieve ¬p∧ s from the scenario
in Fig. 1: the plan consists of one action, namely setting p to ff. However, the plan is
clearly contingent, in the sense that it depends upon the value of s remaining unchanged
by agent 3. If agent 3 chose to change this value, then the plan would fail.

Here is another example of a contingent ability formula that is true of Fig. 1.

�1,3(¬p ∧ t ∧ ¬r)

A “multi-agent plan” to achieve ¬p ∧ t ∧ ¬r would involve two actions: agent 1 setting p

to ff, and agent 3 setting t to tt. The plan is contingent upon agent 2 leaving the value
of r unchanged, at ff.

Contingent ability, as captured in the coalitional ability operator of CL-PC is clearly
rather limited. It makes perfect sense however in truly turn-based systems, in which agents
perform their actions in an alternating fashion (most games have this nature). Moreover, as
we noted above, it is in fact sufficient to define α-and β-ability, both of which represent
stronger and arguably more useful strains of ability. Although we will not formally de-
fine and investigate these types of ability until Section 4.1, we nevertheless provide some
illustrative examples here.

In CL-PC, we write 〈〈C〉〉αϕ to express the fact that coalition C are α-able to bring about
ϕ. This means that coalition C can choose to act in such a way that no matter what the
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agents outside C choose to do, ϕ will be true. With respect to the scenario of Fig. 1, the
following formula is thus not true.

〈〈1〉〉α(¬p ∧ s)

In contrast, the following formula is true in the Fig. 1 scenario.

〈〈1,3〉〉α(¬p ∧ s)

We represent β-ability in CL-PC by the cooperation modality 〈〈. . .〉〉β . The distinction be-
tween α-and β-ability may be understood through the following example. Suppose we
have agents 1 and 3 playing a game in which agent 1 wins if, after the game is over, the
variables p and s have the opposite values—that is, if p is tt, then s is ff, and vice versa.
The game itself simply involves the agents choosing values for their variables.

Now, is agent 1 able to win this game? It depends upon whether we are talking about
α-ability or β-ability. Agent 1 clearly does not have the α-ability to win this game:

¬〈〈1〉〉α(p ↔ ¬s)

This is because, when considering α-ability, agent 1 must choose first: and after choosing
a value for p, agent 3 can then simply copy this value in the choice for s, thereby falsifying
p ↔ ¬s.

However, when considering β-ability, the assumption is that agent 1 carries a responsive
role, while agent 3 will choose first: agent 1 can then reliably win by choosing for p the
opposite of whatever agent 3 chooses for s. Thus, the following CL-PC formula is true of
Fig. 1.

〈〈1〉〉β(p ↔ ¬s)

Notice that β-ability is strictly weaker than α-ability; we discuss this at more length in
Section 4.1.

2.2. Syntax

Formulae of CL-PC are constructed from the set Ag of agents, the set At of propositional
atoms, the usual operators of classical propositional logic (we use negation and disjunction
as our atomic Boolean functions, together with a logical constant for truth), and the coop-
eration modality �···. More formally, the syntax of CL-PC is given by the following BNF

grammar:

ϕ ::= 
 | p | ¬ϕ | ϕ ∨ ϕ | �Cϕ

where p ∈ At is a propositional variable, and C ⊆ Ag is a set of agents. Thus we use

 as a logical constant for truth, “¬” for negation, and “∨” for disjunction. As usual, we
define the remaining connectives of classical propositional logic as abbreviations: ⊥ =̂ ¬
,
ϕ → ψ =̂ ¬ϕ ∨ ψ and ϕ ↔ ψ =̂ (ϕ → ψ) ∧ (ψ → ϕ).

We refer to an expression �Cϕ as a cooperation modality. Where there is no possibility
of confusion, we will omit set brackets inside cooperation modalities, for example writing
�1,2 rather than �{1,2}. A CL-PC formula containing no cooperation modalities is said to
be an objective formula.
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If ϕ is a CL-PC formula, then let At(ϕ) denote the set of propositional variables occurring
in ϕ, and let Ag(ϕ) denote the set of all agents named in ϕ (i.e., Ag(ϕ) is the union of all
the coalitions occurring in cooperation modalities in ϕ).

2.3. Direct semantics

We now introduce the first of the two semantics for CL-PC. We say a model for CL-PC

is a structure:

M = 〈Ag,At,At1, . . . ,Atn, θ〉
where:

• Ag = {1, . . . , n} is a finite, non-empty set of agents;
• At = {p,q, . . .} is a finite, non-empty set of propositional variables;
• At1, . . . ,Atn is a partition of At among the members of Ag, with the intended interpre-

tation that Ati is the subset of At representing those variables under the control of agent
i ∈ Ag; and finally,

• θ : At → {tt,ff} is a propositional valuation function, which determines the initial
truth value of every propositional variable.

Notice that since At1, . . . ,Atn is a partition of At, we have:

1. At = At1 ∪ · · · ∪ Atn, i.e., every variable is controlled by some agent, and
2. Ati ∩ Atj = ∅ for i �= j ∈ Ag, i.e., no variable is controlled by more than one agent.

Some additional notation is convenient in what follows. We say a coalition, C is simply
a subset of Ag, i.e., C ⊆ Ag. For any such C ⊆ Ag we denote the complement of C (i.e.,
Ag \ C) by C. We will write AtC for

⋃
i∈C Ati . For two valuations θ and θ ′, and a set of

propositions Ψ ⊆ At, we write θ = θ ′ (mod Ψ ) if θ and θ ′ differ at most in the atoms in Ψ ,
and we then say that θ and θ ′ are the same modulo Ψ . We will sometimes understand the
model M = 〈F , θ〉 to consist of a valuation θ on top of a frame F = 〈Ag,At,At1, . . . ,Atn〉.
Given a model M = 〈Ag,At,At1, . . . ,Atn, θ〉 and a coalition C in M, a C-valuation is a
function:

θC : AtC → {tt,ff}.
Thus a C-valuation is a function that assigns truth values to just the primitive propositions
controlled by the members of the coalition C. If M = 〈Ag,At,At1, . . . ,Atn, θ〉 is a model,
C is a coalition in M, and θC is a C-valuation, then by M ⊕ θC we mean the model
〈Ag,At,At1, . . . ,Atn, θ ′〉, where θ ′ is the function defined as follows

θ ′(p) =̂
{

θC(p) if p ∈ AtC,

θ(p) otherwise

and all other element of the model are as in M. Thus M ⊕ θC denotes the model that
is identical to M except that the values assigned by its valuation function to propositions
controlled by members of C are as determined by θC : we have θ = θ ′ (mod AtC). Notice
that the ∅-valuation θ∅ is the right identity under ⊕, that is, M⊕ θ∅ = M, for all M.
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We define the size of a model M = 〈Ag,At,At1, . . . ,Atn, θ〉 to be |Ag|+ |At|; we denote
the size of M by size(M).

We interpret formulae of CL-PC with respect to models, as introduced above.

Definition 1. Given a model M = 〈Ag,At,At1, . . . ,Atn, θ〉 and a formula ϕ, we write
M |=d ϕ to mean that ϕ is satisfied (or, equivalently, true) in M, under the “direct” se-
mantics. The rules defining the satisfaction relation |=d are as follows:

– M |=d 
;
– M |=d p iff θ(p) = tt (where p ∈ At);
– M |=d ¬ϕ iff M �|=d ϕ;
– M |=d ϕ ∨ ψ iff M |=d ϕ or M |=d ψ ;
– M |=d �Cϕ iff there exists a C-valuation θC such that M⊕ θC |=d ϕ.

We assume the conventional definitions of satisfiability and validity: a CL-PC formula ϕ

is d-satisfiable iff there exists a CL-PC model M such that M |=d ϕ, and ϕ is d-valid
iff for every CL-PC model M we have M |=d ϕ. We write |=d ϕ to indicate that ϕ is d-
valid. Moreover, if I is a partition {At1,At2, . . . ,Atn} of the atoms At over the agents, and
M |=d ϕ for every model M = 〈Ag,At,At1, . . . ,Atn, θ〉 based on this partition, we write
|=d

I ϕ.

At this point, let us introduce the natural box dual “�···” of the �··· cooperation modal-
ity:

�Cϕ =̂ ¬�C¬ϕ

The intuitive interpretation of a formula �Cϕ is that C cannot avoid ϕ: that is, for every
possible way that C choose to behave, ϕ “may” still become true. However it does not
mean that ϕ will inevitably be true, as the following example illustrates.

Example 2.2. Suppose we have a model M = 〈{1,2},At,At1,At2, θ〉 such that At = {p,q},
At1 = ∅, At2 = {p,q} and θ(x) = tt for x ∈ {p,q}. Now, there is no 1-valuation θ1 such
that M ⊕ θ1 |=d ¬p. That is, M |=d �1p. Similarly, agent 1 cannot avoid p ∧ q , i.e.,
M |=d �1(p ∧ q). But this does not mean p ∧ q is inevitable: it depends on the choice
that 2 makes. Since 2 controls both p and q , we have M |=d �2¬p, M |=d �2¬q , and
M |=d �2¬(p ∨ q).

Before proceeding, we pause to consider the extent to which the number of agents
in a model affects whether or not a formula is satisfied. Let us say that a model
〈Ag,At,At1, . . . ,Atn, θ〉 is a k-agent model if |Ag| = k. In the same way, let us say a for-
mula ϕ is a k-agent formula if |Ag(ϕ)| = k. Now, consider the following example.

Example 2.3 (Individual versus multi-agent models). Consider the 1-agent formula
p ∧ �1p. This formula is clearly satisfiable, as is witnessed by the 2-agent model
〈Ag,At,At1,At2, θ〉 such that Ag = {1,2}, At = {p}, At1 = ∅, At2 = {p}, and θ(p) = tt.
However, this formula is clearly not satisfied in any 1-agent model, because the only agent
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in such a model must (by virtue of the fact that the formula is well-formed) be 1; thus agent
1 must control p, and so can choose ¬p. Hence the formula is not satisfied by the model.

In this example, we have a 1-agent formula that is satisfiable in a 2-agent model, but not
in any 1-agent model. This begs an obvious question: To what extent is the satisfiability
of a formula affected by the number of agents in the models we consider for this formula?
We have the following result, which says that any satisfiable k-agent formula is satisfied
in a (k + 1)-agent model. In other words, if a formula is satisfiable, then it is satisfied in a
model containing at most one agent in addition to those explicitly named in the formula.

Lemma 2.1. A CL-PC formula ϕ is satisfiable iff it is satisfied in a model M =
〈Ag,At,At1, . . . ,Atn, θ〉 such that |Ag| = |Ag(ϕ)| + 1 and At = At(ϕ).

Proof. The direction from right to left is obvious, so suppose ϕ is satisfiable, let Ag(ϕ) =
{1, . . . , k} be the agents named in ϕ, and let M = 〈Ag,At,At1, . . . ,Atk, Atk+1, . . . ,Atm, θ〉
= 〈F , θ〉 be a model based on F that satisfies ϕ, thus Ag = {1, . . . , k, k + 1, . . . ,m}. Let S

denote the agents {k + 1, . . . ,m} in Ag that are not named in ϕ. First, let e denote a new
agent—one that is neither named in ϕ nor is a member of S. Now, consider the frame F ′
= 〈Ag′,At′,At′1, . . . ,At′k,Ate〉 such that:

• Ag′ = Ag(ϕ) ∪ {e};
• At′ = At(ϕ);
• At′i = Ati ∩ At(ϕ), for all i � k;
• Ate = At(ϕ) \ ⋃

i�k At′i .

Obviously, |Ag′| = |Ag(ϕ)| + 1 and At′ = At(ϕ). Finally, on the level of models, given a
valuation θ : At → {tt,ff}, let θ�At′ : At′ → {tt,ff} be the restriction of θ to At′. Now,
we claim:

for all valuations θ and all subformulas ψ of ϕ : 〈F , θ〉 |=d ψ iff 〈F ′, θ�At′ 〉 |=d ψ.

The proof is by induction on the structure of ψ The inductive base is where ψ ∈ At, and
is obvious since θ is unchanged on the relevant atoms when going from F to F ′. For the
inductive assumption, assume that the result holds for all sub-formulae ψ of ϕ. For the
inductive step, the cases for propositional connectives are immediate. So consider the case
where χ = �Cψ . Now, 〈F , θ〉 |=d �Cψ iff for some θi , with θi = θ (mod Ati ), we have
〈F , θ i〉 |=d ψ . The induction hypothesis guarantees that this is equivalent to 〈F ′, θ i

�At′ 〉 |=d

ψ and this in turn is equivalent to 〈F ′, θ�At′ 〉 |=d �iψ . �
Pauly discusses somewhat related issues in the context of Coalition Logic [36, pp. 68–

71]. The significance of our result will become clear later, when we use the following
immediate corollary as a kind of polysize model property, of the kind that is frequently
used in establishing upper bounds in the complexity theory of modal logic [9, pp. 375–
381].
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Corollary 2.1. If a CL-PC formula ϕ is satisfiable, then it is satisfied in a model M such
that size(M) = |At(ϕ)| + |Ag(ϕ)| + 1.

2.4. Kripke semantics

The “direct” semantics presented above has the advantage of being closely related to our
intuitive understanding of the logic CL-PC: the semantic rule for ability is based directly
upon the way that propositional variables are partitioned among the agents in the system.
However, from a technical point of view, the direct semantics has the disadvantage of be-
ing unusual and unfamiliar—and hence (arguably) hard to work with. In this section, we
therefore introduce a semantics for CL-PC based on the familiar and conventional Kripke
relational structures of modal logic [9,11]. Although readers may have a personal prefer-
ence for one semantics over the other, we show in Section 2.5 that the two semantics are in
fact equivalent, and that we can thus use whichever semantics seems most appropriate to
the task at hand.

Definition 2. Let W be the set of all valuations θ over At. For every Ati ⊆ At, we assume
a binary relation Ri to be given, with Riww′ iff w and w′ differ at most in the values that
they assign to the atoms in Ati . Formally: Riww′ ⇔ w = w′ (mod Ati ). Note that Ri is
an equivalence relation. To lift the Ri relations, (corresponding to the possible choices of
individual agents) to arbitrary coalitions, we need the notion of relational composition.
Given a set S, and binary relations R1,R2 ⊆ S × S over S, we denote the composition of
R1 and R2 by R1 ◦ R2, where this is defined as follows.

R1 ◦ R2 = {
(s, t) | ∃u: R1su & R2ut

}
We then define the Kripke model K = 〈W,R1, . . . ,Rn,Π〉, where Θ :W → At →
{tt,ff} is simply given by Θ(w) = w. For any coalition C = {a1, a2, . . . , ak} (k � n),
we define RC as Ra1 ◦ Ra2 ◦ · · · ◦ Rak

. The following result tells us that the composition is
independent of the order.

Lemma 2.2. Let K = 〈W,R1, . . . ,Rn,Θ〉 be defined as in Definition 2. Then for every
i, j ∈ Ag, we have: Ri ◦ Rj = Rj ◦ Ri .

Proof. Suppose w(Ri ◦Rj )v. Then there is a u for which Riwu and Rjuv. This means that
w = u (mod Ati ) and, similarly, u = v (mod Atj ). Note that hence w = v (mod Ati ∪ Atj ).
Let u′ be defined as follows. It is exactly like w, except for the atoms in Atj , for which u′
is as v. Then, by definition of u′, we have Rjwu′ (by definition, they at most differ in Atj )
and Riu

′v (w and u differ at most in Ati ∪ Atj , hence u′ and v differ at most in Ati ). We
conclude that w(Rj ◦ Ri)v. �

We can now see the following.

Lemma 2.3. Let K = 〈W,R1, . . . ,Rn,Θ〉 be defined as in Definition 2. Then for all C ⊆
Ag, RC is an equivalence relation.
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Proof. Reflexivity and symmetry for RC are immediately inherited from the same prop-
erties of Ri (i ∈ C). For transitivity, suppose that uRCv and vRCw. Let us assume that
C = {1,2, . . . , n}. Then, since the order is irrelevant (Lemma 2.2), we know that there
are paths u = u1, u2, . . . , un = v and v = v1, v2, . . . , vn = w such that Riuiui+1 and
Rivivi+1. By applying Lemma 2.2 repeatedly we find u′

i and v′
i (i � n) with a path

u = u′
1, v

′
1, u

′
2, v

′
2, . . . , u

′
n, v

′
n = w such that Riu

′
iv

′
i and Riv

′
iu

′
i+1. Now we can apply tran-

sitivity to the individual agent’s relations, giving us a path from u to w that is in RC . �
The inductive rules defining the truth of a CL-PC formula ϕ under an interpretation K,w

are defined as follows:

– K,w |=k 

– K,w |=k p iff Θ(w)(p) = w(p) = tt (where p ∈ At);
– K,w |=k ¬ϕ iff K �|=k ϕ;
– K,w |=k ϕ ∨ ψ iff K,w |=k ϕ or K,w |=k ψ ;
– K,w |=k �Cϕ iff there exists a w′ ∈ W such that RCww′ and K,w′ |=k ϕ.

Note that, given the partition I on At, there is only one model K, which we sometimes also
will denote as KI .1 We write KI |=k ϕ, but also |=k

I ϕ as a shorthand for KI ,w |=k ϕ for
every world w in KI . If moreover the latter holds for every K, more precisely for every
KI , we write |=k ϕ.

Since by Lemma 2.3 every accessibility relation RC in each model K is an equivalence
we immediately obtain the following properties (see, e.g., [11]).

a |=k ϕ → �Cϕ

b |=k �C�Cϕ ↔ �Cϕ

c |=k �C¬�Cϕ ↔ ¬�Cϕ

d |=k �Cϕ → ϕ

e |=k �C�Cϕ ↔ �Cϕ

f |=k �C�Cϕ ↔ �Cϕ

(1)

Property a is the dual of d which in turn is modal axiom T and is guaranteed by re-
flexivity of RC (cf. Lemma 2.3). Properties b and f are also each other duals: in f , the
→-direction is a special case of d , the other direction (known in modal logic as axiom
4 [11]) is due to the transitivity of RC . Of property c, the ←-direction is an instance
of a, the other direction is equivalent to axiom 5, which is usually given as ¬�Cψ →�C¬�Cψ . This is also what the ←-direction of e is expressing. Finally, the →-direction
of e is an instance of d .

1 As an aside, we might generalize the notion of I -validity to that in models K′
I

= 〈W ′,R1, . . . ,Rn,Θ〉, where
W ′ ⊆ W is some subset of all the possible valuations, reflecting some background theory on the allowed propo-
sitional formulas.
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We note in passing that �Ag is a “universal” modality, and gives us a bridge to go from
“local” (i.e., truth at a world in a Kripke structure) to “global” (i.e., truth at every world in
an I -Kripke structure):

KI |=k ϕ ⇔ ∃w: KI ,w |=k �Agϕ (2)

Example 2.4 (Bach or Stravinsky). Let us consider two agents, each having a choice to
go to either a concert by Bach or by Stravinsky. Let b1 be the atom denoting that agent 1
chooses for Bach, and similarly for b2 and agent 2. Obviously, I is such that each agent
i has control over the atom bi . It is understood that agent i’s choice for Stravinsky is
represented as ¬bi . Assume that initially no agent is going to Bach (i.e., w and Θ are
such that K,w |=k (¬b1 ∧ ¬b2)), then we have in w that no agent can force them both
going to Bach (¬�1(b1 ∧ b2) ∧ ¬�2(b1 ∧ b2)), whereas in full cooperation they can share
a Bach evening (�1,2(b1 ∧ b2)). On a global level, neither agent can establish an evening
out together (KI �|=k �i (b1 ∧ b2) and KI �|=k �i (¬b1 ∧ ¬b2), i � 2), but fortunately, they
can cooperate to have an evening out together (KI |=k �1,2(b1 ∧ b2) ∧ �1,2(¬b1 ∧ ¬b2)),
but this still involves a choice (KI �|=k �1,2((b1 ∧ b2) ∧ (¬b1 ∧ ¬b2))).

2.5. Relating the different semantics

Our next task is to formally establish that the two semantics are equivalent.

Remark 2.1. From now on, given a propositional model M = 〈Ag,At,At1, . . . ,Atn, θ〉
such as defined in Definition 1, and a Kripke model K = 〈W,R1, . . . ,Rn,Π〉 as in Defini-
tion 2 we assume they are based on the same partition At1, . . .Atn. Moreover, we will write
wθ for that world in W for which Θ(wθ) = θ .

Lemma 2.4 (Equivalence of semantics). Let the model M = 〈Ag,At,At1, . . . ,Atn, θ〉 be as
in Definition 1, and let the Kripke model K = 〈W,R1, . . . ,Rn,Π〉 be as in Definition 2.
Then, for every CL-PC formula ϕ, we have:

M |=d ϕ iff K,wθ |=k ϕ

Proof. We prove the displayed equivalence for any M = 〈Ag,At,At1, . . . ,Atn, θ〉, the
proof proceeding with induction on ϕ. For ϕ being an atom p this follows from the de-
finition of θ and wθ . Let us look at the diamond formula �Cϕ. Suppose M |=d ϕ. This
means that there is some valuation θ ′ and a model M′ = 〈Ag,At,At1, . . . ,Atn, θ ′〉 such
that M′ |=d ϕ. The induction hypothesis gives us K,wθ ′ |=k ϕ, and, since by definition, θ ′
differs from θ in at most the atoms occurring in

⋃
i∈C Ati , we have K,wθ ′ |=k �Cϕ. The

other direction is proven in a similar way. �
Corollary 2.2.

|=d
I ϕ iff KI |=k ϕ and |=d ϕ iff |=k ϕ

How do the local, the semi-general I -based, and the global semantics compare? We
start by giving the obvious dependencies, and then discuss the differences between the se-
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mantics, on the fly arguing that, in general, none of the implications below can be reversed.
So, let KI be a Kripke model with I a partition over At, and let w be a world. Then it is
easy to see that we have the following chain of implications.

|=k ϕ ⇒ KI |=k ϕ ⇒ KI ,w |=k ϕ (3)

The last implication cannot be reversed, witnessed by ϕ = p and w(p) = tt. But objec-
tive formulas are not the only counterexamples: take w as before and assume that p /∈ Ati ,
q ∈ Ati . Then we have that KI ,w |=k �i (p ∧q), whereas, even under this fixed partition I ,
KI �|=k �i (p ∧ q). The first implication is also not an equivalence: take I such that q ∈ Ati ,
then KI |= �iq , but obviously �|=k �iq . It seems that the notion KI |=k ϕ is the most inter-
esting for our current aims: the fact that i can bring about p∧q in w is too local a property,
he would not be able to bring it about when in a situation in which p would not have been
true.

3. The deductive system CL-PC

In this section, we present an axiom system for CL-PC, and show that this axiom sys-
tem is sound and complete with respect to our semantics. More precisely, we employ a
canonical model construction to show that the axiom system is complete with respect to
the Kripke semantics for CL-PC introduced in Section 2.4. We then appeal to the fact that
the Kripke and direct semantics are equivalent (Lemma 2.4) to conclude that the axiomati-
zation is complete with respect to both.

Definition 3. By 
, we denote a literal p or ¬p. If we want to explicitly refer to the atom on
which the literal is based, we write 
(p). Recall that an objective formula is one containing
no cooperation modalities. Then the axioms of our logic CL-PC are as shown in Fig. 2.
Given a partition I , we will write �CL-PC

I ϕ to denote that formula ϕ is derivable from
these axioms and the following inference rules. We will often suppress the subscript I ,
though, and sometimes also the superscript CL-PC.

(MP) �CL-PC ϕ, �CL-PC (ϕ → ψ) ⇒ �CL-PC ψ

Nec(i) �CL-PC ϕ ⇒ �CL-PC �iϕ

First, note that all the axioms apart from Comp-∪ are about individual agents. We will
see below how the axioms can be “lifted” to arbitrary coalitions.

With respect to the soundness of our axioms, we note that Prop is obvious, and K(i)

states that �i is a normal modal operator. Axiom T (i) in contrapositive—note that the
axioms are schemes—reads (ϕ → �iϕ): every agent has the possibility to not change
his atoms, leaving the state unchanged. B(i) follows from the symmetry of the Ri rela-
tion [11, p. 80]: starting in an arbitrary state verifying ϕ, any agent i cannot avoid to go
to a state in which he can return to the original state (�i�iϕ). For ∅, note that R∅ is
the identity: if nobody is allowed to change some atoms, we stay where we are. Axiom
at-least(control) states that every literal can be changed by at least one of the agents, and
axiom at-most(control) guarantees that no more than one agent can modify it.
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(Prop) ϕ, where ϕ is any propositional tautology

(K(i)) �i (ϕ → ψ) → (�iϕ → �iψ)

(T (i)) �iϕ → ϕ

(B(i)) ϕ → �i�iϕ

(empty) �∅ϕ ↔ ϕ

at-least(control) 
(p) → ∨
i∈Ag �i¬
(p)

at-most(control) 
(p) → (�i¬
(p) → �j 
(p)) where i �= j

(effect(i)) (ψ ∧ 
(p)) → �i (ψ ∧ ¬
(p)) where




p ∈ Ati ,
p /∈ At(ψ), and
ψ is objective

(non-effect(i)) �i 
(p) → �i 
(p) where p /∈ Ati

(Comp-∪) �C1�C2ϕ ↔ �C1∪C2ϕ

Fig. 2. Axioms of CL-PC.

Axiom effect(i) states that agents can make local changes to formulas: if ψ does not
involve a particular atom p that is under the control of agent i, then that agent can toggle p

without modifying ψ , for any objective formula ψ . Although the soundness of this axiom
is obvious for propositional formulas ψ , it is not immediately clear for general formulas
ϕ. As we will see in Lemma 3.4, however, this is derivable. The non-effect(i)-axiom says
that no agent i can change the literals based on atoms outside his control: if p /∈ At(i) and
�i
(p) is true, then 
(p) must be true no matter how i toggles his atoms, and in particular,

(p) must already be true now (by virtue of T (i)).

Finally, observe that Axiom Comp-∪ is equivalent to �C1�C2ϕ ↔ �C1∪C2ϕ. This axiom
is sound in the Kripke interpretation: if, given the interpretation θ , agent 1 can make a
transition to θ1, from which agent 2 can choose the state to be θ2, then, equivalently, from
θ , agents 1 and 2 can choose values for their atoms so that we end up in θ2. The converse
also holds: a change in valuation due to the coalition C1 ∪ C2 can always be decomposed
in a change by C1 and one by C2. (Schema Comp-∪ is so named for its close relationship
to the axiom Comp from dynamic logic [18, p. 88].2)

Formally, we state without proof:

Lemma 3.1 (Soundness). The system CL-PC is sound with respect to both the CL-PC se-
mantics of Definition 1 and the Kripke semantics of Definition 2.

The following lemma shows a number of derivable formulas. It demonstrates that the
individual agent properties of the logic CL-PC can be lifted to the collective level, and,
moreover, property S′ shows when agents can concurrently exercise their powers.

Lemma 3.2 (Derived schemes). The schemes in Fig. 3 may be derived in the deductive
system CL-PC (C is an arbitrary set of agents).

2 The Comp axiom from dynamic logic axiom is 〈p1;p2〉ϕ ↔ 〈p1〉〈p2〉ϕ (where p1 and p2 are programs).
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(K(C)) �C(ϕ → ψ) → (�Cϕ → �Cψ)

(T (C)) �Cϕ → ϕ

(4(C)) �Cϕ → �C�Cϕ

(5(C)) ¬�Cϕ → �C¬�Cϕ

(effect(C)) (ϕ ∧ 
(p)) → �C(ϕ ∧ ¬
(p)) where

{
p ∈ AtC, and
p /∈ At(ϕ)

(non-effect(C)) (p → �Cp) ∧ (¬p → �C¬p) where p /∈ ⋃
i∈C Ati

(Sub) �{i}∪Cϕ → �iϕ

Alt(i) (ϕ ∧ 
(p)) → �i (ϕ ∧ 
(p)) ∧�i (ϕ ∧ ¬
(p)) where

{
p ∈ Ati , and
p /∈ At(ϕ)

(S′) �C1ϕ ∧�C2ψ → �C1∪C2 (ϕ ∧ ψ) where At(ϕ) ∩ At(ψ) = ∅

Fig. 3. Some derived axiom schemes.

Proof. Follows from the semantics, once we have proven completeness. As an illustration
of a derivation, however, in Appendix A we prove (S′) within CL-PC. �

Schema (S′) is the closest we have in CL-PC to Pauly’s schema (S), which intuitively
said that disjoint coalitions could add abilities (i.e., for disjoint C1 and C2, if C1 can achieve
ϕ and C2 can achieve ψ , then C1 ∪ C2 can achieve ϕ ∧ ψ ). The direct CL-PC analogue of
Pauly’s (S), i.e., �C1ϕ ∧ �C2ψ → �C1∪C2(ϕ ∧ ψ) for disjoint C1,C2, is not valid, as the
following example illustrates.

Example 3.1. Suppose that we have a model M with Ag = {1,2}, At1 = {p}, and θ(p) =
tt. Then clearly M |=d (�1¬p) ∧ (�2p). But if �C1ϕ ∧ �C2ψ → �C1∪C2(ϕ ∧ ψ) were
valid, then we would have M |=d �1,2(p∧¬p), and so M |=d �1,2⊥ and hence M |=d ⊥.

Instead, we have the weaker scheme (S′): this scheme says that, if C1 can achieve ϕ,
and C2 can achieve ψ , and ϕ and ψ have no propositional variables in common, then
C1 ∪C2 can achieve ϕ ∧ψ . Note that, in contrast to Pauly’s schema (S), while this schema
requires that the formulae ϕ and ψ are disjoint with respect to their propositional variables,
the coalitions C1 and C2 are not required to be disjoint.

3.1. Completeness

We are now ready to prove that the axiom system CL-PC is complete with respect to the
two semantics presented earlier. We begin by fixing some notation.

Definition 4 (Notation). In the following, we use c as a variable both over individual agents
i ∈ Ag and coalitions C ⊆ Ag. If such a c is fixed, we want to reason about what it can
achieve, and what not. For this, we partition a set of relevant atoms (which can be At, or
Atc or At(ϕ) for a specific ϕ) in a subset X under control of c, say X = {x1, . . . , xk} and a
set Y = {y1, . . . , ym} out of control of c. Note that the x’s and y’s are variables over atoms:
when changing focus to another coalition c′ we will use the sets X and Y again, but of
course then X ⊆ At(c′). Note that in order to not obscure notation too much, we do not
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make c explicit in this notation, nor do we say how k and m depend on c or ϕ. We also
will write a propositional formula ψ in a special Disjunctive Normal Form (DNF(ψ, c)),
where DNF(ψ, c) = π1 ∨π2 ∨ · · · ∨πd , each πj being a conjunction of literals over all the
atoms occurring in ψ , and ordered along the sets At(ψ) ∩ At(c) and At(ψ) \ At(c). Then
we can write any πj as

πj ≡ πĉ
j ∧ πč

j ≡
∧
g�k


j (xg) ∧
∧
h�m


j (yh)

Given a conjunction π , and a coalition or agent c, we will hence write πı̌ for the con-
junction of literals obtained from π by leaving out the x’s, and πı̂ for the conjunction of
π without the y’s. Observe that hence we can interpret πı̂ as that part of π that is under
control of c, and πı̌ as the part out of c’s control. Sometimes, we will also use dnf (ψ),
which is also a disjunctive normal form, but not necessarily containing all of ψ ’s atoms.
For instance, if ψ is the formula (p1 ∧ q) ∧ (p2 ∨ ¬p2) (p1,p2 ∈ At(C), q /∈ At(C)), then
DNF(ψ,C) = (p1 ∧ p2 ∧ q) ∨ (p1 ∧ ¬p2 ∧ q) while dnf (ψ) = (p1 ∧ q).

The first main component of our completeness proof is Theorem 3.1. This result
states that every CL-PC formula is equivalent to a formula of propositional logic. (As
an aside, note that this result does not imply that the modal language of CL-PC is re-
dundant, since the translation from CL-PC involves an exponential blow-up in the size
of the formula.) We prove Theorem 3.1 by way of two lemmas, which essentially show
us how cooperation modalities can be eliminated from formulae, while preserving their
truth.

Lemma 3.3. Using the notation as introduced in Definition 4, let c be an agent or coalition,
and let π ≡ πĉ ∧ πč also as specified there. Then:

�CL-PC πč ↔ �c(π
ĉ ∧ πč)

At first sight, it might seem strange that the equivalence in Lemma 3.3 has atoms on the
right hand side which do not occur in the left hand side. The idea is simple though, and
will be used in many proof-steps that are to follow. Let us, given agent i, loosely refer to
πı̌ and πı̂ as literals in π that are out, or in the agent’s control, respectively. Then, i can
achieve any combination of literals, as long as those out his control are already set in the
right way. In an example: if i controls p1 and p2 but not p or q , then i can bring about
(p1 ∧ ¬p2 ∧ p ∧ ¬q) in exactly those situations in which (p ∧ ¬q) is already true. For
coalitions C, this works similarly.

Proof. We first prove the displayed formula for the case that c is an agent i. For the right
to left direction, note that for any atom y /∈ Ati , we have

�CL-PC �i
(y) → 
(y) y /∈ Ati (4)

One uses first non-effect(i) and then T (i) to see this. Then we derive (a)–(c):

(a) :�i (π
ı̂ ∧ πı̌) → �iπ

ı̌
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(b) :�iπ
ı̌ → �i

∧
h�m


(yh)

(c) :�i

∧
h�m


(yh) →
∧
h�m


(yh)

Implication (a) is a property of any modal diamond, (b) uses the definition of πı̌ and (c)
applies (4). Since

∧
h�m 
(yh) is by definition πı̌ , this proves the derivability of �i (π

ı̂ ∧
πı̌) → πı̌ .

For the other direction, first note that for any y not in Ati , we have

�CL-PC 
(y) → �i
(y) (5)

which follows immediately from (4) and the fact that we are dealing with literals. By using
modal logical laws, we then derive �CL-PC ∧

h�m 
(yh) → �i

∧
h�m 
(yh) and hence

�CL-PC πı̌ → �iπ
ı̌ (6)

Now let us write π as πı̌ ∧ πı̂ = πı̌ ∧ (
(x1) ∧ 
(x2) ∧ · · · ∧ 
(xk)). By definition of πı̂

and πı̌ , we have x1 /∈ At(π ı̌). Also, by axiom T (i),

�CL-PC (
πı̌ ∧ 
(x1)

) → �i

(
πı̌ ∧ 
(x1)

)
(7)

and, by effect(i),

�CL-PC (
πı̌ ∧ ¬
(x1)

) → �i

(
πı̌ ∧ 
(x1)

)
(8)

Since πı̌ is equivalent to (π ı̌ ∧ 
(x1)) ∨ (π ı̌ ∧ ¬
(x1)), we obtain from (7) and (8):

�CL-PC πı̌ → �i

(
πı̌ ∧ 
(x1)

)
(9)

Repeating the argument (7)–(9) we also obtain

�CL-PC (
πı̌ ∧ 
(x1)

) → �i

(
πı̌ ∧ 
(x1) ∧ 
(x2)

)
(10)

Now note that (9) and (10) are of the form �m πı̌ → �ϕ1 and �m ϕ1 → �ϕ2, respectively,
in which in any modal logic m one concludes �m πı̌ → ��ϕ2. But in CL-PC we also have
�i�iϕ → �iϕ, so that we conclude, from (9) and (10),

�CL-PC πı̌ → �i

(
πı̌ ∧ 
(x1) ∧ 
(x2)

)
(11)

Repeating the argument from (7)–(11) sufficiently many times, we conclude that �CL-PC

πı̌ → �i (
(x1) ∧ 
(x2) ∧ · · · ∧ 
(xk)), or, equivalently, �CL-PC πı̌ → �iπ
ı̂ . We combine

this with (6) to finally obtain �CL-PC πı̌ → �i (π
ı̂ ∧ πı̌).

Given that we now have proven what we want for c being an agent i, let us now
assume that c is a coalition C. Choose an arbitrary order of the members of C, say
iv, iv−1, . . . , i2, i1. Let the initial conjunction be π . Axiom Comp-∪ tells us that

�CL-PC �Cπ ↔ �iv�iv−1 · · ·�i2�i1π (12)

We now iteratively do the following. We construct a sequence of conjunctions
π1, . . . , πv such that every πj+1 is πj with the literals over atoms from Atj left out. Let π1
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be π . The result for the single agent case tells us that �CL-PC π
ı̌1
1 ↔ �i1(π

ı̂1
1 ∧ π

ı̌1
1 ), i.e.,

�CL-PC π
ı̌1
1 ↔ �i1π1. Using this equivalence in (12), we obtain

�CL-PC �Cπ ↔ �iv�iv−1 · · ·�i2π
ı̌1
1 (13)

Note that in (13), the formula π
ı̌1
1 is the conjunction πi with all the literals over atoms

from Ati1 left out. Let π2 be the formula π
ı̌1
1 . The single agent case again tells us that

�CL-PC π
ı̌2
2 ↔ �i2π2 giving

�CL-PC �Cπ ↔ �iv�iv−1 · · ·�i3π
ı̌2
2 (14)

where π
ı̌2
2 is the conjunction π1 with the literals for agents i1 and i2 left out. We repeat this

argument v times to eventually conclude

�CL-PC �Cπ ↔ πı̌v
v (15)

where π
ı̌v
v is the formula π1 with all the literals involving any of C’s atoms, left out. In

order words, (15) says �CL-PC �Cπ ↔ πč . �
Lemma 3.4. Let C be a coalition of agents, and ψ a propositional formula. Then there
exist a propositional formula α such that

�cl-pc α ↔ �Cψ and At(α) ∩ AtC = ∅

Proof. We know that ψ is propositional, so let us use the notation introduced in Defi-
nition 4, and assume that DNF(ψ,C) = π1 ∨ · · · ∨ πd and that X = At(ψ) ∩ AtC , and
Y = At(ψ) \ X. As in any modal logic, we have

�CL-PC �C

∨
j�d

πj ↔
∨
j�d

�Cπj (∗)

By Lemma 3.3, we moreover have

�CL-PC �Cπj ↔ πČ
j (∗∗)

Note that the right hand side of (∗∗) is purely propositional. Combining (∗) and (∗∗), we

have �CL-PC α ↔ �Cψ where α is the formula
∨

j�d πČ
j . Clearly, by definition of πČ

j ,
At(α) ∩ AtC = ∅. �
Example 3.2. Let us consider the formula �iψ being �i (p1 ∧ (p2 → p4)). Bringing ψ in
dnf gives �i ((p1 ∧ ¬p2 ∧ ¬p4) ∨ (p1 ∧ ¬p2 ∧ p4) ∨ (p1 ∧ p2 ∧ p4)). We consider the
following cases:

(1) Ati = {p1,p2,p3,p4}. There are no atoms occurring in ψ that are not under the control
of agent i, so we get for α a disjunction of three occurrences of 
, which equals 
, so
that our agent can always bring about ψ .

(2) Ati = {p1,p2}. Agent i can only toggle the atoms p1 and p2, so the states in which he
can bring about ψ are represented by ¬p4 ∨p4 ∨p4 which is equivalent to true: agent
i can always bring about ψ !
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(3) Ati = {p2}. Then he can bring about ψ in those worlds satisfying (p1 ∧ ¬p4) ∨ (p1 ∧
p4) ∨ (p1 ∧ p4), which is equivalent to p1.

(4) Ati = {p3}. Then i can bring about ψ only in those situations in which ψ is already
true (i.e., α = ψ ), which is as expected.

Note that Lemma 3.4 implies that every formula �Cψ is also equivalent to a proposi-
tional formula. Let X and Y again be the atoms in and out of control of C, respectively.
This time, write ψ in Conjunctive Normal Form CNF(ψ,C) = δ1 ∧ · · ·∧ δd , each δj of the

form δĈ
j ∨ δČ

j ≡ ∨
g�k 
j (xg) ∨ ∨

h�m 
j (yh). We then get that �Cψ ≡ ∧
j�d δČ

j . As an
example, suppose that CNF(ψ,C) = (p1 ∨ ¬p2 ∨ q1 ∨ ¬q2) ∧ (p1 ∨ p2 ∨ ¬q1 ∨ q2), and
that p1,p2 ∈ At(C), but q1, q2 /∈ At(C). Then C cannot avoid that ψ is true in those cases
where both (q1 ∨ ¬q2) and (¬q1 ∨ q2) are true.

In fact, Lemma 3.4 gives us a constructive way to find the propositional formula α,
given the coalition C and DNF(ψ,C) = πi ∨ · · · ∨ πk for ψ . Let us, for future reference,
define this α as F(C,ψ).

Theorem 3.1 (Normal forms). Every formula ϕ is equivalent in CL-PC to a propositional
formula.

Proof. Consider the following translation T .

T (
) = 

T (p) = p

T (¬ϕ) = ¬T (ϕ)

T (ϕ ∧ ψ) = T (ϕ) ∧ T (ψ)

T (�Cϕ) = F
(
C,T (ϕ)

)
From the definition of T and Lemma 3.4, it is clear that ϕ is equivalent to T (ϕ). Moreover,
it is easy to see that T (ϕ) is a propositional formula. �
Example 3.3. Again, we consider the formula ϕ which in dnf is ((p1 ∧¬p2 ∧¬p4)∨ (p1 ∧
¬p2 ∧ p4) ∨ (p1 ∧ p2 ∧ p4)). We are interested in finding the propositional equivalent of
�1�2ϕ. We consider the following cases:

(1) At2 = {p1,p2,p4}, At1 = {p3}. There are no atoms occurring in ϕ that are not under
control of agent 2, so we get as the translation of �2ϕ the formula 
, and the translation
of �1
 is 
.

(2) At2 = {p1,p2}. We know from Example 3.2 that T (�2ϕ) = 
, giving also 
 for
T (�1�2ϕ).

(3) At2 = {p2}. Then 2 can bring about ϕ in those worlds satisfying p1 (see Example 3.2).
So, in case p1 ∈ At1, we have that �1�2ϕ ≡ 
, saying that the coalition {1,2} can
always bring about ϕ, but if p1 /∈ At1, the formula �1�2ϕ is equivalent to p1, indicating
all situations in which {1,2} can bring about ϕ.
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(4) At2 = {p3}. Then i can bring about ϕ only in those situations in which ϕ is already
true, and we can use the analysis of Example 3.2 to reason about �1�2ϕ, since it is
equal to �1ϕ.

Corollary 3.1. Let ϕ be an arbitrary formula, and MI a propositional model based on a
partition I . Then: MI |=d �Agϕ iff there is a propositional formula ψ for which |=d

I ϕ ↔
ψ and ψ being a propositional tautology.

We can now move on to the main stage of our proof. We employ a canonical model
construction, and assume some familiarity with this approach in what follows:3 in par-
ticular, we assume some understanding of the standard definition of maximal consistent
sets, Lindenbaum’s lemma [18, pp. 18–20], and the use of these in the canonical model
construction [18, pp. 22–23].

Definition 5 (Canonical model). We define the canonical model Kcan for CL-PC as Kcan =
〈W can,Rcan

1 , . . . ,Rcan
n ,Θcan〉, where:

• W can is the set of CL-PC maximal consistent sets;
• Rcan

i Γ ∆ iff for all ϕ: ϕ ∈ ∆ ⇒ �iϕ ∈ Γ .
• Θcan(Γ )(p) = tt iff p ∈ Γ .

Lemma 3.5. The canonical model Kcan defined in Definition 5 is isomorphic to the Kripke
model K of Definition 2. More precisely, there exists a bijective function f :W can → W

such that:

(1) for all Γ ∈ W can and p ∈ At: Θcan(Γ )(p) = tt iff Θ(f (Γ ))(p) = tt,
(2) Rcan

i Γ ∆ iff Rif (Γ )f (∆).

Proof. Theorem 3.1 tells us that any CL-PC formula is equivalent to a propositional for-
mula. Since we assumed a finite number of propositional atoms, there are finitely many
propositional formulas. It follows that for world Γ ∈ W can there is a corresponding world
wΓ in the Kripke model K which exactly satisfies the literals in Γ . It is also the case that
for every valuation wΓ in K, there is a corresponding world Γ in W can. Let us call this
isomorphism f :W can → W , where W can is the domain of the canonical model, and W is
the domain of the Kripke model K, as defined in Definition 2. Define f formally as

f (Γ ) = wΓ , for the unique wΓ such that for all p (p ∈ Γ ⇔ wΓ (p) = tt)

This is a bijection: first of all, every world w is the image of some Γ ∈ W can. More-
over, suppose that Γ �= ∆. To show that f (Γ ) �= f (∆), suppose the latter is not the case:
f (Γ ) and f (∆) coincide. This means that Γ and ∆ contain exactly the same literals, and,
since they are maximal consistent sets, also the same objective formulas. But, by Theo-
rem 3.1 then, they contain the same LC-PC formulas, i.e., Γ = ∆, contradicting our initial
assumption, hence f (Γ ) �= f (∆).

3 See [11, pp. 59–61], [9, pp. 196–201], or [18, pp. 22–25] for introductions.
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It is obvious, by construction of f , that Θcan(Γ ) and Θ(f (Γ )) agree on all atoms. This
proves item 1.

Now we have to show that the definition of Rcan
i in the canonical model corresponds to

that of Ri in the Kripke model K, or, more precisely, that

Ri
canΓ ∆ iff

[
f (Γ ) = f (∆) (mod Ati )

]

To prove the displayed equivalence, suppose first that Rcan
i Γ ∆, and, to derive a contra-

diction, that f (Γ ) �= f (∆) (mod Ati ). The latter means that there is an atom p ∈ (At \ Ati ),
such that for some literal 
(p), we have 
(p) being false under the valuation f (Γ ),
but 
(p) being true under f (∆). By the first item of this lemma, we know that then

(p) /∈ Γ,
(p) ∈ ∆. The definition of Rcan

i then yields that �i
(p) ∈ Γ . But this is impos-
sible, since �i
(p) ∈ Γ implies (use non-effect(i)) �i
(p) ∈ Γ , which, by T (i), implies

(p) ∈ Γ , in contradiction with what was derived earlier.

For the other direction, assume that [f (Γ ) = f (∆) (mod Ati )]. Let ϕ be an arbitrary
formula in ∆: we have to show that �iϕ in Γ . Let π be the conjunction of all the literals
in ∆. This is the strongest propositional formula in ∆, and, by Theorem 3.1, the strongest
formula in it. Hence we have �cl-pc π → ϕ. We can write π as a conjunction (π ı̂ ∧ πı̌), in
which πı̂ is the conjunction over all 
(p) with p ∈ Ati , and πı̌ a conjunction of 
(pi), with
pi /∈ Ati . Since f (Γ ) = f (∆) (mod Ati ), we have that πı̌ ∈ Γ . By Lemma 3.3, we know
that �cl-pc πı̌ → �i (π

ı̂ ∧ πı̌), and hence �i (π
ı̂ ∧ πı̌) ∈ Γ . But then, by definition of π ,

we have �iπ ∈ Γ and hence �iϕ ∈ Γ .
This completes the proof that the models K and Kcan are isomorphic, and hence verify

the same formulas. �

We now come to our main completeness result. (For readability, we suppress the set of
agents Ag, the set of atoms At and the partition I of At over Ag, which should be the same
in all cases.)

Theorem 3.2 (Completeness). The following are equivalent, for any formula ϕ.

(i) ϕ is CL-PC-consistent;
(ii) ϕ is true in one of the worlds of the canonical model Kcan (see Definition 5);

(iii) ϕ is true in one of the worlds of K (see Definition 2);
(iv) ϕ is true in some propositional model M (see Definition 1).

Proof. Let ϕ be consistent. Then it is contained in a maximal consistent set Γ . The
construction of the canonical model is standard, as is the proof of its coincidence prop-
erty: Kcan,∆ |= ψ iff ψ ∈ ∆ (see, e.g., [9, pp. 196–201]). From this, it follows that
Kcan,Γ |= ϕ, and hence this proves (i) implies (ii). The other direction follows from
Lemma 3.1. Lemma 3.5 states that items (ii) and (iii) are equivalent, and the equivalence
of (iii) and (iv) is guaranteed by Lemma 2.4. �
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4. Varieties of ability and control

In the introduction to this paper, we claimed that contingent ability, as captured in our
“�···” cooperation modalities, was sufficient to define other, richer (and arguably more
realistic) types of ability and control. Our aim in this section is to justify this claim. We
begin by showing how contingent ability may be used to define α- and β-ability modalities.
In Section 4.2, we go on to show how the notion of control may be characterised in CL-PC.

4.1. Characterising alpha and beta ability

As we noted above, the cooperation modality �··· is not strategic. That is, a formula
�Cϕ simply means that the coalition C have some choice available to them, such that
if they make this choice and nothing else changes, then ϕ will be true. But of course,
multiagent encounters are typically strategic in nature, where the decision that one agent
should make depends on the decisions that other agents may make. In this section, we show
how it is possible to define strategic cooperation modalities in terms of CL-PC constructs.

In the study of coalitional ability, the most common form of strategic capability stud-
ied is known as α-ability, or “ ∃∀ ”-capability (see, e.g., [37, pp. 311–312]). Intuitively, a
coalition C is said to have α-ability for some proposition ϕ if there exists a choice σC for
C such that, for all choices σC for C, if C make choice σC and C make choice σC , then
ϕ will be true. (Note the “ ∃∀ ” pattern of quantifiers in this definition.) In other words, C

having the α-ability to bring about ϕ means that C have a choice such that, no matter what
the other agents do, if they make this choice, then ϕ will be true. This notion of cooperative
ability typically forms the semantic basis of cooperation modalities [36].

Implicit within the notion of α-ability is the fact that C have no knowledge of the choice
that the other agents make; they are not allowed to see the choice of C and then decide what
to do, but rather they must make their decision first. This motivates the notion of β-ability
(i.e., “ ∀∃ ”-ability): coalition C is said to have the β-ability for ϕ if for every choice σC

available to C, there exists a choice σC for C such that if C choose σC and C choose σC ,
then ϕ will result. Thus C being β-able to ϕ means that no matter what the other agents
do, C have a choice such that, if they make this choice, then ϕ will be true. Note the “ ∀∃ ”
pattern of quantifiers: C are implicitly allowed to make their choice while being aware of
the choice made by C.

It is easy to see that both α- and β-ability represent stronger notions of ability than
that in the basic cooperation modalities of CL-PC. But using the cooperation modalities of
CL-PC, we can in fact define coalition modalities “〈〈· · ·〉〉α” and “〈〈· · ·〉〉β” capturing α and
β-ability respectively, and of course their duals, “�· · ·�α” and “�· · ·�β”.

〈〈C〉〉αϕ =̂�C�Cϕ

〈〈C〉〉βϕ =̂�C�Cϕ

�C�αϕ =̂¬〈〈C〉〉α¬ϕ

�C�βϕ =̂¬〈〈C〉〉β¬ϕ
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As an aside, the double bracket notation, “〈〈· · ·〉〉” it motivated by its use in ATL [5]:
the derived modality 〈〈· · ·〉〉α is very close to the ATL “next” cooperation modality, written
〈〈· · ·〉〉 �.

One may wonder whether definitions like those given above cannot be used in arbitrary
coalition logics, such as ATL. However, the fact that we can “reduce” α- and β-ability to
the contingent ability is due to the fact that our system is basically asynchronous. That
is, the effect of the agents’ choices are independent of each other—the effect of a group’s
decision is exactly the sum of the effects of its individuals. Expressed more precisely:
for any coalition C = {c1, . . . , ck}, any ability formula �Cϕ can always be rewritten as
�c1�c2 · · · �ck

ϕ, expressing that the actions of the agents do not interfere with each other,
and group actions can always be unravelled as a sequence of individual actions.

Let us consider the relationships between the various types of ability introduced in this
paper. First, note that we have the following equivalence.

〈〈C〉〉βϕ =̂ �C�Cϕ

↔ �C�C�Cϕ

↔ �Ag�Cϕ

Secondly, (cf. T (C)), we have both |=d 〈〈C〉〉αϕ → �Cϕ and |=d 〈〈C〉〉βϕ → �Cϕ.
At the global level, β-ability and contingent ability collapse: saying that, for a given

partition of atoms among agents, the coalition C have the β-ability to achieve ϕ is the
same as saying that they have the contingent ability to achieve ϕ in every situation based
on this partition. More formally, we have the following equivalence.

|=d
I 〈〈C〉〉βϕ ⇔ |=d

I �Cϕ (16)

However, note that α- and β-ability are distinct at the global level. Formally, we have the
following.

|=d
I 〈〈C〉〉αϕ �⇔ |=d

I 〈〈C〉〉βϕ

To see this, let {p} = AtC . Then we have |=d
I 〈〈C〉〉β(p ↔ q), but obviously not

|=d
I 〈〈C〉〉α(p ↔ q). Instead, we get the following implications between the different types

of ability.

|=d
I 〈〈C〉〉αϕ → 〈〈C〉〉βϕ (17)

|=d
I 〈〈C〉〉βϕ → �Cϕ (18)

Given that the definition of the α cooperation modalities more closely resembles those
of Pauly’s coalition logic, the following question arises: To what extent does Pauly’s
axiomatization of Coalition Logic carry over to CL-PC with α cooperation modalities?
Consider the following axioms, which are just Pauly’s axioms for Coalition Logic trans-
lated directly into CL-PC (see [36, pp. 54–56]).

(α-N⊥) ¬〈〈Ag〉〉α⊥
(α-
) 〈〈∅〉〉α⊥ → 〈〈C〉〉α

(α-⊥) 〈〈C〉〉α⊥ → 〈〈C′〉〉α⊥ (C′ ⊆ C)
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(α-N) ¬〈〈∅〉〉α¬ϕ → 〈〈Ag〉〉αϕ

(α-S)
(〈〈C1〉〉αϕ ∧ 〈〈C2〉〉αψ

) → 〈〈C1 ∪ C2〉〉α(ϕ ∧ ψ) (C1 ∩ C2 = ∅)

We have the following.

Theorem 4.1. Axiom schemes (α-N⊥), (α-
), (α-⊥), (α-N), and (α-S) may all be de-
rived within the axiom system CL-PC.

Proof. See Appendix B. �
4.2. Characterising control

In this section, we address ourselves to the problem of characterising the circumstances
under which a coalition controls some state of affairs. We begin with the following obser-
vation: Control is closely related to ability, but it is not the same thing. For, consider any
propositional tautology 
. According to all of the definitions of ability we have considered
thus far, any coalition (even ∅) can achieve 
. But we would not be inclined to take seri-
ously any coalition that claimed to control 
—this would be rather like claiming to control
the heavens just because the sun happened to rise every morning. So, being able to control
some state of affairs ϕ means not just being able to achieve ϕ, it also means being able to
achieve ¬ϕ. This motivates the following.

Definition 6 (Contingent control). Where C is a coalition and ϕ is a formula of CL-PC, we
write controls(C,ϕ) to mean that C can choose ϕ to be either true or false:

controls(C,ϕ) =̂ �Cϕ ∧ �C¬ϕ

The following result suggests that this definition seems to be operating at least partly in
the way intended: by using the controls(. . .) connective, we can capture the distribution of
propositions among agents in a model.

Lemma 4.1. Let M = 〈Ag,At,At1, . . . ,Atn, θ〉 be a model for CL-PC, i ∈ Ag be an agent,
and p ∈ At be a propositional variable in M. Then:

M |=d controls(i,p) iff p ∈ Ati

Proof. For the left-to-right implication, assume M |=d controls(i,p). Then there are two
cases to consider: where θ(p) = ff and θ(p) = tt. Consider the first case. Since M |=d

controls(i,p), there exists an i-valuation θi such that M ⊕ θi |=d p. Since M differs
from M ⊕ θi only in the values it assigns to variables in the domain of θi , it follows
that p ∈ dom θi , and hence p ∈ Ati . The second case is essentially identical. For the right-
to-left implication, assume p ∈ Ati , and consider any two i-valuations θ−

i and θ+
i such that

θ+
i (p) = tt and θ−

i (p) = ff, but on all atoms q �= p, θ+
i (q) = θi(q) = θ−(q). Clearly,

M ⊕ θ+
i |=d p and M ⊕ θ−

i |=d ¬p, so M |=d �ip ∧ �i¬p, and hence by definition
M |=d controls(i,p). �
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In other cooperation logics, there is not much we can really say about when a coalition
controls some state of affairs: either it controls it, or it does not control it. However, with
CL-PC, we have more information to go on: we know that propositional variables are con-
trolled by agents. We can use this structure to extract some general rules with respect to
when a coalition controls a formula, in terms of the logical structure of that formula, the
propositional variables that make up the formula, and the variables that are controlled by
the coalition in question. So, we will now consider the issue of how we might generalise
Lemma 4.1 to arbitrary formulas ϕ.

First of all, note that the fact that controls(i, ϕ) is true, does not mean that At(ϕ) ⊆ Ati .
As a counterexample, suppose that p is true, and Ati = {q}. Then obviously controls(i,p ∧
q), but At(p∧q) = {p,q} �⊆ {q} = Ati . This example also shows that although the set Ati is
defined independently of the actual valuation θ in M, whether i controls ϕ may depend on
the specific θ , since in the above example controls(i,p ∧ q) would not have been true in a
model M′ in which p was false. Secondly, the fact that At(ϕ) ⊆ Ati does not guarantee that
i controls ϕ, for which (p ∨ ¬p) for agent i with Ati = {p} is a witness. In order for any
coalition C to control ϕ, the formula ϕ must be a contingency, i.e., neither a contradiction
nor a tautology. Conversely, if ϕ is a contingent formula, the grand coalition Ag controls it:

Observation 4.1. Let I be a partition At1, . . . ,Atn of the atoms At. Then, for every for-
mula ϕ:

|=d
I controls(Ag, ϕ) iff (�|=d

I ϕ and �|=d
I ¬ϕ)

Proof. From left to right is obvious, so assume ϕ is contingent and let the model MI

be 〈Ag,At,At1, . . . ,Atn, θ〉. Then, for some M′
I = 〈Ag,At,At1, . . . ,Atn, θ ′〉 and for some

M′′
I = 〈Ag,At,At1, . . . ,Atn, θ ′′〉 we have M′ |=d ϕ and M′′ |=d ¬ϕ. Note that we have

θ = θ ′ (mod At) and θ = θ ′′ (mod At), which finishes the proof. �
To appreciate the relevance of a fixed partition I in Observation 4.1, note that in the

proof, the two obtained models M′
I and M′′

I are based on the same partition I . Indeed, we
have the following non-equivalence:

|=d controls(Ag, ϕ) �⇔ (�|=d ϕ and �|=d ¬ϕ) (19)

Although from left to right is a valid implication, here is a witness that refutes the right to
left direction: take for ϕ the formula controls(i,p). From Lemma 4.1, we know that this
formula is true in a model M iff p ∈ Ati . Obviously, there are partitions I for which this is
the case, and others, for which it is not, from which we see that the right hand side of (19)
is true. However, at the same time, �|=d controls(Ag, controls(i,p)), because, in an arbitrary
model MI based on a partition I , we either have p ∈ Ati (in which case |=d

I controls(i,p))
or p /∈ Ati (giving |=d

I ¬controls(i,p)). In both cases, by Observation 4.1, we have
�|=d

I controls(Ag, controls(i,p)) and hence, by the counterpart in the direct semantics of
(3) and Corollary 2.2, �|=d controls(Ag, controls(i,p)).

We now consider the more general question of when a coalition C controls a formula ϕ.
We settle it first for the case with a fixed partition (in what follows, we use some notation
and terminology that was introduced in Section 3).
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Let us begin with an attempt that does not work. We cannot generalise Observation 4.1
to the following:

Let I be a partition At1, . . . ,Atn of the atoms At. Then, for every formula ϕ and every
coalition C, |=d

I controls(C,ϕ) iff:(�|=d
I ϕ and �|=d

I ¬ϕ and ∃ϕ′ :|=d
I (ϕ′ ↔ ϕ) and At(ϕ′) ⊆ At(C)

)

Although the only if direction holds, a counterexample for the if direction is the formula
controls(i, (pi ↔ q)), At(i) = {pi}. We do have the following, however.

Theorem 4.2. Let C be a coalition, ϕ a formula, and MI = 〈Ag,At,At1, . . . ,Atn, θ〉 a
propositional model. Then: MI |=d controls(C,ϕ) iff there exists a propositional formula
ψ with the following properties:

(a) |=d
I ψ ↔ ϕ;

(b) Let DNF(ψ,C) equal (πĈ
1 ∧πČ

1 )∨· · ·∨(πĈ
d ∧πČ

d ) with At(πĈ
j ) = X = At(ψ)∩At(C).

Then, for some j � d :

(b1) MI |=d πČ
j ;

(b2) There is some 
(X) = 
(x1) ∧ · · · ∧ 
(xk) such that 
(X) ∧ πČ
j does not occur in

DNF(ψ,C).

Proof. Suppose that (a) and (b) are true, then we have that MI |=d πČ
j . By soundness,

and Lemma 3.3, we have MI |=d �C(πČ
j ∧ πĈ

j ), and hence MI |=d �Cϕ. We also have

�CL-PC (
(X) ∧ πČ
j ) → ¬ϕ and thus |=d

I (
(X) ∧ πČ
j ) → ¬ϕ. But since πČ

j is already

true in MI , and all the atoms in 
(X) belong to C, we have MI |=d �C(
(X) ∧ πČ
j ),

and hence MI |=d �C¬ϕ. Conversely, suppose MI |=d controls(C,ϕ), i.e., MI |=d �Cϕ

and MI |=d �C¬ϕ. By Lemma 3.3, we find a ψ such that |=d
I ψ ↔ ϕ, and X and Y as

usual, with DNF(ψ,C) = ∨
i�d πi , each πi of type πĈ ∧πČ . The model MI must decide

on one of the disjunctions, i.e., for some πj (j � d), we have MI |=d πj , i.e., MI |=d

πĈ
j ∧πČ

j . Now, suppose that every combination 
(X) occurs as 
(X)∧πČ
j in DNF(ψ,C).

By propositional reasoning, we then obtain that �CL-PC πČ
j → ϕ, and, by necessitation

and soundness, |=d �C(πČ
j → ϕ). Since C has no control over the atoms in πČ

j , and πČ
j

is already true in MI , we have MI |=d �CπČ
j . All in all, we see that MI |=d �Cϕ. But

this is in contradiction with MI |=d �C¬ϕ, and hence not every combination 
(X) occurs

as 
(X) ∧ πČ
j in DNF(ψ,C). �

This notion of control still has a local flavour: if an atom p ∈ Ati and q /∈ Ati , for in-
stance, then controls(i,p ∧ q) would be true in a model M for which M |=d q , but not in
models M′ for which M′ |=d ¬q . In fact, the formulas that are globally under control of a
coalition C have a very natural determination, for a fixed interpretation I :



W. van der Hoek, M. Wooldridge / Artificial Intelligence 164 (2005) 81–119 107
Theorem 4.3. Let C be a coalition, ϕ a formula, and I a fixed partition of At. Then:
|=d

I controls(C,ϕ) iff there exists a propositional formula ψ with the following properties:

(a) |=d
I ψ ↔ ϕ;

(b) Let DNF(ψ,C) be
∨

j�d(πĈ
j ∧ πČ

j ). Then |=d
I

∨
j�d πČ

j and for every πČ
j in

DNF(ψ,C), there is an conjunction 
(X) over literals in X such that 
(X) ∧ πČ
j

does not occur in DNF(ψ,C).

Proof. Immediately from Theorem 4.2. �
Corollary 4.1. |=d controls(C,ϕ) iff for every partition I of At, the conditions (a) and (b)
of Theorem 4.3 are met.

Note that two formulas �Cϕ and �C′ϕ′ can be equivalent, while on the one hand C

controls ϕ, but C′ need not control ϕ′: we have for instance controls(Ag,p), for any p, but
not controls(C,�Cp), even though �Agp and �C�Cp are equivalent.

It seems that rather than the local notion of control, the notion of Theorem 4.3 is the
more interesting one. It has a local counterpart, though, inspired by (2). Let us say that a
coalition C fully controls a property ϕ in M, notation M |=d Controls(C,ϕ), if M |=d

�Agcontrols(C,ϕ). We then obtain (where M is based on partition I ):

M |=d Controls(C,ϕ) iff |=d
I controls(C,ϕ) (20)

5. Model checking and satisfiability

Whenever one considers reasoning within some logic, there are two basic problems that
one must address: model checking and satisfiability checking. Model checking is the prob-
lem of determining, for any given model and formula, whether the formula is satisfied by
the model; the satisfiability problem, in contrast, asks whether there is any way a given
formula could be satisfied. For many modal and temporal logics, the model checking prob-
lem is computationally easy when compared to the satisfiability checking problem, and for
this reason there is currently much interest in reasoning via model checking, rather than
satisfiability checking (see, e.g., [12,15,20] for discussions).

In this section, we characterise the complexity of these two problems with respect to CL-
PC. We show that, in fact, their complexity coincides: both problems are PSPACE-complete.
Note that in the remainder of this section, we are assuming the use of the direct semantics.

5.1. Model checking

We begin by considering model checking for CL-PC. Formally, the decision problem is
as follows.
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1. function eval(ϕ, 〈Ag,At,At1, . . . ,Atn, θ〉) returns tt or ff
2. if ϕ ∈ At then
3. return θ(ϕ)

4. elsif ϕ = ¬ψ then
5. return not eval(ψ, 〈Ag,At,At1, . . . ,Atn, θ〉)
6. elsif ϕ = ψ1 ∨ ψ2 then
7. return eval(ψ1, 〈Ag,At,At1, . . . ,Atn, θ〉)
8. or eval(ψ2, 〈Ag,At,At1, . . . ,Atn, θ〉)
9. elsif ϕ = �Cψ then
10. for each C-valuation θC

11. if eval(ψ, 〈Ag,At,At1, . . . ,Atn, θ〉 ⊕ θC) then return tt
12. end-for
13. return ff
14. endif
15. end-function

Fig. 4. A polynomial space model checking algorithm for CL-PC.

CL-PC MODEL CHECKING:
Instance: CL-PC model M and formula ϕ.
Answer: “Yes” if M |=d ϕ, “no” otherwise.

Theorem 5.1. The CL-PC MODEL CHECKING problem is PSPACE-complete.

Proof. For membership of PSPACE, consider the algorithm presented in Fig. 4.4 Par-
tial correctness—that is, eval(ϕ,M) = tt iff M |=d ϕ—is by an easy induction on the
structure of formulae. Termination follows from the fact that the algorithm is recursively
analytic (i.e., the only recursive calls are on strict sub-formulae) with atomic propositions
being the recursive base. The loop in lines 10–12 clearly terminates as there are finitely
many C-valuations. With respect to the space requirements of the algorithm, for an input
formula ϕ, the algorithm will require at most |ϕ| recursive calls. A recursive call requires
no more space than the original input instance, and since there are at most |ϕ| recursive
steps, the recursion stack will require space at most polynomial in the size of the original
input instance. Note that the loop in lines 10–12 merely involves binary counting using the
propositional variables AtC . Thus, the algorithm requires only space polynomial in |ϕ|.

To show PSPACE hardness, we reduce QSAT [35, p. 456] to the CL-PC model checking
problem. An instance of QSAT is given by a quantified Boolean formula in prenex normal
form:

∃x1,∀x2,∃x3, . . . ,Qmxm · ϕ(x1, x2, x3, . . . , xm) (21)

where x1, x2, x3, . . . , xm are propositional variables, the quantifier Qm is “∃” if m is odd
and “∀” otherwise, and ϕ(x1, x2, x3, . . . , xm) is a propositional logic formula (the ma-
trix) over x1, x2, x3, . . . , xm. The goal is to determine whether this formula is true: that
is, whether there is some value for x1 such that for all values of x2, there is some value for

4 Note that we are not presenting this as a practical algorithm for model checking—its purpose is merely to
establish membership in PSPACE.
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x3 such that, . . . , such that the matrix ϕ(x1, x2, x3, . . . , xm) is true under this valuation. We
can create an instance of the CL-PC model checking problem from an instance (21) as fol-
lows. To create the model M = 〈Ag,At,At1, . . . ,Atn, θ〉, set At = {x1, . . . , xm}, and create
an agent ai for each quantifier Qi . Then set Ati = {xi}. Finally, define θ by θ(xi) = ff for
all xi ∈ At. (In fact, the valuation θ could be set to anything—it makes no difference.) Then
define the input formula to the model checking problem to be

�a1�a2�a3 · · · {am} ϕ(x1, x2, x3, . . . , xm) (22)

where the final cooperation modality, (i.e., {am}), is �am if m is odd and �am if m is
even. We claim that this formula is satisfied in the model we have created iff the input
formula (21) is true: the result follows immediately from the semantics of �··· and �···
and the allocation of variables to agents. Hence the model checking problem for CL-PC is
PSPACE-hard, and we conclude that it is PSPACE-complete. �

For readers familiar with the literature on model checking for cooperation logics, this
result may seem surprisingly negative. After all, the two closest relatives to CL-PC (i.e.,
Pauly’s coalition logic [36–38] and ATL [5]) both have tractable (polynomial time) model
checking problems. Closer examination gives an explanation. The ATL model checking
problem may be solved in time O(|M| · |ϕ|), where |M| is the size of the model M against
which the formula is to be checked, and |ϕ| is the size of the formula that is to be checked.
However, models for ATL (and Coalition Logic) are more like our Kripke structures for
CL-PC than the direct semantic models we use. That is, they are assumed to contain an
explicitly enumerated set of states corresponding to the possible situations that agents may
cooperate to bring about—and in general, this set of states will be exponentially large in the
number of agents and the number of propositional atoms. In contrast, our (direct) models
for CL-PC are exponentially more succinct—the fact that the model checking problem for
ATL and Coalition Logic appear to be tractable is thus only part of the story.

The distinction between succinct specification and explicit enumeration of states of
models in model checking, and the effect that this has on the apparent complexity of model
checking, has been noted elsewhere—see [41] for a detailed discussion. Donini and col-
leagues show how SMV, the well-known symbolic model checker for CTL, can be used to
efficiently solve quantified boolean formulae (QBF), a well-known PSPACE-complete prob-
lem [13]. This is despite the fact that CTL model checking, like ATL and Coalition Logic
model checking, can ostensibly be done in polynomial time [12,15]. The explanation for
the fact that an apparently polynomial time algorithm for CTL model checking can be used
to efficiently solve PSPACE-complete problems is exactly the same as that of the PSPACE-
completeness of CL-PC model checking: the CTL model checking algorithm works in time
polynomial in the number of states, but the model specification language used in SMV

allows an extremely succinct description of this state set.
It is worth noting that our result suggests that the actual complexity of ATL model

checking (i.e., the complexity of the problem that the MOCHA model checker solves) is
much higher than the apparent complexity of the explicit state model checking problem.
Our result suggests it is at least PSPACE-hard, and may be worse.
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5.2. Satisfiability checking

The next problem we consider is that of satisfiability checking: the problem of deter-
mining whether or not there is any way a given CL-PC formula could be true. Note that, for
ATL, the satisfiability problem is EXPTIME-complete [14], whereas for Coalition Logic, the
complexity of the satisfiability problem varies from NP-complete up to PSPACE-complete,
depending on the variation considered [36, pp. 73–75].

CL-PC SATISFIABILITY CHECKING:
Instance: CL-PC formula ϕ.
Answer: “Yes” if ϕ is satisfiable, “no” otherwise.

Theorem 5.2. The CL-PC SATISFIABILITY problem is PSPACE-complete.

Proof. Given a formula ϕ of CL-PC, the following non-deterministic algorithm decides
whether it is satisfiable:

(1) Guess a model M such that size(M) = |Ag(ϕ)| + |At(ϕ)| + 1.
(2) Verify that M |=d ϕ.

Step (1) can be done in (non-deterministic) polynomial space, and by Theorem 5.1, step (2)
can be done in polynomial space. Moreover, by Corollary 2.1, if ϕ is satisfiable, then it is
satisfiable in a model of the type guessed in step (1). Hence the problem is in NPSPACE,
and since NPSPACE = PSPACE, the problem is in PSPACE.

To establish PSPACE hardness, we will reduce QSAT to CL-PC SATISFIABILITY (recall
the definition of QSAT from Theorem 5.1). The idea of the reduction is basically the same
as that of Theorem 5.1, but as we have no model to check against, we must add a side
condition to the formula (22) that we create to ensure the correct distribution of controlled
propositions amongst agents. Thus, given an instance (21) of QSAT, the instance of CL-PC

SATISFIABILITY that we create is as follows.

(22) ∧
m∧

i=1

controls(ai, xi) (23)

Now, by Lemma 4.1, in any model that satisfies (23), proposition xi will be under the
control of agent ai . We now claim that (23) is satisfiable iff the QSAT instance (21) is
true. The result again follows immediately from the semantics of �··· and �···. The CL-
PC SATISFIABILITY problem is thus PSPACE-hard, and as we proved above that it is in
PSPACE, we conclude it is PSPACE-complete. �

6. Related work

Over the past three decades, researchers from many disciplines have attempted to de-
velop a general purpose logic of ability. Within the artificial intelligence (AI) community,
it was understood that such a logic could be used in order to gain a better understanding of
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STRIPS-style AI planning systems [2,17,28]. The most notable early effort in this direction
was Moore’s dynamic epistemic logic [29,30]. Moore was particularly interested in captur-
ing some of the interactions between knowledge, action, and ability. For example, he was
the first to formalise the idea of “knowledge pre-conditions”: what an agent must know in
order to achieve some goal, or carry out some action. To use an overworked example, con-
sider agent A that must speak to agent B via telephone. In order to accomplish this goal, A

needs to know B’s telephone number—this is thus a knowledge pre-condition. However, as
Moore noted, not having immediate access to B’s telephone number does not preclude the
goal from being accomplished—because A has an action available (looking up B’s number
in the telephone directory) that will furnish it with this knowledge. Moore also made the
important distinction between an agent knowing a plan that will achieve some goal, and
the knowledge that there exists a plan that will achieve a goal. Using the terminology of
quantified modal logic [27, pp. 183–188], in the former case, the agent has de re knowl-
edge of the plan (in the sense that not only does the agent know that there is a plan that
will achieve the goal, it knows what the plan is—it knows the identity of the plan), while
in the latter case, the agent has de dicto knowledge of the plan (the agent may be ignorant
about the identity of the plan). Moore’s formalism was able to capture these distinctions.
Moore’s work was subsequently enhanced by many other researchers, perhaps most no-
tably, Morgenstern [31,32]. These distinctions also informed later attempts to integrate a
logic of ability into more general logics of rational action in autonomous agents [45,47]
(see [46] for a survey of such logics).

In a somewhat parallel thread of research, researchers in the philosophy of action
have developed a range of logics underpinned by rather similar ideas and motivations.
A typical example is that of Brown, who developed a logic of individual ability in the mid-
1980s [10]. Brown’s main claim was that modal logic was a useful tool for the analysis of
ability, and that previous—unsuccessful—attempts to characterise ability in modal logic
were based on an over-simple semantics. Brown’s account of the semantics of ability was
as follows [10, p. 5]:

(An agent can achieve A) at a given world iff there exists a relevant cluster of worlds, at
every world of which A is true.

Notice the ∃∀ pattern of quantifiers in this account. Brown immediately noted that this
gave the resulting logic a rather unusual flavour, neither properly existential nor properly
universal [10, p. 5]:

Cast in this form, the truth condition (for ability) involves two metalinguistic quantifiers
(one existential and one universal). In fact, (the character of the ability operator) should
be a little like each.

As we noted in the introduction, contemporary logics of ability—Coalition Logic and
ATL—are based on exactly the same idea. It is worth noting that many similar approaches
have been developed in the logical theory of action: examples include the “seeing to it
that” logic of Belnap and Perloff [7,8,26], Segerberg’s logic of “bringing it about” [42],
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and of course program logics such as dynamic logic [21]. A useful survey of such work
was published in 1992 [43].

The recent surge of interest in logics of strategic ability was sparked by two largely
independent developments: Pauly’s development of Coalition Logic [36–39], and the de-
velopment of ATL by Alur, Henzinger, and Kupferman [5,14,19]. Although these logics are
very closely related (indeed, Coalition Logic can be formally understood as the “next-time”
fragment of ATL [19]), the motivation and background to the two systems is strikingly dif-
ferent.

Pauly’s Coalition Logic was developed in an attempt to shed some light on the links be-
tween logic—and in particular, modal logic—and the mathematical theory of games [33].
Pauly showed how the semantic structures underpinning a family of logics of cooperative
ability could be formally understood as games of various types; he gave correspondence
results between properties of the games and axioms of the logic, gave complete axioma-
tizations of the various resulting logics, determined the computational complexity of the
satisfiability and model checking problems for his logics, and in addition, demonstrated
how these logics could be applied to the formal specification and verification of social
choice procedures.

ATL, however, emerged from a rather different research community, and was developed
with an entirely different set of motivations in mind. The development of ATL is closely
linked with the development of branching-time temporal logics for the specification and
verification of reactive systems [15,16,44]. Perhaps the best known branching-time tempo-
ral logic is Computation Tree Logic (CTL) [15]. CTL is a temporal logic that is interpreted
over tree-like structures, in which nodes represent time points and arcs represent transitions
between time points. In distributed systems applications, the set of all paths through a tree
structure is assumed to correspond to the set of all possible computations of a system. CTL

combines path quantifiers “A” and “E” for expressing that a certain series of events will
happen on all paths and on some path respectively, with tense modalities for expressing
that something will happen eventually on some path (♦), always on some path ( ) and
so on. Thus, for example, by using CTL-like logics, one may express properties such as
“on all possible computations, the system never enters a fail state”, which is represented
by the CTL formula A ¬fail. Although they have proved to be enormously useful in the
specification and verification of reactive systems, logics such as CTL are of limited value
for reasoning about multi-agent systems, in which system components (agents) cannot be
assumed to be benevolent, but may have competing or conflicting goals. The kinds of prop-
erties we wish to express of such systems are the powers that the system components have.
For example, we might wish to express the fact that “agents 1 and 2 can cooperate to ensure
that the system never enters a fail state”. It is not possible to capture such statements using
CTL-like logics. The best one can do is either state that something will inevitably happen,
or else that it may possibly happen: CTL-like logics have no notion of agency.

Alur, Henzinger, and Kupferman developed ATL in an attempt to remedy this deficiency.
The key insight in ATL is that path quantifiers can be replaced by cooperation modalities:
the ATL expression 〈〈C〉〉ϕ, where C is a group of agents, expresses the fact that the group
C can cooperate to ensure that ϕ. Thus, for example, the fact that agents 1 and 2 can ensure
that the system never enters a fail state may be captured in ATL by the following formula:
〈〈1,2〉〉 ¬fail. ATL generalises CTL because the path quantifiers A (“on all paths. . . ”) and
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E (“on some paths. . . ”) can be simulated in ATL by the cooperation modalities 〈〈∅〉〉 (“the
empty set of agents can cooperate to. . . ”) and 〈〈Σ〉〉 (“the grand coalition of all agents can
cooperate to. . . ”).

One reason for the interest in ATL is that it shares with it ancestor CTL the computa-
tional tractability of its model checking problem [12].5 This led to the development of an
ATL model checking system called MOCHA [3,6]. With MOCHA, one specifies a model
against which a formula is to be checked using a model specification language called RE-
ACTIVE MODULES [4]. REACTIVE MODULES is a guarded command language, which
provides a number of mechanisms for the structured specification of models, based upon
the notion of a “module”, which is basically the REACTIVE SYSTEMS terminology for an
agent. Interestingly, however, it is ultimately necessary to define for every variable in a
REACTIVE MODULES system which module (i.e., agent) controls it. The powers of agents
and coalitions then derive from the ability to control these variables: and as we noted in
the introduction, this observation was one of the motivations for considering CL-PC as a
system in its own right.

ATL has begun to attract increasing attention as a formal system for the specification and
verification of multi-agent systems. Examples of such work include formalising the notion
of role using ATL [40], the development of epistemic extensions to ATL [23–25], and the
use of ATL for specifying and verifying cooperative mechanisms [39].

It is worth noting that CL-PC is closely related to the formalism of quantified Boolean
formulae. The logic of quantified Boolean formulae is an extension of propositional logic
which permits quantification over propositional variables. Although perhaps not widely
studied as an independent formalism, quantified Boolean formulae play an important role
in the theory of computational complexity [35, p. 455] (indeed, we used them when prov-
ing the complexity of CL-PC model checking and satisfiability); in addition, they are used
in symbolic model checking algorithms [12, pp. 66–67]. Readers may wonder whether
quantified Boolean formulae might therefore be used directly to reason about the kinds
of scenarios that we represent using the modal language of CL-PC. We believe that there
is considerable value in the modal language of CL-PC. The family relationship that the
calculus of quantified Boolean formulae bears to CL-PC is roughly that which the first-
order relational calculus bears to conventional modal logic. Thus, CL-PC can be reduced
to quantified Boolean formulae, in much the same way that conventional modal logic can
be reduced to first-order relational calculus [11, pp. 12–14]. But, just as the modal logic
community believes that the language of modal logic is preferable to that of the first-order
relational calculus for many situations [9, pp. xii–xiii], so we believe that CL-PC is prefer-
able to that of quantified Boolean formulae for the scenarios we are interested in. Perhaps
most importantly, CL-PC provides us with a language in which agency and ability are
first-class components—and these notions are not present in quantified Boolean formu-
lae. Attempting to represent our cooperation scenarios using quantified Boolean formulae,
while arguably possible, would thus lose or obscure these aspects, which are explicitly
present in CL-PC.

5 It also shares with CTL the intractability of its satisfiability problem [14].
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We finally mention related work of Harrenstein et al., which studies distribution of de-
cision variables over agents in a game theoretic setting. In their so-called Boolean Games
[34], two players partition the set of propositional atoms, which then represent moves in
an extensive game form. Such games allow for operations that yield a Boolean algebra,
and [34] defines winning strategies and determinacy on them. One of the main themes in
Harrenstein’s thesis is to describe ways that relate logical concepts to game theoretical
ones [22]. Boolean Games inspire him to define a notion of generalized logical conse-
quence, in which one does not quantify over arbitrary valuations, but rather those that are
equivalent modulo a given set of variables. This, again, is then linked to game theoretical
notions, like the existence of a winning strategy for one of the two players.

7. Conclusion

In this paper, we have introduced a logic of strategic cooperative ability in which the
powers of individual agents within the system are defined by associating a set of propo-
sitional variables with each agent, the idea being that a set of propositional variables
represents exactly the part of the environment under the corresponding agent’s control.
The choices available to an agent in this case correspond to the different assignments of
truth or falsity that the agent can give to the variables under its control, and the pow-
ers of a coalition derive from the propositions under the control of its members. We then
argued that there are several good, natural reasons why CL-PC is worth studying as a sys-
tem in its own right. As well as giving two alternative, but provably equivalent semantics
for CL-PC, we gave a complete axiomatization for the logic, established the complex-
ity of its model checking and satisfiability problems, and investigated how a variety of
different notions of ability and control could be captured in the logic, including α- and
β-ability.

There remain a number of obvious challenges for future research. For example, in this
analysis we have assumed a static power structure: the assignment of propositional atoms
to agents is assumed to be fixed throughout the evaluation of a formula. We believe it will
be interesting to investigate dynamic power structures, where agents are permitted to pass
the control of their propositional atoms to other agents. Another possibility is to consider
dynamic logic-style extensions, in which atomic programs in the dynamic component of
the logic correspond to assignments of truth or falsity that agents make to their variables.
Finally, yet another interesting issue is the axioms that may arise by including ATL-style
temporal operators into the logic.
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Appendix A. A derivation in the CL-PC deductive system

We now give the proof of property S′ of Fig. 3. In order to circumvent too much clutter
in notation, we can get rid of some subscripts by formulating S′ as under the assumption
that (At(ψ) ∩ At(ψ ′) = ∅), we have �CL-PC �Cψ ∧ �Dψ ′ → �C∪D(ψ ∧ ψ ′).

Proof. By virtue of Theorem 3.1, we may assume that ψ and ψ ′ are purely propositional.
Let π = π1 ∨ · · · ∨ πd be the disjunctive normal form for ψ , and π ′ = π ′

1 ∨ · · · ∨ π ′
d ′

that of ψ ′. Since the assumption states that ψ and ψ ′ have no atoms in common, let X =
{x1, . . . , xk} and Y = {y1 . . . ym} be all the atoms in At(ψ), all the x’s under control of
C, and none of the y’s controlled by C. Similarly, define X′ = {x′

1, . . . , x
′
k′ } and Y ′ =

{y′
1 . . . y′

m′ } for ψ ′ and D. We then know that (X ∪ Y) ∩ (X′ ∪ Y ′) = ∅, and (X ∪ Y ∪ X′ ∪
Y ′) = (At(ψ)∪ At(ψ ′)). Assume that every πi (i � d) is of the form 
i(x1)∧· · ·∧ 
i(xk)∧

i(y1) ∧ · · · ∧ 
i(ym), and similarly for every π ′

i with i � d ′: π ′
i = 
′

i (x
′
1) ∧ · · · ∧ 
′

i (x
′
k′) ∧


′
i (y

′
1) ∧ · · · ∧ 
′

i (y
′
m′). First of all, we observe, by Prop:

�CL-PC (ψ ∧ ψ ′) ↔
∨

i�d,j�d ′
(πi ∧ π ′

j ) (A.1)

We obtain, by Prop, and the fact that �C and �D are diamonds:

�CL-PC (�Cψ ∧ �Dψ ′) ↔
( ∨

i�d

�Cπi ∧
∨

j�d ′
�Dπ ′

j

)
(A.2)

By Lemma 3.3, every �Cπi is equivalent to πČ
i , and every �Dπ ′

j is equivalent to π ′Ď
j .

Hence, we have

�CL-PC (�Cψ ∧ �Dψ ′) ↔
( ∨

i�d

πČ
i ∧

∨
j�d ′

π ′Ď
j

)
(A.3)

by Prop we have

�CL-PC
( ∨

i�d

πČ
i ∧

∨
j�d ′

π ′Ď
j

)
↔

∨
i�d,j�d ′

(
πČ

i ∧ π ′ Ď
j

)
(A.4)

Let Π be a conjunct in the DNF(ψ ∧ψ ′,C), say Π = 
(x1)∧· · ·∧
(xk)∧
(x′
1)∧· · ·∧


(x′
k′) ∧ 
(y1) ∧ · · · ∧ 
(ym) ∧ · · · ∧ 
(y′

1) ∧ · · · ∧ 
(y′
m′). In an obvious way, we can write

such a Π as (πi ∧ π ′
j ), for some i � d, j � d ′, and, conversely, for every such (πi ∧ π ′

j )

there is a corresponding Π . Let us write Πij for it. From (A.1) we know that

�CL-PC (ψ ∧ ψ ′) ↔
∨

i�d,j�d ′
Πij (A.5)

Note that we also have �CL-PC (πČ
i ∧π ′Ď

j ) → Π
ˇC∪D

ij : if any atom p is not under control
of C∪D, it is neither under control of C, nor of D, and hence such p ∈ (Y ∪Y ′). Moreover,

from Lemma 3.3, we know �CL-PC Π
ˇC∪D

ij → �C∪D(Π
ˆC∪D

ij ∧ Π
ˇC∪D

ij ). Combining those
two observations gives

�CL-PC (
πČ

i ∧ π ′Ď
j

) → �C∪D

(
Π

ˆC∪D
ij ∧ Π

ˇC∪D
ij

)
(A.6)
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We put the disjunction in place again, and push it through the diamond operator:

�CL-PC

∨
i�d,j�d ′

(
πČ

i ∧ π ′Ď
j

) → �C∪D

∨
i�d,j�d ′

(
Π

ˆC∪D
ij ∧ Π

ˇC∪D
ij

)
(A.7)

Now we are done: observe that by (A.5), the right hand side of (A.7) is equal to
�C∪D(ψ ∧ ψ ′), and use (A.3), (A.4) and (A.7). �

Appendix B. Deriving Pauly’s axioms in CL-PC

In this appendix, we show that analogues of Pauly’s axioms for Coalition Logic can be
proved within the proof system CL-PC (see Section 4.1). Note that since we have estab-
lished that the axiom system CL-PC is complete, it suffices to show that these schemes are
valid within CL-PC. Also note that in the proofs that follow, we use whichever semantics
seems appropriate to the task at hand.

Lemma B.1 (α-N⊥). �cl-pc ¬〈〈Ag〉〉α⊥.

Proof. Expanding out the definition of 〈〈· · ·〉〉α gives the following as our goal: ¬�Ag�Ag\Ag⊥, which in turn is equivalent to: ¬�Ag¬�∅
. By (empty), this is equivalent to
¬�Ag¬
, or �Ag
, a derivable formula (use Necessitation). �
Lemma B.2 (α-
). �cl-pc ¬〈〈∅〉〉α⊥ → 〈〈C〉〉α
.

Proof. Expanding out the definition of 〈〈· · ·〉〉α tells us that our goal is to prove the fol-
lowing: ¬�∅�∅⊥ → �C�C
. Rewriting the expressions and expanding the definition of�···, we derive the following as our goal: ¬�∅¬�Ag
 → �C¬�C⊥. We show that the
right hand side of this is in fact derivable in CL-PC, and then we are done. This RHS is
equivalent to �C�C
; derivable since �C
 is derivable (by Necessitation) and to that,
we can apply the dual of T (C). �
Lemma B.3 (α-⊥). �cl-pc 〈〈C〉〉α⊥ → 〈〈C′〉〉α⊥ (where C′ ⊆ C).

Proof. Expanding out, we get the following as our goal: |=k �C�C⊥ → �C′�
C′⊥ (where

C′ ⊆ C). Further expansion yields �C¬�C
 → �C′¬�
C′
. It is easy to see (by argu-

ments similar to the preceding lemma) that LHS is equivalent to ⊥, which is sufficient. �
Lemma B.4 (α-N ). �cl-pc ¬〈〈∅〉〉α¬ϕ → 〈〈Ag〉〉αϕ.

Proof. Expanding out gives the following as our goal: |=k ¬�∅�∅¬ϕ → �Ag�Agϕ.

This in turn reduces to the following: |=k ¬�∅¬�Agϕ → �Ag�∅ϕ. So, assume K,w |=k

¬�∅¬�Agϕ for arbitrary K,w. By the definition of �···, we thus have K,w |=k �∅�Agϕ.
Since |=k ψ ↔ �∅ψ , we thus have K,w |=k �Agϕ, and by deploying this equivalence
again, we obtain K,w |=k �Ag�∅ϕ, and we are done. �
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Lemma B.5 (α-S). �cl-pc (〈〈C1〉〉αϕ ∧ 〈〈C2〉〉αψ) → 〈〈C1 ∪ C2〉〉α(ϕ ∧ ψ) (where C1 ∩
C2 = ∅).

Proof. Suppose the antecedent is true in w, i.e., suppose that K,w |=k �C1�C1
ϕ ∧

�C2�C2
ψ , then our goal is to show

K,w |=k �C1∪C2�C1∪C2
(ϕ ∧ ψ) (B.1)

Our assumption gives us worlds w1 and w2 such that

RC1ww1 & ∀v(RC1
vw1 ⇒K,w1 |=k ϕ) (B.2)

and

RC2ww2 & ∀v(RC2
vw2 ⇒K,w2 |=k ψ) (B.3)

To prove our goal (B.1), we first construct a world w12 as follows: it is as the valuation w,
but as for the atoms in At(Ci), we let w1,2(p) = wi(p) (i � 2). This is well-defined, since
C1 ∩ C2 = ∅. We have RC1∪C2ww12, so if we can prove

K,w12 |=k �C1∪C2
(ϕ ∧ ψ) (B.4)

we are done. To this end, choose an arbitrary v for which RC1∪C2
w12v. We argue that we

must have RC1
w1v, that is, w1 = v (mod C1). Since w1 and w12 differ at most in At(C2),

and w12 and v differ at most in At(C1 ∪ C2), we know that w1 and v differ at most in
At(C2 ∪ (C1 ∪ C2), from which follows that w1 = v (mod C1) (since C2 ∪ (C1 ∪ C2) ⊆ C1;
here we use again that C1 ∩C2 = ∅). But this yields indeed RC1

w1v, and hence K, v |=k ϕ.
In the same way, we obtain that RC2

w2v, from which K, v |=k ψ follows. Since we now
have for an arbitrary v with RC1∪C2

w12v that K, v |=k (ϕ ∧ ψ), we have proven (B.4), and
thereby (B.1). �
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