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Abstract

We extend the notion of anti-unification to cover equational theories and present
a method based on regular tree grammars to compute a finite representation of
E-generalization sets. We present a framework to combine Inductive Logic Pro-
gramming and E-generalization that includes an extension of Plotkin’s lgg theorem
to the equational case. We demonstrate the potential power of E-generalization
by three example applications: computation of suggestions for auxiliary lemmas in
equational inductive proofs, computation of construction laws for given term se-
quences, and learning of screen editor command sequences.
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1 Introduction

Many learning techniques in the field of symbolic Artificial Intelligence are
based on adopting the features common to the given examples, called selec-
tive induction in the classification of [DM84], for example. Syntactical anti-
unification reflects these abstraction techniques in the theoretically elegant
domain of term algebras.

In this article, we propose an extension, called E-anti-unification or E-
generalization, which also provides a way of coping with the well-known prob-
lem of representation change [O’H92,DIS97]. It allows us to perform abstrac-
tion while modeling equivalent representations using appropriate equations
between terms. This means that all equivalent representations are considered
simultaneously in the abstraction process. Abstraction becomes insensitive to
representation changes.

In 1970, Plotkin and Reynolds [Plo70,Plo71,Rey70] introduced the notion of
(syntactical) anti-unification of terms as the dual operation to unification:
while the latter computes the most general common specialization of the given
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1. x+ 0 = x

2. x+ s(y) = s(x+ y)

3. x ∗ 0 = 0

4. x ∗ s(y) = x ∗ y + x

0 =E 0 ∗ 0

s4(0) =E s2(0) ∗ s2(0)

syn. anti-un. syn. anti-un.

y x ∗ x

Fig. 1. Equations Defining (+) and (∗) E-Generalization of 0 and s4(0)

terms, if it exists, the former computes the most special generalization of them,
which always exists and is unique up to renaming. For example, using the usual
0-s representation of natural numbers and abbreviating s(s(0)) to s2(0), the
terms 0∗0 and s2(0)∗s2(0) anti-unify to x∗x, retaining the common function
symbol ∗ as well as the equality of its arguments.

While extensions of unification to equational theories and classes of them
have been investigated [Fay79,Sie85,GS89], anti-unification has long been ne-
glected in this respect, except for the theory of associativity and commuta-
tivity [Pot89] and so-called commutative theories [Baa91]. For an arbitrary
equational theory E, the set of all E-generalizations of given terms is usually
infinite. Heinz [Hei95,BH96] presented a specially tailored algorithm that uses
regular tree grammars to compute a finite representation of this set, provided
E leads to regular congruence classes. However, this work has never been
internationally published. In this paper, we try to make up for this neglect,
giving an improved presentation using standard grammar algorithms only, and
adding some new theoretical results and applications (Sect. 3.3, 4, 5.3 below).

In general, E-anti-unification provides a means to find correspondences that
are only detectable using an equational theory as background knowledge. By
way of a simple example, consider the terms 0 and s4(0). Anti-unifying them
purely syntactically, without considering an equational theory, we obtain the
term y, which indicates that there is no common structure. If, however, we
consider the usual defining equations for (+) and (∗), see Fig. 1 (left), the
terms may be rewritten nondeterministically as shown in Fig. 1 (right), and
then syntactically anti-unified to x ∗ x as one possible result. In other words,
it is recognized that both terms are quadratic numbers.

Expressed in predicate logic, this means we can learn a definition p(x ∗ x)
from the examples p(0) and p(s4(0)). Other possible results are p(s4(0) ∗ x),
and, less meaningfully, p(x+y∗z). The closed representation of generalization
sets by grammars allows us to filter out generalizations with certain properties
that are undesirable in a given application context.

After some formal definitions in Sect. 2, we introduce our method of E-
generalization based on regular tree grammars in Sect. 3 and briefly dis-
cuss extensions to more sophisticated grammar formalisms. As a first step
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toward integrating E-generalization into Inductive Logic Programming (ILP),
we provide, in Sect. 4, theorems for learning determinate or nondeterminate
predicate definitions using atoms or clauses. In Sect. 5, we present applica-
tions of determinate atom learning in different areas, including inductive equa-
tional theorem-proving, learning of series-construction laws and user support
for learning advanced screen-editor commands. Section 6 draws some conclu-
sions.

2 Definitions

We assume familiarity with the classical definitions of terms, substitutions
[DJ90], and Horn clauses [Kow73]. The cardinality of a finite set S is denoted
by #S.

A signature Σ is a set of function symbols f , each of which has a fixed arity;
if some f is nullary, we call it a constant. Let V be an infinite set of variables.
TV denotes the set of all terms over Σ and a given V ⊆ V . For a term t, var(t)
denotes the set of variables occurring in t; if it is empty, we call t a ground
term. We call a term linear if each variable occurs at most once in it.

By {x1 7→ t1, . . . , xn 7→ tn}, or {xi 7→ ti | 1 6 i 6 n}, we denote a substitution
that maps each variable xi to the term ti. We call it ground if all ti are
ground. We use the postfix notation tσ for application of σ to t, and στ for
the composition of σ (to be applied first) and τ (second). The domain of σ is
denoted by dom σ.

A term t is called an instance of a term t′ if t = t′σ for some substitution σ.
In this case, we call t more special than t′, and t′ more general than t. We call
t a renaming of t′ if σ is a bijection that maps variables to variables.

A term t is called a syntactical generalization of terms t1 and t2, if there
exist substitutions σ1 and σ2 such that tσ1 = t1 and tσ2 = t2. In this case, t
is called the most specific syntactical generalization of t1 and t2, if for each
syntactical generalization t′ of t1 and t2 there exists a substitution σ′ such that
t = t′σ′. The most specific syntactical generalization of two terms is unique
up to renaming; we also call it their syntactical anti-unifier [Plo70].

An equational theory E is a finite set of equations between terms. (=E) denotes
the smallest congruence relation that contains all equations of E. Define

[t]E = {t′ ∈ T{} | t′ =E t}

to be the congruence class of t in the algebra of ground terms. The congruence
class of a term is usually infinite; for example, using the equational theory from
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Fig. 1 (left), we have [0]E = {0, 0 ∗ s(0), 0 + 0 ∗ 0, . . .}. Let

[t]σE = {t′ ∈ Tdomσ | t′σ =E t}

denote the set of all terms congruent to t under σ.

A congruence relation (=1) is said to be a refinement of another congruence
relation (=2), if ∀t, t′ ∈ TV t =1 t′ ⇒ t =2 t′. In Sect. 5.1, we need the
definition t1 ≡E t2 if t1σ =E t2σ for all ground substitutions σ with var(t1) ∪
var(t2) ⊆ domσ; this is equivalent to the equality of t1 and t2 being inductively
provable [DJ90, Sect. 3.2].

We call an n-ary function symbol f a constructor if n functions πf1 , . . . , π
f
n

exist such that

∀t, t1, . . . , tn : (
n∧
i=1

πfi (t) =E ti)↔ t =E f(t1, . . . , tn).

The πfi are called selectors associated to f . As usual, we assume additionally
that f(s1, . . . , sn) 6=E g(t1, . . . , tm) 6=E x for any two constructors f 6= g,
any variable x and arbitrary terms si, tj. On this assumption, some constants
can also be called constructors. No selector can be a constructor. If f is a
constructor, then [f(t1, . . . , tn)]E = f([t1]E, . . . , [tn]E).

A term t is called a constructor term if it is built from constructors and
variables only. Let t and t′ be constructor terms.

Lemma 1 (Constructor terms) Let t and t′ be constructor terms.

(1) If tσ =E t
′, then tσ′ = t′ for some σ′ such that xσ′ is a constructor term

and xσ′ =E xσ for each x ∈ V.
(2) If t =E t

′, then t = t′.
(3) If tσ1 =E tσ2, then ∀x ∈ var(t) : xσ1 =E xσ2.

PROOF.

(1) Induction on t:
• If t = x ∈ V , then choose σ′ = {x 7→ t′}.
• If t = f(t1, . . . , tn), then f(t1σ, . . . , tnσ) =E t

′. Hence, t′ = f(t′1, . . . , t
′
n)

for some t′i, and tiσ =E πfi (tσ) =E πfi (t′) =E t′i. By I.H., tiσ
′
i = t′i for

some σ′i. For any i, j, and x ∈ domσ′i ∩ domσ′j, we have xσ′i =E xσ =E

xσ′j, and therefore xσ′i = xσ′j. Hence, all σ′i are compatible, and we can
unite them into a single σ′.

(2) Follows from 1 with σ = { }.
(3) Induction on t:
• For t = x ∈ V , we have nothing to show.
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• If t = f(t1, . . . , tn), we have tiσ1 =E πfi (tσ1) =E πfi (tσ2) =E tiσ2, and
we are done by I.H. 2

A (nondeterministic) regular tree grammar [TW68,CDG+99] is a triple G =
〈Σ,N ,R〉. Σ is a signature, N is a finite set of nonterminal symbols and R is
a finite set of rules of the form

N ::= f1(N11, ..., N1n1) | . . . | fm(Nm1, ..., Nmnm)

or, abbreviated,

N ::= m
i=1 fi(Ni1, ..., Nini).

Each fi(Ni1, . . . , Nini) is called an alternative of the rule. We assume that for
each nonterminal N ∈ N , there is exactly one defining rule in R with N as
its left-hand side. As usual, the rules may be mutually recursive.

Given a grammar G and a nonterminal N ∈ N , the language  LG(N) produced
by N is defined in the usual way as the set of all ground terms derivable from
N as the start symbol. We omit the index G if it is clear from the context. We
denote the total number of alternatives in G by #G.

In Sect. 4, we will use the following predicate logic definitions. To simplify
notation, we sometimes assume all predicate symbols to be unary. An n-ary
predicate p′ can be simulated by a unary p using an n-ary tupling constructor
symbol and defining p(〈t1, . . . , tn〉)⇔ p′(t1, . . . , tn).

An n-ary predicate p is called determinate wrt. some background theory
B if there is some k such that w.l.o.g. each of the arguments k + 1, . . . , n
has only one possible binding, given the bindings of the arguments 1, . . . , k
[LD94, Sect. 5.6.1]. The background theory B may be used to define p, hence
p’s determinacy depends on B. Similar to the above, we sometimes write
p(t1, . . . , tn) as a binary predicate p(〈t1, . . . , tk〉, 〈tk+1, . . . , tn〉) to reflect the
two classes of arguments. For a binary determinate predicate p, the rela-
tion {〈s, t〉 | s, t ∈ T{} ∧ B |= p(s, t)} corresponds to a function g. We
sometimes assume that g is defined by equations from a given E, i.e. that
B |= p(s, t)↔ g(s) =E t.

A literal has the form p(t) or ¬p(t), where p is a predicate symbol and t is a
term. We consider a negation to be part of the predicate symbol. We say that
the literals L1 and L2 fit if both have the same predicate symbol, including
negation. We extend (=E) to literals by defining p(t1) =E p(t2) if t1 =E t2.
For example, (¬divides(〈1 + 1, 5〉)) =E (¬divides(〈2, 5〉)) if 1 + 1 =E 2.

A clause is a finite set C = {L1, . . . , Ln} of literals, with the meaning C ⇔
L1 ∨ . . . ∨ Ln. We consider only nonredundant clauses, i.e. clauses that do

5



not contain congruent literals. For example, {p(x + 0), p(x)} is redundant if
x+ 0 =E x. We write C1 ⊆E C2 if

∀L1 ∈ C1 ∃L2 ∈ C2 : L1 =E L2;

if C2 is nonredundant, L2 is uniquely determined by L1.

We say that C1 E-subsumes C2 if C1σ ⊆E C2 for some σ. In this case, the
conjunction of E and C1 implies C2; however, there are other cases in which
E ∧ C1 |= C2 but C1 does not E-subsume C2. For example, {¬p(x), p(f(x))}
implies, but does not subsume, {¬p(x), p(f(f(x)))}, even for an empty E.

A Horn clause is a clause {p0(t0),¬p1(t1), . . . ,¬pn(tn)} with exactly one pos-
itive literal. It is also written as p0(t0) ← p1(t1) ∧ . . . ∧ pn(tn). We call p0(t0)
the head literal, and pi(ti) a body literal for i = 1, . . . , n. Like [LD94, Sect. 2.1],
we call the Horn clause constrained if var(t0) ⊇ var(t1, . . . , tn).

We call a Horn clause

p0(s0, t0)←
n∧
i=1

pi(si, xi) ∧
m∧
i=1

qi(ti)

semi-determinate wrt. some background theory B if all pi are determinate wrt.
B, all variables xi are distinct and do not occur in s0, var(si) ⊆ var(s0) ∪
{x1, . . . , xi−1}, and var(t1, . . . , tm) ⊆ var(s0, x1, . . . , xn). Semi-determinacy for
clauses is a slight extension of determinacy defined by [LD94, Sect. 5.6.1],
as it additionally permits arbitrary predicates qi. On the other hand, [LD94]
permits xi = xj for i 6= j; however, pi(si, xi) ∧ pj(sj, xi) can be equivalently
transformed into pi(si, xi) ∧ pj(sj, xj) ∧ xi =E xj.

3 E-Generalization

We treat the problem of E-generalization of ground terms by standard algo-
rithms on regular tree grammars. Here, we also give a rational reconstruction of
the original approach from [Hei95], who provided monolithic specially tailored
algorithms for E-anti-unification. We confine ourselves to E-generalization of
two terms. All methods work similarly for the simultaneous E-generalization
of n terms.

3.1 The Core Method

Definition 2 (E-Generalization) For an equational theory E, a term t is
called an E-generalization, or E-anti-unifier, of terms t1 and t2 if there exist
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Fig. 2. E-Generalization Using Tree Grammars

substitutions σ1 and σ2 such that tσ1 =E t1 and tσ2 =E t2. In Fig. 1 (right),
we had t1 = 0, t2 = s4(0), t = x ∗ x, σ1 = {x 7→ 0}, and σ2 = {x 7→ s2(0)}.

As in unification, a most special E-generalization of arbitrary terms does not
normally exist. A set G ⊆ TV is called a set of E-generalizations of t1 and t2 if
each member is an E-generalization of t1 and t2. Such a G is called complete
if, for each E-generalization t of t1 and t2, G contains an instance of t. 2

As a first step towards computing E-generalization sets, let us weaken Def. 2
by fixing the substitutions σ1 and σ2. We will see below, in Sect. 4 and 5, that
the weakened definition has important applications in its own right.

Definition 3 (Constrained E-Generalization) Given two terms t1, t2, a vari-
able set V , two substitutions σ1, σ2 with domσ1 = domσ2 = V and an equa-
tional theory E, define the set of E-generalizations of t1 and t2 wrt. σ1 and σ2
as {t ∈ TV | tσ1 =E t1 ∧ tσ2 =E t2}. This set equals [t1]

σ1
E ∩ [t2]

σ2
E . 2

If we can represent the congruence class [t1]E and [t2]E as some regular tree
language  LG1(N1) and  LG2(N2), respectively, we can immediately compute the
set of constrained E-generalizations [t1]

σ1
E ∩ [t2]

σ2
E : The set of regular tree lan-

guages is closed wrt. union, intersection and complement, as well as under
inverse tree homomorphisms, which cover substitution application as a special
case. Figure 2 gives an overview of our method for computing the constrained
set of E-generalizations of t1 and t2 wrt. σ1 and σ2 according to Def. 3:

• From ti and E, obtain a grammar for the congruence class [ti]E, if one exists;
the discussion of this issue is postponed to Sect. 3.2 below.
• Apply the inverse substitution σi to the grammar for [ti]E to get a grammar

for [ti]
σi
E , using some standard algorithm, e.g. that from [CDG+99, Thm.7

in Sect.1.4]. This algorithm takes time Ø(#N · size(σi)) for inverse substi-
tution application, where size(σi) =

∑
x∈domσi size(xσi) is the total number

of function symbols occurring in σi. See Thm. 4 below.
• Compute a grammar for the intersection [t1]

σ1
E ∩ [t2]

σ2
E , using the product-

automaton construction, e.g., from [CDG+99, Sect. 1.3], which takes time
Ø(#N1 · #N2).
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• Each member t of the resulting tree language is an actual E-generalization
of t1 and t2. The question of enumerating that language is discussed later
on.

Theorem 4 (Lifting) Let a regular tree grammar G = 〈Σ,N ,R〉 and a
ground substitution σ be given. Define Gσ := 〈Σ∪ domσ, {Nσ | N ∈ N},Rσ〉,
where each Nσ is a distinct new nonterminal, and the rules of Rσ are built as
follows:

For each rule N ::= m
i=1fi(Ni1, . . . , Nini) in R

include the rule Nσ ::= m
i=1fi(N

σ
i1, . . . , N

σ
ini

) |
x∈domσ,xσ∈ LG(N)

x into R′.
Then for all N ∈ N and all t ∈ TV , we have t ∈  LGσ(Nσ) iff var(t) ⊆ domσ
and tσ ∈  LG(N).
The condition xσ ∈  LG(N) in the defining rule of Nσ is decidable. G and Gσ
have the same number of nonterminals, and of rules. Each rule of Gσ may
have at most # domσ more alternatives. Note that variables from domσ occur
in the grammar Gσ like constants. 2

Based on the above result about constrained E-generalization, we show how
to compute the set of unconstrained E-generalizations of t1 and t2 according
to Def. 2, where no σi is given. It is sufficient to compute two fixed universal
substitutions τ1 and τ2 from the grammars for [t1]E and [t2]E and to let them
play the role of σ1 and σ2 in the above method (cf. the dotted vectors in Fig. 2).
Intuitively, we introduce one variable for each pair of congruence classes and
map them to a kind of normalform member of the first and second class by τ1
and τ2, respectively.

We give below a general construction that also accounts for auxiliary nonter-
minals not representing a congruence class, and state the universality of τ1, τ2
in a formal way. For the sake of technical simplicity, we assume that [t1]E
and [t2]E share the same grammar G; this can easily be achieved by using the
disjoint union of the grammars for [t1]E and [t2]E.

Definition 5 (Normal Form) Let an arbitrary tree grammar G = 〈Σ,N ,R〉
be given. A non-empty set of nonterminals N ⊆ N is called maximal if⋂
N∈N  L(N) 6= {}, but

⋂
N∈N′  L(N) = {} for each N′ ⊃ N. Define Nmax =

{N ⊆ N | N 6= {},N maximal }. Choose some arbitrary but fixed

• maximal N(t) ⊇ {N ∈ N | t ∈  L(N)} for each t ∈ ⋃N∈N  L(N)
• maximal N(t) for each t ∈ TV \

⋃
N∈N  L(N)

• ground term t(N) ∈ ⋂N∈N  L(N) for each N ∈ Nmax

The mappings N(·) and t(·) can be effectively computed from G. We ab-
breviate t = t(N(t)); this is a kind of normalform of t. Each term not
in any  L(N), in particular each nonground term, is mapped to some arbi-
trary ground term, the choice of which does not matter. For a substitution
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σ = {x1 7→ t1, . . . , xn 7→ tn}, define σ = {x1 7→ t1, . . . , xn 7→ tn}. We always
have xσ = xσ. 2

Lemma 6 (Substitution Normalization) For all N ∈ N , t ∈ TV , and σ,

(1) t ∈  L(N)⇒ t ∈  L(N), and
(2) tσ ∈  L(N)⇒ tσ ∈  L(N).

PROOF. From the definition of N(·) and t(·), we get t ∈  L(N)⇒ N ∈ N(t)
and N ∈ N⇒ t(N) ∈  L(N), respectively.

(1) Hence, t ∈  L(N)⇒ N ∈ N(t)⇒ t ∈  L(N).
(2) Induction on the structure of t:
• If t = x ∈ V and xσ ∈  L(N), then xσ = xσ ∈  L(N) by 1.
• Assuming N ::= . . . f(N11, ..., N1n) | . . . | f(Nm1, ..., Nmn) . . ., we have

f(t1, . . . , tn) σ ∈  L(N)
⇒ ∃i 6 m ∀j 6 n : tjσ ∈  L(Nij) by Def.  L(·)
⇒ ∃i 6 m ∀j 6 n : tjσ ∈  L(Nij) by I.H.
⇒ f(t1, . . . , tn) σ ∈  L(N) by Def.  L(·) 2

Lemma 7 (Universal Substitutions) For each grammar G, we can effectively
compute two substitutions τ1, τ2 that are universal for G in the following sense.
For any two substitutions σ1, σ2, a substitution σ exists such that for i = 1, 2,
we have ∀t∈Tdomσ1∩domσ2 ∀N ∈ N : tσi ∈  L(N)⇒ tστi ∈  L(N).

PROOF. Let v(N1,N2) be a new distinct variable for each N1,N2 ∈ Nmax.
Define τi = {v(N1,N2) 7→ t(Ni) | N1,N2 ∈ Nmax} for i = 1, 2. Given σ1 and
σ2, let σ = {x 7→ v(N(xσ1),N(xσ2)) | x ∈ domσ1 ∩ domσ2}. Then στi and σi
coincide on var(t), and hence tσi ∈  L(N)⇒ tστi ∈  L(N) by Lem. 6.2. 2

Example 8 We apply Lem. 7 to the grammar G consisting of the topmost
three rules in Fig. 3 below. The result will be used in Ex. 10 to compute some
set of E-generalizations. We have Nmax = {{N0, Nt}, {N1, Nt}}, since, e.g.,
0 ∈  L(N0) ∩  L(Nt) and s(0) ∈  L(N1) ∩  L(Nt), while  L(N0) ∩  L(N1) = {}. We
choose

N(t) =

{
{N0, Nt} if t ∈  L(N0)
{N1, Nt} else

and
t({N0, Nt}) = 0
t({N1, Nt}) = s(0)

.

We abbreviate, e.g., v({N0, Nt}){N1, Nt} to v01. This way, we obtain

τ1 = { v00 7→ 0, v01 7→ 0, v10 7→ s(0), v11 7→ s(0) } and
τ2 = { v00 7→ 0, v01 7→ s(0), v10 7→ 0, v11 7→ s(0) } .

9



Given t = x∗y, σ1 = {x 7→ 0+0, y 7→ 0} and σ2 = {x 7→ s(0), y 7→ s(0)∗s(0)}
for example, we obtain a proper instance v01 ∗ v01 of t using τ1 and τ2:

 L(N0) 3 (0+0)∗0 σ1←− x∗y σ2−→ s(0)∗(s(0)∗s(0)) ∈  L(N1)

 L(N0) 3 0∗0 τ1←− v01∗v01
τ2−→ s(0)∗s(0) ∈  L(N1) . 2

The computation of universal substitutions is very expensive because it in-
volves computing many tree-language intersections to determine the mappings
N(·) and t(·). Assume N = Nc∪No, where Nc comprises nc nonterminals rep-
resenting congruence classes and No comprises no other ones. A maximal set
N may contain at most one nonterminal from Nc and an arbitrary subset of
No; however, no maximal N may be a proper subset of another one. By some
combinatorics, we get (nc+1) ·

(
no
no/2

)
as an upper bound on #Nmax. Hence, the

cardinality of dom τi is bounded by the square of that number. In our experi-
ence, no is usually small. In most applications, it does not exceed 1, resulting in
# dom τi 6 (nc+1)2. Computing the τi requires no+1 grammar intersections in
the worst case, viz. when No∪{Nc} for some Nc ∈ Nc is maximal. In this case,
dom τi is rather small. Since the time for testing emptiness is dominated by the
intersection computation time, and (nc+1) ·

(
no
no/2

)
6 (nc+1) ·nno/2o 6 #Gno+1,

we get a time upper bound of Ø(#Gno+1) for computing the τi.

If the grammar is deterministic, then each nonterminal produces a distinct
congruence class [McA92, Sect.2], and we need compute no intersection at all
to obtain τ1 and τ2. We get # dom τi = #N 2. In this case, N(·), t(·), and v(·, ·)
can be computed in linear time from G. However, in general a nondeterminstic
grammar is smaller in size than its deterministic counterpart.

Theorem 9 (Unconstrained E-Generalization) Let an equational theory E
and two ground terms t1, t2 be given. Let G = 〈Σ,N ,R〉 be a tree grammar and
N1, N2 ∈ N such that  LG(Ni) = [ti]E for i = 1, 2. Let τ1, τ2 be as in Lemma 7.
Then, [t1]

τ1
E ∩[t2]

τ2
E is a complete set of E-generalizations of t1 and t2. A regular

tree grammar for it can be computed from G in time Ø(#G2 + #Gno+1).

PROOF. If t ∈ [t1]
τ1
E ∩ [t2]

τ2
E , then tτ1 =E t1 and tτ2 =E t2, i.e. t is an E-

generalization of t1 and t2. To show the completeness, let t be an arbitrary
E-generalization of t1 and t2, i.e. tσi =E ti for some σi. Obtain σ from Lemma 7
such that tστi ∈ [ti]E. Then, by definition, [t1]

τ1
E ∩ [t2]

τ2
E contains the instance

tσ of t. 2

Since the set of E-generalizations resulting from our method is given by a
regular tree grammar, it is necessary to enumerate some terms of the cor-
responding tree language in order to actually obtain some results. Usually,

10



N0 ::= 0 | N0+N0 | N0∗Nt | Nt∗N0

N1 ::= s(N0) | N0+N1 | N1+N0 | N1∗N1

Nt ::= 0| s(Nt) | Nt+Nt | Nt∗Nt

N0∗::=v00|v01 |0 |N0∗+N0∗ |N0∗∗Nt∗|Nt∗∗N0∗

N1∗::= v10|v11 |s(N0∗)|N0∗+N1∗|N1∗+N0∗ |N1∗∗N1∗

Nt∗ ::=v00|v01|v10|v11|0|s(Nt∗)|Nt∗+Nt∗ |Nt∗∗Nt∗

N∗0::=v00 |v10 |0 |N∗0+N∗0 |N∗0∗N∗t|N∗t∗N∗0
N∗1::= v01 |v11 |s(N∗0)|N∗0+N∗1|N∗1+N∗0 |N∗1∗N∗1
N∗t ::=v00|v01|v10|v11|0|s(N∗t)|N∗t+N∗t |N∗t∗N∗t
N00::=v00 |0 |N00+N00| N00∗Ntt |N0t∗Nt0|Nt0∗N0t |Ntt∗N00

N01::= v01 |N00+N01|N01+N00 |N01∗Nt1|Nt1∗N01

N0t ::=v00|v01 |0 |N0t+N0t |N0t∗Ntt |Ntt∗N0t

Nt0 ::=v00 |v10 |0 |Nt0+Nt0 |Nt0∗Ntt |Ntt∗Nt0

Nt1 ::= v01 |v11 |s(Nt0)|Nt0+Nt1 |Nt1+Nt0 |Nt1∗Nt1

Ntt ::=v00|v01|v10|v11|0|s(Ntt) |Ntt+Ntt |Ntt∗Ntt

Fig. 3. Grammars G (Top), Gτ1 , Gτ2 and G12 (Bottom) in Exs. 10 and 12

there is a notion of simplicity (or weight), depending on the application E-
generalization is used in, and it is desirable to enumerate the simplest terms
(with least weight) first. The minimal weight of a term in the language of each
nonterminal can be computed in time Ø(#G · log #G) by [Bur02b]. After that,
it is easy to enumerate a nonterminal’s language in order of increasing weight
in time linear to the output size using a simple Prolog program.

Example 10 To give a simple example, we generalize 0 and s(0) wrt. the
equational theory from Fig. 1 (left). Figure 3 shows all grammars that will
appear during the computation. For now, assume that the grammar G defining
the congruence classes [0]E and [s(0)]E is already given by the topmost three
rules in Fig. 3. In Ex. 12 below, we discuss in detail how it can be obtained
from E. Nevertheless, the rules of G are intuitively understandable even now;
e.g. the rule for N0 in the topmost line reads: A term of value 0 can be built
by the constant 0, the sum of two terms of value 0, the product of a term
of value 0 and any other term, or vice versa. Similarly,  L(N1) = [s(0)]E and
 L(Nt) = T{}. In Ex. 8, we already computed the universal substitutions τ1 and
τ2 from G.

Figure 3 shows the grammars Gτ1 and Gτ2 resulting from inverse substitu-
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tion application, defining the nonterminals N0∗, N1∗, Nt∗ and N∗0, N∗1, N∗t,
respectively. For example,  LGτ1 (N0∗) = [0]τ1E , where the rule for N0∗ is ob-
tained from that for N0 by simply including all variables that are mapped to a
member of  LG(N0) by τ1. They appear as new constants, i.e. ΣGτ1 = ΣGτ2 =
ΣG ∪ {v00, . . . , v11}. For each t ∈  LGτ1 (N0∗), we have tτ1 =E 0.

The bottommost 6 rules in Fig. 3 show the intersection grammar G12 obtained
from a kind of product-automaton construction and defining N00, . . . , Ntt. We
have  LG12(Nij) =  LGτ1 (Ni)∩  LGτ2 (Nj) for i, j ∈ {0, 1, t}. By Thm. 9,  LG12(N01)
is a complete set of E-generalizations of 0 and s(0) wrt. E. We have, e.g.,
N01 → N01 ∗Nt1 → v01 ∗ v01, showing that 0 and s(0) are both quadratic num-
bers, and (v01 ∗ v01)τ1 = 0 ∗ 0 =E 0, (v01 ∗ v01)τ2 = s(0) ∗ s(0) =E s(0).
By repeated application of the rules N01 ::= . . . N01 ∗ Nt1 . . . and Nt1 ::=
. . . Nt1 ∗ Nt1 . . ., we can obtain any generalization of the form v01 ∗ . . . ∗ v01,
with arbitrary paranthesation. By way of a less intuitive example, we have
v01 ∗ s(v10 + v10) ∈  LG12(N01). 2

3.2 Setting up Grammars for Congruence Classes

The question of how to obtain a grammar representation of the initial congru-
ence classes [t1]E and [t2]E was deferred in Sect. 3.1. It is discussed below.

Procedures that help to compute a grammar representing the congruence class
of a ground term are given, e.g., in [McA92, Sect.3]. This paper also provides
a criterion for an equational theory inducing regular tree languages as congru-
ence classes:

Theorem 11 (Ground Equations) An equational theory induces regular con-
gruence classes iff it is the deductive closure of finitely many ground equations
E.

PROOF. To prove the if direction, start with a grammar consisting of a
rule Nf(t1,...,tn) ::= f(Nt1 , . . . , Ntn) for each subterm f(t1, . . . , tn) occurring in
E. For each equation (t1 =E t2) ∈ E, fuse the nonterminals Nt1 and Nt2

everywhere in the grammar. Then successively fuse every pair of nontermi-
nals whose rules have the same right-hand sides. The result is a deterministic
grammar G such that t1 =E t2 iff t1, t2 ∈  LG(N) for some N .

In addition to this nonoptimal but intuitive algorithm, McAllester gives an
Ø(n · log n) algorithm based on congruence closure [DST80], where n is the
written length of E. The proof of the only if direction need not be sketched
here. 2
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In order to compute a complete set of E-generalizations of two given ground
terms t1 and t2, we do not need all congruence classes to be regular; it is
sufficient that those of t1 and t2 are. More precisely, it is sufficient that (=E)
is a refinement of some congruence relation (=G) with finitely many classes
only, such that [ti]E = [ti]G for i = 1, 2.

Example 12 Let Σ = {0, s, (+), (∗)}, and let E be the equational theory from
Fig. 1 (left). To illustrate the application of Thm. 11, we show how to ob-
tain a grammar defining [0]E, . . . , [s

n(0)]E for arbitrary n ∈ IN . Obviously,
(=E) itself has infinitely many congruence classes. However, in order to con-
sider the terms 0, . . . , sn(0) only, the relation (=G), defined by the classes
[0]E, . . . , [s

n(0)]E and C =
⋃
i>n[si(0)]E, is sufficient. This relation is, in fact,

a congruence wrt. 0, s, (+), and (∗): in a term t ∈ ⋃ni=0[s
i(0)]E, a member

tc of C can occur only in some subterm of the form 0 ∗ tc or similar, which
always equals 0, regardless of the choice of tc.

For n = 1, we may choose a representative term 0, s(0), and c for the classes
[0]E, [s(0)]E, and C, respectively. We may instantiate each equation from
Fig. 1 (left) with all possible combinations of representative terms, resulting
in 3 + 32 + 3 + 32 ground equations. After adding the equation c = s(s(0)), we
may apply Thm.11 to obtain a deterministic grammar Gd with  LGd(N0) = [0]E,
 LGd(Ns(0)) = [s(0)]E, and  LGd(Nc) = C. The equations’ ground instances, and
thus Gd, can be built automatically. The grammar Gd is equivalent to G from
Fig. 3 (top), which we used in Ex. 10. The latter is nondeterministic for the
sake of brevity. It describes [0]E and [s(0)]E by N0 and N1, respectively, while
 L(Nt) = [0]E ∪ [s(0)]E ∪ C. 2

In [BH96, Cor. 16], another sufficient criterion is given. Intuitively, it allows
us to construct a grammar from each equational theory that describes only
operators building up larger values (normal forms) from smaller ones:

Theorem 13 (Constructive Operators) Let E be given by a ground confluent
and Noetherian term-rewriting system. For each term t ∈ T{}, let nf (t) denote
its unique normal form; let NF be the set of all normal forms. Let (≺) be a
well-founded partial ordering on NF with a finite branching degree, and let (�)
be its reflexive closure. If ti � nf (f(t1, . . . , tn)) for all f ∈ Σ, t1, . . . , tn ∈ NF
and i = 1, . . . , n, then for each t ∈ T{}, the congruence class [t]E is a regular
tree language.

PROOF. Define one nonterminal Nt for each normal-form term t ∈ NF .
Whenever t =E f(t1, . . . , tn) for some t1, . . . , tn ∈ NF , include an alternative
f(Nt1 , . . . , Ntn) into the right-hand side of the rule for Nt. Since ti � t for
all i, there are only finitely many such alternatives. This results in a finite
grammar G, and we have  LG(Nnf (t)) = [t]E for all terms t. Let ai denote the
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number of i-ary function symbols in Σ and m denote the maximal arity in
Σ. Then we need

∑m
i=0 ai · #NF i normal-form computations to build G, which

has a total of these many alternatives and #NF rules. Its computation takes
Ø(#G) time. 2

By way of an example, consider the theory E consisting of only equations 1.
and 2. in Fig. 1 (left). E is known to be ground-confluent and Noetherian and
to lead to NF = {sn(0) | n ∈ IN}. Defining si(0) ≺ sj(0)⇔ i < j, we observe
that si(0) � si+j(0) = nf (si(0) + sj(0)); similarly, sj(0) � nf (si(0) + sj(0))
and si(0) � nf (s(si(0))). Hence, E leads to regular congruence classes by
Thm. 13. For example, there are just five ways to obtain a term of value s3(0)
from normal-form terms using s and (+). Accordingly,

N3 ::= s(N2) | N3 +N0 | N2 +N1 | N1 +N2 | N0 +N3

defines [s3(0)]E.

If their respective preconditions are met, Thms. 11 and 13 allow us to auto-
matically compute a grammar describing the congruence classes wrt. a given
theory E. In practice, with Thm. 11 we have the problem that E is rarely
given by ground equations only, while Thm. 13 requires properties that are
sufficient but not necessary. For example, not even for the whole theory from
Fig. 1 (left) is there an ordering such that si(0) � 0 = nf (si(0) ∗ 0) and
0 � si(0) = nf (0 + si(0)).

So far, it seems best to set up a grammar scheme for a given E manually. For
example, for E from Fig. 1 (left), it is easy to write a program that reads n ∈ IN
and computes a grammar describing the congruence classes [0]E, . . . , [s

n(0)]E:
The grammar consists of the rules for N0 and Nt from Fig. 3 (top) and one
rule

Ni ::= s(Ni−1) | i
j=0Nj +Ni−j | j·k=iNj ∗Nk

for each i = 1, . . . , n. Similarly, grammar schemes for the theory of list opera-
tors like append , reverse, etc. and other theories can be implemented.

The lack of a single algorithm that computes a grammar for each E from a
sufficiently large class of equational theories restricts the applicability of our
E-generalization method to problems where E is not changed too often. Using
grammar schemes, this restriction can be relaxed somewhat. The grammar-
scheme approach is also applicable to theories given by conditional equations
or even other formulas, as long as they lead to regular congruence classes and
the schemes are computable.

A further problem is that not all equational theories lead to regular congruence
classes. Consider, for example, subtraction (−) on natural numbers. We have
0 =E si(0) − si(0) for all i ∈ IN . Assume that (=E) is a refinement of some
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(=G) with finitely many classes; then si(0) =G s
j(0) for some i 6= j. If (=G)

is a congruence relation, 0 =G si(0) − si(0) =G s
i(0) − sj(0), although 0 6=E

si(0)− sj(0). Hence, [0]E = [0]G is impossible. Thus, if an operator like (−) is
defined in E, we cannot E-generalize using our method.

However, we can still compute an approximation of the E-generalization set in
such cases by artificially cutting off grammar rules after a maximum number
of alternatives. This will result in a set that still contains only correct E-
generalizations but that is usually incomplete. For example, starting from the
grammar rules

N0 ::= 0 | N0 −N0 | N1 −N1 | N2 −N2

N1 ::= s(N0) | N1 −N0 | N2 −N1

N2 ::= s(N1) | N2 −N0 ,

we obtain only E-generalization terms t whose evaluation never exceeds the
value 2 on any subterm’s instance. Depending on the choice of the cut-off
point , the resulting E-generalization set may suffice for a given application.

3.3 More Expressive Grammar Formalisms

To overcome the limited expressiveness of pure regular tree grammars, we
tried to extend the results of Sect. 3.1 to automata with equality tests.

For automata with equality tests between siblings [BT92,CDG+99] or, equiv-
alently, shallow systems of sort constraints [Uri92], we have the problem that
this language class is not closed under inverse substitution application [BT92,
Sect. 5.2]. For example, consider the grammar

N0 ::= 0 | Nt −Nt[x1 = x2]
Nt ::= 0 | s(Nt) | Nt −Nt

Nxy ::= Nx −Ny

Nx ::= x | s(Nx)
Ny ::= y | s(Ny)

in which N0 describes the congruence class [0]E wrt. the defining equations
of (−), where the constraint [x1 = x2] requires the left and right operand of
(−) to be equal. For σ = {x 7→ 0, y 7→ s(0)}, the language [0]σE is not recog-
nizable because otherwise [0]σE ∩  L(Nxy) = {si+1(x) − si(y) | i ∈ IN} would
have to be recognizable, too. However, the latter set cannot be represented
by a grammar with equality tests between siblings. For reduction automata
[CCD95,CDG+99] and generalized reduction automata [CCC+94], it seems to
be still unknown whether they are closed under inverse substitution applica-
tion.

The approach using universal substitutions τ1, τ2 strongly depends on the fact
that

∧n
j=1 tj ∈  L(Nij) ⇒ f(t1, . . . , tn) ∈  L(N), which is needed in the proof
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of Lem. 6.2. In other words, the rule N ::= . . . f(Ni1, . . . , Nin) is not allowed
to have additional constraints. The straightforward approach to incorporate
equality constraints into the proof of Lem. 7 is to show additionally that
∀t′, t′′ ∈ TV : t′σi = t′′σi ⇒ t′στi = t′′στi for i = 1, 2. Note that syntac-
tic equality is required by the form of constraints. However, this leads to a
contradiction:

Lemma 14 If Σ contains at least one function symbol of arity > 1 and one
constant, there cannot exist τ1 and τ2 such that

∀σ1, σ2 ∃σ ∀t′, t′′ ∈ TV ∀i = 1, 2 : t′σi = t′′σi ⇒ t′στi = t′′στi.

PROOF. If such τi existed, we could construct a contradictory sequence
〈σ(j)

1 , σ
(j)
2 〉j∈IN as follows. Let σ

(j)
1 = {x 7→ f j(c)} and σ

(j)
2 = {x 7→ c}, where

f(. . .), c ∈ Σ; for the sake of simplicity, we assume that f is only unary.

Since xσ
(j)
1 = f j(c)σ

(j)
1 , we have xσ(j)τ1 = f j(c)σ(j)τ1 = f j(c). Similarly,

xσ
(j)
2 = cσ

(j)
1 implies xσ(j)τ2 = c. Since xσ(j) is mapped by τ1 and τ2 to terms

starting with different symbols, it must be a variable, and τ1 must include the
mapping xσ(j) 7→ f j(c) for each j ∈ IN . This is impossible because dom τ1 can
only be finite. 2

For these reasons, our approach remains limited to ordinary regular tree gram-
mars, i.e. those without any equality constraints. The following lemma shows
that we cannot find a more sophisticated grammar formalism that can handle
all equational theories, anyway.

Lemma 15 (General Uncomputability of E-Generalization) There are equa-
tional theories E such that it is undecidable whether the set of constrained
E-generalizations for certain t1, t2, σ1, σ2 is empty. Such a set cannot be rep-
resented by any grammar formalism that is closed wrt. language intersection
and allows testing for emptiness.

PROOF. We encode a version of Post’s correspondence problem into an
E-generalization problem for a certain E. Let a set {〈a1, b1〉, . . . , 〈an, bn〉} of
pairs of nonempty strings over a finite alphabet A be given. It is known to be
undecidable whether there exists a sequence 1, i2, . . . , im such that m > 1 and
a1 · ai2 · . . . · aim = b1 · bi2 · . . . · bim [Sch97, Sect. 2.7], where “·” denotes string
concatenation. Let Σ = A ∪ {1, . . . , n} ∪ {(·), f, a, b}, and let E consist of the
following equations:

(x · y) · z = x · (y · z)
f(a, x · i, y · ai) = f(a, x, y) for i = 1, . . . , n
f(b, x · i, y · bi) = f(b, x, y) for i = 1, . . . , n,
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Necessity: B 6|= F+

Sufficiency: B ∧ h |= F+

Weak Consistency: B ∧ h 6|= false

Strong Consistency: B ∧ h ∧ F− 6|= false

Fig. 4. Requirements for Hypothesis Generation According to [Mug99]

where x, y, and z are variables. Then, the congruence class [f(a, 1, a1)]E and
[f(b, 1, b1)]E equals the set of all admitted Post sequences of ai and bi, respec-
tively. Let σ1 = {x 7→ a} and σ2 = {x 7→ b}, then the set of constrained
E-generalizations [f(a, 1, a1)]

σ1
E ∩ [f(b, 1, b1)]

σ2
E is nonempty iff the given corre-

spondence problem has a solution. 2

4 Learning Predicate Definitions

In this section, we relate E-generalization to Inductive Logic Programming
(ILP), which seems to be the closest approach to machine learning. We argue
in favor of an outsourcing of equational tasks from Horn program induction
algorithms, similar to what has long been common practice in the area of de-
duction. From a theoretical point of view, a general-purpose theorem-proving
algorithm is complete wrt. equational formulas, too, if all necessary instances
of the congruence axioms s =E t⇒ f(s) =E f(t) and s =E t∧p(s)⇒ p(t) are
supplied. However, in practice it proved to be much more efficient to handle
the equality predicate (=E) separately using specially tailored methods, like
E-unification for fixed, or paramodulation for varying E.

Similarly, we show that integrating E-anti-unification into an ILP algorithm
helps to restrict the hypotheses-language bias and thus the search space. In
particular, learning of determinate clauses can be reduced to learning of atoms
using generalization wrt. an E defining a function for each determinate pred-
icate.

We investigate the learning of a definition of a new predicate symbol p in four
different settings. In all cases, we are given a conjunction F ⇔ F+ ∧ F− of
positive and negative ground facts , and a background theory B describing an
equational theory E. In this section, we always assume that E leads to regular
congruence classes. We generate a hypothesis h that must explain F using B.
From Inductive Logic Programming, up to four requirements for such a hy-
pothesis are known [Mug99, Sect. 2.1]. They are listed in Fig. 4. More precisely,
the Necessity requirement does not impose a restriction on h, but forbids any
generation of a (positive) hypothesis, provided the positive facts are explain-
able without it. Muggleton remarks that this requirement can be checked by a
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conventional theorem prover before calling hypothesis generation. The Weak
and Strong Consistency requirements coincide if there are no negative facts;
otherwise, the former is entailed by the latter. In [Dže96, Sect. 5.2.4], only
Sufficiency (called Completeness there) and Strong Consistency are required.

We show under which circumstances E-generalization can generate a hypoth-
esis satisfying the Sufficiency and both Consistency requirements. The latter
are meaningful in an equational setting only if we require that (=E) is non-
trivial , i.e. ∃x, y : ¬ x =E y. Without this formula, false could not even be
derived from an equational theory, however nonsensical.

Given E, we require our logical background theory B to entail the reflexivity,
symmetry and transitivity axiom for (=E), a congruence axiom for (=E) wrt.
each function f ∈ Σ and each predicate p occurring in B, the universal clo-
sure of each equation in E, and the nontriviality axiom for (=E). As a more
stringent alternative to the Necessity requirement, we assume that B is not
contradictory and that the predicate symbol p for which a definition has to
be learned does not occur in B, except in p’s congruence axiom.

4.1 Atomic Definitions

To begin with, we investigate the learning of a definition of a unary predicate
p by an atom h ⇔ p(t). Let F+ ⇔ ∧n

i=1 p(ti) and F− ⇔ ∧m
i=n+1 ¬p(ti). For

sets T+, T− of ground terms and an arbitrary term t, define

h+(t, T+) ⇔ ∀t′ ∈ T+ ∃χ : tχ =E t
′ and

h−(t, T−) ⇔ ∀t′ ∈ T− ∀χ : tχ 6=E t
′ .

We name the substitutions χ instead of σ in order to identify them as given
by h+ and h− in the proofs below.

Lemma 16 (Requirements) Let ti, t
′
i be ground terms for i = 1, . . . ,m and

let t be an arbitrary term. Let F+ ⇔ ∧n
i=1 p(ti) and F− ⇔ ∧m

i=n+1 ¬p(ti). Let
T+ = {t1, . . . , tn} and T− = {tn+1, . . . , tm}. Then:

(1) B ∧ p(t) |= p(t′1) ∨ . . . ∨ p(t′n′) iff tσ=E t
′
i for some i, σ.

(2) B ∧ p(t) |= F+ iff h+(t, T+).
(3) B ∧ p(t) ∧ F− 6|= false iff h−(t, T−).

PROOF.

(1) The if direction is trivial. To prove the only if direction, observe that
B has a Herbrand model containing no instances of p. If we add the set
{p(t′′) | ∃σ ground : tσ =E t

′′} to that model, we get a Herbrand model of
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B ∧ p(t). In this model, p(t′1) ∨ . . . ∨ p(t′n′) holds only if some p(t′i) holds,
since they are all ground. This implies in turn that p(t′i) is among the
p(t′′), i.e. tσ =E t

′
i for some ground substitution σ.

(2) Follows from 1. for n′ = 1.
(3) Follows from 1. for ¬F− ⇔ p(t′1) ∨ . . . ∨ p(t′n′), paraphrasing Strong Con-

sistency as B ∧ p(t) 6|= ¬F−. 2

The following Lem. 17, and Lem. 23 below for the determinate case, are the
workhorses of this section. They show how to apply E-generalization to obtain
a hypotheses term set from given positive and negative example term sets. In
the theorems based on these lemmas, we only need to enclose the hypotheses
terms as arguments to appropriate predicates.

Lemma 17 (Hypotheses) For each finite set T+ ∪ T− of ground terms, we
can compute a regular set H = H17(T

+, T−) such that for all t ∈ TV :

t ∈ H ⇒ h+(t, T+) ∧ h−(t, T−) , and
∃σ : tσ ∈ H ⇐ h+(t, T+) ∧ h−(t, T−) .

PROOF. Let T+ = {t1, . . . , tn}, let G be a grammar defining [t1]E, . . . , [tn]E.
Obtain the universal substitutions τ1, . . . , τn for G from Lem. 7. All τi have
the same domain. Using the notations from Def. 5, let

S = {σ | domσ = dom τ1 ∧ ∀x ∈ domσ ∃N ∈ Nmax : xσ = t(N)}.

The set S is finite, but large; it has #N#Nnmax
max elements. Define H+ =

⋂n
i=1[ti]

τi
E

and H− =
⋃
t′∈T−

⋃
σ∈S[t′]σE. Define H = H+ \ H−; all these sets are regular

tree languages and can be computed using standard grammar algorithms.

• For t ∈ H, we trivially have h+(t, T+). Assume that h−(t, T−) does not hold,
i.e. tσ =E t

′ for some σ and t′ ∈ T−. Since var(t) ⊆ dom τ1 by construction,
we may assume w.l.o.g. domσ = dom τ1; hence σ ∈ S. From Lem. 6.2, we
get tσ ∈ [t′]E ⇒ tσ ∈ [t′]E ⇒ t ∈ [t′]σE, contradicting t 6∈ H−.
• If h+(t, T+) ∧ h−(t, T−), then tχi =E ti for some χi, i = 1, . . . , n. Using

Lem. 7, we get some σ such that tσ ∈ [ti]
τi
E , hence tσ ∈ H+. If we had

tσ ∈ [t′]σ
′
E for some t′ ∈ T− and σ′ ∈ S, then tσσ′ =E t′, contradicting

h−(t, T−). 2

Theorem 18 (Atomic Definitions) Let t1, . . . , tm be ground terms. Let F+ ⇔∧n
i=1 p(ti) and F− ⇔ ∧m

i=n+1 ¬p(ti) be given. We can compute a regular set
H = H18(F

+, F−) such that

• each p(t) ∈ H is a hypothesis satisfying the Sufficiency and the Strong
Consistency requirement wrt. F+, F−; and
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• for each hypothesis satisfying these requirements and having the form p(t),
we have p(tσ) ∈ H for some σ.

PROOF. Define T+ = {ti | i = 1, . . . , n} and T− = {ti | i = n+1, . . . ,m}.
By Lem. 16.2 and 3, p(t) is a hypothesis satisfying the Sufficiency and the
Strong Consistency requirement iff h+(t, T+) and h−(t, T−), respectively. By
Lem. 17, we may thus choose H = {p(t) | t ∈ H17(T

+, T−)}, which is again a
regular tree language. 2

The time requirement of the computation from Thm. 18 grows very quickly if
negative examples are given. Even for deterministic grammars, up to (m−n) ·
#N#Nn inverse substitution applications are needed, each requiring a renamed
copy of the original grammar. If only positive examples are given, the time
complexity is Ø(#Gn+#Gno+1), which allows nontrivial practical applications.

By way of an example, consider again the equational theory E from Fig. 1
(left). Let F+ ⇔ 0 6 0 ∧ 0 6 s(0) and F− ⇔ true be given. In Ex. 10,
we already computed a grammar G describing [0]E =  LG(N0) and [s(0)]E =
 LG(N1), see Fig. 3 (top). The congruence class of, say, 〈0, 0〉 could be defined
by the additional grammar rule N〈0,0〉 ::= 〈N0, N0〉. Instead of that rule, we
add N060 ::= (N0 6 N0) to the grammar, anticipating that any 〈t1, t2〉 ∈ H17

will be transformed to (t1 6 t2) ∈ H18 by Thm. 18, anyway. Similarly, we add
the rule N061 ::= (N0 6 N1). The universal substitutions we obtain following
the construction of Lem. 17 are simply τ1 and τ2 from Ex. 10. We do not
extend them to also include variables like v({N060}, {N061}) = v060,061 in
their domain because neither v060,061 ∈ H18 nor v〈0,0〉,〈0,1〉 ∈ H17 would make
sense. From a formal point of view, retaining the τi from Ex. 10 restricts H18

and H17 to predicates and terms of the form t1 6 t2 and 〈t1, t2〉, respectively.

After lifting the extended G wrt. τ1, τ2, we obtain the grammar G12 from Fig. 3
(bottom), extended by some rules like N060,061 ::= (N00 6 N01). By Thm. 18,
each element of H18(F

+, F−) =  LG12(N060,061) is a hypothesis satisfying the
Sufficiency and the Strong Consistency requirement. Using the variable nam-
ing convention from Ex. 10, members of H18 are, e.g.:

1. v00 6 v01 3. v00 ∗ v00 6 v01 5. 0 6 v01
2. v00 6 v01 ∗ v01 4. v00 ∗ v01 6 v11 ∗ v01 6. v00 6 v00 + v01

Hypothesis 1 intuitively means that (6) relates every possible pair of terms.
Hypotheses 2 and 3 indicate that F+ was chosen too specifically, viz. all ex-
amples had quadratic numbers as the right or left argument of (6). Similarly,
hypothesis 5 reflects the fact that all left arguments are actually zero. While
0 6 x is a valid law , x 6 y ⇔ x =E 0 is not a valid definition. Similarly, no
variant of x 6 x can be found in H18 because it does not cover the second
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example from F+. Hypothesis 6 is an acceptable defintion of the (6) relation
on natural numbers; it corresponds to x 6 y ⇔ ∃z ∈ IN : y =E x+ z.

If we take F+ as above, but F− ⇔ s(0) 66 0, we get S as the set of all 24

substitutions with domain {v00, . . . , v11} and range {0, s(0)}. The resulting
grammar for H18 is too large to be shown here. H18 will no longer contain
hypotheses 1 to 4 from above; they are subtracted as members of the union⋃
σ∈S[s(0) 6 0]σE: choose σ = {v00 7→ s(0), v01 7→ 0} for 1 to 3, and σ =
{v00 7→ s(0), v01 7→ s(0), v11 7→ 0} for 4.

(v00 6 v01) {v00 7→ s(0), v01 7→ 0} =E (s(0) 6 0)
(v00 6 v01 ∗ v01) {v00 7→ s(0), v01 7→ 0} =E (s(0) 6 0)
(v00 ∗ v00 6 v01) {v00 7→ s(0), v01 7→ 0} =E (s(0) 6 0)

(v00 ∗ v01 6 v11 ∗ v01) {v00 7→ s(0), v01 7→ s(0), v11 7→ 0} =E (s(0) 6 0)

None of the hypotheses 5 and 6 is eliminated, since

(0 6 v01) σ =E (s(0) 6 0) ⇒ 0 =E s(0)
(v00 6 (v00 + v01)) σ =E (s(0) 6 0) ⇒ v00 σ =E s(0) ⇒ (v00 + v01) σ 6=E 0.

4.2 Clausal Definitions

We now demonstrate how E-generalization can be incorporated into an exist-
ing Inductive Logic Programming method to learn clauses. To be concrete, we
chose the method of relative least general generalization (r-lgg), which orig-
inates from [Plo70] and forms the basis of the Golem system [MF90]. We
show how to extend it to deal with a given equational background theory E.

Theorem 19 (Clausal Definitions) Let two ground clauses C1 and C2 be
given. We can compute a regular set H = lggE(C1, C2) such that:

• each C ∈ H is a clause that E-subsumes C1 and C2; and
• each clause E-subsuming both C1 and C2 also subsumes an element of H.

PROOF. Let M = {〈L1, L2〉 | L1 ∈ C1 ∧ L2 ∈ C2 ∧ L1 fits L2}. Assuming
M = {〈pi(t1i), pi(t2i)〉 | i = 1, . . . ,m}, let T+ = {〈t11, . . . , t1m〉, 〈t21, . . . , t2m〉}
and T− = {}. Let H = {{pi(ti) | i = 1, . . . ,m} | 〈t1, . . . , tm〉 ∈ H17(T

+, T−)}.
H is again a regular tree language, because the regular H17(T

+, T−) is the
image of H under the tree homomorphism that maps {p1(x1), . . . , pm(xm)} to
〈x1, . . . , xm〉, cf. [CDG+99, Thm. 7 in Sect. 1.4].

If {p1(t1), . . . , pm(tm)} ∈ H, i.e. h+(〈t1, . . . , tm〉, T+, T−), then {p1(t1χi), . . . ,
pm(tmχi)} ⊆E Ci for i = 1, 2, where χi are the substitutions from the definition
of h+. Conversely, let some clause C E-subsume both C1 and C2. We assume
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w.l.o.g. C = {p1(t1), . . . , pn(tn)} and tjσi =E tij for some σi for i = 1, 2 and
j = 1, . . . , n. By Lem. 7, some σ exists such that tjστi =E tij. Choosing
t′j = tjσ for j = 1, . . . , n and t′j = v(N(t1j),N(t2j)) for j = n+ 1, . . . ,m, we
obtain t′jτi =E tij for j = 1, . . . ,m. Hence, h+(〈t′1, . . . , t′m〉, T+, T−) holds, i.e.
Cσ ⊆ {p1(t′1), . . . , pm(t′m)} ∈ H.

To compute H, the grammar defining all [tij]E must be extended to also
define [〈ti1, . . . , tim〉]E. Since only nonterminals for congruence classes are
added, no additional language intersections are necessary to compute the ex-
tended τi. 2

For an empty E, we have lggE(C1, C2) = {lgg(C1, C2)}, and Thm. 19 implies
Plotkin’s lgg theorem [Plo70, Thm. 3] as a special case. In the terminology of
Fig. 4, we have F+ ⇔ C1∧C2 and F− ⇔ true. The Consistency requirement is
satisfied if some predicate symbol p different from (=E) occurs in both C1 and
C2 but not in B, except for p’s congruence axiom. In this case, each hypothesis
h will have the form p(. . .)∨ . . ., hence B∧h cannot be contradictory. The set
lggE(C1, C2) is a subset of, but is not equal to, the set of all hypothesis clauses
satisfying Sufficiency. Usually, there are other clauses that imply both C1 and
C2 but do not E-subsume both. The same limitation applies to Plotkin’s
syntactical lgg .

Theorems 19 and 18 share a special case: lggE({p(t1)}, {p(t2)}) from Thm. 19
equals H18(p(t1)∧ p(t2), true) from Thm. 18. In this case, Thm. 18 is stronger
because it ensures that the result set contains all sufficient hypotheses. On
the other hand, Thm. 19 allows a more general form of both hypotheses and
examples.

However, even Thm. 19 cannot generate all sufficient and strongly consistent
hypotheses that can be expressed in first order predicate logic. For example,
F = {p(a, b), p(a, c)} can be explained wrt. an empty E either by:

(1) q ∧ (q → p(a, b) ∧ p(a, c)),
(2) p(a, b) ∧ p(a, c),
(3) p(a, b) ∧ b =E c, or
(4) p(a, x) ∨ x =E d.

None of these hypotheses has a form that can be generated by Thm. 18. Only
hypothesis 4 has a form admitted by Thm. 19; however, it does not E–subsume
any member of F , although it implies both of them.

To illustrate Thm. 19, consider a well-known example about learning family
relations. We use the abbreviations d–daughter, p–parent, f–female, e–eve, g–
george, h–helen, m–mary, n–nancy, and t–tom. Let the background knowledge
K ⇔ p(h,m)∧ p(h, t)∧ p(g,m)∧ p(t, e)∧ P (n, e)∧ f(h)∧ f(m)∧ f(n)∧ f(e)
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Fig. 5. Background knowledge in family relations example

and the positive examples F1 ⇔ d(m,h) and F2 ⇔ d(e, t) be given (cf. Fig. 5).

By generalizing relative to K, i.e. by computing lgg((F1 ← K), (F2 ← K)),
and by eliminating all body literals containing a variable not occurring in
the head literal, the clausal definition of the daughter relation d(vme, vht) ←
p(vht, vme) ∧ f(vme) ∧K results.

In addition, using the abbreviation s–spouse, let the equations E = {s(g)=h,
s(h) = g, s(n) = t, s(t) = n} be given. The congruence classes of, e.g., g and
h can be described by Ng ::= g | s(Nh) and Nh ::= h | s(Ng). We obtain by
Thm. 19 all clauses of the form d(vme, tht)← p(t′ht, vme) ∧ p(tgn, vme) ∧ f(vme)
for any tht, t

′
ht ∈ [h]τ1E ∩ [t]τ2E and tgn ∈ [g]τ1E ∩ [n]τ2E .

In order to obtain a constrained clause as before, we first choose some tht
for the head literal, and then choose t′ht and tgn from the filtered sets [h]τ1E ∩
[t]τ2E ∩ Tvar(tht) and [g]τ1E ∩ [n]τ2E ∩ Tvar(tht), respectively. We use the standard
intersection algorithm for tree grammars mentioned in Sect. 3.1 for filtering,
which in this case requires linear time in the grammar size for [h]τ1E ∩ [t]τ2E and
[g]τ1E ∩ [n]τ2E . Choosing the smallest solutions for tht, t

′
ht, and tgn, we obtain

d(vme, vht)← p(vht, vme) ∧ p(s(vht), vme) ∧ f(vme), which reflects the fact that
our background knowledge did not describe any concubinages.

If p(h,m) is removed from K, we still get d(vme, vht)← p(s(vht), vme)∧f(vme)
in a similar way, while the classical relative lgg , not considering E, does not
yield a meaningful clause.

Although the knowledge about spouses could be encoded by additional clauses
s(g, h) ∧ s(h, g) ∧ s(n, t) ∧ s(t, n) in K, rather than in E, it would require a
weaker literal selection strategy to get a clause like d(vme, vht)← s(vht, vgn) ∧
p(vgn, vme) ∧ f(vme). The latter clause is determinate, but not constrained.

4.3 Atomic Determinate Definitions

Below, we prove a learning theorem similar to Thm. 18, but that yields only
those atomic hypotheses p(s, t) that define a determinate predicate p. For-
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mally, we are looking for those p(s, t) that satisfy

∀s′1, s′2, t′1, t′2 : (B ∧ p(s, t)∧ s′1 =E s
′
2 |= p(s′1, t

′
1)∧ p(s′1, t′2))⇒ (B |= t′1 =E t

′
2).

In such cases, we say that the hypothesis p(s, t) is determinate. Determinacy
of a hypothesis is essentially a semantic property [LD94, Sect. 5.6.1]; it is even
undecidable for certain background theories. Let

f(a, 〈1, i2, . . . , im〉) =E 〈 a1 · ai2 · . . . · aim , 1, i2, . . . , im〉 and
f(b, 〈1, i2, . . . , im〉) =E 〈 b1 · bi2 · . . . · bim , 1, i2, . . . , im〉 ,

then p(x, 〈y, z〉) ⇔ f(y, z) =E x defines a determinate p if Post’s correspon-
dence problem from Lem. 15 has no solution, although E admits regular con-
gruence classes. In order to compute the set of all determinate hypotheses, we
have to make a little detour by defining a notion of weak determinacy , which
is equivalent to a simple syntactic criterion (Lem. 21).

Since B does not imply anything about p except its congruence property,
we assume B ⇔ B′′ ∧ (∀x, y, x′, y′ : x =E x

′ ∧ y =E y
′ ∧ p(x, y)→ p(x′, y′)),

where p does not occur in B′′. We replace the full congruence axiom about p
by a partial one: B′ ⇔ B′′ ∧ (∀x, y, y′ : y =E y

′ ∧ p(x, y)→ p(x, y′)). We call a
hypothesis p(s, t) weakly determinate if

∀s′, t′1, t′2 : (B′ ∧ p(s, t) |= p(s′, t′1) ∧ p(s′, t′2))⇒ (B′ |= t′1 =E t
′
2).

For example, using E from Fig. 1 (left), p(x ∗ y, x + y) is a weakly, but not
ordinarily, determinate hypothesis. Abbreviating sn(0) by n, we have B1 ∧
p(x∗y, x+y) |= p(4∗3, 7)∧p(4∗3, 8), since 4∗3 =E 2∗6 and 8 =E 2+6 6=E 7.
However, B3 ∧ p(x ∗ y, x + y) |= p(4 ∗ 3, t′) implies xσ = 4, yσ = 3, and
xσ + yσ =E t

′ by Lem. 20.2. Hence, only t′ =E 3 + 4 =E 7 is possible.

We define for sets T+, T− of ground-term pairs and arbitrary terms s, t:

h+(s, t, T+) ⇔ ∀〈s′, t′〉 ∈ T+ ∃σ : sσ = s′ ∧ tσ =E t
′ and

h−(s, t, T−) ⇔ ∀〈s′, t′〉 ∈ T− ∀σ : sσ 6= s′ ∨ tσ 6=E t
′ .

We have a lemma similar to Lem. 16, with a simlar proof, which is omitted
here.

Lemma 20 (Weak Requirements) Let si, ti, s
′
i, t
′
i be ground terms and s, t

arbitrary terms. Let F+ ⇔ ∧n
i=1 p(si, ti) and F− ⇔ ∧m

i=n+1 ¬p(si, ti). Let T+ =
{〈s1, t1〉, . . . , 〈sn, tn〉} and T− = {〈sn+1, tn+1〉, . . . , 〈sm, tm〉}. Then:

(1) B′ ∧ p(s, t) |= p(s′1, t
′
1)∨. . .∨p(s′n′ , t′n′) iff sσ=s′i ∧ tσ=E t

′
i for some i, σ.

(2) B′ ∧ p(s, t) |= F+ iff h+(s, t, T+).
(3) B′ ∧ p(s, t) ∧ F− 6|= false iff h−(s, t, T−). 2
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Lemma 21 (Syntactic Criterion)

(1) If var(t) ⊆ var(s), then the hypothesis p(s, t) is weakly determinate.
(2) Each weakly determinate hypothesis p(s, t) has a weakly determinate in-

stance p(sσ, tσ) with var(tσ) ⊆ var(sσ) and B′ |= p(s, t)↔ p(sσ, tσ).

PROOF.

(1) If B′ ∧ p(s, t) |= p(s′, t′1)∧ p(s′, t′2), we have sσ1 = s′ = sσ2 ∧ tσ1 =E t′1 ∧
tσ2 =E t′2 by Lem. 20.2. Hence, σ1 and σ2 coincide on var(s) ⊇ var(t),
and we get t′1 =E tσ1 = tσ2 =E t

′
2.

(2) Define σ = {x 7→ a | x ∈ var(t)\var(s)}, where a is an arbitrary constant.
Then var(tσ) ⊆ var(sσ) by construction. Since B′ |= p(s, t) → p(sσ, tσ),
we have the situation that p(sσ, tσ) is again weakly determinate.

Since sσ = s, we have B′ ∧ p(s, t) |= p(s, t) ∧ p(s, tσ). Since p(s, t)
is weakly determinate, this implies t =E tσ. Since B′ ensures that p is
E-compatible in its right argument, we have B′ ∧ p(sσ, tσ) |= p(s, t). 2

Lemma 22 (Equivalence for Constructor Terms) Let s be a constructor
term.

(1) p(s, t) is a weakly determinate hypothesis iff it is a determinate one.
(2) B ∧ p(s, t) |= p(s′, t′) iff B′ ∧ p(s, t) |= p(s′, t′), if s′ is an instance of s.
(3) B ∧ p(s, t) |= p(s′, t′) iff B′∧ p(s, t) |= p(s′, t′), if s′ is a constructor term.

PROOF. All if directions follow from B |= B′. In particular, weak determi-
nacy always implies determinacy.

(1) Obtain some σ from Lem. 21.2 such that p(sσ, tσ) is again weakly deter-
minate, var(sσ) ⊇ var(tσ), and B′ |= p(s, t)↔ p(sσ, tσ). From the latter,
we get B |= p(s, t)↔ p(sσ, tσ).

Hence, if B ∧ p(s, t) ∧ s′1 =E s′2 |= p(s′1, t
′
1) ∧ p(s′2, t′2) holds, we have

sσσ1 =E s
′
1 =E s

′
2 =E sσσ2 and tσσ1 =E t

′
1 ∧ tσσ2 =E t

′
2 for some σ1, σ2

by Lem. 16.2. Since s is a constructor term, we have xσσ1 =E xσσ2 for
each x ∈ var(sσ) ⊇ var(tσ). Hence, t′1 =E tσσ1 =E tσσ2 =E t

′
2.

(2) Obtain sχ =E s′ and tχ =E t′ for some χ from Lem. 16.2 and the Def.
of h+. Since sσ′ = s′ for some σ′, we have sσ′ =E sχ. Since s is a
constructor term, we have xσ′ =E xχ for all x ∈ var(s) ⊇ var(t). Hence,
tσ′ =E tχ =E t

′. By Lem. 20.2, this implies B′ ∧ p(s, t) |= p(s′, t′).
(3) Follows from 2, since sχ =E s

′ implies that s′ is an instance of s. 2

The Karnaugh diagram in Fig. 6 summarizes the relations between the crite-
ria from Lem. 21 and 22, weak and ordinary determinacy. It gives an example
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J

J

J

Lem.23

Lem.17
p(x∗y, z)

p(x, z)

p(x∗y, x+y)

p(x, x∗x)

p(x∗x, x)

︷ ︸︸ ︷weak det.
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var(s) ⊇ var(t)

det.



cstr.

Fig. 6. Possible cases wrt. weak and ordinary determinacy

hypothesis for each possible case. Lemma 22 ends our little detour. It ensures
that weak and ordinary determinacy coincide if we supply only constructor
terms to the input argument of a hypothesis p. On the one hand, this is a re-
striction because we cannot learn a hypothesis like p(x ∗x, x), which defines a
partial function realizing the integer square root. On the other hand, it is often
desirable that a hypothesis correspond to an explicit definition, i.e. that it can
be applied like a rewrite rule to a term s by purely syntactical pattern match-
ing. Tuples built using the operator 〈. . .〉 are the most frequently occurring
special cases of constructor terms. For example, a hypothesis p(〈x, y〉, x+2∗y)
may be preferred to p(〈2 ∗ x, y〉, 2 ∗ (x+ y)) because the former is explicit and
implies the latter wrt. E from Fig. 1 (left). Lemma 22.2 allows us to instan-
tiate 〈x, y〉 from the former hypothesis arbitrarily, even with non-constructor
terms like 〈2 ∗ 1, z1 + z2〉.

The following lemma corresponds to Lem. 17, but leads to reduced algorithmic
time complexity. It does not need to compute universal substitutions because
it uses constrained E-generalization from Def. 3. It still permits negative ex-
amples, handling them more efficiently than Lem. 17. They may make sense
even if only determinate predicates are to be learned because they allow us to
exclude certain undesirable hypotheses without committing to a fixed function
behavior.

Lemma 23 (Weakly Determinate Hypotheses) For each finite set of ground
term pairs T+∪T−, we can compute a regular set H = H23(T

+, T−) such that
for all s, t ∈ TV :

〈s, t〉 ∈ H ⇒ h+(s, t, T+) ∧ h−(s, t, T−) ∧ var(s) ⊇ var(t) , and
∃σ : 〈sσ, tσ〉 ∈ H ⇐ h+(s, t, T+) ∧ h−(s, t, T−) ∧ var(s) ⊇ var(t) .

PROOF. Assume T+ = {〈si, ti〉 | i = 1, . . . , n} and T− = {〈si, ti〉 |
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i = n+1, . . . ,m}. For {1, . . . , n} ⊆ I ⊆ {1, . . . ,m}, let sI be the most specific
syntactical generalization of {si | i ∈ I}, with sIσI,i = si for each i ∈ I. Such
an I is called maximal if ∀{1, . . . , n} ⊆ I ′ ⊆ {1, . . . ,m} : sI = sI′ ⇒ I ′ ⊆ I,
where (=) denotes term equality up to renaming.

For example, if T+ = {〈a+ a, ta〉} and T− = {〈b+ b, tb〉, 〈b+ c, tc〉}, then
{1, 2} and {1, 2, 3} are maximal, but {1, 3} is not. Since s{1,2} = x+ x can be
instantiated to a+a and b+b, we must merely ensure that t{1,2}{x 7→ a} 6=E ta
and t{1,2}{x 7→ b} 6=E tb in order to obtain h−(s{1,2}, t{1,2}, T

−). However, for
s{1,3} = x + y, it is not sufficient to ensure t{1,3}{x 7→ a, y 7→ a} 6=E ta and
t{1,3}{x 7→ b, y 7→ c} 6=E tc. Since s{1,3} happens to be instantiable to b+b
as well, h−(s{1,3}, t{1,3}, T

−) could be violated if t{1,3}{x 7→ b, y 7→ b} =E tb.
Therefore, only generalizations sI of maximal I should be considered.

Let I be the set of all maximal I. For I ∈ I, let TI =
⋂n
i=1[ti]

σI,i
E \

⋃
i∈I,i>n[ti]

σI,i
E .

Each such set TI can be computed from [t1]E, . . . , [tm]E by standard tree gram-
mar algorithms. Given the grammar for each TI , it is easy to compute a gram-
mar for their tagged union H = {〈sI , tI〉 | I ∈ I ∧ tI ∈ TI}. To prove the
properties of H, first observe the following:

(1) We always have var(tI) ⊆ domσI,1 ⊆ var(sI). The first inclusion follows
from tI ∈ TI ⊆ [t1]

σI,1
E , the second from the definition of σI,1.

(2) If I is maximal and sIσ = si for some i ∈ {1, . . . ,m} and σ, then i ∈ I:
Since sIσI,j = sj for j ∈ I and sIσ = si, the term sI is a common
generalization of the set {sj | j ∈ I} ∪ {si}. Hence, its most special
generalization, viz. sI∪{i}, is an instance of sI . Conversely, sI∪{i} is trivially
a common generalization of {sj | j ∈ I}; hence sI is an instance of sI∪{i}.
Therefore, sI∪{i} = sI , which implies i ∈ I because I is maximal.

• If I ∈ I and tI ∈ TI , then trivially sIσI,i = si and tIσI,i =E ti for each
i 6 n. Assume sIσ = si and tIσ =E ti for some σ and some i > n. By
(2), we have i ∈ I, and therefore sIσI,i = si. Hence, σI,i and σ coincide on
var(sI) ⊇ var(tI), using (1). We get tIσI,i = tIσ =E ti, which contradicts
tI 6∈ [ti]

σI,i
E .

• If s, t are given such that h+(s, t, T+) and h−(s, t, T−) hold, let I =
{1, . . . , n} ∪ {i | n < i 6 m ∧ ∃σ′i : sσ′i = si}. Then, s is a common
generalization of {si | i ∈ I}, and we have sσ = sI for some σ.

We show I ∈ I: Let I ′ be such that sI′ = sI and let i ∈ I ′, then sσσI′,i =
sIσI′,i = sI′σI′,i = si, hence i ∈ I. Since i was arbitrary, we have I ′ ⊆ I, i.e.
I is maximal.

For i 6 n, we have sσσI,i = sIσI,i = si = sσi. In other words, σσI,i
and the σi obtained from h+(s, t, T+) coincide on var(s) ⊇ var(t). Hence,
tσσI,i = tσi =E ti, i.e. tσ ∈ [ti]

σI,i
E . For i > n and i ∈ I, we still have

sσσI,i = si, as above. Hence tσ cannot be a member of [ti]
σI,i
E . Therefore,

〈sσ, tσ〉 ∈ H. 2
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Theorem 24 (Atomic Determinate Definitions) Let F+ ⇔ ∧n
i=1 p(si, ti)

and F− ⇔ ∧m
i=n+1 ¬p(si, ti) be given such that each ti is ground and each

si is a ground constructor term. Then, we can compute a regular set H =
H24(F

+, F−) such that

• each p(s, t) ∈ H is a determinate hypothesis satisfying the Sufficiency and
the Strong Consistency requirement wrt. F+, F−; and
• for each determinate hypothesis satisfying these requirements and having the

form p(s, t) with s constructor term, we have p(sσ, tσ) ∈ H for some σ.

PROOF. Let T+ = {〈si, ti〉 | i = 1, . . . , n} and T− = {〈si, ti〉 | i =
n+ 1, . . . ,m}. Define H = {p(s, t) | 〈s, t〉 ∈ H23(T

+, T−)}, which is again
a regular tree language.

• If p(s, t) ∈ H, then 〈s, t〉 ∈ H23(T
+, T−), i.e. h+(s, t, T+), h−(s, t, T−)

and var(s) ⊇ var(t) hold. By Lem. 21.1, p(s, t) is weakly determinate; by
Lem. 20.2 and 3, it satisfies the requirements wrt. B′. By construction of
Lem. 23, s is a constructor term. Hence, by Lem. 22.1 and 3, p(s, t) is
determinate and satisfies the requirements wrt. B, respectively.
• Let p(s, t) be a determinate hypothesis satisfying the requirements wrt. B,

where s is a constructor term. By Lem. 22.1 and 3, it is also weakly deter-
minate and satisfies the requirements wrt. B′, respectively. Obtain σ from
Lem. 21.2 such that p(sσ, tσ) additionally satisfies var(tσ) ⊆ var(sσ). By
Lem. 20.2 and 3, we then have h+(sσ, tσ, T+) and h−(sσ, tσ, T−), respec-
tively. By Lem. 23, we have 〈sσσ′, tσσ′〉 ∈ H23(T

+, T−) for some σ′, i.e.
p(sσσ′, tσσ′) ∈ H.

To compute H, the union of up to (m − n) · 2m−n, the intersection of n and
the difference between two grammars are needed. No additional grammar in-
tersection is necessary to compute any universal substitution. 2

From a theoretical point of view, learning relations by classical ILP can be
simulated by learning functions into a set bool by E–generalization. This is
similar to the simulation of theorem proving by a rewrite system defining
appropriate rules for each junctor, and faced with similar efficiency problems
in practice. Nevertheless, we can simulate a small example to illustrate the
use of Thm. 24 here.

In [LD94, Sect. 5.2.1], a description of friendly and unfriendly robots is learned
from a set of examples. For each robot, attributes like smiling , hasTie ∈
{yes , no}, holding ∈ {balloon,flag , sword}, and headShape, bodyShape ∈
{square, octagon, round} are given (see Fig. 7 (left), which uses obvious ab-
breviations). Using attribute–value learners, a boolean expression like fr ⇔
sm = y ∧ (ho = ba∨ho = fl) is learned as a description of a friendly robot. As
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smiling y y y y n n

holding ba fl sw sw sw fl

hasTie y y y n n n

headShape sq oc rd sq oc rd

bodyShape sq oc oc oc rd oc

friendly y y n n n n

F+ = { p(〈y,ba, y,sq,sq〉, y),

p(〈y,fl, y,oc,oc〉, y),

p(〈y,sw,y,rd,oc〉, n),

p(〈y,sw,n,sq,oc〉, n),

p(〈y,sw,n,oc,rd〉, n),

p(〈n,fl, n,rd,oc〉, n) }

Fig. 7. Training data in robot example

an improvement, in [LD94, Sect. 5.3.1] a derived attribute sameShape, defined
by sameShape ⇔ (headShape = bodyShape), is added manually for each robot
from the training set. This results in a simpler description of a friendly robot,
viz. friendly ⇔ sameShape.

In order to duplicate both examples by E–generalization, it is sufficient to
let E define the (=) relation on attribute values and the junctors (∧), (∨),
and (¬). A grammar defining the congruence classes [true]E and [false]E can
be automatically obtained using Thm. 11 or Lem. 13. One of its rules looks
Nfalse ::= (Nballoon = Nflag) . . . | (Ntrue ∧ Nfalse) . . . | (Nfalse ∨ Nfalse) . . . |
(¬Ntrue). The given attribute values are converted to F+ as shown in Fig. 7
(right). Using Thm. 24, both above descriptions appear in the hypotheses
set H24. In contrast to the attribute–value learner approach, it is not nec-
essary to provide sameShape explicitely as an additional attribute. Since E
defines (=) anyway, the second description from above appears in the form
p(〈. . . , vhd, vbd〉, (vhd = vbd)).

Further examples of the application of Thm. 24 are given in Sect. 5.

4.4 Clausal Determinate Definitions

We now show that learning a semi-determinate clause by lgg can be simu-
lated by learning an equivalent constrained clause using E-generalization. By
analogy to the above, obtain the background theory B′ from B by replacing
the full congruence axiom for p0 with a partial one. Lemma 25 shows how a
semi-determinate clause C can be transformed into an equivalent constrained
clause dlr(C). Theorem 26 simulates lgg-learning of C by lggcE-learning of
dlr(C).

Lemma 25 (Determinate Literal Removal) Let a semi-determinate clause
C ⇔ (p0(s0, t0) ←

∧n
i=1 pi(si, xi) ∧

∧m
i=1 qi(ti)) be given such that pi(si, xi) ⇔

gi(si) =E xi. Let σ = {xn 7→ gn(sn)} . . . {x1 7→ g1(s1)}. Then, dlr(C) ⇔
(p0(s0σ, t0σ) ← ∧m

i=1 qi(tiσ)) is a constrained clause that defines the same re-
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lation for p0 wrt. B′, and hence also wrt. B.

PROOF. From the properties of semi-determinacy, we have s0σ = s0. Since
p0 does not occur in B′ outside its partial congruence axiom, we can use the
following property of SLD resolution [Cla79]: B′ ∧ (p0(s0, t0)← C) |= p0(s, t)
iff s0σ

′ = s ∧ t0σ′ =E t and B′ |= Cσ′ for some σ′. A similar property holds
for dlr(C).

The proofs of both directions are based on establishing xiσσ
′ =E xiσ

′. This
property follows from pi(siσ

′, xiσ
′) and the definitions of gi and σ, when (B′∧

C |= p0(s, t))⇒ (B′∧dlr(C) |= p0(s, t)) is proved. When the converse direction
is shown, it is established by extending σ′ to var(dlr(C))∪{x1, . . . , xn} defining
xiσ

′ = xiσσ
′. 2

Theorem 26 (Clausal Determinate Definitions) We use the abbreviation
D = {¬pi(s, t) | s, t ∈ T{} ∧ pi determinate ∧ B′ |= pi(s, t)}. Let two ground
Horn clauses C1 and C2 be given, such that each body literal of each Ci is
entailed by B′ and is not an element of D. We can compute a regular tree
language H = lggcE(C1, C2) such that:

• each member C ∈ H is a constrained clause that E-subsumes C1 and C2;
• and for each semi-determinate clause C ⊆ lgg(C1 ∪ C ′1, C2 ∪ C ′2) with
C ′1, C

′
2 ⊆ D, dlr(C) subsumes some member of H.

PROOF. For i = 1, 2, let p0(s0i, t0i) be the head literal of Ci. Let M be the
set of all pairs 〈L1, L2〉 of body literals L1 from C1 and L2 from C2 such
that L1 fits L2. Assuming M = {〈qj(tj1), qj(tj2)〉 | j = 1, . . . , k}, define
T+ = {〈s01, 〈t01, t11, . . . , tk1〉〉, 〈s02, 〈t02, t12, . . . , tk2〉〉} and T− = {}. Define
H = {p0(s0, t0)← q1(t1) ∧ . . . ∧ qk(tk) | 〈s0, 〈t0, t1, . . . , tk〉〉 ∈ H23(T

+, T−)}.

H is again a regular tree language because H23(T
+, T−) is the image ofH under

the tree homomorphism that maps the term p0(x0, y0)← q1(y1) ∧ . . . ∧ qk(yk)
to 〈x0, 〈y0, y1, . . . , yk〉〉. Since T− = {}, the set H23(T

+, T−) contains at least
one element 〈s0, 〈t′0, t′1, . . . , t′k〉〉, and the left component of an element of
H23(T

+, T−) is always s0.

• For each clause p0(s0, t0) ← q1(t1) ∧ . . . ∧ qk(tk) in H, we have var(s0) ⊇
var(t0, t1, . . . , tk) and h+(s0, 〈t0, t1, . . . , tk〉, T+, T−) by Thm. 23. Hence,
{p0(s0, t0),¬q1(t1), . . . ,¬qk(tk)} χi ⊆E Ci.
• Assume (p0(s0, t0) ← p1(s1, x1) ∧ . . . ∧ pn(sn, xn) ∧ q1(t1) ∧ . . . ∧ qm(tm)) ⊆

lgg(C1 ∪ C ′1, C2 ∪ C ′2) is a semi-determinate clause. Then, (¬qj(tjσi)) ∈ Ci
for some σi — we assume w.l.o.g. tjσi =E tji. Moreover, ¬pj(sjσi, xjσi)
is a member of C ′i ⊆ D, implying that xjσi =E gj(sjσi) = xjσσi is en-
tailed by B′, where σ denotes the substitution from dlr(C) computation
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by Lem. 25. Since domσ = {x1, . . . , xn}, we have xσσi =E xσi for all
variables x. Therefore, tjσσi =E tjσi =E tji, and s0σσi = s0σi = s0i
because var(s0) is disjoint from the domain of σ. Hence, we can extend
the clause dlr(C) = {p0(s0σ, t0σ),¬q1(t1σ), . . . ,¬qm(tmσ)} to some superset
{p0(s0σ, t0σ),¬q1(t1σ), . . . ,¬qm(tmσ),¬qm+1(t

′
m+1), . . . ,¬qk(t′k)} that satis-

fies h+ and var(s0σ) ⊇ var(tjσ) ∪ var(t′j′) and is therefore a member of H.

To compute lggcE, the grammar defining [tji]E must be extended by two rules
to define [〈s0i, 〈t0i, t1i, . . . , tki〉〉]E as well. One intersection of the two extended
grammars is needed; no universal substitution needs to be computed. 2

The form of Thm. 26 differs from that of Thm. 19 because neither C nor
dlr(C) need E-subsume the other. To establish some similarity between the
second assertion of the two theorems, note that a subsumed clause defining a
predicate leads to a more specific definition that its subsuming clause. Let C ′

subsume C1 and C2 and contain a nontrivial head literal p0(. . .). Then C ′ also
subsumes C = lgg(C1, C2). By Thm. 26, dlr(C) subsumes some member of
lggcE(C1, C2). That member thus leads to a more specific definition of p0 than
C ′.

In order to duplicate a most flexible lgg approach, Thm. 26 allows a literal
pre- and postselection strategy, to be applied before and after lgg computation,
respectively. Both may serve to eliminate undesirable body literals from the
lgg result clause. Preselection can be modeled using the Ci and C ′i, while
postselection is enabled by choosing C ( lgg(C1 ∪ C ′1, C2 ∪ C ′2). In all cases,
Thm. 26 provides a corresponding constrained clause from lggcE(C1, C2), which
is equivalent to, or more specific than, C.

Similar to Thm. 19, each C ∈ lggcE(C1, C2) is sufficient wrt. F+ ⇔ C1 ∧ C2

and F− ⇔ true. Each such C is consistent if some predicate symbol q occurs
in both C1 and C2, but not in B, except for its congruence axiom.

Again similar to the nondeterminate case, H24(p0(s01, t01) ∧ p0(s02, t02), true)
equals lggcE({p0(s01, t01)}, {p0(s02, t02)}) from Thm. 26. In this common spe-
cial case, Thm. 24, but not Thm. 26, ensures that the result set contains all
sufficient hypotheses.

On the other hand, Thm. 26 ensures that for each purely determinate clause,
i.e. a clause without any nondeterminate qi in its body, lggcE(C1, C2) contains
a clause leading to an equivalent, or more specific, definition of p0. In other
words, lgg-learning of purely determinate clauses can be simulated by lggcE-
learning of atoms.

Let us compare the ILP methods using lgg and lggcE in an example. Assume
part of the background knowledge describes lists with an associative append
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F p0(b, bbb) ∧ p0(ε, b)

P a(ε, y, y) a(ε, y) = y a(x, ε) = x E

a([v | x], y, [v | z])← a(x, y, z) a(a(x, y), z) = a(x, a(y, z))

Kq q(ε, d) ∧ q(b, d) ∧ q(c, e) ∧ q(bb, d) ∧ q(bc, e) ∧ q(bcb, e)

Ka a(ε, ε, ε) ∧

a(ε, b, b) ∧a(b, ε, b) ∧

a(ε, bb, bb) ∧a(b, b, bb) ∧. . .

a(ε, bbb, bbb)∧a(b, bb, bbb)∧. . .

Nε ::= ε | a(Nε, Nε)

Nb ::= b | a(Nε, Nb) | a(Nb, Nε)

Nbb ::= a(Nε, Nbb) | a(Nb, Nb) . . .

Nbbb ::= a(Nε, Nbbb) | a(Nb, Nbb). . .

G

lgg p0(vb,ε, vbbb,b)

← a(vb,ε, vb,ε, vbb,ε)

∧ a(vbb,ε, b, vbbb,b)

∧ q(vbb,ε, d)

p0(vb,ε, a(a(vb,ε, vb,ε), b))

← q(a(vb,ε, vb,ε), d)

lggcE

Fig. 8. Comparison of ILP Using lgg and lggcE

operator and a neutral element ε (nil). The topmost two lines of Fig. 8 show
a Horn program P and an equational theory E, each of which formalizes that
knowledge, where v, x, y, z denote variables, a denotes append and b, c, d, e
below will denote some constants.

Moreover, let a conjunction Kq of facts about a predicate q be given, as shown
in the third line of Fig. 8. We abbreviated, e.g., q([b, c, b], [e]) to q(bcb, e). Let
F ⇔ p0(b, bbb) ∧ p0(ε, b) be given. Let us assume for now that a preselection
strategy chose K ′q ⇔ q(ε, d) ∧ q(bb, d).

Neither lgg nor lggcE can use the first part of background knowledge directly.
Most ILP systems, including Golem, restrict background theories to sets of
ground literals. Hence, they cannot directly use equality as background knowl-
edge because this would require formulas like p0(x, y) ← eq(y, y′) ∧ p0(x, y′)
in the background theory. While Plotkin’s lgg is also defined for nonground
clauses, it has not been defined for clause sets like P . Moreover, since F con-
tains only ground literals, all relevant arguments of body literals must be
ground to obtain the necessary variable bindings in the generalized clause.
For example, a clause like

(p0(vb,ε,vbcb,c )← a(vx,ε,c,vxc,c) ∧ a(vxy,x,vx,ε,vxyx,x) ∧ . . .)
= lgg( (p0( b, bcb )← a( x, c, xc ) ∧ a( xy, x, xyx ) ∧ . . .),

(p0( ε, c )← a( ε, c, c ) ∧ a( x, ε, x ) ∧ . . .) )
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would lack bindings like vb,ε = vx,ε and vbcb,c = vxyx,x. Thus, we have to derive
the conjunction Ka of all ground facts implied by P that could be relevant in
any respect.

On the other hand, E has to be transformed into a grammar G in order to
compute lggcE. We can do this by Thm. 13 with (≺) as the lexicographic
path ordering, which is commonly used to prove termination of the rewrite
system associated with E [DJ90, Sect. 5.3]. Alternatively, we could instantiate
a predefined grammar scheme like

Nx1...xn ::= n=0 ε | n=1 x1 | n
i=0 a(Nx1...xi , Nxi+1...xn).

At least we do not have to rack our brains over the question of which terms
might be relevant — it is sufficient to define the congruence classes of all terms
occurring in F or K ′q.

Lines 4 to 8 of Fig. 8 show the preprocessed form Ka and G of P and E,
respectively. Observe that a ground literal a(s, t, u) in the left column corre-
sponds to a grammar alternative Nu ::= . . . a(Ns, Nt) in the right one. It is
plausible to assume that there are at least as many literals in Ka as there are
alternatives in G. Next, we compute

lgg( (p0(b, bbb)← Ka ∧ K ′q), (p0(ε, b)← Ka ∧ K ′q) ) and
lggcE( (p0(b, bbb)← K ′q), (p0(ε, b)← K ′q) )

and apply some literal postselection strategy. A sample result is shown in
the bottom part of Fig. 8. More precisely, lggcE results in the set of all terms
p0(vb,ε, tbbb,b)← q(tbb,ε, d) for any

tbbb,b ∈ [bbb]
{vb,ε 7→b}
E ∩ [b]

{vb,ε 7→ε}
E and

tbb,ε ∈ [bb]
{vb,ε 7→b}
E ∩ [ε]

{vb,ε 7→ε}
E .

The choice of tbbb,b and tbb,ε on the right-hand side in Fig. 8 corresponds to the
choice of body literals about a on the left; both sides are equivalent definitions
of p0. If the postselection strategy chooses a(vb,ε, b, vbb,b) ∧ a(vbb,b, vb,ε, vbbb,b) ∧
a(vb,ε, vb,ε, vbb,ε) on the left, we need only to choose tbbb,b = a(a(vb,ε, b), vb,ε)
on the right to duplicate that result. However, if preselection chooses different
literals about q, e.g. K ′q ⇔ q(bc, e)∧q(c, e), we have to recompute the grammar
G to include definitions for [bc]E and [c]E.

The lggcE result clause is always a constrained one, whereas lgg yields a de-
terminate clause. The reason for the latter is that function calls have to be
simulated by predicate calls, requiring extra variables for intermediate results.
The deeper a term in the lggcE clause is nested, the longer the extra variable
chains are in the corresponding lgg clause. If K ′q ⇔ true is chosen, lggcE yields
an atom rather than a proper clause.
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When the lggcE approach is used, the hypotheses search space is split. Literal
pre- and postselection strategies need to handle nondeterminate predicates
only. The preselected literals, i.e. K ′q, control the size and form of the gram-
mar G. Choices of, e.g., tbbb,b ∈  LG(Nbbb,b) can be made independently of pre-
and postselection, each choice leading to the condensed equivalent of a semi-
determinate clause.

Filtering of, e.g.,  LG(Nbbb,b) allows us to ensure additional properties of the
result clause if they can be expressed by regular tree languages. For example,
orienting each equation from E in Fig. 8 left to right generates a canonical
term-rewriting system R. Since all terms in E are linear, a grammar GNF for
the set of normal forms wrt. R can be obtained automatically from E. Choos-
ing, e.g., tbbb,b ∈  LG(Nbbb,b)∩  LGNF

(NNF ) ensures that no redundant clause like
p0(vb,ε, a(vb,ε, a(vb,ε, b))← q(a(vb,ε, vb,ε), d) can result. In classical ILP, there is
no corresponding filtering method of similar simplicity.

5 Applications

In this section, we apply E-generalization in three different application areas.
In all cases, we use the paradigm of learning a determinate atomic definition
from positive examples only. We intend to demonstrate that the notion of
E-generalization can help to solve even comparatively ambitious tasks in Ar-
tificial Intelligence at the first attempt. We make no claim to develop a single
application to full maturity. Instead, we cover a variety of different areas in
order to illustrate the flexibility of E-generalization.

5.1 Candidate Lemmas in Inductive Proofs

Auxiliary lemmas play an important role in automated theorem proving. Even
in pure first-order logic, where lemmas are not strictly necessary [Gen32],
proofs may become exponentially longer without them and are consequently
harder to find. In induction proofs, which exceed first-order logic owing to
the induction axiom(s), using lemmas may be unavoidable to demonstrate a
certain theorem.

By way of a simple example, consider the induction proof in Fig. 9, which
uses the equational theory from Fig. 1 (left). At the position marked “?”,
the distributivity law is needed as a lemma in order to continue the proof.
While this is obvious to a mathematically experienced reader, an automated
prover that does not yet know the law will get stuck at this point and require
a user interaction because the actual term cannot be rewritten any further. In
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Claim: (x ∗ y) ∗ z ≡E x ∗ (y ∗ z)

Proof: Induction on z:

z=0: (x ∗ y) ∗ 0

=E 0 by 3.

=E x ∗ 0 by 3.

=E x ∗ (y ∗ 0) by 3.

z=s(z′): (x ∗ y) ∗ s(z′)

=E (x ∗ y) ∗ z′ + x ∗ y by 4.

≡E x ∗ (y ∗ z′) + x ∗ y by I.H.

≡E x ∗ (y ∗ z′ + y) by ???

=E x ∗ (y ∗ s(z′)) by 4.

Fig. 9. Induction Proof Using Fig. 1 (Left)

this simple example, where only one lemma is required, the cross-fertilization
technique of [BM79] would suffice to generate it automatically. However, this
technique generally fails if several lemmas are needed.

In such cases, we try to simulate mathematical intuition by E-generalization
in order to find a useful lemma and allow the prover to continue; i.e. to increase
its level of automation. We consider the last term t1 obtained in the proof so
far (the surrounded term x ∗ (y ∗ z′) + x ∗ y in the example) and try to find
a new lemma that could be applied next by the prover. We are looking for a
lemma of the form t1 ≡E t2 for some t2 such that ∀σ ground : t1σ =E t2σ
holds. Using Thm. 24, we are able to compute the set of all terms t2 such that
t1σ =E t2σ holds at least for finitely many given σ.

We therefore choose some ground substitutions σ1, . . . , σn with var(t1) =
{x, y, z′} as their domain, and let F+ ⇔ ∧n

i=1 p(〈xσi, yσi, z′σi〉, t1σi). We then
apply Thm. 24 to this F+ and F− ⇔ true. (See Fig. 10, where the partial
congruence property of p was used to simplify the examples in F+.) Using the
notation from Lem. 23, we have just one I in I, viz. I = {1, . . . , n}, since
we do not supply negative examples. Therefore, we only have to compute
TI =

⋂n
i=1[t1σi]

σi
E .

The most specific syntactical generalization sI of {〈x, y, z′〉σ1, . . . , 〈x, y, z′〉σn}
need not be 〈x, y, z′〉 again. However, we always have 〈x, y, z′〉σ′ = sI
for some σ′. If we choose σi that are sufficiently different , we can en-
sure that σ′ has an inverse. This is the case in Fig. 10, where σ′ =
{x 7→ v021, y 7→ v310, z

′ 7→ v201}. By Thm. 24, B′ ∧ p(〈x, y, z′〉, tIσ′−1) implies
p(〈x, y, z′〉σi, t1σi) for each tI ∈ TI and i = 1, . . . , n. Since it trivially also
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t1 = x ∗( y ∗ z′ )+x ∗ y

p(〈 xσi , yσi , z′σi 〉,( x ∗( y ∗ z′ )+x ∗ y ) σi)

F+ ⇔ p(〈 0 ,s3(0),s2(0)〉, 0 )

∧ p(〈s2(0), s(0) , 0 〉, s2(0) )

∧ p(〈 s(0) , 0 , s(0) 〉, 0 )

H 3 p(〈 v021 , v310 , v201 〉, v021∗(v310∗v201 + v310 ) )

t2 = x ∗( y ∗ z′ + y )

Fig. 10. Generation of Lemma Candidates by Thm. 24

implies p(〈x, y, z′〉σi, tIσ′−1σi), we obtain t1σi =E tIσ
′−1σi using determinacy.

Therefore, defining t2 = tIσ
′−1 ensures that t1 and t2 have the same value under

each sample substitution σi. This is a necessary condition for t1 ≡E t2, but not
sufficient. Before using a lemma suggestion t1 ≡E t2 to continue the original
proof, it must be checked for validity by a recursive call to the induction prover
itself. Two simple restrictions can help to eliminate unsuccessful hypotheses:

• Usually, only those equations t1 ≡E t2 are desired that satisfy var(t2) ⊆
var(t1). For example, it is obvious that x ∗ (y ∗ z′) + x ∗ y ≡E x + v123 is
not universally valid. This restriction of the result set is already built into
Thm. 24. Any lemma contradicting this restriction will not appear in the
grammar language. However, all its instances that satisfy the restriction will
appear.
• Moreover, if E was given by a ground-convergent term-rewriting system R

[DJ90, Sect. 2.4], it makes sense to require t2 to be in normal form wrt. R.
For example, x ∗ (y ∗ z′) + x ∗ y ≡E (x + 0) ∗ (y ∗ z′ + y ∗ s(0)) is a valid
lemma, but redundant, compared with x ∗ (y ∗ z′) +x ∗ y ≡E x ∗ (y ∗ z′+ y).
The closed representation of the set TI as a regular tree language allows us
to easily eliminate such undesired terms t2.

For left-linear term-rewriting systems [DJ90, Sect. 2.3], the set of all
normal-form terms is always representable as a regular tree language; hence
terms in non-normal form can be eliminated by intersection. For rewrit-
ing systems that are not left-linear, we may still filter out a subset of all
non-normal-form terms.

If desired by some application, TI could also be restricted to those terms
tI that satisfy V ′ ⊆ var(tI) ⊆ V for arbitrarily given variable sets V ′, V .

The more sample instances are used, the more of the enumerated lemma can-
didates will be valid. However, our method does not lead to learnability in the
limit [Gol67] because normally any result language will still contain invalid
equations — regardless of the number of sample substitutions. It does not even
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lead to PAC-learnability [Val84], there currently being no way to compute the
number of sample substitutions depending on the required δ and ε accuracies.

In the example from Fig. 9, we get, among other equations, the lemma sug-
gestion x ∗ (y ∗ z′) + x ∗ y ≡E x ∗ (y ∗ z′ + y), which allows the prover to
continue successfully. This suggestion appears among the first ten, if TI is
enumerated by increasing term size. Most of the earlier terms are variants
wrt. commutativity, like x ∗ (y ∗ z′) + x ∗ y ≡E (y + y ∗ z′) ∗ x.

Figure 11 shows some examples of lemma candidates generated by our proto-
typical implementation (see Sect. 5.4). The column Theory shows the equa-
tional theory used. We distinguish between the truncating integer division
(//) and the true division (/). For example, 7 // 3 =E 2, while 7/3 is not de-
fined. The grammar rules that realize these partial functions are something
like N2 ::= . . . | N6 //N3 | N7 //N3 . . . | N6/N3. The integer remainder is
denoted by (%).

We embedded the two-element Boolean algebra {0, 1} into the natural num-
bers, with 1 corresponding to true. This allows us to model relations like (<)
and logical junctors. The functions (↑) and (↓) compute the maximum and
minimum of two numbers, respectively. The function dp doubles a natural
number in 0-s representation, ap concatenates two lists in cons-nil represen-
tation, rv reverses a list, and ln computes its length as a natural number. The
cube theory formalizes the six possible three-dimensional 90◦-degree rotations
of a cube, viz. left , right , up, down, clockwise and counter-clockwise, as shown
in Fig. 12 (right).

The column Lemma shows the corresponding lemma, its right-hand side hav-
ing been supplied, its left-hand side generated by the above method. Note, for
example, the difference between the lemmas x = rv(rv(x)) and rv(rv(x)) = x.
The column Rhs indicates the size of t1σi for i = 1, . . . , n, which is a measure
of the size of grammars to be intersected. For arithmetic and list theories, the
value of each number t1σi and the length of each list t1σi is given, respectively.

The column No shows the place in which the lemma’s right-hand side ap-
peared in the enumeration sequence, while the column Time shows the re-
quired runtime in milliseconds (compiled Prolog on a 933 MHz PC). Both
depend strongly on the number and size of the example ground instances. The
dependence of No can be seen in lines 4 and 5.

The runtime also depends on the grammar connectivity. In a grammar that
includes, e.g., (−) or (<), each nonterminal can be reached from any other,
while in a grammar considering, e.g., only (+) and (∗), only nonterminals for
smaller values and Nt can be reached. If the grammar defines Nt, N0, . . . , N6,
computing [0]σ1E ∩[1]σ2E ∩[1]σ3E leads to 83 intersection nonterminals in the former
case, compared with 2·32 in the latter. For this reason, runtimes are essentially
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Theory Lemma Rhs No Time

+,∗ (x+ y) + z = x+ (y + z) 1,1,3 6. 21

+,∗ x ∗ (y + z) = x ∗ y + x ∗ z 0,2,2 10. 17

+,∗ x ∗ y = y ∗ x 0,0 3. 0

+,∗ (x ∗ y) ∗ z = x ∗ (y ∗ z) 0,0,2 31. 7

+,∗ (x ∗ y) ∗ z = x ∗ (y ∗ z) 0,0,2,4 3. 22

+,−,∗,/,//,% x/z + y/z = (x+ y)/z 5,1,3 2. 263324

+,−,∗,/,//,% ((x% z)+(y % z)) % z = (x+ y) % z 0,1,1 1. 19206

+,−,∗,/,//,% (x // y) ∗ y = x− (x% y) 6,0,3 1. 17304

+,−,∗,/,//,% x = (x ∗ y) // y 2,1,3 4. 17014

+,∗,< x < y ⇔ x ∗ z < y ∗ z 0,1,1 3. 174958

+,∗,< x < y ⇔ x+ z < y + z 0,1,1 20. 174958

+,∗,<,↑,↓ x < y ⇔ x < x ↑ y 0,1,1 6. 47128

+,∗,<,↑,↓ x = x ↓(x ↑ y) 3,0,3 7. 45678

+,∗,<,↑,↓ (x ↑ y) + (x ↓ y) = x+ y 5,1,5 2. 42670

+,∗,dp dp(x) + dp(y) = dp(x+ y) 2,4 2. 6

+,∗,dp dp(x) = x+ x 0,4 4. 1

+,∗,dp x ∗ dp(y) = dp(x ∗ y) 0,0 13. 1

¬,∧,∨,→ ¬(x ∧ y)⇔ y → ¬x 1,1,1,0 1. 308

¬,∧,∨,→ ¬(x ∧ y)⇔ ¬x ∨ ¬y 1,1,1,0 6. 308

ap,rv ap(rv(x), rv(y)) = rv(ap(y, x)) 2,2,2 1. 89

ap,rv ap(x, ap(y, z)) = ap(ap(x, y), z) 3,3,2 1. 296

ap,rv x = rv(rv(x)) 0,2 4. 1

ap,rv rv(rv(x)) = x 0,2 1. 1

ap,rv ,ln ln(ap(x, y)) = ln(x) + ln(y) 1,2 4. 4

ap,rv ,ln ln(cons(x, ap(y, z))) = s(ln(y)+ln(z)) 2,3 10. 21

cube lf (cc(x)) = up(lf (x)) 1,1 1. 18

cube lf (cc(x)) = cc(up(x)) 1,1 2.

Fig. 11. Generated Lemma Candidates
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Given: series 0, 1, 4, 9, . . ., and k = 3

Lgth Suffix Next

p(s3(0).s4(0).s(0).0.nil , s9(0) )

p(s2(0). s(0) . 0.nil , s4(0) )

p( s(0) . 0 . nil , s(0) )

p(s(vp). v1 . v2 , s(vp)∗s(vp))

�

�
�

�
��

�

�
�

�
�

�

6
cl

6cc

���
lf

���rg

��6up

��
?

dn

Fig. 12. Law Computation by Thm. 24 Cube Rotations

independent of the Rhs sizes for the 2nd to 4th theory. The exception in line 6
is due to a larger input grammar, which defined nonterminals up to N10 rather
than N6.

5.2 Construction Laws of Series

A second application of E-generalization consists in the computation of con-
struction laws for term series, as in ordinary intelligence tests. The method is
also based on Thm. 24 and is explained below.

For technical reasons, we write a series in reverse order as a cons-nil list, using
an infix “.” for the reversed cons to enhance readability. We consider suffixes
of this list and append a number denoting its length to each of them. We use
a binary predicate p(l.s, n) to denote that the suffix s of length l leads to n as
the next series element.

We apply Thm. 24 to the k last leads to relations obtained from the given
series, see Fig. 12 (left), where k must be given by the user. Each result has
the form p(l.s, n) and corresponds to a rewrite rule l.s  n that computes
the next term from a series suffix and its length. By construction, the rewrite
rule is guaranteed to compute at least the input terms correctly. A notion of
correctness is not formally defined for later terms, anyway.

Figure 13 shows some computed construction laws. Its first line exactly cor-
responds to the example in Fig. 12 (left). The column Theory indicates the
equational theory used. The ternary function if realizes if · then · else, with
the defining equations if (s(x), y, z) = y and if (0, y, z) = z, and the unary
function ev returns s(0) for even and 0 for odd natural numbers. Using if and
ev , two series can be interleaved (cf. line 5).

The column Series shows the given term series, sn(0) being abbreviated to n.
The number k of suffixes supplied to our procedure corresponds to the number
of series terms to the right of the semi-colon. Any computed hypothesis must
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Theory Series Law No Time

+,∗ 0; 1, 4, 9 vp ∗ vp 1. 2797

+,∗ 0; 2, 4, 6 s(s(v1)) 1. 3429

+,∗ 0; 2, 4, 6 vp + vp 3. 3429

+,∗ 1, 1; 2, 3, 5 v1 + v2 1. 857

+,∗,if ,ev 0, 1; 2, 1, 4, 1 if (ev(vp), vp, 1) 13. 13913

+,∗,if ,ev 0, 0, 1; 1, 0, 0, 1, 1 ev(v2) 1. 61571

+,∗,if ,ev 0, 0; 1, 0, 0, 1 ev(v1 + v2) 1. 8573

+,∗,if ,ev 0; 1, 3, 7 s(v1 + v1) 1. 3714

+,∗,if ,ev 1, 2, 2, 3, 3, 3, 4; 4, 4, 4 — 8143
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Fig. 13. Computed Construction Laws

explain all these series terms, but none of the earlier ones. The column Law
shows the computed hypothesis. The place within the series is denoted by vp,
the first term having place 0, the second place 1, and so on. The previous
series term and the last but one are denoted by v1 and v2, respectively.

The column No shows the place in which the law appeared in the enumeration
sequence. In line 5, some formally smaller (wrt. height) terms are enumerated
before the term shown in Fig. 13, but are nevertheless equivalent to it. The col-
umn Time shows the required runtime in milliseconds on a 933 MHz machine,
again strongly depending on k and the size of series terms.

The strength of our approach does not lie in its finding a plausible contin-
uation of a given series, but rather in building, from a precisely limited set
of operators, a nonrecursive algorithm for computing the next series terms.
Human superiority in the former area is demonstrated in line 9, where no
construction law was found. The strength of the approach in the latter area
became clear by the series 0, 0; 1, 0, 0, 1, shown in line 7. We had not expected
any construction law to exist at all, because the series has a period relative
prime to 2 and the trivial solution v3 had been eliminated by the choice of k
(a construction law must compute the first 1 from the preceding 0s).

It is decidable whether the result language H24 is finite; in such cases, we can
make precise propositions about all construction laws that can be expressed
using the given signature and equational theory. For example, from line 9 we
can conclude that no construction law can be built from the given operators.
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abcde f gh i j k l mnopqr s tuvw

1 CURSOR MOTIO N COMMANDS :

2 l left H h ome

3 r right m m atching ( )

4 u up W n ext word

5 d down B p rev word

b2 ::= l(c2) | r(a2) | u(b3) | d(b1) .

c2 ::= l(d2) | r(b2) | u(c3) | d(c1) |

W(a2)|W(b2)|B(d2)...B(k2) .

k2 ::= l(l2) | r(j2) | u(k3) | d(k1) |

B(l2) |B(m2)|W(c2)...W(j2) .

Fig. 14. Example File Contents Corresponding Grammar Excerpt

5.3 Generalizing Screen Editor Commands

By way of another application, we employed E-generalization for learning
complex cursor-movement commands of a screen-oriented editor like Unix
vi. For each i, j ∈ IN , let pi,j be a distinct constant denoting the position of
a given file at column i and line j; let P = {pi,j | i, j ∈ IN}. For the sake
of simplicity, we assume that the screen is large enough to display the entire
contents of the file, so, we do not deal with scrolling commands for the present.

Assuming the file contents to be given, cursor-movement commands can be
modeled as partial functions from P to itself. For example, d(pi,j) = pi,j+1 if j+
1 6 li , undefined otherwise, models the down command, where li denotes the
number of lines in the file. The constant H = p1,1 models the home command.
Commands may depend on the file contents. For example,

W (pi,j) = min{i′ | i < i′ 6 co(j) ∧ ch(pi′−1,j) ∈ SP ∧ ch(pi′,j) 6∈ SP},

if the minimum is defined, models the next word command, where co(j), ch(p),
and SP denote the number of columns of line j, the character at position p,
and the set of space characters, respectively.

From a given file contents, it is easy to compute a regular tree grammar G that
describes the congruence classes of all its positions in time linear to the file
size and the number of movement commands. Figure 14 gives an example. For
the sake of brevity, columns are “numbered” by lower-case letters, and, e.g.,
 L(b2) = [pb,2]E. Note that the file contents happen to explain some movement
commands.

Using E-generalization, two or more cursor movements can easily be general-
ized to obtain a common scheme. Given the start and end positions, s1, . . . , sn
and e1, . . . , en, we apply Thm. 24 to F+ ⇔ p(s1, e1) ∧ . . . ∧ p(sn, en) and get
a rule of the form p(x, t), where t ∈ T{x} is a term describing a command
sequence that achieves each of these movements.

For n = 1, we can compute the simplest term that transforms a given starting
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position into a given end position. This is useful to advise a novice user about
advanced cursor-movement commands. Imagine, for example, that a user had
typed the commands l, l, l, l, l, l, l, l, l to get from position pk,2 to pb,2. The
term of least height obtained from Thm. 24, viz. p(x, l(B(x))), indicates that
the same movement could have been achieved by simply typing the commands
B, l.

Each command could also be assigned its own degree of simplicity, reflecting,
for example, the number of modifier keys (like shift) involved, or distinguishing
between simple and advanced commands. In the former case, the simplest term
minimized the overall numbers of keys to be pressed.

No grammar intersection is needed if n = 1. Moreover, the lifting of G can be
done in constant time in this case. In the example, it is sufficient to include
an alternative . . . x . . . into the right-hand side of the rule for k2. Therefore, a
simplest term can be computed in an overall time of Ø(#G · log #G). Changes
in the file content require recomputation of the grammar and the minimum
term sizes. In many cases, but not if, for example, a parenthesis is changed,
local content changes require local grammar changes only. It thus seems worth-
while to investigate an incremental approach, which should also cover weight
recomputation.

For n > 1, the smallest term(s) in the result language may be used to im-
plement an intelligent approach to repeat the last n movement command
sequences. For example, the simplest scheme common to the movements
p(pm,2, po,2) and p(pn,4, pv,4) wrt. the file content of Fig. 14 is computed as
p(x, d(W (u(x)))). Since the computation time grows exponentially with n, it
should be small.

In our prototypical implementation, we considered in all the vi commands h,
j, k, l, H, M, L, +, -, w, b, e, W, B, E, 0, $, f, F, %, {, and } and renamed some
of them to give them more suggestive identifiers. We allow search for single
characters only. In order to consider nontrivial string search commands as
well, the above approach should be combined with (string) grammar inference
[Sak97,HP99] to learn regular search expressions. Moreover, commands that
change the file content should be included in the learning mechanism. And
last but not least, a satisfactory user interface for these learning features is
desirable, e.g. allowing us to define command macros from examples.

5.4 Prototypical Implementation

We built a prototypical implementation realizing the E-generalization method
from Sect. 3.1 and the applications from Sect. 5. It comprises about 4,000 lines
of Prolog code. Figure 15 shows its architecture, an arrow meaning that its
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Fig. 15. Prototype Architecture

source function uses its destination function.

The application module allows us to learn series laws, candidate lemmas, and
editor cursor commands (edt cmds). The anti-unification module contains al-
gorithms for syntactic (synt au), constrained (cs e-au) and unconstrained (uc
e-au) E-anti-unification. The grammar-generation module can compute gram-
mars for a given file content (edt grm), for any set {t∈ T | V ⊆ var(t)⊆W}
(var grm), and for the set of normal forms wrt. E (nf grm). The grammar
algorithms module allows us to test an  L(N) for finiteness, emptiness, and a
given member t, to compute intersection and complement of two languages,
to simplify a grammar, and to generate Nmax from Lem. 7 (max nt s) and a
grammar for T{} (top nt). For the sake of clarity, we omitted the dashed lines
around the pre- and postprocessing module. The former merely contains code
to choose exm instances for lemma generation. The latter does term evaluation
to normal form, and enumeration and minimal weight computation for  L(N).

The prototype still uses monolithic, specially tailored algorithms for E-anti-
unification, as originally given in [Hei95], rather than the combination of stan-
dard grammar algorithms described in Sect. 3.1. For this reason, function in-
tersect uses cs e-au as a special case, viz. σi = {}, rather than vice versa.
However, all other uses relations would remain unchanged in an implementa-
tion strictly based on this paper.

Figure 16 shows some measured runtimes for i–fold simultaneous E–anti–
unification of arithmetic congruence classes. The horizontal position indicates
which classes were used as input, ranging from [0]E to [20]E. A digit indicates
the value of i; its index indicates E, where + means that E just defines sum,
while ∗ means that E defines sum and product . The vertical position — loga-
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Fig. 16. E–Anti–Unification runtime vs. size and number of grammars

rithmically scaled — indicates the required computation time in seconds on a
933 MHz PC under compiled Prolog. For examples, the “5∗” near the upper
left corner means that it took 113 seconds to generalize 3, 3, 3, 3, 3 wrt. sum
and product .

All runtime figures given in this paper are taken from the prototype. Cur-
rently, an efficiency-oriented re-implementation in C is planned. We expect
it to provide a speed-up factor of between 10 and 100. Moreover, it will use
the available memory more efficiently, thus allowing us to run larger exam-
ples than when using Prolog. The Prolog prototypical implementation
and, in future, the C implementation can be downloaded from the web page
http://swt.cs.tu-berlin.de/~jochen/e-au.

6 Conclusions and Future Work

We presented a method for computing a finite representation of the set of E-
generalizations of given terms and showed some applications. E-generalization
is able to cope with representation change in abstraction, making it a promis-
ing approach to an old but not yet satisfactorily solved problem of Artificial
Intelligence.

Our approach is based on standard algorithms for regular tree grammars. It
thus allows us to add filtering components in a modular fashion, as needed by
the surrounding application software. The closed form of an E-generalization
set as a grammar and its simple mathematical characterization make it easy to
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prove formal quality properties if needed for an application. Using a standard
grammar language enumeration algorithm, the closed form can be converted
to a succession form.

Our method cannot handle every equational theory E. To use the analogy with
E-deduction, our method corresponds to something between E-unification
(concerned with a particular E in each case) and paramodulation (concerned
with the large class of canonical E). On the other hand, neither partial func-
tions nor conditional equations basically prevent our method from being ap-
plicable.

In order to demonstrate that E-generalization can be integrated into ILP
learning methods, we proved several ways of combining lgg-based ILP and
E-generalization. Predicate definitions by atoms or clauses can be learned.
If desired, the hypotheses space can be restricted to determinate hypotheses,
resulting in faster algorithms.

Learning of purely determinate clauses can be reduced to learning of atoms
by E-generalization. An lgg-learner for constrained clauses with built-in E-
generalization can learn a proper superclass, called semi-determinate predi-
cates here. We provide completeness properties for all our hypotheses sets.

Using E-generalization, the search space is split into two parts, one concerned
with selection of nondeterminate literals, the other with selection of their ar-
gument terms. While the first part is best handled by an elaborate strategy
from classical ILP, the second can be left to a grammar language enumer-
ation strategy. For example, the Ø(#G · log #G) algorithm to find a term of
minimal complexity within a tree language apparently has no corresponding
selection algorithm for determinate literals in classical ILP. Separating both
search space parts allows us to modularize the strategy algorithms and to use
for each part one that best fits the needs of the surrounding application.

Experiments with our prototypical implementation showed that comparatively
ambitious AI tasks are solvable at the first attempt using E-generalization.
We focus on sketching applications in a number of different areas rather than
on perfectly elaborating a single application. By doing so, we seek to demon-
strate the flexibility of E-generalization, which is a necessary feature for any
approach to be related to intelligence.

In [BH96, Sect. 8], further applications were sketched, including divergence
handling in Knuth-Bendix completion, guessing of Hoare invariants, reengi-
neering of functional programs, and strengthening of induction hypotheses.
The method given in [Bur02a] to compute a finite representation of the com-
plete equational theory describing a given set of finite algebras is essentially
based on E-generalization, too. It is shown there that the complete theory
can be used to implement fast special-purpose theorem provers for particular
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theories.

Based on this experience, we venture to suggest that E-generalization is able
to simulate an important aspect of human intelligence, and that it is worth
investigating further. In particular, the restrictions regular tree grammars im-
pose on the background equational theory E should be relaxed. In this paper,
we briefly looked at some well-known representation formalisms that are more
expressive than regular tree grammars but with negative results. It remains to
be seen whether there are other more expressive formalisms that can be used
for E-generalization.

The attempt should also be made to combine it with higher-order anti-
unification [Has95,Wag02]. Such a combination is expected to allow recursive
functions to be learned from examples.

As indicated above, the applications of E-generalization could certainly be
improved. Lemma generation should be integrated into a real induction
prover, in particular to test its behavior in combination with the rippling
method [BvHSI90]. While rippling suggests checking homomorphic laws like
f(g(t1), . . . , g(tn)) =E g

′(f(t1, . . . , tn)) for validity, E-generalization is able to
suggest lemmas of arbitrary forms. Empirical studies on series-based intelli-
gence tests, e.g. using geometrical theories about mirror , shift , rotate, etc.,
should look for a saturation effect: Is there one single reasonable equational
background theory that can solve a sufficiently large number of common tests?
And can a reasonable intelligence quotient be achieved by that theory?

Currently, we are investigating the use of E-generalization in analogical rea-
soning [DIS97], a new application that does not fit into the schemas described
in Sect. 4. The aim is to allow problems in intelligence tests to be stated in
other ways than mere linear series, e.g. to solve (A : B) = (C : X), where
A,B,C are given terms and X is a term which should result from applying a
rule to C that at the same time transforms A into B.
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