

Fox, M. and Ghallab, M. and Infantes, G. and Long, D. (2006) Robot
introspection through learned hidden Markov models. Artificial Intelligence,
170 (2). pp. 59-113. ISSN 0004-3702

http://eprints.cdlr.strath.ac.uk/2772/

This is an author-produced version of a paper published in Artificial
Intelligence ISSN 0004-3702 .
This version has been peer-reviewed, but does not include the
final publisher proof corrections, published layout, or pagination.

Strathprints is designed to allow users to access the research
output of the University of Strathclyde. Copyright © and Moral
Rights for the papers on this site are retained by the individual
authors and/or other copyright owners. Users may download
and/or print one copy of any article(s) in Strathprints to facilitate
their private study or for non-commercial research. You may not
engage in further distribution of the material or use it for any
profitmaking activities or any commercial gain. You may freely
distribute the url (http://eprints.cdlr.strath.ac.uk) of the Strathprints
website.

Any correspondence concerning this service should be sent to The
Strathprints Administrator: eprints@cis.strath.ac.uk

http://eprints.cdlr.strath.ac.uk/2815/

Robot Introspection through Learned Hidden
Markov Models

Maria Foxa Malik Ghallabb Guillaume Infantesb Derek Longa

aDepartment of Computer and Information Sciences, University of Strathclyde,
26 Richmond Street, Glasgow, G1 1XH, UK

bLAAS-CNRS, 7 Avenue du Colonel Roche, 31500 Toulouse, France

Abstract

In this paper we describe a machine learning approach for acquiring a model of a robot
behaviour from raw sensor data. We are interested in automating the acquisition of be-
havioural models to provide a robot with an introspective capability. We assume that the
behaviour of a robot in achieving a task can be modelled as a finite stochastic state transition
system.

Beginning with data recorded by a robot in the execution of a task, we use unsupervised
learning techniques to estimate a hidden Markov model (HMM) that can be used both for
predicting and explaining the behaviour of the robot in subsequent executions of the task.
We demonstrate that it is feasible to automate the entire process of learning a high quality
HMM from the data recorded by the robot during execution of its task.

The learned HMM can be used both for monitoring and controlling the behaviour of the
robot. The ultimate purpose of our work is to learn models for the full set of tasks associated
with a given problem domain, and to integrate these models with a generative task planner.
We want to show that these models can be used successfully in controlling the execution of
a plan. However, this paper does not develop the planning and control aspects of our work,
focussing instead on the learning methodology and the evaluation of a learned model. The
essential property of the models we seek to construct is that the most probable trajectory
through a model, given the observations made by the robot, accurately diagnoses, or ex-
plains, the behaviour that the robot actually performed when making these observations. In
the work reported here we consider anavigationtask. We explain the learning process, the
experimental setup and the structure of the resulting learned behavioural models. We then
evaluate the extent to which explanations proposed by the learned models accord with a
human observer’s interpretation of the behaviour exhibited by the robot in its execution of
the task.

Key words: Stochastic learning, hidden Markov models, robot behaviour

Preprint submitted to Elsevier Science 21 November 2005

1 Introduction

The goal of the work described in this paper is to automate the process of learning
how a given robot executes a task in a particular class of dynamic environments.
We want to learn an abstract model of the behaviour of the robot when executing its
task solely on the basis of the sensed data that the robot records when performing
the task. Having learned an execution model of this task we want to use the model
to reliably predict and explain the behaviour of the robot carrying out that same
task in any other environment belonging to the class. This paper describes how we
have approached this goal in the context of an indoor navigation task, and how
successful we have been in learning a reliable behavioural model.

1.1 Motivation

The work presented here illustrates that it can be advantageous to approach a com-
plex artifact, such as an autonomous robot, not from the usual viewpoint in robotics
of thedesigner, but from theobserver’spoint of view. Instead of the typical engi-
neering question of “how do I design my robot to behave according to some spec-
ifications”, here we address the different issue of “how do I model the observed
behavior of my robot”, ignoring, in this process, the intricacy of its design.

It may sound strange for a roboticist to engage in observing and modelling what
a robot is doing, since this should be inferrable from the roboticist’s own design.
However, a modular design of a complex artifact develops only local models which
are combined on the basis of some composition principle of these models; it seldom
provides global behavior models. The design usually relies on some reasonable as-
sumptions about the environment and does not model explicitly a changing, open-
ended environment with human interaction. Hence, a precise observation model of
a robot behavior in a varying and open environment can be essential for understand-
ing how the robot operates within that environment.

We are proposing in this paper a machine learning approach for acquiring a par-
ticular class of behaviour models of a robot. The main motivation for this work
is to build models of robot task execution that are intermediate between the high
level representations used in deliberative reasoning, such as planning, and the low
level representations used in sensory-motor functions. A high-level action model,
such as a collection of planning operators with abstract preconditions and effects,
is certainly needed in high level mission planning. However, it is of limited use
in monitoring and controlling the execution of plans. These functions need a more
detailed model of how an action breaks down, depending on the environment and
the context, into low-level concurrent and sequential sensory-motor primitives, and
how these primitives are controlled. On the other hand, the representations used for

2

designing and modelling sensory-motor functions are necessarily too detailed. They
are far too complex to be dealt with at a planning level, or even for execution mon-
itoring. The latter requires intermediate level models, either hand-programmed,
learned, or refined through specification and learning.

Other authors have considered how intermediate level descriptions of task execu-
tion might be used for designing a robot, i.e., how the corresponding models might
be encoded and exploited within a plan execution framework. We are not concerned
with programming the low level control of the robot but with providing the means
by which a robot canintrospectabout the development of its behaviour in the execu-
tion of a task. We rely on hidden Markov models (HMMs) [25] as the intermediate
level representation of this behaviour. Since these models are built empirically, they
take into account the dynamics and uncertainty of the real execution environment.
The resulting behavioural models provide a way in which the controller can reason
about the robot behaviour in the context of executing a task.

Our focus here is not on learning topological or metric maps for robot navigation.
Others have considered this problem in depth [1–4] and shown that navigation with
respect to a given environment can be dynamically improved as the robot interacts
with its environment. The use of stochastic learning techniques to improve robot
navigation in a given environment is therefore quite well-understood. We are con-
cerned with learning abstract models of how a robot performs a compound task,
whatever that task might be. Navigation is an example of such a compound task.

1.2 Approach

Our objective is to be able to predict and explain the robot’s behaviour as it un-
dertakes a compound task in the uncertain real world. In reality the robot passes
through a number ofabstract behavioural states, some of which can be distin-
guished and identified by a human observer. For example, when picking up an
object in its grippers a robot might be in the state of positioning with respect to the
object, approaching it, grasping it, knocking into it, lifting it, and so on.

To illustrate the kind of model we are interested in learning, figure 1 shows a high
level state transition model of apickuptask (this is an artificially simplified example
that was not learned from real data). Time is abstracted out of the model and it is
assumed that a monitoring process tracks how often the robot revisits the same
state.

It can be seen that, according to the model, the probability of knocking into the
object is 0.2 when the robot is positioning itself and when it is in the approaching
state, having positioned itself ready to grasp the object. The probability of looping
on the positioning state is high, suggesting that the robot often fumbles to get into
a good grasping position. The trajectories through this model that are actually fol-

3

grasping
knocking

approaching

lifting

positioning

0.20.8
0.9

0.1

0.8

0.2

0.5

0.3

0.2

Fig. 1. The compound task of picking up an object.

lowed by the robot might revisit the positioning state multiply often and it might
be that the state of knocking into the object is entered most frequently when this
is the case. Using the HMM to identify the most probable trajectory leading out of
the current state provides a monitoring system with a powerful ability to determine
the most likely outcome of the robot’s current behaviour. In section 7 we discuss
how the structure of the HMM can be exploited by such a monitoring system.

The behavioural states of the model arehidden, because they cannot be sensed
directly by the robot. The robot is equipped with noisy sensors from which it can
obtain only an estimate of its state. A hidden Markov model (HMM) represents the
association between these noisy sensor readings and the possible behavioural states
of the system, as well as the probabilities of transitioning between pairs of states.
The HMM is therefore ideally suited to our objectives. Our approach is to learn a
HMM that relates the sensor readings made by the robot to the hidden real states
it traverses when executing its task, in order to equip the robot with the capacity to
monitor its progress during subsequent executions of the same task.

Our work makes several innovations. First, we address the problem of learning the
structure as well as the parameters of the HMM, using a structural learning ap-
proach based on Kohonen network clustering. We begin with no prior knowledge
about how many states the HMM will have, or what the relationship between states
and observations might be. Second, we learn an HMM that is independent of the
physical locations at which activity takes place. The states we are concerned with
are abstractions of the behavioural states of the robot. Expectation Maximization
(EM) [5] is used to estimate the transition probabilities between them based on
multiple sequences of robot observations, each sequence corresponding to the ob-
servations made by the robot during an execution of the compound task.

Figure 2 gives an overview of the whole learning process, and suggests how the
resulting model might feed into high level deliberative reasoning processes. In this
paper we focus on the processing and clustering of raw sensor data leading to the
construction of HMMs. As we discuss in Section 7, these models represent be-
havioural abstractions that can be used by high level deliberative processes.

We show that it is possible to learn high quality HMMs using a fully automated ap-

4

Expectation Maximisation
Abstraction, Clustering and

Raw data from
sensors

Hidden Markov Model
linking observations to

underlying behaviour

Deliberative control processes
Eg: planning, execution monitoring,

despatching, fault diagnosis

HMM yields a behavioural model
abstracting the underlying

behaviours for the deliberative
processes

Fig. 2. Learning an HMM from the bottom up.

proach. Although some questions remain to be answered we believe that our work
constitutes an interesting step towards the acquisition of a predictive and explana-
tory model of robot behaviour that is grounded in its actual sensed experience in
reality.

1.3 Related Work

The work described in this paper builds on a varied literature concerned with the
automated construction of stochastic behavioural models. This includes work on
probabilistic plan recognition [6,7], learning topological and metric maps [1,2],
learning stochastic models of human activity [8–13] and learning to recognise facial
expressions [10] and gestures [14,11,13]. Previous authors have also considered the
automatic classification and interpretation of sensed data [15] and the refinement of
behavioural states to introduce previously unaccounted-for distinctions into a world
model [2,16]. Our work therefore combines a number of established approaches in
the acquisition of stochastic task models.

Koenig and Simmons [1] use EM to learn to improve a robot’s ability to navigate
successfully within a specific environment. Other approaches [17,18] address the
problem of learning how to map and navigate an environment using active explo-
ration strategies. The technique described by Koenig and Simmons uses Partially
Observable Markov Decision Process (POMDP) models to represent the robot’s
understanding of the environment and its position given uncertainty about the topo-
logical structure of the environment. The accuracy of the robot’s navigation is im-
proved by using EM to reestimate the parameters of the model given navigation
traces. The GROW-BW technique allows new states to be added to the model if
the model fails to account for the evidence observed during a trace. Increasing
the lower bound on the length of a segment of the topological map corresponds

5

to adding states to the POMDP. The learned POMDP is therefore as accurate as
possible a representation of a physical space.

Although the work is superficially related to ours, because EM is used to estimate
the parameters of a stochastic model, its objectives are very different. Koenig and
Simmons are specifically interested in learning to improve the navigation capability
of a robot within a given environment, whilst we are interested in learning how a
robot accomplishes a task, whatever the task may be. In the work we describe in
this paper we use the navigation task simply as an example of a compound task.
The states of our learned model correspond to abstract behavioural states, such
asobstacle avoidance, not to physically grounded states such asone metre from
a corridor junction. This is a significant difference because our method is task-
independent. The states are acquired automatically by means of the clustering of
sensor input and their veracity is established by evaluating the predictive power of
the resulting HMM.

Several authors have considered how intermediate level models might be used
for describing the execution of a task. For example, RAPS [19] and Structured
Reactive Controllers [20] provide the low level programs into which actions at
the task-planning level decompose at the executive level of the robot architecture.
RMPL [21] and TDL [22] are examples of languages that have been developed for
the specification of such programs. These programs might be hand-coded or they
might be acquired by learning or by interpretation of learned models. The Proce-
dural Reasoning System (PRS) [23] is a further example of an architecture that
supports the relationship between high level plans and execution.

The work done in gesture [14,11,13] and facial expressions [10] recognition is
closely related to our concern. If an HMM is used to model the probabilities of a
human face transitioning between different expressions, and these expressions are
linked to emotional states and actions, it becomes possible to predict the most likely
next action of a person based on interpretation of his facial expression. Similarly,
if gestures are associated with activities a learned HMM can enable the immediate
goals of a person to be predicted on the basis of his recent and current gestures. This
work is similar to our own because the states of the learned HMMs are behavioural
states of the subject and are not associated with the physical location of the subject.

Liao, Fox and Kautz [8] use learned models to predict human transportation be-
haviours. They can detect when a person’s behaviour deviates from their normal
pattern by evaluating the likelihood of an observed behaviour in the context of a
learned model. Osentoski, Manfredi and Mahadevan [9] learn models of human
behaviours in order to provide robots functioning in human environments with the
capacity to predict and explain human activities. In both studies the HMM is used to
predict the probability that certain activities are being undertaken at certain physi-
cal locations. The structure of the HMM is hierarchical, with the lowest level corre-
sponding to a physical network of locations and higher levels corresponding to the

6

activities that typically take place at these locations. Thus, the work is concerned
with relating activities to physical space and its emphasis is therefore different from
our own.

In our work the association between the sensor readings of the robot and its be-
havioural states is learned by means of Kohonen network clustering. A closely
related approach in the literature is the work of Oates, Schmill and Cohen [15] in
which dynamic time warping is used to cluster multivariate time series sensor data,
or experiences. Oateset al. present an unsupervised method of clustering experi-
ences into classifications of action outcomes enabling a robot to interpret its state
in a way that accords well with human judgements. The objective of their work
is to identify cluster prototypes that form the basis of an ontology of activity that
can lead to the automated construction of operator models. The way in which we
use the results of the clustering phase is different and a more detailed comparison
follows later in the paper.

1.4 Layout of the Paper

In section 2 we formulate the problem we are addressing, specifying the notation
we will use in this paper, introducing the main methods and algorithms and defin-
ing the key terms that we will use. In section 3 we discuss data clustering using
the Kohonen network clustering approach. We describe how an initial collection
of behavioural states is refined by the clustering process. We then explain the pro-
cess of building an initial sensor model using thecode bookapproach, and show
how all of the remaining parameters of the HMM are initialised. We then review
EM, describing how the initial parameters are iteratively reestimated. Section 4 de-
scribes the robot and its array of sensors, the data we collected and the class of
environments we studied. We explain how the observable outputs of the robot are
processed to extract the features used for clustering, and how the feature vectors
we used are constructed. In section 5 we discuss the implementation of the entire
learning process, showing how the EM process was integrated with the clustering
phase in our system. The EM process requires evidence to be provided, and we
explain how sequences of observations are generated for this purpose.

In section 6 we describe the evaluation strategy we have devised for determining
the quality of the learned HMM in terms of its power to explain the robot’s be-
haviour from its observations. Using the Viterbi algorithm [24] we construct the
sequences of states that best explain the observation sequences, and then we com-
pare the Viterbi sequences with what the robot did in reality. This comparison relies
on a human observer’s interpretation of the robot’s real behaviour. We discuss the
strengths and weaknesses of this approach.

Finally, in section 7, we turn to a discussion of how the learned models can be used

7

in the monitoring and control of robot behaviour. Although this is not the focus of
the current paper we explain how the HMMs can enable a robot to predict entry
into an undesired state and to take averting action in time to avoid a failure. We
discuss how HMMs can be used in combination with policies and plans to support
a robot in achieving high level mission goals.

2 Formal Problem Statement

There are three main problem components to define: themodelof a task as a finite
state transition system, the clustering of the observation space into a finiteevidence
space, and the definition of the finitebehaviour state space. For each component we
will present the assumptions that we make concerning the component and its role
in the problem, the formal definition of the component and a brief introduction to
the algorithm that is used to construct instances of the component. In the following
section we present details of the core algorithms introduced here.

In our definitions we usen andm as index variables indicating the lengths of se-
quences in the context of each definition. These variables should be interpreted as
locally defined within the scope of each definition.

2.1 Models and Tasks

Assumption: The robot behaviour for taskT can be conveniently modelled by a
finite stochastic model.

Definition 1 A stochastic state transition model is a 5-tuple,λ = (Ψ, ξ, π, δ, θ),
with:

• Ψ = {s1, s2, . . . , sn}, a finite set ofstates;
• ξ = {e1, e2, . . . , em}, a finite set ofevidence items;
• π : Ψ → [0, 1], the prior probability distributions overΨ;
• δ : Ψ2 → [0, 1], the transition model ofλ such thatδi,j = Prob[qt+1 = sj|qt =

si] is the probability of transitioning from statesi to statesj at time t (qt is the
actual state at timet);

• θ : Ψ × ξ → [0, 1], the sensor model ofλ such thatθi,k = Prob[ek|si] is the
probability of seeing evidenceek in statesi.

Under the Markov assumption the state of the robot at timet depends only on its
state at timet− 1, so thatλ produces a hidden Markov model.

Definition 2 A historyh = 〈e1 . . . en〉 is a finite sequence of evidence items.

8

The algorithm we are using to build the model is the well-known technique of Ex-
pectation Maximization (EM) [25], also called the Baum-Welch algorithm [26].
Given a set of histories and the initial parameters of a HMM — an initial sensor
model, an initial transition model and a prior state distribution over the states in
Ψ — EM iteratively reestimates the HMM parameters. On each iteration EM es-
timates the probability, or likelihood, of the evidence being seen given the HMM
estimated so far. It then updates the model parameters to best account for the evi-
dence. When the estimated likelihoods are no longer increasing EM converges. The
probability at convergence is represented as themaximal log likelihood: the best lo-
cal estimate possible given the evidence and the learned model. Log likelihood is
used because the probability of a particular observation sequence being seen in a
complex model is typically low enough to challenge the arithmetic precision of the
machine. It is well-known that EM has a tendency to converge on local maxima, but
careful selection of the initial HMM parameters can help to mitigate this tendency.

The inputs to the EM algorithm are: a finite set of histories,H = {h1, . . . hn},
corresponding to the training data associated withn executions of taskT , and an
initial model, λ0 = (Ψ, ξ, π, δ0, θ0). The output is a learned stochastic modelλ
corresponding to a hidden Markov model describing the taskT .

2.2 Clustering the observation space into evidence

Assumption: A multi-dimensional non-finite observation space can meaningfully
be mapped into a finite set of evidence items.

We refer to the collection of sensor readings that can be made by the robot, at some
point in time, as anobservation. Each reading gives the value of a certain primitive
feature which we call araw feature, such as the heading of the robot, the speed at
which it is travelling, and so on. The observation space is therefore defined by the
particular collection of sensors with which the robot is equipped and its interaction,
by means of these sensors, with the environment.

Definition 3 A k-dimensionalobservation spaceis defined asΦ = γ1×γ2×. . .×γk,
where:

• γi ⊆ <;
• A raw feature is defined to be a functionfi : robot× env × time → γi mapping

the sensory-motor and environmental context of the robot, at a timet, to a value
in the rangeγi, thus partially characterising the behaviour of the robot at some
instantt in time.

Definition 4 Anobservationis a point in observation space.

Although we describefi as a function of the robot and its environment, we have no

9

access to this function or control over how it produces its mapping to raw feature
values. Raw feature values are determined by the low level robot control software
upon which the learning pursued in this project is based and the interaction between
the robot and its environment. We can samplefi for specific values of its arguments.

Under our assumption mappings exist from the observation spaceΦ to a set of
abstract observationsξ. We call the elements ofξ evidence items. We first define a
trajectory, then explain how the construction of trajectories allows the setξ and a
mapping to be constructed by means of theclusteringof the observation space.

Definition 5 A trajectoryτ = 〈o1, o2, . . . , on〉 is a finite sequence of observations
characterising a single execution of the taskT .

Our intention is to discretise the non-finite observations,Φ, of the robot into a
finite collection of distinct evidence items,ξ, and to determine a mappingclus-
ter : Φ → ξ. This requires a process of abstraction and the combination of raw
feature values across observations. A single observation is not informative enough
to enable us to determine how the robot’s behaviour develops over time. If we con-
sider a single observation taken at timet the raw feature values will reveal very
little about how the robot’s behaviour has evolved up to that time, or will evolve af-
ter it. For example, because the robot is reacting to its environment the observation
it makes at timet might record a heading several degrees away from the general
direction in which the robot travelled over an interval includingt. We are less in-
terested in the precise heading at timet than in the general direction in which the
robot travelled over a period of time that includest.

In order to see how the behaviour of the robot changed over time we consider
sub-sequences of trajectories, each containingc consecutive observations, where
c is a constant chosen to ensure that the sequences represent sufficient time for
interesting behaviour to occur. We combine the raw feature values associated with
observations in these sequences intofeatures, then focus on how the values of the
features in which we are interested vary over different sequences.

Definition 6 For a given constantc, a featureis an abstraction of raw feature val-
ues, obtained by combining some subset of the raw features drawn from each ofc
consecutive observations.

The combinations performed in definition 6 are typical filtering and smoothing
operations used in signal processing. Using features we construct feature vectors
from the trajectories in our data set.

Definition 7 A feature vector~fi is anm-dimensional vector of feature values. The
feature values are obtained from a sub-sequence of a fixed number of consecutive
observations, starting at observationi, in a trajectory.

Them-dimensional feature vectors are constructed from raw features in an obser-

10

Filter selected
features

Normalise
feature values

Feature vector

is processed

Observations recorded at steady frequency

Trajectory

constructed as sliding windows
Each observation appears

Each sequence

Sequence generated

Sequences of fixed number, c, of consecutive observations

for each window of c observations

in up to c sequences

m−dimensional

Series of n observations: snapshots of readings from robot sensors

Fig. 3. Sliding window construction of feature vectors

vation space that isk-dimensional where, in general,m ≤ k depending on the ways
in which the raw features are combined in the construction of the features.

The feature vectors are constructed in the following way. For each trajectory we
take all possible consecutive sequences of a fixed number of observations using a
typicalsliding windowapproach as shown in figure 3.

We do not allow feature vectors to cross the boundaries between trajectories. This
helps the system to learn that the robot never transitions out of the state in which it
has reached its goal into any other state.

Before clustering we normalise the feature vectors to ensure that variation in vector
magnitude does not distort the clustering results. We also normalise each field of
the feature vectors by expressing each value in terms of the number of standard
deviations from the mean value for that field. This ensures that gross differences in
the ranges of values do not get interpreted as magnitude differences by the clusterer.

The algorithm we use for clustering the observation space is Kohonen network
clustering. The Kohonen network performs an unsupervised projection of multi-
dimensional data onto a smaller dimensional space, resulting in the identification
of a cluster landscape in this smaller dimensional space.

We chose to use the Kohonen self-organising network because it gives us the free-
dom to avoid specifying the number of clusters in advance. We first train the net-
work and then apply a cluster selection function to the landscape to identify the
most significant clusters. Thus, although the size of the network places an upper
bound on the number of clusters that can be found, there is no need to predetermine
how many clusters the data set contains. In vector quantisation approaches [27],
such as K-means clustering, the user must supply the number of means,K, which

11

determines the number of clusters that will be found. Similarly, in stochastic clus-
tering using techniques such as EM, the user must supply the number of Gaussians
to use in a mixture, which determines the number of clusters that will be learned.
In our application it is important that the number of evidence items be determined
autonomously from the structure of the observation data, since we do not wish to
impose any prior judgements on what observations the robot might be making. Fur-
thermore, the self-organising network has the useful property that clusters that are
close together in the network map to concepts that are close in reality. We exploit
this property by using scalar product operations to identify relationships between
evidence items and behavioural states. We describe this process in section 3.2.

The input to the clustering process is a finite set of feature vectors constructed
from the trajectories. The outputs are the set of evidence itemsξ and the mapping
cluster: Φ → ξ. Using theclustermapping we can construct the set of historiesH.

2.3 Defining the State SpaceΨ

Assumption: It is possible to determinea priori a collection of behavioural states
associated with a taskT .

We distinguish between states that are unambiguouslyvisible to the observer, such
ass0, the starting state,sg, the finishing state andsf , failure states, and those that
must be identified subjectively, such ashesitating. These we denote thesubjective
states. The refinement process replaces the subjective states (and, optionally, the
visible states), with other hidden states, unknown to the human observer.

A human observer can label observations while the robot is performingT . The la-
bels are associated with the observations as they occur in real time. The labelling
indicates the association between an observation and a behavioural state, as per-
ceived by the human observer. The set of labels therefore corresponds to thea
priori state set. We call the set of labels used by the human observerL.

GivenL we can define apartial labellingof trajectories by the human operator.

Definition 8 A partial labellingmaps a trajectoryτ = 〈o1, o2, . . . , on〉 to a labelled
trajectoryτ ′ = 〈(o1, l1), (o2, l2), . . . , (on, ln)〉, where:

• oi ∈ Φ;
• li ∈ L ∪ {nomark}, wherenomark is the label applied to an otherwise unla-

belled observation.

We can identify the set of statesΨ by refining the label set,L, using the labelled
trajectories, the set of evidence itemsξ and the mappingcluster: Φ → ξ. The algo-
rithm we use, which we callstate splitting, is described in section 3.2. It works by

12

Sequence vector
construction

Feature vector
construction

Evidence
construction

Clustering

State splitting Sensor model
construction

EM

Extraction
Feature

Labels

Feature vectors Histories

δ,π
θ

HMM

θ,δ,π

Feature
vectors

Trajectories

Raw Data

Fig. 4. Learning an HMM from raw sensor data. The bold arrows show the input to and
output from the entire learning process.

finding the maximal cliques in a graph in which the nodes correspond to evidence
items inξ. A separate graph is constructed for each of the state labels inL. The
structure of the graph is determined by theclustermapping. An edge is constructed
between nodesei andej if cos−1(ei · ej) ≤ ρ whereρ is a constant threshold angle
between vectors in the feature vector space,ξ. Each maximal clique, corresponding
to a subset of evidence items inξ, is interpreted as a state inΨ. The elements ofΨ
are substates of the label setL ∪ {nomark}.

The inputs to the maximal clique finding algorithm are: the set of labelsL, a set
of partially labelled trajectories, the set of evidence itemsξ, and the mappingclus-
ter : Φ → ξ. The output is a setΨ of states, which we take to be the state space of
the taskT .

3 The Core Algorithms

We now describe the three main algorithmic components of the system in more de-
tail, showing how they construct the components described in section 2. We present
these algorithms and components in a way that is independent of the specific task,
environment and robot platform that we considered. Our objective is to emphasise
the generality of the approach we have taken. In the next section we explain how
the data we used was collected and prepared for presentation to the system.

Figure 4 depicts the entire process from data collection to the output of a learned
hidden Markov model representing the behavioural transitions of the robot in its
execution of the navigation task.

13

3.1 Kohonen Network Clustering

As stated in section 2.2, the input to the clustering process is a set of feature vectors
constructed by smoothing trajectories over intervals of time. The outputs are the set
of evidence items,ξ and the mappingcluster :Φ → ξ.

3.1.1 The Clustering Process

We performed clustering using a two-dimensional self-organising map, or Kohonen
network [28]. The Kohonen network identifies patterns in feature vector data in a
way that is independent of human influence. The number of clusters found depends
purely on the form of the data itself and the parameters of the network. The param-
eters are the dimension of the network (we used a square grid), the learning rate,
the neighbourhood size and the random number seed used to initialise the network
vectors. This independence is important because we have no way of decidinga pri-
ori how many observations the raw data contains or what their relationship to one
another might be.

Kohonen clustering performs a projection ofn-dimensional data onto a smaller,
k-dimensional, space, wherek is less thann and can be determined by the user.
We usek = 2, so we are projecting the multi-dimensional structure of our data
onto a 2-dimensional space. Within this framework the dimension of the network
affects how many clusters are found and how they inter-relate. The dimensions of
the network should be at least 500 times smaller than the size of the data set [28]
to allow for enough space for clusters to be distinguished, but not so much that that
they begin to degenerate into noise. Our data set consists of about 15,000 feature
vectors so we experimented with dimensions varying between 15 and 45. Increas-
ing beyond a dimension of about 35 seems to increase the amount of noise in the
cluster landscape, which has a negative effect on the quality of the learned HMM.
Using a dimension below about 20 causes clusters to combine and reduces the level
of discrimination, again resulting in a negative effect on learning. Networks of di-
mension between 25 and 30 seems to give the best results for our data set, as we
demonstrate in section 6 and appendix B.

The map is initialised with random unit vectors of appropriate dimension. We ini-
tialised the network using random vectors that cover the network adequately (we
insist that all of the initial vectors must be pairwise separated by at leastd degrees,
whered is a constant chosen depending on the size of the network). This is to reduce
the effects of initial bias in the network. Initial bias is a widely recognized problem
in the use of clustering algorithms. All our results are presented as averages over
20 random number seeds, as discussed in section 6.

The network is trained by presenting each of the feature vectors in turn and aligning
the network vectors to the feature vectors to which they are closest. Scalar multi-

14

Identify closest cell vector
to input vector;

move all vectors in cells in
neighbourhood of closest
vector towards the input.

Training process

moved towards
Neighbours

input

contains random
vector

Each cell

Initial network

Cell vectors organised

closely aligned vectors
representing clusters in

in neighbourhoods of

the input vectors

Trained network

Neighbourhood

Landscape generated
by counts

Landscape Construction

Sort cells and select cell with
highest count. Remove cells within
neighbourhood of newly selected
cell, where neighbourhood size is

inversely proportional to cell count.
Repeat until all cells selected or

removed.

Neigbourhood

Input

Closest cell

Fig. 5. Training the Kohonen network

plication is used to determine closeness. Alignment is performed by adding to the
network vector a proportion of the sequence vector as determined by the learning
rate. A neighbourhood value determines the neighbourhood of network vectors that
is influenced by the input feature vector. We implemented a neighbourhood decay
rate as a negative exponential function. The effect that this has is to reduce the
impact of training vectors over time. Using this function we can iterate over the
training data many times without over-learning. We also used a learning rate decay,
in the form of MacQueen’s averaging law [29]. Thus, in a way determined by the
learning rate and neighbourhood value chosen, the 2-dimensional space partitions
into regions.

The training set is presented 100 times to assist convergence of the training pro-
cess. After the first 50 iterations we shuffle the order in which feature vectors are
presented to the network, in order to reduce the extent to which the resulting clus-
ter landscape is sensitive to the order of presentation. We experimented with more
frequent shuffling and noticed that it slightly reduces the sensitivity to ordering of
presentation but that it results in greater sensitivity to the unequal distribution of the

15

different robot behaviours in the data set. Each trajectory produces fewer examples
of the smoothed observations associated with the starting and finishing behaviours
of the robot, than examples of observations associated with the intermediate be-
haviours. Experiments showed that shuffling more frequently led to the network
failing to distinguish the starting and finishing observations from observations as-
sociated with the intermediate behaviours.

After training the 2-dimensional space can be mapped to a vector space ofdim2

vectors, wheredim is the dimension of the network. In order to identify the clusters
in this vector space we apply an cluster selection strategy to the network which
draws the vectors together around the highest peaks. Our first attempt at such a
strategy counted, given a cell〈i, j〉, the number of cells that were within a fixed
radius (we used 0.085) of〈i, j〉. This count was used to measure the influence of
〈i, j〉 over the whole network. We then used a hill-climbing strategy to associate
plateau cells with the first closest peak found.

There are several weaknesses associated with this approach. The first is that, using
this strategy, the composition of the peaks ends up very sensitive to the noisiness of
the cells in the network. We noticed that, with different random initialisations, we
got very different cluster landscapes. A cell might be pulled one way or the other
depending on random factors, so that a small change in the initialisation of the net-
work could lead to huge differences in the cluster landscape. Large variations make
the later learning results highly dependent on arbitrarily chosen random numbers.

Another weakness is that the cells exerting the most influence in these terms over
the network are not necessarily the cells that attracted most of the input during
training. Using this method we could end up throwing out the clusters we are really
interested in in favour of ones that attracted little input and are not good indicators
of the behaviour of the robot. Further, by associating the cells in a plateau with the
nearest peak we caused the network to distort, sometimes very badly in the cases
where there are large plateaus. A better approach seems to be to restrict the amount
of draw that one cell can have over another, and thereby spread the clusters more
evenly over the landscape.

To address these problems we developed a different cluster selection strategy which
uses the number of inputs attracted to each cell as a way of identifying the cluster
landscape. The cells that attracted the most inputs we take to be the highest peaks in
the landscape. Given that the cluster landscape is intended to represent the structure
in the data set we decided that a cell that attracts very few inputs is unlikely to be
interesting, so we focus our attention on the high peaks. To achieve this focus we
associate a varying neighbourhood size with the peaks in the network, considering
the peaks in descending height order. This neighbourhood is different from the
learning neighbourhood used during training.

We first order the peaks then, choosing the largest first, remove from the network

16

 0
 5

 10
 15

 20
 25

 30 0
 5

 10
 15

 20
 25

 30

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000

Fig. 6. A clustering landscape obtained using a 30x30 Kohonen network.

all of the cells in its neighbourhood. The size of the neighbourhood is determined
as: ⌈

H

C

⌉
whereH is the number of inputs attracted to the highest overall peak in the network
andC is the number of inputs attracted to the current peak. This value is used as a
radius around the peak cell. The process is repeated for the next highest peak until
no cells remain to be considered.

Let C be the current peak andH be the height of the highest peak in the network.
Clearly, if H

C
is large for most values ofC then we risk losing the interesting struc-

ture in the network. This is obviously undesirable, resulting in a small collection of
clusters that is unlikely to be discriminating. We require the value ofH

C
to have a

slow, smooth gradient over a sufficiently large collection of discriminating clusters.
For the size of our data setsufficiently largemeans tens of clusters. To achieve such
a gradient we require the ratio ofH to C to be small for tens ofCs. By examining
the cluster landscapes constructed from our data set we confirmed that this require-
ment is satisfied. Figure 6 gives an example of a typical cluster landscape generated
using a network of size 30.

We have found that using this strategy we improve the clustering stability by re-
ducing sensitivity to the noisiness of the randomly generated vectors. Peaks still
move around in the network because of the random initialisation, but this is to be
expected. The experiments presented in section 6.4 show that we achieve a high
degree of stability in the clustering results across different random number initiali-
sations.

Following training the feature vectors are reintroduced to the network for classi-

17

fication. During classification, each input sequence vector is associated with the
peak vector to which it is closest according to a scalar multiplication comparison
between the feature vector and each peak vector. The cells in the network that cor-
respond to the peaks contain vectors that characterize the evidence items found by
the clustering process. These are the elements of the setξ and correspond to the
evidence items that can be observed by the robot as it executes its task. We refer to
these vectors ascharacteristic vectors.

Our clustering approach is related to that of Oateset al. [15] who considered the
problem of clustering the experiences of a robot into qualitatively different action
outcomes. Theircluster prototypes, which are closely related to our characteris-
tic vectors, constitute anontologyof activity. It is intended that they correspond
to the qualitatively different states in which a robot can find itself, following the
execution of an action, and that they provide the basis for automating the descrip-
tion of actions at the task-planning level. By contrast, our characteristic vectors are
interpreted as high level observations, or evidence items, associated with states at
the intermediate level of description rather than at the task-planning level. As we
will see, observations contribute to the identification of states, at this intermediate
level, which might have no interpretation for the human observer but which may be
critical in accurately modelling the behaviour of the robot with respect to its task.

At the end of the classification phase all of the feature vectors in our data set have
been classified with one of the characteristic vectors in the network. This puts us in
a position to construct an observation code book.

3.1.2 Constructing the Sensor Model

A code book [27] is a mapping from input values to a finite collection of obser-
vation codes. To build our code book it is necessary to associate the characteristic
vectors with the labels inL ∪ {nomark}. To facilitate this we annotate each fea-
ture vector with the label associated with the last observation in the sliding window
from which the feature vector was constructed. If there are no labelled observations
in this sliding window the feature vector is labelledno mark.

The association of a feature vector with a label results in a new structure which we
call asequence vector. The structure of a sequence vector is defined in definition 9.

Definition 9 A sequence vectorsv = (~fi, l) is an m-dimensional feature vector
associated with a label,l, from the setL, taken from the last labelled observation in
the sub-sequence of the partially labelled trajectory from which~fi was constructed.
If there are no labels in the subsequence thenl is theno marklabel.

In the construction of our code book, the input values are sequence vectors, defined
in definition 9, and the characteristic vectors identified during the clustering phase
are used as the codes. The mapping is defined by the classification behaviour of the

18

Kohonen network.

Definition 10 Given a trajectoryt = 〈o1, . . . , on〉, the ladderlt is the sequence
{~f1, . . . , ~fn} of sequence vectors constructed from trajectoryt.

The sequence vector construction phase defines a mapping from trajectories tolad-
ders, defined in definition 10, so-called because of the way that the sequence vectors
overlap in a sliding window, as shown in figure 3.

We can now construct the association between evidence items inξ and the labels
in L∪{nomark} by counting the number of sequence vectors carrying each label,
the feature vectors of which were classified with each evidence item. This associ-
ation can be turned into a probabilistic observation function in the following way.
Let s0, . . . , sn be the behavioural states labelled byL ande0, . . . , em be the evi-
dence items. We interpret the number of associations in a given pair (si,ej) as a
proportion, so that the probability of seeing evidenceej in statesi can be easily
calculated. LetVjsi

be the set of sequence vectors associated with evidence itemej

that were labelled withsi, andVsi
be the set of sequence vectors labelledsi. Now

the probability of seeing evidenceej in statesi is:

θi(j) =
|Vjsi

|
|Vsi

|

The resulting function can be interpreted as a sensor model specifying the proba-
bility of seeing each evidence item given each state. The “sensor” is the compound
sensor capable of observing the evidence items found by the clusterer. This means
that when subsequently using the model the robot’s raw sensor data can be pro-
cessed by the construction of sequence vectors and their classification by means of
cluster: Φ → ξ.

In section 6 we present results showing the quality of HMMs learned on the basis
of sensor models constructed in this way and not further refined by state splitting.
As can be seen from figure 19, the quality of the HMMs learned on this basis is
often poor. We hypothesised that the states identified by the human observer might
not in fact be the states that are most important for distinguishing between the be-
haviours of the robot, and that better results might be obtained by sub-dividing the
human-observed labels. The labels inL ∪ {nomark} abstract out a great deal of
potentially important variation in behaviour, including the transitionary behaviour
that the robot exhibits as it passes from one state to another. To explore this hypoth-
esis we developed the state splitting strategy, briefly described in section 2.3, which
decomposes each of the original labels around the groups of evidence items that are
most strongly associated with these states according to the code book sensor model
constructed as above.

19

3.2 Maximal Cliques

As stated in section 2.3, the inputs to the maximal clique finding algorithm are the
set of labelsL, a set of partially labelled trajectories, the set of evidence items and
cluster: Φ → ξ. The output is the set of statesΨ.

In the code book multiple evidence items can be associated with the same be-
havioural state. This occurs because evidence items are not perfect discriminators
between states. Sometimes, the characteristic vectors of these evidence items are
separated in the vector space by significantly large angles. When these angles ex-
ceed 30 or 40 degrees it seems plausible that the association of these clearly differ-
ent evidence items with the same behavioural state might indicate that a decompo-
sition of that behavioural state into sub-states is possible.

The idea of state-splitting around distant groups of characteristic vectors is illus-
trated in figures 7 and 8. The procedurerefineθ, in figure 7, begins by constructing,
for each labels ∈ L, a graph in which the nodes are the characteristic vectors of
the evidence items associated with that label in the code bookθ. The edges in the
graph are the angles in vector space between the evidence items at the two end-
points. If two vectors are less than a pre-determined threshold apart – for example,
40 degrees – an edge between their corresponding nodes is added to the graph and
the maximal cliques remaining in the graph are found. These steps are illustrated
in lines 6 to 15 of theconstructGraphprocedure.

The maximal cliques contain all those evidence items within 40 degrees of one
another. Each maximum clique is a subset of the characteristic vectors associated
with the original label, suggesting a substate of the behavioural state corresponding
to that label. The procedurerefineθ shows how finding the maximal cliques leads
to the construction of a refined sensor model.

The sensor model,θ0, is constructed from the code book using the identified sub-
states. We want to replace the original behavioural states labelled byL∪{nomark}
with their substates and to share out the association between an evidence item and
a label amongst all of the substates of that label. Thus: if evidence iteme had a
k% association with labels, and states hasp sub-states, the quantityk% has to be
shared out between thep substates. This is not just a case of dividing thek% into p
equal parts — the sharing has to be done in a way that reflects the proximity of each
substate to the evidence iteme. To do this we need to identify the centre of mass of
each sub-state and measure the distance frome to each of these centres of mass. We
obtain the average of the characteristic vectors in a sub-state to obtain the centre
of mass of that sub-state. We then take the scalar product of the resulting vector
and the characteristic vector of evidence iteme to obtain the proximity ofe to the
substate. Finally, each substate is given a proportion of the association betweene
and the label, depending on its proximity toe. This calculation is shown on line 39

20

1: Procedure: constructGraph(θ,s,ξ)
2: Input: code bookθ, label s, evidence itemsξ
3: Output: graph structure G
4:
5: initialise graph G
6: for all cluster c inξ do
7: if assoc(θ,s,c)> 0 then
8: add node for c to G
9: end if

10: end for
11: for all (cluster) node i in Gdo
12: for all (cluster) node j in Gdo
13: if angle(i,j)< SEPARATION-THRESHOLDthen
14: add edge (i,j) to G
15: end if
16: end for
17: end for
18: return G
19:
20: Procedure: refineθ(θ,L,ξ)
21: Input: code bookθ, labels L, evidence itemsξ
22: Output: sensor modelθ0

23:
24: initialise sensor modelθ0

25: for all label s in Ldo
26: G = constructGraph(θ,s,ξ)
27: {First identify the maximal cliques in G}
28: Cs = maxCliques(G)
29: initialise 2d array of doubles, ds
30: for all cliques clq in Csdo
31: {Find the mean of clusters representing nodes in clq}
32: avC = computeAverage(clq)
33: for all characteristic vectors c inξ do
34: {Record distance between centre of clique and characteristic vector c}
35: ds[clq][c] = scalarProduct(avC,c)
36: end for
37: normalise ds[clq]
38: for all cluster c inξ do
39: θ0[clq][c] = assoc(θ,s,c)/ds[clq][c]
40: end for
41: end for
42: end for
43: return θ0

Fig. 7. Pseudo code showing the state splitting procedure. For both routines,assoc(θ, s, c)
is the association in the code bookθ between labels and evidence itemc.

21

Distances measured between
isolated vertices and centres of
each of the cliques

Cliques represent tightly
coupled collections of

characteristic vectors: substates

Graph constructed with
edges between close

characteristic vectors

Each clique has
a "centre of mass"

associated with a state
characteristic vectors

Nodes representing

Fig. 8. The state splitting procedure

of procedurerefineθ. Figure 8 shows how this sharing is achieved.

As a result of the state splitting process the code book is rewritten in terms of the
substates found. The number of evidence items does not change as a result of state
splitting, but the number of states increases and is determined by the structure of
the vector space following clustering. Interestingly, the states in the refined set have
no interpretation for the human other than that they were obtained by decomposi-
tion of an original set of human-observed labels. Nevertheless, some of the new
states might represent interesting transitionary states that are important for learning
a good state transition function and can therefore improve the results obtained from
the EM phase.

The state collection that results from the refinement of the initial state labels is the
state setΨ, and the sensor model, constructed using the relationship betweenΨ and
ξ, is the functionθ0. The relationship defines a function,ab : Ψ → L, which maps
states inΨ to labels in the initial collection (ab indicates an abstraction step). We
also define a functionev : Ψ → Pξ which, given a state inΨ produces the set of
evidence items that constitute it. The following property holds:

∀s1, s2 ∈ Ψ · ab(s1) = ab(s2) ⇒ ev(s1) 6= ev(s2)

which means that, if two states map byab to the same label, they will not contain
the same evidence items. We can also identify a mapping from labels to sets of
substates which, given a label produces the set of substates in its decomposition.
We call this mappingrefine: L ∪ {nomark} → PΨ.

It must be noted that two different substates inΨ might be composed of exactly the

22

same evidence items. Their association with different labels distinguishes them.
However, the fact that two labels contain substates composed of identical evidence
items can be taken to indicate a sharing of content between the two labels. Part
of the power of the state-splitting procedure resides in its ability to identify the
shared sub-structure of abstract states, as well as the characteristics that distinguish
them. We explain in section 6 how the recognition of shared sub-structure can be
exploited in the evaluation of the learned HMM.

The idea of decomposing and augmenting the states of a HMM has been considered
by other authors [1,16]. In particular, Koenig and Simmons’ GROW-BW algorithm
allows new states to be added to a HMM if they are needed to account for observa-
tions made by a navigating robot. Chrisman [16] shows how dynamic partitioning
of the state space of the model can overcome the problem ofperceptual aliasing
that occurs when a model contains too few states to discriminate between different
observations. Stolcke and Omohundro [30] show how states can be dynamically
mergedto generalise a HMM. In these works the HMM starts with a collection
of states that is determineda priori and is known to be inadequate to account for
the observations of the system. State splitting and merging is applied during the
learning process to increase the adequacy of the state set as observations are made.

By contrast, we propose astaticstate splitting strategy to be performed prior to the
EM learning process. Its purpose is to increase the information content ofλ0 and
thereby improve the quality of the learned model. Indeed, the results we present
in figure 19, section 6, demonstrate that the quality of models learned after state
splitting is significantly higher than is obtained when state splitting is not used.

Once the state set of the HMM is decided it is never changed – only the next-state
and observation probability distributions are affected by reestimation. The states to
which the splitting algorithm is applied are the labels inL ∪ {nomark}. Splitting
allows these states to be refined so that transitionary states emerge and structure is
made accessible that was not apparent to the human observer. It is intended that our
state splitting algorithm identify a complete (with respect to the available sensors)
set of the hidden states that accounts for the behaviour of the robot with respect to
its task.

3.3 Expectation Maximisation

We require a way to reestimate the parameters of the HMM, and we follow the work
of Dempster et al. [25] in using the EM algorithm to perform this reestimation. Our
implementation closely follows the presentation of HMM reestimation given in Ra-
biner’s tutorial [5]. In this section of the paper we focus on the issues that arose for
us in using EM to perform the reestimation of our initial HMM. These issues are:
the initialisation of the HMM parameters and their effects on the results obtained;

23

the need for scaling and the way in which scaling is performed when multiple his-
tories are used in reestimation and, finally, the use of the learned HMM to diagnose
the state of the system from a given history. In order to be self-contained, and to
clarify our contribution, we summarise the main aspects of the EM technique.

In an EM implementation of reestimation there are two key steps: the E step, which
is the calculation of the maximum likelihood of seeing the evidence given the model
so far, and the M step, which is the process of updating the model to maximize the
probability of seeing the evidence. The E step is performed using the so-called
forward-backward algorithm, originally described in [31,32], and very clearly pre-
sented by Rabiner.

The M step, in which the transition and sensor model components of the HMM are
updated, is affected by thescalingof the values generated by the forward-backward
algorithm. As Rabiner discusses, scaling is necessary in the E step to avoid under-
flow. Without scaling, underflow occurs because the probability of seeing a long
sequence of evidence is very small, so as the history lengths grow the E step cal-
culations tend to zero. It is necessary to demonstrate that the scaled values do not
change the interpretation of the update operations. This is straightforward to show
when a single history is used for learning, but more subtle when multiple histories
are used. In the work we describe in this paper, we used multiple histories because
our data set contains multiple separate and independent trajectories. In appendix A
we discuss how we implemented the scaling mechanism following Rabiner’s pre-
sentation. In this section, we present the core components of the E and M steps,
showing how scaling is managed in the case of multiple histories.

3.3.1 Basic framework

We begin by providing here some definitions from Rabiner’s tutorial that are nec-
essary for our presentation. The forward and backward variables are defined below.
The M step of the EM procedure, which performs the updating of the model, is
defined in terms of the forward and backward variables. Definitions 11, 12, 13, 14
and equations 1 and 2 are taken from Rabiner’s paper.

Definition 11 Given a historyh = 〈e1, e2, . . . , eT 〉, a collection of statesΨ and a
modelλ = (Ψ, ξ, π, δ, θ), theforward variableαt(i) is defined to be the probability
of being in statesi at timet, having seen the firstt elements ofh, given the model
λ. This is formalised as:

αt(i) = P (e1 . . . et, qt = si|λ)

The forward variable is constructed recursively as follows:

Initialisation:
α1(i) = πi.Oi(e1), 1 ≤ i ≤ N

24

Induction:

αt+1(j) =
N∑
i=t

αt(i)δ(i, j)θj(et+1), 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N

Termination:

P (h|λ) =
N∑

i=1

αT (i)

Definition 12 Given a historyh = 〈e1, e2, . . . , eT 〉, a collection of statesΨ and a
modelλ = (Ψ, ξ, π, δ, θ), thebackward variableβt(i) is defined to be the probabil-
ity of seeing the lastT − t elements ofh, given that the state of the system at timet
is si and given the modelλ. This is formalised as:

βt(i) = P (et+1 . . . eT |qt = si, λ)

The recursive construction of the backward variable is as follows:

Initialisation:

βT (i) = 1, 1 ≤ i ≤ N

Induction:

βt(i) =
N∑

j=1

δ(i, j)θj(et+1)βt+1(j), t = T − 1, T − 2, . . . 1, 1 ≤ i ≤ N

With these variables we can now define the transition model and sensor model
update components of the M step. The prior probability distribution,π, is not rees-
timated if an unambiguous initial state can be identified for which the probability is
1. We assume that this is the case, and explain why in section 3.3.3. We begin with
the basic transition model update. In the following, the primed notationδ′(i, j) and
θ′j(k) denotes the updated values ofδ(i, j) andθj(k) respectively.

Definition 13 The transition model componentδ of λ is updated according to the
following equation.

δ′(i, j) =

∑T−1
t=1 αt(i)δ(i, j)θj(et+1)βt+1(j)∑T−1

t=1 αt(i)βt(i)

Definition 13 specifies that the(i, j)th element ofδ′ is given by the expected fre-
quency of transitions from statei to statej, divided by the expected frequency of
statei. The sensor model can be updated according to a similar rule:

25

Definition 14 The sensor model componentθ of λ is updated by:

θ′j(k) =

∑T
t=1

s.t.et=k
αt(j)βt(j)∑T

t=1 αt(j)βt(j)

Definition 14 states that the probability of observing evidencek while in statej
is given by the expected frequency of being in statej and observing evidencek,
divided by the expected frequency of being in statej.

We now turn to the scaling issue and its effect on these update equations. Thetth
forward scaling term can be defined as the likelihood of seeing the firstt elements
of the history and being in statei. This is expressed as:

Ct = Πt
v=1cv

wherecv is the normalisation term:

1∑N
i=1 αv(i)

Thet + 1th backward scaling term can be defined as:

Dt+1 = ΠT
v=t+1cv

The normalisation termcv is calculated during the E step. The update equations
definingδ′(i, j) andθ′j(k) can be rewritten to incorporate these scaling terms in the
M step. Equation 1 shows how the transition model update is modified.

δ′(i, j) =

∑T−1
t=1 Ctαt(i)δ(i, j)θj(et+1)Dt+1βt+1(j)∑T−1

t=1

∑N
j=1 Ctαt(i)δ(i, j)θj(et+1)Dt+1βt+1(i)

(1)

The variablesαt(i) andβt(i) are scaled by multiplying them byCt andDt respec-
tively. The scaled forms are written using the notationα̂ andβ̂. Thus:

Ctαt(i) = α̂t(i)

and

Dtβt(i) = β̂t(i)

The sensor model updateθ′j(k) can be modified in a similar way. Rabiner shows
that the termsCtDt+1 can be expressed in a form independent oft, so that they
cancel, leaving the update operations as shown in definitions 13 and 14.

26

3.3.2 Scaling with multiple sequences

Rabiner discusses the fact that, depending on the kind of HMM being learned, there
may be a need to learn using multiple histories in preference to one long sequence
of evidence. In this case, it is necessary to modify the reestimation formulas to
add together the individual frequencies of occurrence of each sequence. Before
this sum, the expected frequency of transitions fromi to j in sequencek must be
scaled by dividing it by the likelihood of sequencek given the model. The expected
frequency of statei in sequencek must also be divided by this likelihood. IfPk is
the likelihood of sequencek this can be achieved by multiplying the contributions
made by this sequence to both the numerator and denominator by1

Pk
.

δ′(i, j) =

∑K
k=1

1
Pk

∑Tk−1
t=1 αk

t (i)δ(i, j)θj(e
k
t+1)β

k
t+1(j)∑K

k=1
1

Pk

∑T−1
t=1 αk

t (i)β
k
t (i)

(2)

From Rabiner we have that:

CTk
=

1

Pk

so, by writing equation 2 in terms of the scaled forward and backward variables we
obtain:

δ′(i, j) =

∑K
k=1

∑Tk−1
t=1 α̂k

t (i)δ(i, j)θj(e
k
t+1)β̂

k
t+1(j)∑K

k=1

∑T−1
t=1 α̂k

t (i)β̂
k
t (i)

(3)

Equation 3 corrects Rabiner’s equation 111, in [5], in which he erroneously leaves
in place the1

Pk
terms. These should be removed as they have already been taken into

account in the scaled variables. This observation was also made by Kevin Murphy
in his implementation of the HMM code in the BNT package [33].

3.3.3 Initialising the model parameters

In order to help EM to avoid converging on a local maximum that is far from a
global maximum, we try to make the initial modelλ0 = (Ψ, ξ, π, δ0, θ0) as infor-
mative as possible.Ψ is created by state splitting applied to the initial set of state
labels,L. We split both the visible and subjective states, with the consequence that
the visible states can be subdivided into sets of substates. This makes it difficult to
ensure that the useful ordering that exists between the visible and subjective states
is maintained.

A simple way to avoid this problem is not to include the visible states in the split-
ting process. However, we wish to allow interesting sub-states of the starting and
finishing behaviours to be identified if they exist in the data. We therefore restore

27

the ordering property by introducing supplementary start and end states that can be
ordered before and after (respectively) all the states inΨ.

During the state-splitting process the visible states,starting andfinishingare re-
placed by sets of states inΨ. We specify a supplementary start,sstart, that precedes
all of the states inΨ that are associated (through state splitting) with the visible
state labelledstarting, and a supplementary end,send, that succeeds all of the states
in Ψ associated with the visible state labelledfinishing. These supplementary states
are added toΨ and allow us to defineδ0 as follows:

δ0(x, sstart) = 0, for all statesx

δ0(send, send) = 1

δ0(send, x) = 0, for all statesx 6= send

The initial probabilities of transition between the supplementary states and the other
states of the model are arranged so that transitions from the supplementary start
state are associated with a very high probability of entering the substates of the
original visiblestartingstate, and transitions from the substates of the originalfin-
ishingstate are associated with a very high probability of entry into the supplemen-
tary end state. The probability of transitions between all remaining pairs of states
are assumed equal. The details of this construction are discussed in appendix A.

Introduction of the supplementary states slightly complicates the construction of
our initial sensor model,θ0. We must specify the observation probability associated
with each of the supplementary states. These states, which have been artificially
introduced, have no particular association with real evidence. However, they must
be associated with distributions over the evidence items in such a way that they do
not distort the learning process.

Our solution to this problem is to introduce a supplementary start observation and
a supplementary end observation,estart andeend, and to associate, with very high
probability, the supplementary states with their corresponding supplementary ob-
servations. These details are also discussed in appendix A.

Finally, π must be extended to include the supplementary states, with a probability
of 1 associated with the supplementary start state.

Using the supplementary states we construct the initial model:

λ0 = (Ψ ∪ {sstart, send}, ξ ∪ {estart, eend}, π, δ0, θ0)

28

3.3.4 Finding the best state sequence

In order to use the learned HMM to diagnose the state of the robot given a history
〈e1, e2, . . . , en〉, we need to be able to find the optimal state sequence associated
with the history: that is, the state sequence that best explains〈e1, e2, . . . , en〉. The
Viterbi algorithm [24] is a dynamic programming algorithm that finds the best state
sequence〈q1, q2, . . . , qn〉 for the given history.

The Viterbi procedure relies on a quantity

δt(i) = maxq1,q2,...,qt−1P (q1, q2, . . . , qt = i, e1, e2, . . . , et|λ}

which corresponds to the highest probability, given the modelλ, along a single
path,q1, q2, . . . , qt, at timet, that accounts for the firstt evidence items and ends
in statei. Rabiner presents an inductive definition ofδt(i) that is identical to the
definition of the forward variable,αt(i), reported here in definition 11, except in
using maximisation over previous states instead of the summation in the inductive
definition ofαt(i). The Viterbi procedure must also keep track of the states along
the highest probability path, so it maintains an array from which the path can be
extracted at the end of the maximisation process.

We use the Viterbi procedure to evaluate the quality of the learned HMM. The
details of our evaluation procedure are presented in section 6.

4 Experimental Setup

4.1 Robotics Environment

Although our approach is task-independent we chose to experiment with learning a
model of a navigation task. This is a fairly complex task for behavioural modelling,
whilst at the same time well-understood and therefore easily experimented with.
The low level functionalities comprising navigation have been thoroughly explored
in mobile robotics, providing a firm foundation to support the learning process. To
be performed robustly, navigation involves many different capabilities including
localisation, terrain modelling and motion generation adapted to the presence of
obstacles. Our approach is built on top of this level. Given the basic navigation
capabilities we learn a passive model of the behavioural states that the robot visits
when navigating a certain distance in a certain class of environments. We are not
trying to improve the way the robot navigates, but to understand how it navigates
in order to be able to predict and explain the robot’s behaviour in future executions
of the navigation task.

In order to build a coherent model of the navigation action, we performed a large

29

number of experiments with a nomadic XR4000 platform. The software system
we used was an original architecture developed at LAAS [34]. The sensory-motor
functions are separately programmed in functional modules, using a tool named
GenoM [35].

We chose a particular navigation technology which is well suited to the environ-
ments in which our robot can manoeuvre. The technology is based on the use of
odometry for localisation, a SickR© laser range scanner for obstacle detection, and
the Nearness Diagram technique described in [36–38] for map building, obstacle
avoidance and motion generation. This technique for navigation behaves very well
in highly cluttered and dynamic indoor environments. It is, of course, not well
suited to every kind of environment.

We recorded 58 trajectories, each taking between 30 and 90 seconds to complete,
with the robot navigating approximately 10 metres. Our environment was unstruc-
tured, consisting of a cluttered open space open to human traffic. We made the
environment vary between trajectories, from sparsely to highly cluttered and very
dynamic. Figure 9 shows a typical environment configuration. The space is an open
area within a busy laboratory. Obstacles are placed within the space. The picture
shows the positions of the obstacles and of the desks and walls bounding the area,
according to the laser readings of the robot. The positions of the obstacles are plot-
ted according to readings taken at different points along the trajectory. The local-
isation technique being used by the robot is based on odometry which explains
inaccuracies in the alignments of the obstacle positions as seen from different loca-
tions. The approximate trajectory of the robot is shown as it travels from its starting
point to its destination in a given run. At each of the points shown the laser scan
is represented by a collection of sectors each of which represents a segment that is
devoid of obstacles according to the laser scanner.

The state of the system was sampled at a frequency of 5 Hz. Each sampling recorded
the values of 16 variables including the following raw features: the coordinate po-
sition of the robot, relative to its starting position within a given coordinate system;
the laser readings indicating the positions of obstacles and their proximity to the
robot; the speed at which the robot was travelling in thex andy directions; the
angular velocity of the robot and the Euclidean distance travelled since the last
measurement.

The choice of variables to record and to use in the construction of feature vectors is,
of course, highly dependent on the task, the functional level chosen for modelling
and on the sensory capacity of the executive in question. However, the methodology
we have followed in the research described in this paper is not restricted to the
particular task and robot we have considered. It can be applied to the learning of
different tasks, using alternative robot platforms with different sensory capabilities.

30

-4

-2

0

2

4

-4 -2 0 2 4

"vstatefile13"
"pfile13"

Fig. 9. A typical environment configuration from the robot’s point of view.

4.2 The navigation states

In our experiment we used ana priori set of labels consisting of two visible states
(the starting and finishing states) and four subjective states (hesitation, obstacle
avoidance, progressandsearch). The progress state is the state in which the robot
is moving unencumbered through the environment. Hesitation is the state in which
the robot is temporarily trapped in a highly cluttered region and is unsure how to
proceed. Searching represents the robot embarking on routes, which turn out to be
dead ends, in its effort to find a path. Obstacle avoidance is visually distinguishable
from hesitation and searching because the robot is typically making progress and
then veers to avoid something in its path. We did not identify any failure states in
this experiment although it would be straightforward to include failing trajectories
(when the robot collides with an obstacle it prematurely terminates its trajectory)
and to identify the corresponding failure states. We make no limiting assumptions
that prevent the inclusion of failure states. However, our robot very rarely collided
with obstacles, thanks to the efficacy of its control software, so we did not gather
data representative of failures in our experiment.

4.3 Sensory-motor Data and Features

We identified eight features as important for discriminating between the behaviours
of the robot in its execution of the navigation task. These are:distance from ori-
gin, curvilinear distancetravelled over the sequence,change in headingover the
sequence,total rotation, clutteredness, distance from goal, speedof travel andac-
celeration. These features are obtained by smoothing and integration over 6-second

31

intervals of time. These are standard techniques used in signal processing [39] so
we do not describe them here.

The variablesdistance from originanddistance from goalare useful because they
help to discriminate between the visible statesstart and end. The distance from
origin is calculated as the Euclidean distance between the position of the robot at
the start of the trajectory (its starting coordinate) and its position at the start of
the fragment of the trajectory captured by the feature vector. The distance to goal is
calculated as the Euclidean distance between the position at the end of this fragment
and the goal coordinate.

Curvilinear distanceis a segmented approximation of the actual curvilinear dis-
tance travelled by the robot over the fragment of the trajectory represented by the
feature vector. It is estimated as the sum of the Euclidean distances travelled be-
tween successive observations in the fragment.Change in headingis a measure of
the magnitude of the angular change over the fragment. A large change in head-
ing indicates that the robot is turning frequently, perhaps through large angles. This
would tend to indicate that the robot is avoiding an obstacle or searching for a viable
path.Total rotationmeasures the extent to which the change in heading is cancelled
out by turning back and forth rather than by turning predominantly in one direction.
Rapid oscillating is associated with hesitating and searching behaviours, giving rise
to small angular turns the sum of which is close to zero.Clutterednessis a measure
of the density of obstacles in the robot’s immediate vicinity over the duration of the
sequence. It is a smoothed representation of the clutteredness associated with the
individual observations in the fragment represented by the feature vector.

Speed of travelis a smoothed representation of the speed at which the robot is trav-
elling over a fragment corresponding to a feature vector.Accelerationis a measure
of the change in speed of the robot over the fragment, obtained by taking the dif-
ference between the maximum and minimum speeds at which the robot travelled
over consecutive observations. If the speed is low but the acceleration is high, this
would indicate that the robot is braking often and then speeding up again, as might
occur when the robot is negotiating its way around obstacles.

Finding a discriminating set of features in a complex data set is a challenging prob-
lem. We experimented with various different combinations before arriving at the
above collection of eight features. Our choice of features was influenced by the
particular task at hand: a different task would require a different set of discriminat-
ing features to characterise it.

32

Human−observed labels

Observations along the trajectory

Fig. 10. A labelled trajectory

5 Learning a Hidden Markov Model

The preceding sections have described the components necessary to learn a hid-
den Markov model from the raw signals emitted by a physical system. We now
bring these components together into a learning process that receives the signals
emitted by the robot’s sensors and outputs a learned HMM. In the rest of this pa-
per we discuss the quality of the models of the navigation task learned using our
methodology.

However accurate its readings might be, the observations of the robot do not pre-
cisely correspond to the reality in which the robot was operating. The robot can
observe the world only partially by means of its sensors. Since we are interested in
knowing how the robot will behave in reality it is necessary to make a connection
between the internal world of the robot and the external world in which it acts and
senses. We approached this problem through the use of a simple labelling strategy.

5.1 Labelling the feature vectors

To make a connection between the robot’s observations and the states of the HMM
we devised a method of labelling the observations with identifiers from the setL,
described in section 2. In our experimentsL consisted of the six labels identified in
section 4.2, two of which were visible and four subjective. These six labels corre-
spond to behaviours that the experimentors were able to recognise and distinguish
with reasonable certainty. Any visually distinguishable behaviours can be used for
labelling. As described in section 3.1, thisa priori collection of labels is refined ac-
cording to the patterns identified automatically in the data set during the clustering
phase.

During the robot runs, whenever the robot displayed a distinguishable behaviour
we interrupted its recording so that it would associate the next observation with
the corresponding label identified by the experimentor. Each trajectory is therefore
partially labelled. This labelling process, coarse though it is, gives us a way of
relating the recorded data to a subjective judgement of the external reality in which
it was acquired. Figure 10 shows a partially labelled robot trajectory.

The experimentor tended to introduce a slight delay into the labelling because of

33

taking time to recognise the behaviour being displayed. Thus, labels tend to occur
slightly later in the trajectories than the points at which the associated behaviours
really occurred. This can be taken into account in the interpretation of the labelled
trajectories, as we explain in section 6. The subjective nature of the judgements
made by the experimentor of course means that these judgements do not precisely
correspond to reality. We discuss the consequences of this, for evaluation of the
learned model, in section 6.

It is important to emphasise that the labels play no role at all in the clustering of the
data. The clusterer is concerned only with the feature vectors and ignores the labels
in both the training and classification processes. The labels are used when clustering
is complete, in the construction of the sensor model, as described in section 3.1.2.

It would of course be surprising if human observers could select a collection of
hidden states that turned out by chance to be the most useful ones for learning an
accurate next-state transition function. We believe that the state-splitting technique
we describe in section 3.2 helps to mitigate the effects of choosing ana priori label
set by introducing missing states that are important in determining the behaviour of
the robot but are not necessarily susceptible to interpretation by the human observer.

5.2 Constructing the evidence sequence

The EM algorithm learns to improve a given initial model with respect to the ev-
idence that was observed by the signal source (in this case, the robot). Evidence
can be presented in a single sequence, or in multiple sequences, depending on the
properties of the model. Our experiments were divided into separate trajectories of
the robot, each one terminating when the robot reached its goal position. Because
of the structure of a trajectory one of the properties of the model is that it is not
fully ergodic – the robot always progresses from itsstartstate towards itsendstate.
We therefore chose to present the evidence as a set of separate histories, each one
derived from a different trajectory. This presentation excludes transitions from the
end state into the start state, so enables us to constructδ0 as defined in section 3.3.3.

Each history,ht, is derived from the ladder,lt, obtained by sequence vector con-
struction from a given trajectoryt. Our strategy is to build a sparse ladder,slt, by
taking everykth sequence vector fromlt, wherek is a density value determined ex-
perimentally. For example, ifk = 1 thenslt will be identical tolt, whilst if k = 15
thenslt will be a thinned version oflt containing every 15th step inlt.

Following construction ofslt each of the feature vectors obtained from the sequence
vectors inslt are presented to the Kohonen network for classification. Thus, each
step ~fk in slt is classified with an evidence itemξsltk

, so that the sparse ladder

slt = 〈~f1, . . . , ~fn〉 produces a historyht = 〈ξslt1
, . . . , ξsltn 〉 of evidence associated

34

Starting

Hesitating

Avoiding

Finishing Progressing

Searching

State0

State18

0.06

State34

0.09

State35

0.46

State36

0.31

State37

0.06

State1

State47

0.37

State50

0.62

State2 0.15

State3

0.32

State11

0.23

State59

0.05

State62

0.190.21

0.32

State54

0.13

0.24

State4

State10

0.72

0.1

State12

0.05

State44

0.1

State5 0.39

State7

0.59

State6

0.97

0.47

State8

0.4 0.09

0.23

State9

0.57

State53

0.14

0.55

0.09

0.11

0.07

0.1

0.2

0.41

0.13

State55

0.16

State58

0.08

0.53

0.46

0.77

0.09

State57

0.06

State13

State19

0.53

State20

0.18 State21

0.19

State32

0.07

State14

State16

0.95

State15 0.17

0.12

State41

0.14

State42

0.5

0.58

0.39

State17

0.27

0.24

0.48

0.1

State49

0.87

0.66

0.25

0.09

0.22

0.16

0.37

0.06 0.06

0.16

0.7

State24

0.12 State22

State23

0.1

State31

0.21

0.42

0.1

0.1

0.47

0.26

0.18

0.4

State25

0.19

State30

0.19

0.05

0.12

0.11

0.23

0.54

0.06

State26

0.19 0.34

0.37

0.05

State27 0.72

State64

End State

0.24

State28 0.82

State29

0.14

0.05

0.8

0.12

0.55

0.39

State38

0.05

0.17

0.1

0.61

0.05

0.06

0.65

0.08

State33

0.09

0.79

0.07

0.66

State39

0.1

State40

0.19

0.79

0.14

0.09

0.62

0.09

0.17

0.71

0.06

0.73

State48

0.13

0.08

0.79

0.050.12

0.05

0.74

0.69

0.17

0.090.45

State43

0.2 0.06

0.15

0.16

0.25

State45

0.53

0.1

0.83

0.17

0.07

0.7

State46

0.45

0.15 0.3

0.08

0.13

0.06

0.75

0.12

0.79

0.06 0.08

0.16

0.48

0.13

0.05 0.09

0.12

0.72

State51

0.21

0.53

0.19

State52

0.09

0.57

0.28

0.07

0.64

0.05 0.11

0.09

0.07

0.59

State56

0.06

0.05

0.92

0.25

0.08

State60

0.61

0.16

0.06

0.18

0.5

0.33

0.62

0.63

State61

0.15

0.1

0.88

0.07

0.24

0.070.06

0.05

0.46

0.11

0.15

0.55

0.13

State63
Initial State

0.260.13

0.06 0.33

0.07

0.07

1.0

Fig. 11. A learned HMM for the navigation task. The rectangles (which are all tall and
narrow) are labelled with the high level labels associated with the collections of states
inside them. The Initial and End states are the dummy states used to constructθ0.

with the trajectoryt.

We would expect the quality of the learning to improve as the frequencyk increases.
When evidence is sampled at a low frequency much of the robot’s behaviour is
omitted from the history and the association between the evidence items sampled
and the observed behaviour is likely to be missed. With higher frequencies the
history is richer and this association is more likely to be found. The results we
present in section 6 show that indeed, up to some point, higher frequencies result
in better models being learned.

Figure 11 shows an example of a learned HMM where the evidence was sampled at
0.6 second intervals. The picture shows that the state-splitting process produces 65
states from the initial set of 7 labels (including theno marklabel). To simplify inter-
pretation of the graph, states are grouped into rectangles associated with the labels
they refine. Dark transitions represent the highest probability transitions between
states whilst lighter edges represent lower probability transitions.

35

5.3 Parameter Settings

Before discussing the results we explain how we chose the values of the parameters
that govern important aspects of the clustering and learning processes.

When decomposing the initial set of labels,L ∪ {nomark}, using the evidence
items inξ, it is necessary to decide which characteristic vectors should participate
in the decomposition of each label. For each labell ∈ L ∪ {nomark} we used a
fixed threshold of association between the characteristic vectors and that label to
determine which vectors to partition into the substates of the label. Theassociation
of a characteristic vector,c, with a label,l, is given by the number of sequence
vectors labelled withl that were classified withc after the network training process.
The reason for setting a threshold is that some characteristic vectors turn out to be
very marginally associated with some labels. There can be one or two orders of
magnitude difference between a low association and the mean for a given label. We
judged that low associations can be the consequence of noise effects in the training
process.

The threshold was defined as:

ml = µl − σl/4

whereµl is the mean association between the characteristic vectors andl, andσl

is the standard deviation of the association. Experiments showed that using the
mean association as the threshold led to too many vectors being excluded from
the decomposition of the label, and improved results were obtained by lowering
the threshold slightly. We achieved good results by subtractingσ/4. Our goal is to
lower the threshold just enough to increase robustness to noise in the training and
classification processes.

Having selected a group of characteristic vectors to partition into the substates of
a label we then need to decide on the degree of separation between substates. We
used an angular separation of 40 degrees to determine whether two vectors could be
considered part of the same substate. A larger angle than this causes the substates
to fragment and destroys the structure of the label. Too small an angle results in
large substates and inadequate decomposition. The importance of this parameter
was discussed in section 3.2.

To construct the evidence histories we took every third sequence vector from the
collections of sequence vectors generated from the 58 trajectories in our data set.
We considered lower frequencies, and we present comparative results in the next
section. Because observations were sampled at 5Hz, selecting every third vector
corresponds to taking evidence every 0.6 seconds along the trajectory.

36

6 Results and Discussion

We present analyses of two sets of results. We first consider the quality of the
learned HMM in terms of its ability to produce traces through the abstract state
space that correspond to those that the robot was observed to follow in reality. The
quality of the HMM is highly dependent on the clustering phase. As a second stage
in our evaluation we therefore examine the stability of the clustering results.

The clustering process is mainly affected by two parameters: the size of the network
and its random initialisation. As noted in section 3.1, the results of the clustering
phase are also slightly sensitive to the order of presentation of the training data,
but we do not discuss this issue further. We experimented with a range of different
network sizes and noted how these affect the quality of the traces produced by the
consequent learned HMM. In the discussion below we present the results obtained
using a network of size 30. In appendix B we present an evaluation of HMMs
learned using networks of different sizes. We found that the clustering results can
be sensitive to the random initialisation, leading to varying sized setsξ andΨ. We
therefore average our results for a given network size over 20 different random
initialisations of the network.

6.1 Evaluation of the HMM

The Viterbi algorithm provides a way of diagnosing the behaviour of the robot from
the observations it makes in the execution of its task. Given the histories of evidence
items constructed during the clustering process, and the learned state transition and
sensor models, we can diagnose the most probable state transitions of the robot
by finding the most probable explanation for each evidence item given the states it
visited so far.

One way to evaluate the quality of the learned HMM is to compare the sequences
of states constructed by the Viterbi algorithm with those that the human observed
the robot visiting during its execution of the task. We refer to a sequence of states
visited by the Viterbi algorithm as aViterbi sequence, and to the states along such a
sequence as theViterbi states. The human observer drew observations from the set
of visible and subjective states,L, defined in section 2.

The only way we have of identifying the states actually visited by the robot in a
given trajectory is to use the labelled observations in that trajectory. The labelling
process was inaccurate because of the difficulty, for the human observer, of dis-
tinguishing between similar states of the robot (for example, between hesitation
and searching). Furthermore, the human observer tended to label late because it
took time to interpret the robot’s behaviour and select the most appropriate label.
This means that the label often ended up being associated with data recorded after

37

the robot had already transitioned to a different state. Finally, there were fewer se-
quence vectors in the data set labelled with visible states than labelled with subjec-
tive states, because the robot entered the visible states less frequently. The learning
process was therefore slightly biased against recognising the starting and finishing
behaviours as distinct from the other behaviours in the model. However, although
the labelling process was flawed, the labels do provide us with a way to connect the
Viterbi sequences with an observed (though somewhat noisy) reality.

We evaluate a given Viterbi sequenceV by comparing it with the labelled trajectory
it corresponds to. The states inV are separated byk/r seconds, wherek is the
frequency with which the sequence vectors are sampled from the trajectories in the
construction of the histories andr is the rate, in Hz, at which observations were
sampled by the robot. The chosen frequency determines the density of evidence
items in the histories. The Viterbi sequenceV is obtained from a given history,H,
and there is exactly one Viterbi state inV for every evidence item inH. For each
history we record thetrail of Viterbi states corresponding to the evidence items
and then super-impose the human-observed labels at the times along these trails at
which they occur in the underlying trajectory. We define the association between a
history and a trail as follows.

Definition 15 A trail, T = 〈t1, ··, th〉 is a sequence of Viterbi states corresponding
to a historyH of h evidence items. For each evidence item inH there is exactly one
Viterbi state inT .

Definition 16 A labelled trailis a trail on which human-observed labels have been
super-imposed. These labels do not necessarily coincide with states on the trail.

Definition 17 The trail fragmentpreceding labell in a labelled trail is the se-
quence of Viterbi states,V = 〈vk, ··, vm〉, intervening between the last human-
observed label beforel on the trail, andl. If l is not coincident withvm then we add
to the fragment the Viterbi state,vm+1, immediately followingl.

As definition 17 shows, the trail fragment preceding a labell can actually contain
the first Viterbi state followingl on the trail. The reason for this is that, ifl lies
between two Viterbi states, it might correspond to the Viterbi state on either side of
it. The human labelling process was not sufficiently reactive for this possibility to
be ruled out.

We increment the score for a trail each time there is a match between the human-
observed label and the preceding trail fragment. The super-imposition of human-
observed labels along the trail, and the association between the label and the pre-
ceding trail fragment, can be seen in figure 12.

Care has to be taken in defining what is meant by amatch. Because of the problem
of late labelling, discussed in section 5.1, we look in the preceding trail fragment
for a substate that is identical in structure to any one of the substates comprising

38

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

Note that labels are not synchronised with Viterbi states

Human observed labels

Trail of Viterbi states

P

Preceding label

L

Label

Preceding trail fragment

associated with label L

Fig. 12. The structure of a trail

labell. Definition 19 states this precisely.

Definition 18 Two statessi andsj in Ψ are ξ-identical if they contain exactly the
same elements ofξ.

Definition 19 A human-observed labell ∈ L is associated with a set of substates
S = {s1, ··, sm} by means of the mappingrefine: L → PΨ. We say thatl matches
its preceding trail fragmentV if at least one of the substates inV is ξ-identical to
one in the setS.

Given that the preceding trail fragment might be long, definition 19 might seem
over-permissive. It suggests that the scoring rate for poor Viterbi sequences could
be artificially increased because, in a long preceding trail fragment, the likelihood
of seeing a matching sub-state seems high. This might be the case if preceding
trail fragments tended to exhibit much fluctuation between states at the level of the
human-observed labels. However, figure 13 shows that, across all the network sizes
we used, the preceding trail fragments are highly stable at this granularity despite
the occurrence of many subtle state changes at the granularity of the sub-states.

We compared the fluctuation between Viterbi states within a trail fragment, and
between the corresponding interpretations of those states under the application of
ab: Ψ → L. In table 13 the rows correspond to different sizes of clustering network.
The columns describe the degree of state variation observed in the trail fragments
generated by the Viterbi algorithm using a model learned on the bases of these
networks.

Variation is measured by counting how many times the value changes within each
trail fragment. The final columns show the mean variability ratio, substates to la-
bels, as a percentage, and its standard deviation. It can be observed that, in a net-
work of size 30, there is three times more variation at the substate level than at the
label level, and this picture is fairly consistent across the different network sizes.
Furthermore, the variability within the label level is very low (consistently less
than one state change). We find these results very encouraging, because one would
expect, in a rational system, to see more significant state change at fine levels of
granularity, with stability increasing as the granularity increases.

39

Label variability Substate variability Variability ratios

Mean Std Mean Std Mean (%) Std (%)

15 0.82 0.29 1.81 0.60 229 60

20 0.80 0.30 1.96 0.69 255 73

25 0.81 0.29 2.13 0.74 274 82

30 0.79 0.28 2.20 0.75 295 96

35 0.78 0.27 2.28 0.77 307 86

Fig. 13. Table showing state fluctuation within trail fragments.

6.2 Precision measurements

Analysis of the relationship between substates and labels demonstrates that the
same substate can be associated with multiple labels, revealing some confusion
in the model’s ability to distinguish similar behaviours.

Consider a substate,s, that is shared betweenk different labels. During the eval-
uation of a Viterbi sequence the score will be incremented if the human observed
any one of thek labels and the Viterbi sequence visiteds during the preceding trail
fragment. The usefulness of this evaluation depends onk being as close to 1 as
possible.

We observed that in the case where a substate maps to 4 or more labels, it can
add points to the evaluation almost regardless of the label applied by the human
observer. This makes such a substate almost completely undiscriminating, artifi-
cially inflating the correspondence between the Viterbi sequences and the label
sequences. This led us to devise a method for measuring the degree ofprecisionof
theab : Ψ → L mapping.

The measure is obtained by calculating, for each substate, the number,n, of labels
with which it is associated. This number is used to give the number of pairwise
comparisons from which Viterbi sequences containing this substate could benefit.
We sum this value over all of them substates, giving the following quantity:

m∑
i=0

ni ∗ (ni − 1)

This quantity is then divided by the total number of substate pairs:∑m
i=0 ni ∗ (ni − 1)

m ∗ (m− 1)

resulting in the proportion of all possible comparisons from which a Viterbi se-

40

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 e

va
lu

at
io

ns

Score (percentage)

Netsize 30

Fig. 14. Comparison of Viterbi sequence evaluations using a network of size 30. Perfor-
mance shown here does not take into account either confusion or consistency, both of which
affect the true quality of the learned HMM.

quence could benefit undeservedly from visiting the substate. The higher this value
the lower the precision of the mapping. We call this value theconfusion factor.

As can be observed from the comparison presented in appendix B, the confusion
factor is highest in small networks. This can be explained because small clustering
networks lead to few distinct characteristic vectors, so that state-splitting results in
a high degree of sharing of vectors across states.

6.3 Results

Figure 14 shows the Viterbi sequence evaluations obtained from a HMM learned
on the basis of 20 randomly initialised networks of size 30. The results are pre-
sented as a distribution over the 58 trajectories and the 20 random numbers (1160
values). The mean score was 76.18%, which is very promising. However, because
of the precision issue we must take into account the extent of confusion exhibited
by the model. A high degree of confusion would undermine this apparently high
score. In order to evaluate how good the score really is we must also take into ac-
count the consistency of agreement between the Viterbi sequences generated using
different random number seeds. Low consistency (indicating that the quality of the
HMM is sensitive to the random initialisation of the clustering network) would also
undermine the goodness of the score.

Table 15 shows the benefit, as a percentage of overall score, obtained from confu-
sion resulting from a network of size 30. The rows of the table correspond to the

41

Viterbi state

Human-observed label 1 2 3 4 5 6 7

1 0 0.1% 0 0.3% 0.0% 0.0%

2 0 0.6% 0 0.1% 0.8% 1.1%

3 0 1.7% 0 0.8% 1.8% 1.7%

4 0 0 0 0.0% 0 0

5 0.0% 0.1% 1.1% 8.3% 2.0% 0.8%

6 0 1.4% 1.4% 0 1.3% 0.6%

Fig. 15. Table showing benefit obtained from confusion in a network of size 30. Most
benefit is obtained from 5/4 confusion. Other benefits are minimal.

human-observed labels, while the columns correspond to states inL ∪ {nomark}
obtained by applyingab : Ψ → L to the winning states in the preceding trail frag-
ments of the Viterbi sequences (the Viterbi state that wins in a comparison is the
one that is responsible for incrementing the score on that comparison). We denote
the no markstate using NM. This state was never observed by the experimentor
but could be identified as the most probable next Viterbi state. It can be observed
that by far the greatest benefit was obtained when the human-observed label was 5
and the winning Viterbi state was 4. All other benefits obtained from confusion are
minimal.

We calculated the confusion factors for 20 HMMs obtained from size 30 networks
using 20 different random number seeds. The upper bound confusion factor, com-
puted over these 20 models using the formula presented in section 6.2, is 0.023,
with a median value of 0.008. By contrast, the upper bound confusion factor for 20
models learned from size 20 networks is 0.052,with a median value of 0.017 (about
twice as much confusion as for size 30 networks). Models learned from size 35
networks exhibit a lower level of confusion, with an upper bound of 0.015 and me-
dian value 0.006. However, differently randomly initialised size 35 networks lead
to lower consistency across the corresponding learned HMMs, as we discuss below.

The high degree of 5/4 confusion can be explained in the following way. The label
4 corresponds to the finishing state and the robot normally entered the finishing
state immediately after visiting the state labelled 5. Thus, sequence vectors labelled
5 have many features in common with those labelled 4, causing the clusterer to
confuse the corresponding observations. A sequence vector labelled 5 is therefore
likely to be classified with an evidence item associated with a substate of state 4.
This is occurring when the Viterbi sequence proposes a 4 when the human-observed
label was a 5. This confusion very rarely occurs the other way around becauseδ0

is a Bakis model [40] (a partially ordered model) which strongly reinforces the
recognition of the terminal state.

42

0

10

20

30

40

50

60

70

80

90

100

74 76 78 80 82 84 86 88 90 92 94

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f r
un

s

Consistency value

Netsize 30

Fig. 16. Consistency of agreement between Viterbi sequences for models based on networks
of size 30. The x-axis shows the percentage of agreement obtained. The y-axis shows the
cumulative percentage of trajectories bounded by the corresponding degree of consistency.

For a given network size and trajectory, consistency is a measure of the agreement
between the Viterbi sequences generated for that trajectory over the 20 different
random numbers. Clearly, the most reliable performance is obtained when confu-
sion is low and consistency is high. We obtained the best combination of these fac-
tors using a network of size 30. Figure 16 shows the consistency obtained using 20
size 30 networks. This graph depicts the mean percentage of the Viterbi sequences
that agree on each state visited along each of the 58 trajectories. It shows that the
highest degree of consistency reached is 92%, whilst the models demonstrated at
least 77% consistency on 90% of the trajectories.

The frequency at which evidence items are sampled from the data significantly
affects the quality of the learned HMM, according to our evaluation. Figure 17
shows that performance quickly declines as the frequency decreases, consistent
with the hypothesis proposed in section 5.2.

We performed an experiment to determine whether the construction of the initial
sensor model using the code book approach gives any advantages over using a ran-
dom initial sensor model. Figure 18 shows that a clear advantage is obtained. We
also tested the advantage obtained from state-splitting, by comparing the results ob-
tained using state splitting with those obtained from the initial set of user-supplied
labels only. Figure 19 allows us to conclude that state-splitting yields a highly sig-
nificant advantage.

43

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 e

va
lu

at
io

ns

Score (percentage)

Netsize 30, Frequency 3
Netsize 30, Frequency 6

Netsize 30, Frequency 12

Fig. 17. Comparisons of Viterbi sequence evaluations using different evidence frequencies.
The frequency number indicates the separation of successive sequence vectors, in1

5 sec-
onds, since the raw data is sampled at 5Hz. Thus, a large frequency number corresponds
to a lower frequency of evidence sampling. Lower frequencies lead to a degradation in
performance.

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 e

va
lu

at
io

ns

Score (percentage)

Netsize 30, Standard
Netsize 30, RSM

Fig. 18. Comparing random initial sensor model with a code book generated after Koho-
nen network clustering. Random initial sensor models lead to highly significantly poorer
performance than the code book sensor models.

6.4 Evaluation of the Clustering Phase

We focus our discussion on the stability of the clustering results we obtained for a
given network size. Different random initialisation led to a marked difference in the

44

0

5

10

15

20

25

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 e

va
lu

at
io

ns

Score (percentage)

Without State-splitting
With State-splitting

Fig. 19. Comparing the results using state-splitting with results obtained not using splitting.

sizes of the setsξ andΨ. We have already seen (in figure 16) that the differences
observed in the sizes ofξ and of Ψ do not lead to a consequent divergence in
the behaviour of the learned models. We now show that the cluster structures are
stable despite the variation in the sizes of theξs constructed using different random
initialisations.

In the table in figure 20 we show the extent to which the identity of states inL is
preserved across different random initialisations. We require the following defini-
tions.

Definition 20 The weight of an elements ∈ Ψ is computed as the sum of the
associations betweens and each elemente ∈ ξ such thate ∈ ev(s). The association
is determined by the cell(s, e) in the matrix defined byθ0. We denote the weight of
s byωs.

Definition 21 Thecombined weightof an elementl ∈ L is computed as the sum
of the weightsωs of each elements in refine(l).

We now define a measure of association between two substates drawn from differ-
ent state sets,Ψ1 andΨ2.

Definition 22 Theassociation productof two substatess1 ∈ Ψ1 and s2 ∈ Ψ2 is
computed as the product of the combined weights of the labels,l1 and l2, obtained
byabΨ1(s1) andabΨ2(s2) respectively.

Definition 23 Thecentre pointof a substates ∈ Ψ is computed as the average of
the evidence items inev(s). We denote the centre point bycps.

45

Net size 30

Label 1 2 3 4 5 6 NM

1 66.28 0.59 0.53 0 19.44 6.4 6.76

2 0.5 36.18 8.23 0.29 0.28 21.18 33.34

3 0.89 5.49 30.49 0.05 6.04 35.96 21.08

4 0 0.37 0.11 50.8 45.77 0.44 2.51

5 14.65 0.13 2.35 25.57 46.82 2.93 7.54

6 3.81 7.55 13.95 0.24 2.89 59.07 12.48

NM 3.4 12.86 8.66 0.57 7.86 13.12 53.53

Fig. 20. Table showing strength of identity of states inL across random initialisations of
the clustering network. Values are percentages. We consider confusion with theno mark
state, NM, not to be problematic.

To measure the degree of preservation of identity of states inL we construct a
square matrix in which each cell(i, j) indicates the extent to whichis andjs co-
incided across random initialisations of the cluster network. The matrix indicates
that states inL preserve their identity well if the values along the diagonal are high
(preferably the highest values in each row).

Given two collections of substates,ΨA andΨB, computed using different random
number seedsA andB, we first compute the centre points of the elements in the two
collections. We then sample a centre point,cpsA

, fromΨA and measure its closeness
to each of the centre points computed inΨB. The closest centre point inΨB is
denotedcps′B

. The matrix entry for(s, s′) is increased by the association product
of s ands′. The results of our analysis are shown in the table in figure 20, where
it can be observed that the values along the diagonal are indeed the highest, except
in the case of label 3 where there is significant confusion with label 6. The table
shows the percentages of the associations within each row attaching to each label.
We include theno mark label, which we denote NM. Some confusion between
certain pairs of states, such as 3 and 6, is evident, as we observed in our discussions
of confusion in section 6.1. Nevertheless, the results overall indicate that variation
in the number of evidence items and substates constructed by the clusterer, across
different random initialisations, does not translate into instability in the recognition
of the key behavioural states.

46

7 Future Work

In our future work we intend to use the learned HMMs for monitoring and control-
ling the execution of the corresponding tasks. We are developing a plan execution
architecture in which the learned HMMs provide a low level state estimation ca-
pability that supports the monitoring of the execution of a specific planned action
(or task). As the robot is executing a task the Viterbi algorithm can be used on-line
to track the most likely trajectory followed by the robot and to provide a detailed
picture of how the execution path is likely to unfold. The key advantage is that
the HMM allows failure to be predicted before it occurs, enabling an appropriate
response such as the early termination of activity.

Figure 21 shows part of the architecture of a plan or policy execution system that
uses the learned HMMs for monitoring and controlling the execution of dispatched
actions. At its simplest, controlling the execution of a task could be limited to abort-
ing its execution when the probability of failure is predicted to be above a given
threshold. The component of the architecture labelledstate estimationis the com-
ponent that tracks the traversal of the current HMM(s) and reports the behavioural
state of the robot to the execution monitor at regular intervals. On each state re-
port the monitor sends a command to the execution sub-system to either abort the
task execution or to continue following the low level program associated with the
task (this could be a hand-programmed control strategy or a policy, whatever was
the low level control strategy being followed by the robot when the HMM was
learned). When the reported state is one of the terminal states of the task, the ex-
ecution monitor reports the task as having been successfully completed and the
HMM corresponding to the next dispatched action is accessed.

The relationship between the monitor and the state estimation component is in-
spired by the model-based diagnosis work of Williams and his co-authors [41,21].
These techniques underpin the plan execution and monitoring capability of the Re-
mote Agent [42] which remains one of the most prominent and successful applica-
tions of plan execution technology. Livingstone, the model-based reasoning com-
ponent of Remote Agent, is a discrete model-based controller using a single declar-
ative spacecraft model to detect failures during the execution of planned steps and
propose strategies for the repair or replacement of failed components. In our work
the models are behavioural rather than physical and diagnosis identifies deviant
behaviour rather than disfunctional system components. Once recognised, deviant
behaviour can be terminated to avoid either task failure or the unnecessary waste of
resources committed to a failing endeavour.

We have taken care in this paper to show that our work with the navigation task
is not specific to any particular robot platform or environmental setup (although
the learned model is dependent on these factors). To explore the generality of our
approach we have begun to consider other tasks belonging to other application

47

Planner

Dispatcher

Physical system:
Actuators and sensors

Execution
control

State
estimation

Action

Action HMM

Fig. 21. A plan execution architecture using behavioural state monitoring. When an action
is dispatched for execution, the corresponding learned model is dispatched to the state
estimation module to allow behaviour tracking. The heavy line in the model suggests the
most probable trajectory being followed. There is feedback from the state estimation to the
execution monitor and dispatcher to communicate successful termination of a task or its
probable failure.

areas. In particular, we have successfully applied the whole learning process to
learning models of both navigation and simulated science-gathering actions on a
different robot platform.

8 Conclusions

We have shown that stochastic learning techniques from signal processing can be
used to learn a hidden Markov model of a robot’s behaviour as it executes a given
task. The learning of this model can be completely automated from the point of ac-
quisition of sensor readings by the robot. Although we have presented our work in
terms of the specific task of indoor navigation, using a specific robot platform, our
approach can be generalised to different tasks and platforms. We make no assump-
tions about the sensory-motor equipment of the robot. The initial clustering phase
is completely general, resulting in the organisation of the raw sensor readings into a
discretized collection of codes. The codes are taken to be abstractions of the robot’s
observations, sensed by means of an abstract sensor as described by a code-book
based sensor model. A probabilistic state transition model is then learned, together
with a refined sensor model, using the Expectation Maximization algorithm.

Although EM has been used before to learn models of behaviour, we have made
several innovations. First, we do not define the state set in advance, but leave this
to be determined following the clustering phase. Thus, the number of states in the
transition model is determined dynamically and the human makes few prejudge-
ments about the nature of the behavioural model. Second, the states in our model
correspond to substates of the behaviours, such ashesitation, obstacle avoidance
and search, of the robot, rather than configurations of the robot with respect to

48

physical features of its environment. Thus, the learned HMM is a model of how the
robot behaves, which applies equally well in any physical environment sharing the
same structural features as the ones in which learning took place.

We have so far evaluated the learned HMMs by using the Viterbi algorithm to ex-
plain histories of evidence obtained by classification of the observations recorded
by the robot during executions of its task. We compared the Viterbi sequences gen-
erated with the labels applied by the human observer to the robot observations.
These labels provide a connection with reality which, although not perfect, allows
us to estimate the extent to which the learned HMM accounts for the uncertainty in
the actual execution environment. Our next step is to evaluate the learned HMMs
by using them as the basis of an execution monitoring strategy on-board the robot.
Much remains to be done, but we believe we have made an important first step
towards learning a reliable connection between the raw sensed data recorded by a
robot and a symbolic reasoning level.

Acknowledgements

We would like to thank Felix Ingrand, Derik Schröter, Brian Williams and Nicola
Muscettola for helpful discussions and suggestions. We are grateful to Jonathan
Gough for helping to explore the generality of our approach by considering its ap-
plication to learning models of different tasks. We would like to thank the anony-
mous reviewers for their observations and suggestions. Finally, Maria Fox wishes
to thank the CNRS for funding the sabbatical visit to LAAS that made this work
possible.

References

[1] S. Koenig, R. G. Simmons, Unsupervised Learning of Probabilistic Models for
Robot Navigation, in: Proceedings of the International Conference on Robotics and
Automation, 1996, pp. 2301–2308.

[2] S. Koenig, R. G. Simmons, Passive Distance Learning for Robot Navigation, in:
Proceedings of International Conference on Machine Learning (ICML), 1996, pp.
266–274.

[3] H. Shatkay, L. P. Kaelbling, Learning Geometrically Constrained Hidden Markov
Models for Robot Navigation: Bridging the Geometrical-Topological Gap, Journal of
AI Research 16 (2002) 167–207.

[4] G. Theocharous, K. Rohanimanesh, S. Mahadevan, Learning Hierarchical Partially
Observable Markov Decision Process Models for Robot Navigation, in: Proceedings

49

of IEEE International Conference on Robotics and Automation (ICRA), 2001, pp.
511–516.

[5] L. R. Rabiner, A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition, Proceedings of the IEEE 77 (2) (1989) 257–286.

[6] H. Bui, A General Model for Online Probabilistic Plan Recognition, in: Proceedings
of 18th International Joint Conference on AI (IJCAI), 2003, pp. 1309–1318.

[7] H. Bui, S. Venkatesh, G. West, Policy Recognition in the Abstract hidden Markov
model, Journal of AI Research 17 (2002) 451–499.

[8] L. Liao, D. Fox, H. Kautz, Learning and Inferring Transportation Routines, in:
Proceedings of the 19th National Conference on AI (AAAI), 2004, pp. 348–354.

[9] S. Osentoski, V. Manfredi, S. Mahadevan, Learning Hierarchical Models of Activity,
in: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2004.

[10] I. Cohen, N. Sebe, L. Chen, A. Garg, T. S. Huang, Facial Expression Recognition
from Video Seqences: Temporal and Static Modelling, Computer Vision and Image
Understanding: Special Issue on Face Recognition 91 (2003) 160–187.

[11] A. Wilson, A. Bobick, Hidden Markov Models for Modeling and Recognizing
Gesture Under Variation, International Journal of Pattern Recognition and Artificial
Intelligence 15 (1) (2001) 123–160.

[12] A. Bobick, J. Davis, The Recognition of Human Movement using Temporal
Templates, IEEE Transactions on Pattern Analysis and Machine Intelligence 23 (3)
(2001) 257–267.

[13] A. Wilson, A. Bobick, Parametric Hidden Markov Models for Gesture Recognition,
IEEE Transaction on Pattern Analysis and Machine Intelligence 21 (9) (1999) 884–
900.

[14] Y. Nam, K. Wohn, Recognition of Space-Time Hand Gestures using Hidden Markov
Models, in: ACM Symposium on Virtual Reality Software and Technology, 1996, pp.
51–58.

[15] T. Oates, M. Schmill, P. Cohen, A Method for Clustering the Experiences of a Mobile
Robot that Accords with Human Judgements, in: Proceedings of the 17th National
Conference on AI (AAAI), 2000, pp. 846–851.

[16] L. Chrisman, Reinforcement Learning with Perceptual Aliasing, in: Proceedings of
the 10th National Conference on AI (AAAI), 1992, pp. 183–188.

[17] K. Basye, T. Dean, J. S. Vitter, Coping with Uncertainty in Map Learning, in:
Proceedings of the 11th International Joint Conference on AI (IJCAI-89), 1989, pp.
663–668.

[18] T. Dean, D. Angluin, K. Basye, S. Engelson, L. Kaelbling, E. Kokkevis, O. Maron,
Inferring finite automata with stochastic output functions and an application to map
learning, in: Proceedings of the 10th National Conference on AI (AAAI-92), 1992,
pp. 208–214.

50

[19] J. Firby, Modularity Issues in Reactive Planning, in: Proceedings of the 3rd
International Conference on AI Planning Systems (AIPS), 1996, pp. 78–85.

[20] M. Beetz, Structured Reactive Controllers: A Computational Model of Everyday
Activity, in: Proceedings of the 3rd International Conference on Autonomous Agents,
1999, pp. 228–235.

[21] B. C. Williams, P. P. Nayak, A Model-based Approach to Adaptive Self-configuring
Systems, in: Proceedings of the 13th National Conference on AI (AAAI), 1996, pp.
971–978.

[22] R. G. Simmons, D. Apfelbaum, A Task Description Language for Robot Control, in:
Proceedings of Intelligent Robotics and Systems, 1998, pp. 1931–1937.

[23] F. F. Ingrand, M. Georgeff, A. S. Rao, An Architecture for Real-time Reasoning and
System Control, IEEE Expert 7 (6) (1992) 34–44.

[24] G. D. Forney, The Viterbi Algorithm, Proceedings of the IEEE 61 (1973) 268–278.

[25] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum Likelihood from Incomplete
Data via the EM algorithm, Journal of the Royal Statistics Society 39 (1) (1977) 1–38.

[26] L. R. Rabiner, An Introduction to Hidden Markov Models, IEEE ASSP Magazine
(1986) 4–16.

[27] J. Makhoul, S. Roucos, H. Gish, Vector Quantization in Speech Coding, Proceedings
of the IEEE 73 (11) (1985) 1551–1588.

[28] T. Kohonen, Self-Organisation and Associative Memory, Springer Verlag, 1984.

[29] J. B. MacQueen, Some Methods for Classification and Analysis of Multivariate
Observations, in: Proceedings of the 5th Berkeley Symposium on Mathematical
Statistics and Probability, 1967, pp. 281–297.

[30] A. Stolcke, S. Omohundro, Hidden Markov Model Induction by Bayesian Model
Merging, in: Advances in Neural Information Processing Systems 5, [NIPS
Conference], 1992, pp. 11–18.

[31] L. E. Baum, J. A. Egon, An Inequality with Applications to Statistical Estimation for
Probabilistic Functions of a Markov Process and to a Model for Ecology, Bulletin of
the American Meteorological Society 73 (1967) 360–363.

[32] L. E. Baum, G. R. Sell, Growth Functions for Transformations on Manifolds, Pac.
Journal of Math. 27 (2) (1968) 211–227.

[33] K. Murphy, The Bayes Net Toolbox for MATLAB, in: Computing Science and
Statistics, 2001.

[34] R. Alami, R. Chatila, S. Fleury, M. Ghallab, F. Ingrand, An Architecture for
Autonomy, International Journal of Robotics Research 17 (4) (1998) 315–337.

[35] S. Fleury, M. Herrb, R. Chatila, GenoM: A Tool for the Specification and the
Implementation of Operating Modules in a Distributed Robot Architecture, in:
Proceedings of the International Conference on Intelligent Robots and Systems
(IROS), Grenoble, France, Vol. 2, 1997, pp. 842–848.

51

[36] J. Minguez, J. Osuna, L. Montano, A “Divide and Conquer” Strategy based on
Situations to achieve Reactive Collision Avoidance in Troublesome Scenarios, in:
Proceedings of the International Conference on Robotics and Automation (ICRA),
New Orleans, USA, 2004.

[37] J. Minguez, L. Montano, T.Simeon, R. Alami, Global Nearness Diagram Navigation
(GND), in: Proceedings of the International Conference on Robotics and Automation
(ICRA), Korea, 2001, pp. 33–39.

[38] J. Minguez, L. Montano, Nearness Diagram Navigation (ND): Collision Avoidance in
Troublesome Scenarios, IEEE Transactions on Robotics and Automation 20 (1) (2004)
45–59.

[39] A. V. Oppenheim, R. W. Shafer, J. R. Buck, Discrete Time Signal Processing, 2nd
Edition, Prentice-Hall, 1999.

[40] F. Jelinek, Continuous Speech Recognition by Statistical Methods, Proceedings of the
IEEE 64 (1976) 532–536.

[41] P. Kim, B. C. Williams, M. Abramson, Execution of Reactive Model-based Programs
through Graph-based Temporal Planning, in: Proceedings of the 17th International
Joint Conference on AI (IJCAI), 2001, pp. 487–493.

[42] N. Muscettola, P. P. Nayak, B. Pell, B. C. Williams, Remote Agent: To Boldly Go
Where No AI System Has Gone Before, Artificial Intelligence 100 (1998) 5–47.

Appendices

A Implementation

A.1 Implementing the scaling and reestimation mechanism

As described in section 3.3.1, the forward and backward variablesαt(i) andβt(i)
are scaled using the scaling coefficient:

ct =
1∑N

i=1 αt(i)

Thus, the same term is used for scalingβt(i) as is used for normalisingαt(i), so
a simple strategy is to collect the normalisation terms that are computed during
the forward computation and use them to scale the backward variables during the
backward computation.

To reestimate theδ component of the model we simply calculate the sum, over all
timest, of the expected frequency of transitions from any statei into any statej,

52

1: Procedure: reEstimate(M,h,P)
2: Input: model M, single history h of T evidence items, prior state distribution P
3: Output: updated model M
4: repeat
5: {forwardBackward returns the array of T state distributions, sv}
6: {Note that forwardBackward also initialises theα andβ terms used in updateδ}
7: sv = forwardBackward(h,P)
8: (Fi,Fij ,Fi) = updateδ(M,h,sv)
9: CFij = updateθ(M,h,sv)

10: M = doδupdate(M,Fij ,Fi)
11: M = doθupdate(M,CFij ,Fi)
12: until convergence
13: return M

Fig. A.1. The reestimation function for the single history case. The arrayFi is the expected
frequency overT − 1 timepoints of transitioning from each statei. Fij is the expected
frequency of transitioning from a statei to a statej. Fi is the expected frequency over all
T time points of transitioning from each statei. The arrayCFij is the expected frequency
of being in statei observing evidencej.

divided by the sum, over all timest, of the expected frequency of transitions from
statei. The accumulation of the first sum is performed by line 15 and the second
by line 10 of the procedureupdateδ in figure A.3. The division is computed by line
6 of proceduredoδupdatein figure A.5.

A similar update function can be defined forθ, which calculates the expected fre-
quency of being in a statei while observing evidencee, divided by the expected
frequency of being in statei. These functions implement the equations presented in
definitions 13 and 14. When multiple histories are used the situation is complicated
by the need to calculate these frequencies independently for the different histories.

In figure A.1 we show the reestimation mechanism that is typically presented for
single histories of evidence. Figure A.2 contrasts this with the multiple histories
case.

To implement the equation shown in section 3.3.2 we distinguish between the local
and global frequencies of occurrence. For the transition model update function this
requires a square matrix and a vector to be defined for each historyhk: Fijk

(the
local frequencies of anyi, j transitions) andFik (the local frequencies of transitions
from any statei). A global matrix,Fij, must also be defined, together with a global
vectorFi. The dimensions of all these structures are determined by the number of
states inδ.

For each historyhk the values ofFijk
andFik are calculated within the same local

updateprocedure as used for the single history case, shown in figure A.3. These
are then summed intoFij andFi at the end of each iteration (lines 13 and 16 in
figure A.2). The division of eachFij by Fi takes place when this summation is

53

1: Procedure: reEstimate(M,H,P)
2: Input: model M, set of histories H, prior state distribution P
3: Output: updated model M
4: initialiseFi[], Fi[], Fij [][], CFij [][]
5: repeat
6: resetFi

7: resetFij
8: resetCFij

9: for all h in H do
10: sv = forwardBackward(h,P)
11: (Fih ,Fijh

,Fih) = updateδ(M,h,sv)
12: for i = 0..NUMSTATES-1do
13: Fi[i] += Fih [i]
14: Fi[i] += Fih [i]
15: for j = 0..NUMSTATES-1do
16: Fij [i][j] += Fijh

[i][j]
17: end for
18: end for
19: CFijh

= updateθ(M,h,sv)
20: for i = 0..NUMSTATES-1do
21: for j = 0..NUMOBS-1do
22: CFij [i][j] += CFijh

[i][j]
23: end for
24: end for
25: end for
26: M = doδupdate(M,Fij ,Fi)
27: M = doθupdate(M,CFij ,Fi)
28: until convergence
29: return M

Fig. A.2. The modified reestimation function for the multiple history case. The arrayFih

is the expected frequency of transitioning from each statei calculated in the local context
of historyh. Fijh

is the expected frequency of transitioning fromi to j in the context of
h. CFijh

is the expected frequency of being in statei seeing evidencej, calculated in the
context ofh.

complete, as can be seen by examination of the equation in section 3.3.2. This is
implemented by line 6 of figure A.5, as in the single history case. Finally, after
each iteration of the reestimate procedure we updateδ andθ (lines 26 and 27 of
figure A.2) and then reset the local and global matrices and vectors to zero.

The sensor modelθ is updated in a similar way. Given a historyhk, the matrix
CFijk

stores the local frequencies with which evidence itemsj are seen in states
i. These values are summed into the global matrixCFij on line 22 of figure A.2.
On line 17 ofdoθupdate(figure A.5) it can be seen that eachCFij is divided by
a further array,Fi, and not byFi as indoδupdate. The reason is thatFi does not
store the expected frequency of exiting theT th state because no transitions from
theT th state are possible. However, evidence can be observed in theT th state, so

54

1: Procedure: updateδ(M,h,sv)
2: Input: model M, single history h of T evidence items, array of state distributions sv
3: Output: triple containing:
4: array of expected number of transitions from each state (Fi)
5: array of expected number of transitions between state pairs (Fij) and
6: array of expected number of times in each state (Fi)
7: initialiseFij [][], Fi[], Fi[]
8: for i = 0..NUMSTATES-1do
9: for t in 0..T-2do

10: Fi[i] += sv[t][i]
11: end for
12: Fi[i] = Fi[i] + sv[T-1][i]
13: for j = 0..NUMSTATES-1do
14: for t in 0..T-2do
15: Fij [i][j] += αt(i) * βt+1(j) * p(qt+1 = j|qt = i) * p(h[t+1]|qt+1 = j)
16: end for
17: end for
18: end for
19: return (Fi,Fij ,Fi)

Fig. A.3. The procedure for calculating the expectation values for theδ update.

1: Procedure: updateθ(M,h,sv)
2: Input: model M, single history h of T evidence items, array of state distributions sv
3: Output: array of expected number of times in each state i seeing evidence j (CFij)
4: initialise cprobij[][]
5: for i in 0..NUMSTATES-1do
6: for c in 0..NUMOBS-1do
7: for t in 0..T-1do
8: if h[t] == c then
9: CFij [i][c] += sv[t][i]

10: end if
11: end for
12: end for
13: end for
14: return CFij

Fig. A.4. The procedure for calculating the expectation values for theθ update.

the correct updating ofθ relies upon the division ofCFij by the expected frequency
of transitions accumulated from all timepoints. We therefore accumulate the values
of this array in line 14 of thereEstimateprocedure shown in figure A.2. The need
to construct this additional array, storing this one additional value, applies whether
single or multiple histories are used.

Figure A.2 and its auxilliary procedures correctly implement Rabiner’s scaling and
re-estimation mechanism for the case where multiple evidence sequences are pre-
sented to the EM procedure.

55

1: Procedure: doδupdate(M,probij,probi)
2: Input: model M, array of expected number of transitions between state pairs (probij),

array of expected number of transitions from each state (Fi)
3: Output: updated model M
4: for i = 0..NUMSTATES-1do
5: for j = 0..NUMSTATES-1do
6: M.tm[i][j] = Fij [i][j]/ Fi[i]
7: end for
8: normaliseδrow(i,M.tm)
9: end for

10: return M
11:
12: Procedure: doθupdate(M,cprobij,allprobi)
13: Input: model M, array of expected number of times in each state i seeing evidence j

(cprobij), array of expected number of times in each state (Fi)
14: Output: updated model M
15: for i = 0..NUMSTATES-1do
16: for j = 0..NUMOBS-1do
17: M.sm[i][j] = CFij [i][j]/ Fi[i]
18: end for
19: normaliseθrow(i,M.sm)
20: end for
21: return M

Fig. A.5. The procedures for updatingδ andθ. These are shared by both the single and
multiple history reestimation procedures.

A.2 Dealing with split starting and finish states

When it is known that a process is characterised by distinct start and end states
the best estimation of the underlying HMM can be obtained using a left-right [5],
model. In such a model there is an ordering on the states that excludes certain
state transitions. If the estimation process begins by knowing this ordering it can
converge on a better estimation of the state transition function, with a higher log
likelihood, than is possible if it begins with an equal probabilities transition model
and prior state distribution.

In our experiments the robot always begins a trajectory in its starting position, and
it ends the trajectory as soon as it judges itself to be within a given tolerance of
the goal coordinate. Having ended the trajectory it never enters other states. It is
impossible for the robot to enter the starting state from any other state. Therefore,
there is an ordering imposed on the states: thestartingstate is always visitedbefore
any other state, and thefinishingstate is always visitedafter any other state. The
other states are not ordered, so the model is not a strictly left-right model. If we fix
the state collection in advance, and identify thestartingandfinishingstates, we can
enforce the ordering that exists by initialising the EM process with a state transition

56

model in which the column associated with thestartingstate is set to zero and the
row associated with thefinishingstate is also set to zero in all but one position.
Because each row in the matrix is a distribution the (final state,final state) position
must be set to 1.

Unfortunately, it is not an acceptable approach to fix the state collection in advance:
we want the learning process to identify states that are not necessarily apparent to
the human observer, and to learn how important they are in explaining the behaviour
of the robot. As described in section 3.2, we use an automated state-splitting pro-
cedure to enable the identification of such states. Thus, although we begin with
an initial set of states in which there are definedstarting andfinishingstates, af-
ter state-splitting there might be (and frequently are) severalstartingandfinishing
sub-states.

In our experiments therefore, the selection of the terminal states is complicated by
the state splitting procedure. If either (or both) of thestartingandfinishingstates is
associated with distant groups of observations after the clustering process, they will
be split into sub-states around these groups. When either thestartingor thefinishing
state is split, it is not possible to identify any one of their sub-states as definitive
terminal states without distorting the transition model and biasing the outcome of
the estimation process. One possibility is to initialise the transition network with
equal probabilities, instead of with a zero column and row. The problem is that the
equal-probability network is uninformative and the quality of the resulting HMM
is degraded.

A better solution to the problem is to define supplementary terminal states for the
model. We can identify four different cases: the case in which neither state is split;
the case in which thestartingstate is split; the case in which thefinishingstate is
split and the case in which both states are split. It is possible to treat all of these
cases in a uniform way with the introduction of supplementary states. This requires
us to modify the sensor model that was constructed following the state-splitting
phase. In addition we must create an initial transition model and a prior state distri-
bution that contain the supplementary states.

Modifying the sensor model is straightforward: we simply add two additional rows
and columns to the sensor model and associate them with corresponding supple-
mentary observations. The supplementary observations can only be observed in the
corresponding supplementary states. The two new rows are then normalised.

Creating the initial transition model is somewhat more complex. We begin by al-
locating equal probabilities to all state transitions and then we adjust the model
to contain the additional two columns and rows. The supplementary starting state
has a zero probability of entry from any other state in the model, and a tiny but
non-zero probability of exit into any state other than one of the defined starting
substates. There is equal probability of transition into any of these. The supple-

57

Identified candidate
start states

Identified candidate
end states

HMM States

HMM Observation Set

Unique association
Unique association

Many−many associations

Supplementary End Observation

Supplementary End State

Supplementary Start Observation

Supplementary Start State

Fig. A.6. The use of supplementary terminal states and supplementary observations.

mentary finishing state has a zero probability of entering any state other than itself
(which it enters with a probability of 1), and the only states that can transition into
it are the finishing substates. Each finishing substate can enter one of the other fin-
ishing substates or the supplementary finishing state with equal probability. If there
aren finishing substates then, for each one, there is a1/n + 1 probability of entry
into the supplementary finishing state. Of course, in the case where the original fin-
ishing state is not split this means that there is a probability of 0.5 of the finishing
state entering the supplementary finishing state, and an equal probability that it will
re-enter itself. Similarly, where the original starting state is not split the supplemen-
tary starting state enters the starting state with probability of almost 1. Figure A.6
shows how the supplementary starting and finishing states are connected to the rest
of the states in the transition model.

Every row in the transition table needs to be normalised to ensure that it is a valid
next state distribution. At the end of this process the supplementary starting and
finishing states are indistinguishable from the other states in the model.

The prior probability distribution needs to be modified to enforce the fact that the
system always starts in the supplementary starting state. From here it can enter the
transition model as described above, with the highest probability being associated
with a transition into one of the starting sub-states. We cannot eliminate the possi-
bility that the system starts in some other state however. It does happen that one of
the substates associated with the original nomark state is entered before the starting
state. This can happen because, in the real data sequences it could happen that the
starting state was marked late so that the first few sequence vectors constructed are
marked with the nomark identifier.

There is a final modification that must be made. The evidence from which the HMM
is estimated must be modified so that the observations corresponding to the supple-
mentary starting and finishing states appear at the start and end, respectively, of
each history. Having made this modification it is now possible to treat all cases in a

58

size mean std median

15 79.31 12.74 80.00

20 77.43 12.95 78.57

25 77.12 12.90 78.57

30 76.18 13.09 76.47

35 74.63 13.89 75

Fig. B.1. Means, standard deviations and median values for evaluation distributions over 20
random numbers for each of 5 network sizes. We note that the median value is larger than
the mean for network sizes 15, 20 and 25.

uniform way.

B Further experimental comparisons

In figure B.3 we examine the effect of varying the network size on the quality of
the HMM finally learned. We experimented with five different network dimensions,
from 15 to 35, and compared the differences in the results of the exact match eval-
uation strategy described above. We ran an ANOVA test to discover whether there
is any significant difference between the performances of the 5 different sizes. We
computed an F value of 4.033, giving a p value of 0.003. This shows that the differ-
ence is highly significant. Furthermore, it can be observed in figure B.5 that very
small network sizes tend to result in much greater sharing of substates between
labels, leading to a relatively high confusion factor.

The table in figure B.1 shows the means, standard deviations and median values
obtained for each of the five network sizes. It can be seen that the standard devia-
tion increases as the network size increases, showing that the ability of the learned
HMM to reliably explain the behaviour of the robot decreases as the Kohonen net-
work gets larger.

The same pattern can be seen in figures B.5 and B.2, showing confusion and con-
sistency respectively. The confusion factordecreases as the network size increases,
which shows that the mappingab: Ψ → L becomes increasingly precise as the
network size increases. It can be seen that consistency is greatest for the sizes 20,
25 and 30.

Network size 15 shows reduced consistency as well as the highest confusion factor
of all of the network sizes. Its deceptively strong performance, as shown in fig-
ure B.3, is undermined by these factors and we therefore dismiss 15 as being too
small to give adequate reliability. At the other extreme, network size 35 shows the

59

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 65 70 75 80 85 90 95

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f r
un

s

Consistency value

Netsize 15
Netsize 20
Netsize 25
Netsize 30
Netsize 35

Fig. B.2. Consistency of agreement between Viterbi sequences for a given network size and
run, over 20 different random numbers.

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 e

va
lu

at
io

ns

Score (percentage)

Netsize 15
Netsize 20
Netsize 25
Netsize 30
Netsize 35

Fig. B.3. Comparison of Viterbi sequence evaluations using 5 different Kohonen network
sizes. Best performance is obtained for HMMs based on the smallest networks, and steadily
declines as network size increases. However, performance shown here does not take into
account either confusion or consistency, both of which affect the true quality of the HMMs.

weakest performance in figure B.3, but has the lowest confusion factor. It might
therefore be argued that the loss of performance arises from the fact that it is ben-
efitting less from the imprecision ofab: Ψ → L. However, as figure B.2 shows,
consistency of agreement between Viterbi sequences based on the size 35 network
is slightly lower than in the smaller networks.

60

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 e

va
lu

at
io

ns

Score (percentage)

Netsize 30 (best 95%)
Netsize 30

Fig. B.4. Comparison of results obtained from all sequences and results obtained from the
best 95%. The removal of the consistently poor scoring sequences results in a significantly
better overall performance.

Our best results are obtained using networks of size 25 and 30. These networks
are very similar in terms of the performances shown in figure B.3 and table B.1.
In both cases, consistency is high. The network of size 30 benefits from a slightly
lower confusion factor than is obtained for 25, so can be said to produce a slightly
better overall picture.

We observed that the standard deviation on the scores is generally higher than might
be expected in networks where the consistency is high and the standard deviation
on the consistency is low. For a network of size 30, the standard deviation of the
consistency is 3.4, with a mean of 80.6. For a network of size 25 these statistics are
3.4 and 80.4 respectively. Given these very small standard deviations, we sought
an explanation for the high standard deviations in performance for these network
sizes. The only other parameter that can result in variation is the history being con-
sidered. The implication of this is that some histories must correspond to Viterbi
sequences that score consistently well, whilst others must correspond to sequences
that score consistently badly. An examination of the scores for individual Viterbi
sequences confirmed that this is indeed the case. To illustrate its significance we
removed the five consistently most badly scoring sequences and compared the re-
sulting distribution of results with the full distribution. It can be seen in figure B.4
that the removal of these five sequences results in a highly significantly improved
performance in networks of size 25 (t = 10.3) and 30 (t = 10.2).

We performed an experiment to compare the results obtained using an exact match
test with those obtained using the weaker subset match test. In the subset match,
the score is incremented if any Viterbi state in the trail fragment precedingl is a

61

0

10

20

30

40

50

60

70

80

90

100

0 0.01 0.02 0.03 0.04 0.05 0.06

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f s
ta

te
 s

et
 s

tr
uc

tu
re

s

Confusion value

Netsize 15
Netsize 20
Netsize 25
Netsize 30
Netsize 35

Fig. B.5. Comparison of confusion factors as network sizes grow. For each network size 20
Ψs were generated. The graph shows the cumulative percentage of these 20 models reach-
ing each of the increasing confusion factors shown on the horizontal axis. Small networks
show greatest confusion, with confusion factors of 0.052 being reached. Using a network
of size 30, a confusion factor of 0.023 is the highest obtained.

subsetof some substate inl. Figure B.6 shows the comparative results obtained
using a network of size 30. This graph shows that great advantages are obtained
using the subset test: the mean score increases from 76.18 to 88.97, with a standard
deviation of only 8.49 (by comparison with 13.09). If it is accepted that the subset
test is adequately rigorous this means that, in general, the Viterbi sequences were
consistent with the human-observed behaviour about 89% of the time.

Preliminary investigations suggest thattransitionarystates, which the robot visits
between recognised substates, might be identifiable using the subset test. We be-
lieve that a state that represents the transition from a previous state,s, will share
many features in common withs, and that this commonality might be accessible
through the subset test. This needs further investigation and is a focus of further
work.

62

0

5

10

15

20

25

30

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 e

va
lu

at
io

ns

Score (percentage)

Netsize 30, standard
Netsize 30, Subset matching

Fig. B.6. Comparing exact matching with subset matching. It can be observed that the
weaker subset-based test yields significantly better results than the exact match.

63

