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Abstract 

The Spohnian paradigm of ranking functions is in many respects like an order-of-magnitude reverse of subjective probability 
theory, Unlike probabilities, however, ranking functions are only indirectly-via a pointwise ranking function on the underlying 
set of possibilities W - defined on a field of propositions A over W. This research note shows under which conditions ranking 
functions on a field of propositions A over Wand rankings on a language;: are induced by pointwise ranking functions on Wand 
the set of models for ;:, ModJ::, respectively. 
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1. Introduction: Pointwise ranking functions 

The Spohnian paradigm of ranking functions [16,17] is in many respects like an order-of-magnitude reverse of 
subjective probability theory [9]. "Ranks represent degrees"-or rather: grades-"of disbelief' ([19]: 6). Whereas a 
high probability indicates a high degree of belief, a high rank indicates a high grade of disbelief. 

There are many parallels between probability theory and ranking theory [16,18], and in Footnote 22 of his [16] 
Spohn "wonder[s] how far the mathematical analogy [of his ranking functions to probabilities] could be extend­
ed".' The starting point of this paper is one of the few places where ranking theory differs from subjective probability 
theory as well as qualitative-logical approaches to the representation of epistemic states such as entrenchment order­
ings in belief revision theory: the domain on which these models are defined, that is, what they take to be the objects 
of belief. 

Unlike probabilities, ranking functions are only indirectly- via a pointwise ranking function on a non-empty set of 
possibilities (possible worlds, models) W - defined on some finitary/a -/complete field A over W , i.e., a set of subsets 
of W containing the empty set and closed under complementation and finite/countable/arbitrary intersections. Let us 
have a closer look. 
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A function K from W into the set of natural numbers N is a pointwise ranking function on W if[ K (UJ) = 0 for at 
least on (jJ E W. A pointwise ranking function K : W --+ N is extended to a function QK on a field A over W with range 
N U {oo) by defining, for each A E A, 

if A 7' 0, 
if A = 0. 

As will be seen below, it is useful to allow that some possibility UJ E W is sent to 00, which amounts to UJ being a 
"virtually impossible possibility" (according to K). In order to distinguish the more restricted notion of a pointwise 
ranking function as defined above from the more liberal one allowing for virtually impossible possibilities, let us call 
the former natural pointwise ranking functions (because the range of K is restricted to the set of natural numbers N). 

Pointwise ranking functions K are functions defined on a non-empty set of possibilities W that take natural numbers 
or 00 as values. They are extended to functions I]K on a field A over W by stipulating that the rank of any non-empty 
proposition A E A equals the minimum rank ofthe possibilities in A, i.e., I]K (A) = min{K (UJ): UJ E A), and the empty 
proposition is sent to 00. 

In case W is a finite set of possibilities and A its powerset, every possibility corresponds to a proposition (viz. 
the singleton containing it). But already when W is the set of all models Mod£ for a propositional language L 
with infinitely many propositional variables and A is the field {Mod(et) c; W: et EL), no possibility corresponds to 
a proposition. Furthennore, one has to specify a ranking over uncountably many possibilities in order to assign a 
positive finite rank to a single proposition. But clearly, we often have a definite opinion about a single proposition 
(represented in terms of a sentence) even if we do not have an idea of what the underlying set of possibilities looks 
like-let alone what our ranking over these possibilities might be. For instance, I strongly disbelieve that one can buy 
a bottle of Schilcher for less than 1 Euro, though I lack the relevant enological vocabulary in order to know what 
all the possibilities are. Indeed, it seems the underlying set of possibilities should not matter for my disbelief in this 
proposition. 

More generally, we should be able to theorize about our epistemic states even if all we are given is a ranking 
over the sentences or propositions of some language or field, and we have no ranking over the underlying set of 
possibilities. After all, what we as ordinary or scientific believers do have are plenty of beliefs and grades of belief 
in various propositions-usually if not always via beliefs and grades of belief in sentences or other representations of 
these propositions. When we want to attach ranks to sentences, pointwise ranking theory first has us specify a set of 
possible worlds for the language the sentences are taken from; then we have to specify a ranking over these possible 
worlds, which in turn induces a ranking over sets of possible worlds; and only then can we identify the rank of a 
sentence with the rank of the proposition containing exactly the possible worlds making our sentence true. 

This is a bit awkward. What one would like to do is to start with a ranking of the sentences in L, and then be able 
to induce a pointwise ranking function on the corresponding set of possible worlds that yields the original ranking. 
The question is whether this is always possible. In order to answer it, let us first define ranking functions on fields of 
propositions and rankings on languages. (For a similar generalization of pointwise ranking functions see [21].) 

2. Ranking functions and rankings on languages 

(Finitely minimitive) rankingfonctions are functions I] from a field A over a set of possibilities W into the set of 
natural num bers extended by 002 such that for all A, E E A: 

(1) 1](0) = 00; 

(2) I] (W) = 0; 
(3) I](A U E) = min{I](A), I](E»). 

If A is a a-field/complete field, I] is a a-minimitive/completely minimitive ranking function iff, in addition to (1)-(3), 
we have for every countable/possibly uncountable B c; A: 

2 One can also take the set of ordinal numbers smaller than or equal to some limit ordinal (3 and send 0 to (3 , but we do not need this generality 
here. 
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(4) 1'CU B) = min{1'CB) B E B) 

In case A is finite, i.e., if A contains only finitely many elements, these distinctions collapse. According to (4), the 
range of ranking functions has to be well-ordered. Therefore N is a natural choice. A ranking function l' on A is 
a pre-ranking iff l' is a finitely minimitive ranking function on A such that 

1'(UB) =min{1'CA) A EB} 

for every countable B c; A such that U BE A. A ranking function l' is regular iff 1'CA) < 1'(0) for every non-empty 
A E A The conditional ranking function l' C· I .) : A x A -+ N U {oo) based on the ranking function l' : A -+ N U {oo) 
is defined such that for all A, BE A with B # 0, 

(5) 1'CB I A) = {1'CB n A) - 1'CA), 
0, 

if1'CA) <00, 

if 1'CA) = 00. 

The second clause says that, conditional on a (virtually) impossible proposition, no non-tautological proposition is 
believed in 1'. Goldszmidt and Pearl ([9]: 63) define 1'CB I A) = 00 for A = 0, which means that, conditional on the 
impossible proposition, every proposition is maximally believed in 1'. We further stipulate that 1'C0 I A) = 00 for every 
A E A, which completes the definition of a conditional ranking function and ensures that 1'C· I A) : A -+ N U {oo) is a 
ranking function. 

If the function 1'K : A -+ N U {oo) is induced by a (natural) pointwise ranking function K : W -+ N, 1'K is a (regular 
and) completely minimitive ranking function. The converse is not true. The triple A = {W, A, e) with W a set of 
possibilities, A a finitary/a-/complete field over W, and 1': A -+ N U loo) a ranking function is called a finitary/a­
/complete ranking space. A is called regular iff l' is regular, and A is called natural iff l' is induced by some natural 
pointwise ranking function K. 

A proposition A E A is believed in l' iff l' CA) > o. 1"s belief set BelQ = {A EA 1'CA) > 0) is consistent and 
deductively closed in the finite/countable/complete sense whenever l' is finitely/a-/completely m inimitive. Here Bel is 
consistent in the finite/countable/complete sense iff n B # 0 for every finite/countable/possibly uncountable B c; Bel; 
and Bel is deductively closed in the finite/countable/complete sense iff for all A E A A E Bel whenever n B c; A for 
some finite/countable/possibly uncountable B c; Bel3 

Observation 1. For any ranking space A = {W, A, e) and all A, B EA 

1. min{1'CA), l' CA) ) = o. 
2. A c; B '* 1'CB) ~ 1'CA). 

Rankings K : L -+ N U {oo) on languages L are defined such thatfor all a, fJ E £: 

o a -11- fJ '* 1'Ca) = 1'CfJ)· 
1. a I- ~ '* 1'Ca) = 00. 

2. I- a '* 1'Ca) = O. 
3. 1'Ca V fJ) = min{1'Ca), 1'CfJ))· 
4. fJtf~ '* 1'CfJ la)=1'Ca!\fJ)-1'Ca) C=o if1'Ca) = 00). 

5. fJl-~ '* 1'CfJ la)=oo. 

To be sure: I- C;'" CL) x L is the classical consequence relation (and singletons on the left hand side are identified 
with the wff they contain). The corresponding definitions and observations for finitely minimitive ranking functions 
also apply for rankings on languages. Finally, the minimitivity labels correspond to the additivity labels of probabili­
ties, where it is to be noted that complete additivity does not make sense for probabilities. 

3 Ifpossibility theory is interpreted in terms of uncertainty rather than imprecision, one can define a notion ofbeJief-positive degree of necessity, 
or equivalently, degree of possibility smaller than I-that is consistent and deductively closed in the finite, though not in the countable sense. 
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3. Extending rankings on languages 

In probability theory we can start with a probability Pr on a language £. i.e., a function assigning non-negative 
real nurn bers to all sentences in £ such that logically equivalent sentences are assigned the same nurn ber, tautologies 
are assigned probability I, and a disjunction of two logically incompatible sentences is assigned the sum of the 
probabilities of its two disjuncts. This probability Pr on £ induces a finitely additive probability measure, in fact, a 
pre-probability Pr~ on the field A = {Mod(a): a E £) by defining Pr~(Mod(a» = Pr(a). By Caratheodory's theorem, 
Pr~ is then uniquely extended to a a-additive probability measure Pr* on the smallest a-field a (A) containing A. 

More precisely, Caratheodory's theorem says that whenever we have a pre-probability, i.e., a finitely additive 
probability measure Pr~ on a finitary field A such that 

Pr~(UB) = LPr~(A) 
AEB 

whenever A contains the union U B of a countable set B of disjoint elements A E A, then we are guaranteed the 
existence and uniqueness of a a -additive Pr* on a CA) that coincides with Pr~ on A. 

This is different in ranking theory. If we start with a ranking 12 on a language £, i.e., a function that assigns the 
same rank to logically equivalent sentences, that sends contradictions to 00 and tautologies to 0, and that assigns 
to a disjunction as its rank the minimum of the ranks of the two disjuncts, then we also get a finitely rninirnitive 
ranking function, in fact, a pre-ranking 12~ on A by setting 12~(Mod(a» = l2(a). However, there may be uncountably 
many pairs of a-minimitive (and also completely minimitive) ranking functions 12~, 12; on a (A) that extend 12~, 
i.e., 12~(A) = 12~(A) = 12; (A) for every A E A, but that are not even ordinally equivalent in the sense that there are 
B, C E a (A) such that 12~ (B) ,;; 12~ (C) and 12; (B) > 12; (C) This is shown by the following example. 

Example 1 (No unique extension). The first example shows that a regular pre-ranking cannot always be uniquely 
extended to a a-rninirnitive ranking function. This means in particular that there need not be a unique pointwise 
ranking function inducing a given pre-ranking. 

Consider the smallest set of wITs closed under the propositional connectives ~ and /\ (with v, -+, and ++ defined 
in the usual way) and containing the set ofpropositional variables PV = {p;: i EN). 12 on £ is defined by assigning 
each consistent sentence rank 0, and contradictions are sent to 00. As mentioned, Q induces a finitely minimitive 
ranking function 12~ on A = {Mod(a): a E £) by defining 12~(Mod(a» = l2(a). Indeed, 12~ is a regular pre-ranking. 
Note that for every a E £, Mod(a) E A is either empty or uncountable. 

The smallest a-field a(A) containing A has as elements, among others, the singletons containing UJ, for every 
(jJ E Mod£, because 

{UJ) = n{Mod(a) E A UJ F a, a E £} E a (A) 

(there are but countably many wITs a E £, so this is an intersection of countably many elements of A). Now consider 
any of the uncountably many countable subset S of Mode, and let K be any pointwise ranking function on Mode 
such that K (UJ) > 0 for UJ E S, and K (UJ) = 0 for UJ E Mode \ S. 12< (Mod(a» = 0 = 12~(Mod(a» for every non-empty 
Mod(a) E A, and 12< (0) = 00 = 12~(0) 

Still, one might argue, the interesting question is not uniqueness, but whether there exists a pointwise ranking 
function that induces the pre-ranking Q~ one started with. In case of existence, one can further ask whether there is 
a unique minimal pointwise ranking function K* that induces the pre-ranking Q~, i.e., a pointwise ranking function 
K* inducing Q~ and such that no pointwise ranking function K with K ((jJ) < K* ((jJ), for some (jJ E W, also induces K~. 
As shown by the following example, one cannot expect there to be a natural pointwise ranking function inducing the 
pre-ranking Q~, even if Q~ is regular. 

Example 2 (No regular a-minimitive and no natural pointwise extension). The second example shows that a regular 
pre-ranking cannot always be extended to a regular and a-minimitive ranking function. This means in particular that 
a regular pre-ranking need not be induced by a natural pointwise ranking function. 

For P V, £, and A as in Example I, let 12 be defined as follows: 
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I2(P;) = i + 1, 

12(~P;) = 0, 

12(±p;, /\ ... /\ ±p;,) = {:'X{I2(P;j): ±P;j = P;j' 1 ~ j ~ n), 

12("1 v",v"n)=min{I2(";) 1 ~i ~n}, 

if ± P;, /\ ... /\ ±p;, tf~, 
if ± P;, /\ ... /\ ±P;, I-~, 

where max0 = O. By putting every wIT" E £. into disjunctive normal form we get a regular ranking on £., and hence 
a regular pre-ranking Q~ on A. However, in order to extend Q~ to a a-rninirnitive ranking function on a (A)-and 
hence also in order for 12~ to be induced by a pointwise ranking function on Mod£-all but countably many of the 
(singletons {UJ) containing the) possibilities UJ E Mod£ must be sentto 00. 

This is seen as follows: Every UJ E Mod£ can be represented by an infinite sequence UJ = {±pl, ... , ±pn, .. . }, 
where +Pn means UJ(Pn) = 1, and -Pn means UJ(Pn) = O. If there are infinitely many i EN such that UJ(p;) = 1, 
then UJ must get rank 00. (Suppose the rank of UJ is n < 00. Then there is m ;? n such that UJ (Pm) = 1. 12~ (Mod(Pm» = 

m + 1 > n, although UJ F Pm-a contradiction.) So UJ has a finite rank only if UJ(p;) = 0 for all but finitely many i EN. 
For each nE N there are but countably many UJS such that UJ(p;) = 1 for exactly n natural numbers i EN. So there 
are only countably many UJS with UJ (p;) = 1 for all but finitely many i EN, and hence only countably many UJS with 
a finite rank. 

Still, one might continue to argue, the naturalness of pointwise ranking functions-in contrast to the regularity of 
rankings-is too restrictive anyway, and the above example is not sufficient to rule out the existence of an ''tumatural'' 
pointwise ranking function that induces Q~. After all, the important thing is that we do not send any consistent sentence 
from £ or any non-empty proposition from A to 00, even though we may have to consider some possibilities as 
virtually impossible. This is a familiar phenomenon from probability theory, where the Lebesgue measure on the 0-

field of Borel sets over the reals assigns any singleton containing a real number-indeed, any countable set of real 
numbers-measure 0, though no non-trivial interval gets Lebesgue measure 0. 

So, when we start with a ranking 12 on £., and thus get a pre-ranking 12~ on A, is it the case that we always get a 
unique minimal pointwise ranking function K* onMod£ that induces Q~ on A, and hence Q on £, even though one is 
sometimes forced to send some possibilities UJ EMod£ to 007 The answer is given by 

Theorem 1 (Extension theoremfor rankings on languages). Let £. be a language, i.e., a countable set ofwffs closed 
under negation and conjunction, and let 12 be a ranking on £. so that 12~ is a pre-ranking on the field A = {Mod(,,): " E 

£.}, where 12~(Mod(,,» = 12("). 
Then there is a unique minimal pointwise ranking function K* on Mod£ that induces 12~. That is, 12~(A) = 

min{K*(UJ): UJ E A} for every non-empty A EA; andfor every pointwise ranking jUnction K on Mod£ such that 
K(UJ) < K*(UJ) for at/east one UJ E ModL, 12~(A) 7' min{K (UJ): UJ E A} for some A EA 

Proof. Let Al = Mod("l), ... , An = Mod("n), ... be an enumeration of all the countably many elements of A; and 
define K~ as follows: 

«UJ) = I2W±Al n··· n ±An)w), 

where (±Al n··· n ±An)w is the unique element of the finite partition 

Pn = {±Al n .. · n ±An} c; A 

of W = Mod£ such that UJ E (±Al n· .. n ±An)w. For each UJ E W, K;(UJ), ... ,K~(UJ), ... is a non-decreasing se­
quence of natural numbers, i.e., K! (UJ) ~ K~ (UJ) for m ~ n. K* (UJ) is defined as the limit of this sequence, if this limit 
exists, and as 00 otherwise, i.e., K*(UJ) = limn-+ooK~(UJ). 

We first show that K* is a pointwise ranking function on W, i.e., that at least one UJ E W is assigned K*-rank 0. 
Either 12~(Al) = 0 or 12~(Al) = O. Let El = AI, if 12~(Al) = 0, and El = Al otherwise. Hence 

12~(El) = 0 = min {12~(El n A2), 12~(El n A2) }. 
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Let E2 = A2, if (J~(E, n A2) = 0, and E2 = A2 otherwise. In general, let En = An, if (J~(E, n··· n En-I) = 0 = 
(J~(E, n··· n En-l n An), and En = An ofherwise. So for each n, 

(J~(Eln ... nEn)=O=«UJ) forallUJEE,n···nEn' 

As K;-l(O) ;0 E, n .. · n En, for each n, we have K*-l(O) = n~, K;-l (0) ;0 n~, En. It remains to be shown that 
n~, En # 0. Suppose for reductio that n~, En = 0. This means that fhe set ofwffs E = {fJ; E £: Mod(fJ;) = E; ) is 
inconsistent. By the compactness of classical logic, there is a finite subset Bflll = {fJi1 , ••• , f3i n } <; B that is inconsistent, 
1.e., 

n 

n{Mod(fJ;j) EA I ~j ~n}=0. 
j=l 

Let m = max{ij: I ~ j ~ n). Then E, n ... n Em = 0, and, by construction of fhe E;, (J~(E, n ... n Em) = 0-
a contradiction. 

SO K* is a pointwise ranking function on W: K* sends at least one (jJ to 0, but it may send uncountably many (Vs to 
00. (For each nE N, K~ is a natural pointwise ranking function on W that sends uncountably many (Vs to 0.) Let us 
show next that K* induces Q~, i.e., for every non-empty A EA: 

(J~(A)=min{K*(UJ) UJEA}. 

For every A EA fhere is an mA such that for all n ;? mA, A is equal to the finite union of all Cat most 2n) elements of 
Pn that are subsets of A. Let (J~ (A) = r E N U {oo). By finite minimitivity, 

(J~(A) = (J~(U{±Al n .. · n ±AmA E PmA ±A, n .. · n ±AmA c; A)) 

= min{(J~(±Al n .. · n ±AmA ): PmA 3 ±A, n .. · n ±AmA c; A}. 

Let D" ... , D, be the [ ~ 2mA disjoint "disjuncts" ±A, n ... n ±AmA c; A in this union, and pick any A' := ±A, n 
... n AmA such fhat (J~(A) = (J~(A'). For each n, each of the [. 2n elements of PmA +n whose union is equal to A, and 
each i, 1 ~ i c::;; I: 

(J~(A) = (J~(A') ~ (J~(D; n ±AmA +1 n ... n ±AmA +n) 

= KmA +n (UJ) for all (jJ E Di n ±AmA +1 n· .. n ±AmA +n. 

As each (jJ E A is in exactly one Di n ±AmA +1 n ... n ±AmA +n we have for every n and every (jJ E A: 

(J~(A) ~K;" +n(UJ) ~ lim < (UJ). 
A n-+co 

If (J~(A) = 00, we are already done. So suppose (J~(A) = r < 00, whence A is non-empty. As before, 

(J~(A) = (J~(A') = mini (J~ (A' n AmA+l), (J~ (A' n AmA +l)}. 

Let C, = AmA +" if (J~ (A') = (J~(A' n AmA +1), and let C, = AmA +1 otherwise. In general, let Cn+l = AmA +n+l, if 

Q~(A! n CmA+1 n··· n CmA +n) = Q~(A' n CmA +1 n··· n CmA +n n AmA +n+l), 

and Cn+l = AmA +n+l othenvise. Then we have for each n: 

(J~(A)=(J~(A'nCln ... nCn)=K;"A+n(UJ)=r forallUJEA'nC,n· .. nCn. 

As K!~~n(r) ;2 A' n n7=1 Ci, for each n, we have K*-1 (r) = n~1 K~-1 (r) ;2 A' n n~1 Cn. We only have to show 
fhat A' n n~, Cn # 0; for then K*(UJ) = r = (J~(A) for at least one UJ E A. As before, suppose for reductio that 
A' n n~, Cn = 0. Then the set ofwffs 

C = {a' E £: A' = Mod(a') } U {Yn E £: Cn = Mod(Yn), nE N} 

is inconsistent. By the compactness of classical logic, there is a finite subset C fin = {cl, Yi l' ... , Yir:} <; C that is 
inconsistent, which implies that A' n C, n .. · n Cm = 0, where m = max{ij! I ~ j ~ n). But by construction offhe 
Cn, (J~(A' n C, n··· n Cm) = r < oo-a contradiction. 
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It remains to be shown that K* is minimal. Suppose there is a pointwise ranking function K on W such that K (UJ) < 
K* (UJ) for some UJ E W. This means K (UJ) < limn~oo K; (UJ), where K* (UJ) = 00 if this limit does not exist If this limit 
exists, there is n such that for all m ;? n, K (UJ) < K; (UJ) = K:n (UJ) < 00. If this limit does not exist, then for each n there 
is m > n such that K~ (UJ) < K! (UJ) < 00 (remember: K! is a natural pointwise ranking function, for each mEN). So 
in both cases there is n such that K (UJ) < K;(UJ) < 00. ASK;(UJ) = e~(A') for that element A' := ±A, n··· n ±An of 
Pn such that UJ E A', we have K (UJ) < Q~ (A') for some UJ E A' E A. Hence K does not induce Q~. D 

Theorem 1 is encouraging, but does not extend to pre-rankings on arbitrary fields. 

Example 3 (No pointwise extension on arbitrary fields). The third example shows that a regular and a-minimitive 
ranking function on a a-field cannot always be induced by a pointwise ranking function. This means in particular that 
a regular pre-ranking on a field need not be induced by a pointwise ranking function. 

Let the a-field over Dl be 

R = {A c; Dl: A is countable or A is countable), 

and let e(A) = 00, if A is empty, e(A) = 1 if A is non-empty and countable, and e(A) = 0 if A is uncountable. 
l' is a regular and a-minimitive ranking function: 1'(0) = 00, e(Dl) = 0, and for every countable 5 c; R, e(U 5) = 
min{e(A): A E 5). This is seen as follows: If U5 is empty, then so is every A E 5; and if U5 is non-empty and 
countable, then every A E 5 is countable, and at least one A E 5 is non-empty. Finally, if U 5 is uncountable, then at 
least one A E 5 must be uncountable, too. 

Clearly l' cannot be induced by a pointwise ranking function K. e({r)) = 1, and so K(r) = 1 for every rE Dl. But 
thenmin{K(r): rEDl)=1 > l' (Dl). 

Note, though, that Example 3 leaves open the question whether a pre-ranking on a field A can be extended to a 
a-minimitive ranking function on a (A). 

Given that logically equivalent sentences are assigned the same rank, it might seem it should not matter whether 
one works with rankings on languages or ranking functions on fields. However, the above shows that this is not quite 
correct The propositions on a set of modelsMod£ induced by the sentences of a language £. are not just any subsets of 
an arbitrary set of possibilities W -as they often are when one considers measure-theoretic fields in general. Rather, 
they come with their own structure-most notably, closure under finite intersections only and compactness-that is 
inherited from the structure of £. Ranking functions behave nicely on this structure, but they do not do so in general. 
Assuming that we believe in representations of propositions, say sentences, and not propositions themselves-that 
is, assuming that belief is a sentential or representational, and not a propositional attitude-and assuming that the 
structure of its objects is of importance for the representation of belief, this might be taken to be another reason for 
modeling epistemic states by ranking functions. 

There are several other areas where one needs finitely minimitive ranking functions. They are a sine qua non 
when one wants to have the reals as range (or some other set of numbers that is not well-ordered by the smaller-than 
relation <). The reason is that in this case the minimum of a sequence of real-valued ranks need not exist. 

As is well known, the lottery-paradox [11] does not arise for ranking functions eK induced by pointwise ranking 
functions K. Considering a lottery with n tickets where exactly one ticket wins, we have as set of possibilities the 
set Wn = {UJ;: i ~ n, i EN), where UJ; is the possibility that ticket i will win (the field is the powerset of W). By 
definition, a pointwise ranking function assigns rank 0 to at least one possibility UJi E Wn . Hence one cannot model 
the situation that somebody believes of every ticket that it will not win, i.e., eK ({UJ;) > 0 for every UJ; E Wn . If, on the 
other hand, one allows sending all possibilities to a rank greater than 0, then one cannot model the situation that one 
believes that some ticket will win, i.e., eK (0) > 0 and eK (Wn ) = O. 

In the finite case this is true for arbitrary ranking functions. However, if we turn to an infinite lottery with countably 
many tickets, the set of possibilities is Woo = {UJ;: i EN) (we take as field the powerset of Woo). Now we can send 
every singleton {UJ;) to a rank greater than 0 and still get a finitely minimitive ranking function that assigns rank 0 to 
W co. For instance, we can assign rank 0 to A whenever A is not finite-say because we go by the slogan: plausibility 
is cardinality of the set of possibilities; and whenever A is finite, we assign it the minimum of the ranks l' ({ UJ; ), for all 
possibilities UJ; in A (whatever these singleton ranks are). Then we have a finitely minimitive ranking function that is 
compatible with any ranking of the singletons {UJ; ). In particular, if we believe, for every ticket in this infinite lottery, 
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that it will not win, i.e., I' ({UJ; )) > 0 for every UJ; E W, we can nevertheless be maximally convinced that some ticket 
will win: 1'(0) = 00 and e(Woo) = O. This is not possible for a ranking function eK induced by a pointwise ranking 
function K. We can have the above ranking with 0 for every infinite A only if we send at most finitely many (Vi s to a 
rank greater than O. Similarly for pre-rankings. 

4. Probabilities, entrenchments, rankings 

Specifying a pointwise ranking function over uncountably many possible worlds is not feasible. In view of this 
fact it might be surprising that there are applications in artificial intelligence (e.g. [2,9]) that apparently do work with 
pointwise ranking functions. However, these applications actually work with ranking functions on fields, which are 
trivially induced by pointwise ranking functions as long as the set of possibilities is finite-and the languages and sets 
of possible worlds considered in the above mentioned literature are finite so that each possible world corresponds to a 
sentence. 

Ranking theory is a middle course between probabilistic and logical approaches to the representation of partial 
belief and belief revision-in the sense that ranking functions are measured on a proportional scale, whereas proba­
bilities are measured on an absolute scale, and entrenchments on an ordinal scale.4 In the literature on AGM belief 
revision theory [1,6] the objects of belief are sentences-or, because of extensionality, the propositions expressed by 
these sentences (though not any sets of possibilities). These logical accounts enable one to express that A is more 
entrenched or believed than B, and that B is more believed than C. But in this framework an epistemic agent is not 
allowed to quantify the strength of her beliefs. Indeed, she cannot even say that the difference between the strengths 
of her beliefs in A and B is greater than the difference between the strengths of her beliefs in Band C. Probabilistic 
accounts more or less share the objects of belief (though the focus is more on the semantic side, and any set of pos­
sibilities can be a proposition), but require the epistemic agent to have precise numerical degrees of belief. Ranking 
theory is a moderate middle course: The epistemic agent can say whether A is more believed than B and that B is 
in turn more believed than C. In addition, the epistemic agent can express that the difference between her grades of 
belief in A and B is greater than the difference between her grades of belief in Band C without having to specify 
with complete accuracy a nuruerical degree of belief for each of A, B, C. More precisely, the agent can express her 
grades of belief as multiples of some minimally positive grade of belief' 

Given this ranking theory should be welcomed by both subjective probabilists and epistemic logicians. As a matter 
of fact, however, neither is the case. Logicians object that it is a mystery where the nurubers (ranks) come from (see, 
however, [19]), and probabilists complain about the ordinal nature of the ranking apparatus. Yet there is one feature 
that is shared by both probabilistic and logical accounts of partial belief and belief revision, but that is not present in 
pointwise ranking theory: In both approaches the objects of belief are sentences or propositions, whereas in Spohnian 
pointwise ranking theory the objects of belief are the possible worlds one level below. So by formulating ranking 
theory in terms of ranking functions on a field and rankings on languages we simultaneously approach probabilistic as 
well as logical accounts; and we also get rid of the ideal of specifying a ranking over all possible worlds, a requirement 
no real-world epistemic agent could ever meet. 6 

Continuing this comparison we note that probabilists have the notions of positive and negative relevance and 
of independence between propositions, which seem to be of utmost importance. 7 Furthermore, they have a way of 
revising one's epistemic state represented by a probability measure over a field A, viz. Jeffrey conditionalisation, 

4 I am grateful to an anonymous referee for pressing me further on this point. 

S The epistemic logician will note that the ordering et < f3 {} Q(-.a) < Q(--,f3) satisfies all conditions for entrenchment orderings mentioned in 
Section 4.2 of [7], with K = {et EL: Q( -.a) > O}. 
6 In his [19] Spohn presents the theory of measurement for his ranking theory, but does so only for the finite case. It should be clear that a theory 

of measurement for a-minimitive, let alone completely minimitive or pointwise ranking functions also covering the infinite case is inapplicable. 
One necessary condition for an ordering of disbeliefto be represented by a a-minimitive (or completely minimitive or pointwise) ranking function 
is that whenever A is not more disbelieved than any of infinitely many propositions Bi , then A is not less disbelieved than the union Ui EN Bi of 
all these propositions Bi . For finitely minimitive ranking functions and rankings on languages this condition reduces to the follO\Ving finite version: 
Whenever A is not less disbelieved than either one of Band C, then A is not less disbelieved than B U C. 

7 Conditional probabilistic independence and its (incomplete) axiomatization, the (semi-)graphoid axioms, started to become of interest with 
[3,14,15]. ludeaPearl and his group at UCLA started to work with independence in the eighties (e.g. [8,12,13]); for a survey see [18] or [4]. A lot 
of work on axiomatizing independence has been done by Milan Studeny (e.g. [20]). 
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when the incoming evidence is represented by a probability measure over a subfield of A. Logicians neither have the 
notions of positive and negative relevance and independence nor do they have an appropriate way of updating their 
epistemic state represented by a selection function or an entrenchment ordering. Pointwise ranking theory has both 
of these desirable features [16], and the question is whether they are preserved when we generalize these to ranking 
functions on fields. The answer is that they are. Copying from Spohn [19], A is positively relevant for/independent 
of/negatively relevant for B given C in the sense of the ranking function 12 iff 

12(AnB I C)+12(AnBI C)~12(AnBI C)+12(AnB I C). 
> 

If 12: A -+ N U loo) is the agent's ranking function on the field A over W at time t, and between t and t' the agent's 
ranking function on the field [; c; A changes to 12' : [; -+ NU {oo }, and the agent's ranking function does not change on 
any field B such that [; cBe; A, then the agent's ranking function on A at time t' should be 12Q~r! : A -+ N U {oo), 

12Q~r!O =min{K(·1 E:) + 12'(E:) i El}, 

where {E: E [;: i El) is a partition of W for which there is no finer partition {Ej E [;: j E 1), and I, J are any index 
sets. 

On the other hand, epistemic logicians have the notion of a belief set that is consistent and deductively closed [10]. 
As shown by the lottery paradox, there is no £ > 0 such that the set of all propositions A with Pr(A) ;? 1 - £ is 
deductively closed and consistent So probabilists lack the notion of a belief set Cas long as belief is sufficiently high 
degree of belief). Any pointwise ranking function K gives rise to a belief set Bel = {A EA: 12«A) > 0) which is 
consistent and deductively closed in the following complete sense Ceven if Bel is uncountable): nBel # 0, and for 
every A E A: A E Bel whenever nBel c; A. 

We have already noted in Section 2 that the same holds true for ranking functions on fields, and conclude by 
working out this observation for rankings on languages. The belief set Bel = {a E £: 12(~a) > 0) induced by a 
ranking 12 on £. is consistent and deductively closed in the classical finite sense. If Bell- fJ, for some fJ E £., then, by 
the compactness of classical logic, there is a finite BeZtm c; Bel such that BeZtm I- fJ. Let BeZtm = {aI, ... , an). Then 
~fJ I- ~al v ... V ~an. 12 (~fJ) ;? 12 (~al v· .. V ~an) by Observation 1 for rankings on languages, and 12 (~al v ... V 

~an) = min{12( ~a:): 1 ~ i ~ n, i EN) by clause 3 in the definition ofrankings on languages. Hence 12( ~fJ) > 0, i.e., 
fJ E Bel. As to consistency, suppose for reductio that Bel is inconsistent Then Bell- ~, which means 12(T) > O-in 
contradiction to clause 2 in the definition of rankings on languages. 

5. Conclusion 

In this paper we have generalized pointwise ranking functions on sets of possibilities to ranking functions on fields 
of propositions and rankings on languages. In doing so we have kept the important notions of positive and negative 
relevance as well as independence. Through the belief set induced by a ranking function, we also save the link between 
belief and degrees of belief-the very feature distinguishing ranking theory from other theories of degrees ofbelief8 

Finally, Theorem 1 and Examples 1-3 from Section 3 clarify the conditions under which ranking functions and 
rankings on languages are induced by pointwise ranking functions. 
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