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Abstract 

In this paper, we continue our research on 
the algorithmic aspects of Halpern and Pearl's 
causes and explanations in the structural-model 
approach. To this end, we present new char­
acterizations of weak causes for certain classes 
of causal models, which show that under suit­
able restrictions deciding causes and explana­
tions is tractable. To our knowledge, these are the 
first explicit tractability results for the structural­
model approach. 

1 INTRODUCTION 

Dealing with causality is an important issue which emerges 
in many applications of AI. While this issue has been 
widely addressed, it is not settled yet, and a number of 
competing approaches to modeling causality can be found 
in the literature. Some of them are based on modal non­
monotonic logics (developed especially in the context of 
logic programming), like Geffner's approach [8, 9], which 
has been inspired by default reasoning from conditional 
knowledge bases. More specialized modal-logic based 
formalisms play an important role in dealing with causal 
knowledge about actions and change; see especially the 
work by Turner [24] and the references therein for an 
overview. A different family of approaches evolved from 
the area of Bayesian networks, such as Pearl's approach to 
modeling causality by structural equations [ 1, 6, 20, 21]. In 
particular, the evaluation of deterministic and probabilistic 
counterfactuals has been explored [ 1]. 

Causality plays an important role in the generation of ex­
planations, which are of crucial importance in areas like 
planning, diagnosis, natural language processing, and prob­
abilistic inference. Different notions of explanations have 
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been studied quite extensively, see especially [14, 7, 22] 
for philosophical work, and [ 19, 23, 15] for work in AI 
that is related to Bayesian networks. A critical examination 
of such approaches from the viewpoint of explanations in 
probabilistic systems is given in [2]. 

In a recent paper [11], Halpern and Pearl formalized causal­
ity using a model-based definition, which allows for a 
precise modeling of many important causal relationships. 
Based on a notion of weak causality, they offer appealing 
definitions of actual causality [ 12] and of causal explana­
tions [13]. As Halpern and Pearl show, their notions of 
actual cause and causal explanation, which is very differ­
ent from the concept of causal explanation in [17, 18, 8], 
models well many problematic examples in the literature. 

The following example from [ 11, I2, I3] illustrates the 
structural-model approach. See especially [1, 6, 20, 21, IO] 
for more details on structural causal models. 

Example 1.1 (arsonists) Suppose two arsonists lit 
matches in different parts of a dry forest, and both cause 
trees to start burning. Assume now either match by itself 
suffices to burn down the whole forest. We may model 
such a scenario in the structural-model framework as 
follows. We assume two binary background variables 
ul and u2. which determine the motivation and the state 
of mind of the two arsonists, where U; is 1 iff arsonist i 
intends to start a fire. We then have three binary variables 
A1, A2, and B, which describe the observable situation, 
where A; is I iff arsonist i drops the match, and B is I 
iff the whole forest bums down. The causal dependencies 
between these variables are expressed by functions, which 
say that the value of A; is given by the value of U;, and 
that B is 1 iff either A1 or A2 is I. These dependencies 
can be graphically represented as in Fig. I. 

Causes and explanations for events, such as B = 1 (the 
whole forest burns down), are defined by considering the 
values of variables in the above model and certain hypo­
thetical variants (see Section 2). D 

The semantic aspects of causes and explanation in the 
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Figure I: Causal Graph 

structural-model approach have been thoroughly studied in 
[11, 12, 13], while their computational complexity has been 
analyzed in [3, 5]. As shown there, causes and explanations 
are complete for the classes L:� and L:r of the Polynomial 
Hierarchy, and thus intractable in general. As for compu­
tation, Hopkins [16] explored search-based strategies for 
computing actual cases in both the general and restricted 
settings. However, no tractable cases (apart from trivial in­
stances) were explicitly known so far. In this paper, we fill 
this gap and make the following major contributions: 

• We present a new characterization of weak causes in 
the structural-model approach, which applies to a class of 
causal models where the causal dependencies can be hier­
archically structured, which we call decomposable graphs. 
Examples of causal models which are covered by this class, 
considered in Section 5, are causal trees (Section 4) and the 
more general layered causal graphs (Section 6). 

• By exploiting the characterization, we obtain algo­
rithms for deciding weak causes, actual causes, and dif­
ferent notions of explanations as defined for the structural­
model approach [11, 13, 5]. 

• Imposing suitable conditions, the algorithms for decid­
ing weak causes, actual causes etc run in polynomial time. 
By this way, we obtain several tractability results for the 
structural-model approach, and in fact, to our knowledge, 
the first ones which are explicitly derived. 

• Furthermore, extending work by Hopkins [16], we dis­
cuss how irrelevant variables can be efficiently removed 
from a causal model when determining weak and actual 
causes. This can lead to great simplifications, and may 
speed up the computation considerably. 

Note that detailed proofs of all results are given in the ex­
tended paper [ 4]. 

2 PRELIMINARIES 

We assume a finite set of random variables. Each variable 
X; may take on values from a finite domain D(X;). A 
value for a set of variables X= { X1 , ... , Xn} is a map­
ping x: X -t D(X1) U · · · U D(Xn) such that x(X;) E 
D(X;) (for X= 0, the unique value is the empty map­
ping 0). The domain of X, denoted D(X), is the set 
of all values for X. We say X is domain-bounded iff a 

constant k exists such that ID(X;)I '5: k for every X; E X. 
For Y�X and x E D(X), denote by xiY the restriction 
of x to Y. For disjoint sets of variables X, Y and val­
ues x E D(X), y E D(Y), denote by xy the union of x 
andy. For (not necessarily disjoint) sets of variables X, Y 
and values x E D(X), y E D(Y), denote by [x (y] the union 
of xi(X\Y) and y. We often identify singletons {X;} 
with X;, and their values x with x(X;). 

2.1 CAUSAL MODELS 

A causal model M = (U, V, F) consists of two disjoint 
finite sets U and V of exogenous and endogenous vari­
ables, respectively, and a set F = { Fx I X E V} of func­
tions Fx: D(PAx) -t D(X) that assign a value of X to 
each value of the parents PAx � U U V\ {X} of X. 

The causal graph forM, denoted G(M), is the directed 
graph (N,E), where N=UUV and E= {(Y,X) E 
N x N I Y E PAx}. Denote by Gv(M) the restriction 
of G ( M) to V. A directed graph is bounded iff the number 
of parents of each node is bounded by a constant. 

We focus here on the principal class [ 11] of recursive 
causal models M = (U, V, F) in which a total ordering 
-< on V exists such that Y E PAx implies Y -<X , for 
all X, Y E V. In such models, every assignment to the 
exogenous variables U = u determines a unique value y 
for every set of endogenous variables Y � V, denoted 
YM(u) (or simply Y(u)). In the sequel, M is reserved 
for denoting a recursive causal model. For any causal 
model M = (U, V, F), set of variables X �  V, and x E 
D(X), the causal model M. = (U, V, F.), where Fx = 
{Fy I YEV\X} U {Fx, =x(X') I X' EX}, is a submodel 
of M. For Y�V, we abbreviate YM. (u) by Y.(u). 

Example 2.1 (arsonists continued) M = (U, V, F) for Ex­
ample 1.1 is given by U={U1, U2}, V={A1 ,A2,B}, 
andF= {FA, FA, FB}. where FA,= Uj, FA2 = u2. and 
FB = 1 iff A1 = 1 or A2 = 1 (Fig. 1 shows the causal graph, 
i.e., the parent relationships between the variables). D 

As for computation, we assume that in M = (U, V, F), 
every function Fx: D(PAx) -t D(X), X E V, is com­
putable in polynomial time. The following is immediate. 

Proposition 2.1 For all X ,  Y � V and x E D(X), the val­
ues Y(u) and Y.(u), given u E D(U), are computable in 
polynomial time. 

2.2 WEAK AND ACTUAL CAUSES 

We now recall weak causes from [11, 12]. A primitive event 
is an expression of the form Y = y, where Y is a variable 
and y is a value for Y. The set of events is the closure of 
the set of primitive events under the Boolean operators ...., 
and A. The truth of an event rf> in M = (U, V, F) under 
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u E D(U), denoted (M, u) f= ¢, is inductively defined by: 

• (M,u) f= Y=y iff YM(u) =y, 

• (M, u) f= �¢iff (M, u) f= ¢does not hold, 

• (M, u) f= ¢/\ 'ljJ iff (M, u) f= ¢and (M, u) f= '1/J. 

We write <jJ(u) to abbreviate (M, u) f= ¢. For X<:;; V and 
x E D(X), we write <Px(u) to abbreviate (Mx. u) f= ¢. For 
X={X!, ... ,Xk}<;;V with k2:1 and X iE D(X i). we 
use X= Xj ... Xk to abbreviate xl =X! /\ . . .  /\ xk = Xk. 
The following is immediate. 

Proposition 2.2 Let X<:;; V and x E D(X). Given u E 
D(U) and an event¢, deciding whether </J(u) and <Px(u) 
(given x) hold can be done in polynomial time. 

Let M = (U, V, F) be a causal model. Let X<:;; V and 
x E D(X), and let¢ be an event. Then, X= x is a weak 
cause of¢ under u iff the following conditions hold: 

ACl. X(u) = x and <jJ(u) . 

AC2. Some set of variables W<;;V\X and some values 
xED(X), wED(W) exist with: 

(a) �<hw(u), and 

(b) <Pxwz(u) for all Z <:;; V \ (XU W) and i = Z(u). 

Moreover, X= x is an actual cause of¢ under u iff addi­
tionally the following minimality condition is satisfied: 

AC3. X is minimal. That is, no proper subset of X satis­
fies both ACI and AC2. 

The following result is known. 

Theorem 2.3 (see [3]) Let M = (U, V, F). X <:;; V, x E 
D(X), and u E D(U). Let ¢ be an event. Then, X= x 
is an actual cause of¢ under u iff X is a singleton and 
X = x is a weak cause of¢ under u. 

Example 2.2 (arsonists continued) Consider the context 
u1,1 = (1 , 1) in which both arsonists intend to start a 
fire. Then, A1 = 1, A2 = 1, and A1 = 1 /\ A2 = 1 are weak 
causes of B = 1. In fact, A1 = 1 and A2 = 1 are actual 
causes of B = 1, while A1 = 1 /\ A2 = 1 is not. Further­
more, A1 = 1 (resp., A2 = 1) is the only weak cause of 
B = 1 under the context u1, 0 = (1, 0) (resp., uo,1 = (0, 1)) 
in which only arsonist 1 (resp., 2) intends to start a fire. D 

2.3 EXPLANATION 

We now recall the concept of explanation from [ I I, 13]. 
Let M = (U, V, F) be a causal model. Let X £:; V and 
x E D(X), let ¢ be an event, and let C <:;; D(U) be a set 
of contexts. Then, X= x is an explanation of ¢ relative 
to C iff the following conditions hold: 

EXl. ¢( u) holds, for each context u E C. 

EX2. X = x is a weak cause of ¢ under every u E C such 
that X(u) = x. 

EX3. X is minimal. That is, for every X' c X, some u E C 
exists such that X'(u) = xiX' and X'= xiX' is not a 
weak cause of¢ under u. 

EX4. X(u) = x and X(u') =F x for some u, u' E C. 

Example 2.3 (arsonists continued) Consider the set of 
contexts C = {u1,1, u1, o, u o,I}. Then, both A1 = 1 and 
A2 = 1 are explanations of B = 1 relative to C, while 
A1 = 1 /\ A2 = 1 is not, as here, the minimality condi­
tion EX3 is violated. D 

2.4 PARTIAL EXPLANATION AND 
EXPLANATORY POWER 

We finally recall the notions of partial and a-partial ex­
planation and of explanatory power [ I I, 13]. Let M = 
(U, V, F) be a causal model. Let X<:;; V and x E D(X), 
let¢ be an event, and !etC<:;; D(U) be such that <jJ(u) holds 

for all u E C. We use C� =x to denote the unique largest 
subset C' of C such that X= x is an explanation of¢ rela­
tive to C'. The following proposition is easy to see [5]. 

Proposition 2.4 If X = x is an explanation of ¢ relative 
to some C' <:;; C, then C�=x is defined, and it contains all 
u E C such that either X(u) =F x. or X(u) = x  and X =  x 
is a weak cause of¢ under u .  

Let P be a probability function on C, and define 

P(C�=xiX= x) = I; P(u) /I; P(u) . 
uECt=�· uEC, 
X(u) = x X(u) = x 

Then, X = x is called an a-partial explanation of¢ relative 
to (C, P) iff c�=x is defined and P(C�=x I X= x) 2: a. 

We say X= x is a partial explanation of ¢ relative 
to ( C ,  P) iff X = x is an a-partial explanation of¢ relative 

to (C, P) for some a> 0; furthermore, P(C�=x I X= x) is 
called its explanatory power (or goodness). 

Example 2.4 (arsonists continued) Let C = { u1,1, u1, 0, 
uo,d, and let P be the uniform distribution over C. 
Then, both A1 = 1 and A2 = 1 are !-partial explanations 
of B = 1. That is, both A1 = 1 and A2 = 1 are partial ex­
planations of B = 1 with explanatory power 1. D 

As for computation, we assume that probability func­
tions P are computable in polynomial time. 

3 IRRELEVANT VARIABLES 

In this section, we describe how an instance of deciding 
weak cause can be reduced to an equivalent instance in 
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which the (potential) weak cause or the causal model may 
contain fewer variables. Thus, such reductions remove ir­
relevant variables in weak causes and causal models. 

3.1 REDUCING WEAK CAUSES 

We first characterize irrelevant variables in weak causes. 

The following result shows that deciding whether X = x is 
a weak cause of¢ under u is reducible to deciding whether 
X'= xiX' is a weak cause of¢ under u, where X' is the 
set of all X; E X that are ancestors of variables in ¢. 

Theorem 3.1 (see [5]) Let M = (U, V, F), Xo EX� V, 
x E D(X), and u E D(U). Let ¢ be an event. Assume 
that no directed path in G(M) goes from X0 to a vari­
able in ¢, and that X0(u)= x(X0). Let X'=X\{Xo} 
and x

' = xiX'. Then, X= xis a weak cause of¢ under u 
iff X' = x' is a weak cause of¢ under u. 

The next result shows that deciding whether X = x is a 
weak cause of ¢ under u is reducible to deciding whether 
X'= xiX' is a weak cause of¢ under u, where X' is the 
set of all X; EX not "blocked" by some other Xj EX. 

Theorem 3.2 Let M =(U, V, F), Xo EX� V, x E D(X), 
and u E D(U). Let ¢ be an event. Assume that every 
directed path in G(M) from X0 to a variable in ¢ con­
tains some X; EX'= X\ {X0}, and that X0(u) = x(Xo). 
Let x' = x iX'. Then, X= x is a weak cause of¢ under u 

iff X'= x' is a weak cause of¢ under u. 

The following result shows that computing the set of all 
variables in a weak cause that are not irrelevant according 
to Theorems 3.1 and 3.2 can be done in linear time. 

Proposition 3.3 Given M = (U, V, F), X � V, and an 
event¢, 

(a) the set X' of all X; EX such that X; is an ancestor 
in G(M) of a variable in¢ is computable in linear time. 

(b) the set X' of all variables X; EX such that there 
exists a path from X; to a variable in ¢ that contains 
no XJ EX\ {X;} is computable in linear time. 

3.2 REDUCING CAUSAL MODELS 

We next give a characterization of irrelevant variables in 
causal models, which is essentially due to Hopkins [16]. 

In the sequel, let M = (U, V, F) be a causal model. Let 
X� V, x E D(X), and u E D(U), and let¢ be an event. 

The set of relevant variables of M with respect to X = x 
and¢, denoted Ri=x (M), is the set of all variables A E V 
such that either (i), or (ii), or (iii) holds: 

(i) A EX, and A is on no directed path in G(M) from a 
variable in X \ {A} to a variable in ¢. 

(ii) A is on a directed path in G(M) from a variable 
in X \  {A} to a variable in¢. 

(iii) A does not satisfy (i)-(ii), and either A is in ¢, or A is 
a parent of a variable that satisfies (ii). 

Note that X � Ri =x ( M). A variable A E V is irrelevant 
w.r.t. X= x and¢ iff A f. Ri=x(M). We write Gi=x(M) 
to denote the restriction of G(M) to Ri=x (M), and often 
useGk(M) to abbreviateGr��(M). 

The reduced causal model of M then does not contain 
the above irrelevant variables anymore. More formally, 
the reduced causal model of M = (U, V, F) with respect 
to X= x and ¢, denoted Mf=x' is the causal model 
M' = (U, V' , F'), where V' = Ri=x (M) and 

F' = { F'A = F� I A E V' satisfies (i) or (iii)} U 

{F'A =FA I A E V' satisfies (ii)}, 

where F� assigns AM(uA) to A for every value uA E 
D(UA) of the set U A of all ancestors BEU of A in G(M). 

The following theorem shows that deciding whether 
X'= x', where X'� X, is a weak cause of¢ under u can 
be done with respect to Mf=x instead of M. This result 
is a generalization of a similar result by Hopkins [ 16] for 
events of the form X'= x' and¢= Y = y, where X'= X 
and X' , Y are singletons. 

Theorem3.4 Let M=(U, V,F), X'�X�V, x
' E D(X'), 

x E D(X), and u E D(U), and let ¢ be an event. Then, 
X'= x' is a weak cause of¢ under u in Miff X'= x' is a 
weak cause of¢ under u in Mf =x· 

The following result shows that the reduced causal model 
and the restriction of its causal graph to the set of endoge­
nous variables can be computed in polynomial and linear 
time, respectively. 

Proposition 3.5 Given M =(U, V, F), X� V, x E D(X), 
and an event ¢, the directed graph Gi=x(M) (resp. , 
causal model Mf=x) can be computed in linear (resp. , 
polynomial) time. 

4 CAUSAL TREES 

In this section, we describe our first class of tractable cases 
of causes and explanations. More precisely, we show that 
deciding whether X = x is a weak cause of Y = y under u 
in M = (U, V, F) is tractable, when X,  Y are singletons, 
V is domain-bounded, and Gk(M) is a bounded directed 
tree with root Y (see Fig. 2). 

Under the same conditions, deciding whether X = x is an 
actual cause of Y = y under u in M, deciding whether 
X = x is an explanation (resp., a partial explanation or an 
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Figure 2: Path from X to Y in a Causal Tree 

a-partial explanation) of Y = y relative to C (resp., (C, P)) 
in M, and computing the explanatory power of X= x 
for Y = y relative to ( C, P) in M are all tractable. 

Observe that the class of tractable cases of causes and ex­
planations described above can be recognized very effi­
ciently. This is shown by the following proposition. 

Proposition 4.1 Given M =(U, V, F) and X, Y EV, de­
ciding whether G�(M) is a (bounded) directed tree with 
root Y can be done in linear time. 

4.1 CAUSES 

We first focus on deciding weak and actual causes. 

In the sequel, let M = (U, V, F) be a causal model, let 
X, Y C:::: V be singletons, and let x E D(X), y E D(Y), 
and u E D(U). Let Gv(M) coincide with G�(M), and 
let Gv(M) be a directed tree with root Y. 

We now give a new characterization of X = x being a weak 
cause of Y = y under u in M, which can be checked in 
polynomial time under some assumptions. We need some 
preparation by the following definitions. 

Let X= pk -+ pk-1 -+ · · · -+ P0 = Y be the unique di­
rected path from X toY in Gv(M). For every i E {1, ... , 
k}, denote by Wi the set of all parents of pi-1 in G v ( M) 
that are different from pi (cf. Fig. 2). For each i E {1, ... , 
k }, we define j/ = Pi(u). 

We define R0 = {D(Y)\ {y} }, and for each i E {1, ... , k }, 
we define Ri as follows: 

Ri = {p C:::: D(Pi) I 3w E D(Wi) 3p' E Ri-1: 

P;��(u) E D(Pi-1)\p', 
p E p iff P;;;/ ( u) E p' } . 

Intuitively, Ri contains all sets of possible values of pi 
in AC2(a). Here, P0 = Y must be set to a value differ­
ent from y, and the possible values of each other pi de­
pend on the possible values of pi-1. At the same time, 
the complements of sets in Ri are all sets of possible val­
ues of pi in AC2(b). In summary, AC2(a) and (b) hold iff 
some p E Rk exists such that p f 0 and x rf. p. 

This result is more formally expressed by the following the­
orem, which can be proved by induction on i E { 1, ... , k}. 

Theorem 4.2 Let M � (U, V, F), X, Y E V, x E D(X), 
y ED(Y), and u ED(U). Let Gv(M)�G�(M), let 
Gv(M) be a directed tree with root Y, and let Rk be de­
fined as above. Then, X= x is a weak cause ofY = y un­
der u in M iff(a) X(u) = x and Y(u) = y, and (j3) some 
p E Rk exists such that p f 0 and x rf. p. 

The next theorem shows that deciding whether X = x is a 
weak cause of Y = y under u in M is tractable, when X 
andY are singletons, Vis domain-bounded, and G�(M) 
is a bounded directed tree with root Y. This result follows 
from Theorem 4.2 and the recursive definition of Ri. By 
Theorem 2.3, the same tractability result holds for actual 
causes, as the notion of actual cause coincides with the no­
tion of weak cause where X is a singleton. 

Theorem 4.3 Given M=(U, V, F), X, YEV, x E D(X), 
y E D(Y), and u E D(U), where V is domain-bounded, 
and G�(M) is a bounded directed tree with root Y, de­
ciding whether X= xis a weak (resp., an actual) cause of 
Y = y under u in M can be done in polynomial time. 

4.2 EXPLANATIONS 

The following two theorems show that deciding whether 
X= x is an explanation (resp., a partial explanation or an 
a-partial explanation) of Y = y relative to C (resp., ( C, P)) 
in M, and computing the explanatory power of X = x 
for Y = y relative to ( C, P) in M are all tractable under the 
conditions of the previous subsection. These results follow 
from Proposition 2.2 and Theorem 4.3. 

Theorem 4.4 Given M =(U, V, F), X, Y EV, x E D(X), 
y E D(Y), and C C:::: D(U), where V is domain-bounded, 
and G�(M) is a bounded directed tree with root Y, de­
ciding whether X = x is an explanation of Y = y relative 
to C in M can be done in polynomial time. 

Theorem 4.5 Let M = (U, V, F), X, Y E V, x E D(X), 
yED(Y), CC::::D(U), and P be a probability function on C, 
such that V is domain-bounded, G�(M) is a bounded di­
rected tree with root Y, and Y(u) � yfor all u E C. Then, 

(a) deciding if X= x is a partial explanation of Y = y 
relative to ( C, P) in M is possible in polynomial time. 

(b) deciding whether X= x is an a-partial explanation 
of Y = y relative to ( C, P) in M, for some given 
a ?: 0, can be done in polynomial time. 

(c) given X= x is a partial explanation of Y = y rela­
tive to ( C, P) in M, the explanatory power of X =x is 
computable in polynomial time. 

5 DECOMPOSABLE CAUSAL GRAPHS 

In this section, we show that the technique of decomposing 
causal trees for deciding causes and explanations and for 
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computing the explanatory power described in the previous 
section can be extended to general causal graphs. 

Intuitively, the main idea is to decompose the directed 
graph Gv(M) into a chain of subgraphs along which we 
can propagate sets of possible values of variables back to 
the variables in a potential weak cause (see Fig. 3). 

Figure 3: Decomposable Causal Graph 

5.1 CAUSES 

We first concentrate on deciding weak and actual causes. 

In the sequel, let M = (U, V, F) be a causal model, let 
X� V, x E D(X), and u E D(U), and let¢ be an event. 

Intuitively, to decide whether X = x is a weak cause of ¢ 
under u in M, we decompose Gv(M) into a chain of di­
rected subgraphs over the components of an ordered parti­
tion (T0, ... , Tk) of V, which are connected to each other 
exactly through some sets S0 � T0, ... , Sk � Tk, where 
every variable in¢ (resp., X) belongs to T0 (resp., Sk). We 
then propagate sets of possible values of the Si in AC2(a) 
and (b) along the chain from S0 to Sk. Such a propagation 
works if certain conditions hold, which are specified in the 
following concept of a decomposition of G v ( M). 

A decomposition of Gv (M) with respect to X= x and ¢ 
is a list ((T0,S0), ... ,(Tk,Sk)) of pairs (Ti,Si) of sets 
of endogenous variables such that (Dl )-(D6) hold: 

01. (T0, ... , Tk) is an ordered partition of V. 

02. To 2 so, ... , Tk 2 Sk. 

03. Every AEV occurring in¢ belongs to T0, and Sk2X. 

04. For every i E { 0, . . .  , k-1 }, no two variables A E 
T0 U · · · U Ti-1 U T; \ Si and BE Ti+1 U · · · U Tk 
are connected by an arrow in G v ( M). 

05. For every i E { 1, . . .  , k}, every child of a variable in 
Si in Gv(M) belongs to (Ti\Si)usi-1. Every 
child of a variable in S0 belongs to (T0 \ S0). 

06. For every i E { 0, . . .  , k - 1}, every parent of a vari­
able in Si in Gv(M) belongs to Ti+1. There are no 
parents of any variable A E Sk. 

Such a decomposition is width-bounded iff a constant l ex­
ists such that !Til<:::, l for every i E {1, . . .  , k }. 

Observe that every M�=x = (U, V ' ,  F'), where no AEX 
is on a path from a variable in X\ {A} to a variable in ¢, 
has always the trivial decomposition ( (V', X)). 

We next define the relations Ri, which contain triples 
(p, q, F), where p (resp., q) specifies a set of possible val­
ues ofF� Si in AC2(a) (resp., AC2(b)). 

In detail, we define R0 as follows: 

R0 = {(p,q,F) IF� S0, p,q � D(F), 
:JW�T0, WnS0=S0\F, 
:lw E D(W): 
p E p iff --.rfJpw ( U) , 

qEq iff rj;[q(Z(u)]w(u) 
for all Z � T0 \ (SkUW)} . 

For every i E { 1, . . .  , k}, we then define Ri as follows: 

Ri = {(p,q,F) IF� Si, p,q �D(F), 
:JW�Ti, WnS;=S;\F, 
:lw E D(W) :J(p', q', F') E Ri-1: 
pEp iff F'pw(u) Ep', 
q E q iff F'[q(Z(u)]w(u) E q' 

for all Z � T; \(SkU W)} . 

We are now ready to give a new characterization of weak 
cause, which is based on the above concept of a decompo­
sition of G v ( M) and the relations Ri. 

Theorem 5.1 Let M = (U, V, F), X� V, x E D(X), and 
u E D(U). Let¢ be an event. Let ( (T0, S0), ... , (Tk, Sk)) 
be a decomposition ofGv(M) with respect to X =x and¢. 
Let Rk be defined as above. Then, X = x is a weak cause 
of¢ under u in M iff(a) X(u) = x  and rj;(u) holds, and 
((3) some (p, q, X) E Rk exists such that p f. 0 and x E q. 

The next result shows that deciding whether X = x is a 
weak (resp., an actual) cause of¢ under u in M is tractable, 
when V is domain-bounded, and when ct=x(M) has a 
width-bounded decomposition provided in the input. This 
result follows from Theorems 2.3, 3.4, and 5.1 and the re­
cursive definition of the Ri 's above. 

Theorem 5.2 Given M = (U, V, F), X� V, x E D(X), 
u E D(U), an event¢, and a width-bounded decomposi­
tion ( (T0, S0), ... , (Tk, Sk)) of Gt=x (M) with respect 
to X= x and ¢, where V is domain-bounded, deciding 
whether X= x is a weak (resp., an actual) cause of¢ un­
der u in M can be done in polynomial time. 

5.2 EXPLANATIONS 

The following two theorems show that deciding whether 
X = x is an explanation (resp., a partial explanation or an 
a-partial explanation) of ¢ relative to C (resp. , ( C, P)) in 
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M, and computing the explanatory power of X = x for¢ 
relative to ( C, P) in M are all tractable, when we assume 
the same restrictions as in Theorem 5.2. These results fol­
low from Proposition 2.2 and Theorem 5.2. 

Theorem 5.3 Given M =(U, V, F), X<;:: V, x E D(X), 
C <;:: D(U), an event ¢, and a width-bounded decomposi­
tion ((T0,S0), ... ,(Tk,Sk)) ofG�=x(M) with respect 
to X= x and ¢, where V is domain-bounded, deciding 
whether X = x is an explanation of¢ relative to C in M 
can be done in polynomial time. 

Theorem 5.4 Given M=(U,V,F), X<;::V, xE D(X), 
C <;:: D(U), an event¢, a probability function P on C, and 
a width-bounded decomposition ( (T0, S0), ... , (Tk, Sk)) 
of G�=x (M) with respect to X= x and ¢, where V is 
domain-bounded, and¢( u) for all u E C, 

(a) deciding if X = x is a partial explanation of¢ relative 
to ( C, P) in M can be done in polynomial time. 

(b) deciding whether X= x is an a-partial explanation 
of¢ relative to ( C, P) in M, for some given a 2': 0, 
can be done in polynomial time. 

(c) given X = x is a partial explanation of ¢ relative 
to ( C,P) in M, computing the explanatory power 
of X = x can be done in polynomial time. 

6 LAYERED CAUSAL GRAPHS 

In general, it is not clear whether causal graphs with width­
bounded decompositions can be efficiently recognized, and 
whether such decompositions can be efficiently computed. 
In this section, we discuss a large class of causal graphs, 
called layered causal graphs, that have natural nontrivial 
decompositions that can be computed in linear time. 

Intuitively, such causal graphs Gv ( M) can be partitioned 
into layers S0, . • .  , Sk such that every arrow goes from a 
variable in some layer Si to one in si-1 (see Fig. 4). 

Figure 4: Path from X to Y in a Layered Causal Graph 

More formally, let M =(U, V, F) be a causal model, and let 
X<;::V, Y={Y0}<;::V, xED(X), yED(Y), and uED(U). 
Then, Gv (M) is layered w.r.t. X andY iff an ordered par­
tition (S0, ... , Sk) ofV exists with (Ll )  and (L2): 

Ll. For every arrow A-+ B in Gv(M), there exists 
some i E {1, ... , k} such that A E Si and BE si-1. 

A layered Gv ( M) is width-bounded for an integer l :::>: 0 iff 
there is an ordered partition (S0, ... , Sk) of V with (Ll )  
and (L2) such that I Si I ::::; l for every i E { 1, . . .  , k}. 

The following proposition shows that layered causal 
graphs Gv(M) have a natural nontrivial decomposition. 

Proposition 6.1 Let M =(U,V, F), X<;::V, Y ={Yo} <;:: V, 
x E D(X), and y E D(Y). Let (S0, . • .  , Sk) be an or­
dered partition of V satisfying ( Ll) and ( L2 ). Then, 
((S0,S0), ... ,(Sk,Sk)) is a decomposition ofGv(M) 
with respect to X = x andY= y. 

The next result shows that recognizing layered and width­
bounded causal graphs Gk ( M) and computing their natu­
ral decomposition can be done in linear time. 

Proposition 6.2 Given M=(U, V,F), X<;::V, Y={Yo} <;:: 
V, x E D(X), andy E D(Y), deciding whetherGk (M) = 
(V', E') is layered and width-bounded for an integer 12': 0, 
and computing the ordered partition (S0, ... , Sk) of V' 
with ( Ll) and ( L2) can be done in linear time. 

Proof (sketch). Observe that if there is a directed path from 
a node in X toY, then the ordered partition (S0, ... , Sk) 
of V' with (Ll) and (L2) is unique, if it exists. We can 
then compute (S0, ... , Sk) = (T-k, ... , T0) as follows. 
We first compute Gk (M). We then set�= X and i = 0. 
Then, (a) set Ti to the union of� and the set of all parents 
of a child of �. (b) set � to the set of all children of �. 
and (c) decrement i. We now repeat (a)-( c) until � = 0. 
Then, Gk (M) is layered iff the computed Ti's are pair­
wise disjoint, and Gk (M) is width-bounded iff every [Til 
is bounded. This proves the stated result. D 

By Proposition 6.1, all the results of Sections 5.1 and 5.2 
on causes and explanations in decomposable causal graphs 
also apply to layered causal graphs as a special case. 

It is easy to verify that the relations Ri of Section 5.1 can 
be simplified as follows for layered causal graphs: We have 
R0 = {(D(Y)\{y}, {y }, Y)}, and for each i E {1, ... , k}, 
the relation Ri is now given as follows: 

Ri = {(p,q, F) [ F <;:: Si, p,q <;:: D(F), 
3w E D(Si\F) 3(p', q', F') E Ri-1: 
pEp iff F'pw(u) E p', 
q E q iff F'[q(Z(u)]w(u)Eq' for all Z<;::F\Sk} . 

The following theorem is then an immediate corollary of 
Theorem 5.1 and Proposition 6.1. 

Theorem 6.3 Let M = (U, V, F), X C V, Y E V, x E 
D(X), y E D(Y), and u E D(U). Let Gv (M) be layered 
with respect to X and Y, and let Rk be defined as above. 
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Then, X = x is a weak cause of Y = y under u in M iff 
( a) X(u) = x andY(u) = y, and ({3) some (p, q, X) E Rk 
exists such that p =P 0 and x E q. 

The next theorem shows that deciding whether X = x is 
a weak (resp., an actual) cause of Y = y under u in M is 
tractable, when V is domain-bounded, and G� (M) is lay­
ered and width-bounded. This result is an immediate corol­
lary of Theorem 5.2 and Proposition 6.1. 

Theorem6.4 Let M=(U, V,F), X<;;V, YEV, xED(X), 
y E D(Y), and u E D(U). If V is domain-bounded, and 
G� (M) is layered and width-bounded for a constant l � 0, 
then deciding whether X= x is a weak (resp., an actual) 
cause ofY =y under u in M is possible in polynomial time. 

Similarly, deciding whether X= x is an explanation (resp., 
a partial explanation or an a-partial explanation) of Y = y 
relative to C (resp., (C, P)) in M, and computing the ex­
planatory power of X= x for Y = y relative to (C, P) in 
M are all tractable under the same restrictions. This is im­
mediate by Theorems 5.3 and 5.4 and Proposition 6.1. 

7 SUMMARY AND OUTLOOK 

In this paper, we presented new characterizations of weak 
causes for certain classes of decomposable causal models, 
in particular, for causal trees and the more general class of 
layered causal graphs. By means of these characterizations, 
we then showed that under suitable restrictions deciding 
causes and explanations is tractable for these classes. To 
our knowledge, these are the first explicit tractability results 
for the structural-model approach. Furthermore, we have 
also discussed how irrelevant variables can be efficiently 
removed when deciding causes and explanations. 

In this paper, we focused on the problems of deciding 
causes and explanations. Another important problem is to 
compute some (resp., all) causes and explanations X' = x' 
such that X' is contained in a given set of endogenous vari­
ables X (cf. [5]). It is not difficult to see that by means of 
the characterizations that we have obtained, also this com­
putation can be accomplished in polynomial time [4]. 

An interesting topic of further studies is to explore how to 
efficiently compute decompositions of causal graphs, and 
in particular whether there are other important classes of 
causal graphs different from causal trees and layered causal 
graphs in which width-bounded decompositions can be rec­
ognized and computed efficiently. 
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