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Abstract

Geometrical symmetries are commonly exploited to improve the efficiency of search algo-
rithms. A new type of symmetry in permutation state spadaality, is introduced. Each
state has alual state. Both states share important attributes such as their distance to the
goal. Given a state, it is shown that an admissible heuristic of the dual stat& a$

an admissible heuristic fo$. This provides opportunities for additional heuristic evalua-
tions. An exact definition of the class of problems where duality exists is provided. A new
search algorithmdual searchis presented which switches between the original state and
the dual state when it seems likely that the switch will improve the chance of reaching the
goal faster. The decision of when to switch is very important and several policies for doing
this are investigated. Experimental results show significant improvements for a number of
applications, for using the dual state’s heuristic evaluation and/or dual search.

1 Introduction and Overview

The states of many combinatorial problems (e.g., Rubik’s cube, 15-puzzle) are de-
fined as placements of a setafobjectsinto a set ofn locations (where, > m).

All the different ways to put the objects into the locations with at most one object
per location defines a state space which is callpdranutation state spada this
paper! Given two states in a permutation state spat@;t andgoal, and a set of

I Strictly speaking, a permutation would requirgthe number of locations, to be exactly
the same as, the number of objects. We have relaxed this requirement and only demand
thatn > m. We use the termatrict permutation state spade refer to state spaces in which
the states are permutations in the strict sense=(n).
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operators that transform one state into another, search algorithms such as A* [8]
and IDA* [12] can be used to find the shortest sequence of operators that transform
start into goal. These algorithms use a cost functipfn) = g(n) + h(n), where

g(n) is the cost to reach statefrom start andh(n) is anadmissibl€(i.e. is always

a lower bound) heuristic function estimating the cost froto goal.

The effectiveness of the search is greatly influenced by the accurac¢y pfWhen

h(n) is more accurate, the number of nodes generated in a search decreases and
the goal state is reached sooner [16]. There is a tradeoff for this reduction, how-
ever. More accurate heuristics usually consume a larger time overhead per node
generated and therefore the percentage reduction in the actual time needed to solve
a problem is smaller in practice than the percentage reduction in the total number
of generated nodes. Usually, the reduction in the number of generated nodes dom-
inates the constant time per node and therefore a time reduction is seen as well
[17,4].

In this paper a new type of symmetry is discussetisality. It is based on the obser-
vation that instrict? permutation state spaces, i.e., when= n, the roles played

by objects and locations are interchangeable. By reversing these roles, & state,
can be mapped to its dual representatisth, Given an admissible heuristig, the
valueh(S%) is a lower bound on the distance frosito the goal. Taking the maxi-

mum of(S) andh(S?) can result in a better heuristic value f®rand, hence, less
search. Further, if(S¢) > h(9), this can be exploited by using a search algorithm
thatswitches representations when it appears likely to be beneficiadTdlesearch
algorithm searches in the original or dual search space, switching representations
to whichever has a higher heuristic value.

The contributions of this paper are as follows:

¢ A formal definition ofduality is given, along with precise conditions for it to be
applicable. The dual of a stat§, is another state$?, that is easily computed
from S and shares key search-related properties Wjteuch as being the same
distance from the goal. Therefore any admissible heuristi§faran be used as
an admissible heuristic faf.

e A new type of search algorithndual searchis introduced. It has the unusual
feature that it does not necessarily visit all the states on the solution path that it
returns. Instead, it constructs its solution path from path segments that it finds
in disparate regions of the state space. The jumping from region to region is
effected by choosing to expaiff instead ofS whenever doing so improves the
chances of achieving a cutoff in the search.

e Using the heuristic evaluation of the dual stat¢q?)) in the search shows a
significant performance improvement for a number of domains. Adding the dual
search algorithm further improves the results. For all the domains studied, the

2 We also provide generalization of this idea to permutation state spaces that are not nec-
essarilystrict.



results represent the best in the published literature.

The idea ofdualityis also used in the constraint satisfaction problems (CSP) litera-
ture, where flipping the roles of variables and constraints produces a dual version of
the problem. Independent of our work, Hnich et al. discuss methods to use duality
in CSP applications [9]. For example, they exploit duality by choosing to solve the
variation of the problem that appears to be faster to solve. By contrast, in this paper
we introduce duality ideas in the context of heuristic state-space search.

The paper is organized as follows. Sections 2 and 3 present background material. In
Section 4, the notion of simple duality is defined. Simple duality is a special case of
duality that only applies tstrict permutation states space®ection 5 discusses the
properties of the dual heuristic. Section 6 presents a new search algorithm based
on duality, DIDA* (Dual IDA*). Section 7 provides experimental evidence for the
benefits of using the heuristic evaluation of the dual state and for the dual search
algorithm. Section 8 provides generalization of the duality notion to a wider variety
of permutation state spaces that are not necessdrity. Experimental results for

the general case are then provided in Section 9. A summary and suggestions for
future work are provided in Section 10. Preliminary versions of this paper appeared
in [7,20].

2 Problem Domains and Permutation State Spaces

This section introduces the three application domains used in this paper and gives a
formal definition of permutation state spaces. Pattern databases, used as the heuris-
tic evaluation function for our application domains, are described.

2.1 The Sliding-Tile Puzzles

One of the classic examples in the Al literature of a single-agent path-finding prob-
lem is the sliding-tile puzzle. Three versions of this puzzle aresthe3 8-puzzle,

the4 x 4 15-puzzle and thé x 5 24-puzzle. They consist of a square frame contain-
ing a set of numbered square tiles, and an empty position called the blank. The legal
operators are to slide any tile that is horizontally or vertically adjacent to the blank
into the blank position. The problem is to rearrange the tiles from some random
initial configuration into a particular desired goal configuration. The state space
grows exponentially in size as the number of tiles increases, and it has been shown
[19] that finding optimal solutions to the sliding tile problem is NP-complete. The
8-puzzle containg!/2 (181,440) reachable state, the 15-puzzle contains alvdtit
reachable states, and the 24-puzzle contains alidsstates. The goal states of
these puzzles are shown in Figure 1.
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Fig. 1. The 8-, 15- and 24-puzzle goal states

The classic heuristic function for the sliding-tile puzzles is called Manhattan dis-
tance. Itis computed by counting the number of grid units that each tile is displaced
from its goal position, and summing these values over all tiles, excluding the blank.
Since each tile must move at least its Manhattan distance to its goal position, and
a legal move only moves one tile, the Manhattan distance is a lower bound on the
minimum number of moves needed to solve a problem instance.

2.2 Rubik’'s Cube

Rubik’'s cube was invented in 1975 by Erno Rubik of Hungary. It is one of the
most famous combinatorial puzzle of our time. The standard version consists of a
3 x 3 x 3 cube (Figure 2), with different colored stickers on each of the exposed
squares of the sub-cubes, or cubies. Bny 3 x 1 edge plane of the cube can be
rotated90, 180, or 270 degrees relative to the rest of the cube. In the goal state, all
the squares on each side of the cube are the same color. The puzzle is scrambled
by making a number of random moves, and the task is to restore the cube to its
original goal state. There are abdut 10! different reachable states. There 20e
movable cubies ané stable cubies in the center of each face. The movable cubies
can be divided into eight corner cubies, with three faces each, and twelve edge
cubies, with two faces each. Corner cubies can only move among corner positions,
and edge cubies can only move among edge positions.

L 4 /

Fig. 2.3 x 3 x 3 Rubik’s cube



2.3 The Pancake Puzzle

The pancake puzzles analogous to a waiter navigating a busy restaurant with a
stack ofn pancakes [2]. To avoid disaster, the waiter wants to sort the pancakes
ordered by size. Having only one free hand, the only available operation is to lift a
top portion of the stack and reverse it. In this domain, a state is a permutation of the
valuesi...(N — 1). A state hasV — 1 successors, with theé" successor formed by
reversing the order of the firét+ 1 elements of the permutatioh € £ < N). For
example, if N = 5 the successors of state0,1,2,3,4 > are< 1,0,2,3,4 >, <
2,1,0,3,4>,<3,2,1,0,4 >and< 4, 3,2,1,0 >, as shown in Figure 3. From any
state it is possible to reach any other permutation, so the size of the state space is
N!. In this domain, every operator is applicable to every state. Hence its branching
factoris NV — 1.
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Fig. 3. The 5-pancake puzzle

2.4 Permutation state spaces

A state spaceés a set of states, and a set of operators that map states to states. A
specific problem instance is a state space together with a particular initial state and
goal state. The task is to find an optimal path from the initial state to the goal state.

Permutation state spacese a special type of combinatorial problems, consisting
of a set ofm objectsandn locations(n > m). The states in such problems are all
the different ways of placing the objects in the locations with at most one object
per location.

Strict permutation state spacase a special case of permutation state spaces where
the number of objects is exactly the same as the number of locations, +e.

An operatorin permutation state spaces changes the locations of some of the ob-
jects. This is a very rich and interesting class of problems, including, for example,
all finite mathematical groups. The puzzles defined above are all permutation state
spaces, as are many of the classic benchmark problems for planning, such as the
Blocks World.



Note that general permutation problems even if solved by heuristic search do not
necessarily span@ermutation state spaceor example in the Travailing Salesman
Problem (TSP) the task is to find the permutation of cities with the optimal cost.
However, this problem does not span a permutation state space as defined here. In
TSP, there is no predefined goal state and there is no meaning of finding a path from
a given initial state to the goal state via other permutation states.

3 Heuristics

The efficiency of a single-agent search algorithm is usually dominated by the qual-
ity of the heuristic used. The best known heuristics for the application domains in
this paper all take the form of a pattern database (defined below). Pattern databases
are therefore used in all the experimental studies, and the purpose of this section
is to give the background details on pattern databases. However, it is important to
note that none of this paper’s key ideas (duality, dual heuristic evaluations, and
dual search) depend on the heuristic being a pattern database, these ideas apply to
heuristics of all forms.

3.1 Pattern Databases

A powerful approach for obtaining admissible heuristics is the use of pattern data-
bases (PDBs) [1]. The state space of a permutation state space problem is all the
different ways to placing the given set of objects into the locationsubproblem

is an abstraction of the original problem defined by only considering some of these
objects while treating the others as “don’t care’pAttern(abstract state) is a spe-

cific assignment of locations to the objects of the subproblem.pBtiern space

or abstract spacés the set of all the different reachable patterns of a given abstract
problem.

Each state in the original state spacalistractedo a pattern of the pattern space
by only considering the pattern objects, and ignoring the othersgdhkpattern
is the abstraction of the goal state.

There is aredgebetween two different patterns andp, in the pattern space if
there exist two states ands, of the original problem, such that is the abstrac-
tion of s1, p, is the abstraction of,, and there is an operator of the original problem
space that connects to s,.

A pattern databaséPDB) is a lookup table that stores the distance of each pattern
to the goal pattern in the pattern space. A PDB is built by running a breadth-first



searcl? backwards from the goal pattern until the whole pattern space is spanned.
A stateS in the original space is mapped to a patt8frby ignoring details in the

state description that are not preserved in the subproblem. The value stored in the
PDB for S’ is a lower bound (and thus serves as an admissible heuristic) on the
distance ofS to the goal state in the original space since the pattern space is an
abstraction of the original space.

Pattern databases have proven very useful for finding lower bounds for combina-
torial puzzles [1,5,6,14,15]. Furthermore, they have proved useful for other search
problems (e.g., multiple sequence alignment [18,22] and planning [3]).

3.1.1 Pattern Databases Example

PDBs can be built for the sliding-tile puzzles, as illustrated in Figures 4(a) and (b).
Assume that the subproblem only includes tiles 2, 3, 6 and 7. Patterns are created
by ignoring all the tiles except for 2, 3, 6 and 7. Each pattern contains tiles 2, 3, 6
and 7 in a unique combination of positions. The resul§@¢3-6-7}-PDB has an

entry for each pattern containing the distance from that pattern to the goal pattern
(shown in the lower part of Figure 4(b)). Figure 4(b) depicts the PDB lookup in
this PDB for estimating a distance from a given state S to the goal (Figure 4(a)).
State S is mapped to a 2-3-6-7 pattern by ignoring all the tiles other than 2, 3, 6 and
7. Then this pattern’s distance to the goal pattern is looked up in the PDB. To be
specific, if the PDB is represented as a 4-dimensional aftay3, with the array
indexes being the locations of tiles 2, 3, 6, and 7 respectively, the lookup for state
S is PDBI8][12][13][14] (tile 2 is in location 8, tile 3 is in location 12, etc.). The
value retrieved by a PDB lookup for statds a lower bound (and thus serves as an
admissible heuristic) for the distance fra#to the goal state in the original space.

In this paper, accessing the PDB for a staiteill be referred to as segularlookup,

and the heuristic value will be referred to asegular heuristic.

3.1.2 Additive Pattern Databases

Additive pattern databases provide the current best admissible heuristic for the
sliding-tile puzzles [5,15]. The tiles are partitioned into disjoint sets (patterns) of
tiles and a PDB is built for each set. The PDB stores the cost of moving the tiles
in the given subproblem from any given arrangement to their goal positions. If for
each set of tiles only the moves of tiles from the given set are counted, then values
from different disjoint PDBs can baddedand the result is still admissible. An

x —y — z partitioning is a partition of the tiles into disjoint sets with cardinalities of

x, y andz. Figure 5 presents the twib— 8 partitionings for the 15-puzzle and the
two 6 — 6 — 6 — 6 partitionings for the 24-puzzle which were first used in [5,15].

3 This description assumes all operators have the same cost. The techniques easily extend
to the case when operators have different costs.
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Fig. 5. Partitionings and reflections of the tile puzzles

3.2 Geometric Symmetries

It is common practice to exploit special properties of a state space to enable addi-
tional lookups to be done in a PDB. In [1] several alternative lookups that can be
made in the same PDB based on the physical symmetries of the 15-puzzle are de-
scribed. For example, because of the symmetry about the main diagonal, the PDB
built for the goal pattern in Figure 4(b) can also be used to estimate the number of
moves required to get tiles 8, 9, 12 and 13 from their current positions in State

to their goal locations. As shown in Figure 6, batlandG are reflected about the
main diagonal yieldings” andG". The 2-3-6-7 PDB can be used to get a lower
bound on the number of moves required to get tiles 8, 9, 12, and 13 from their cur-
rent positions in stat®” to their locations inG". This is identical to the number of
moves required to move them from their current positions in siati® their goal
locations inG.

This idea of reflecting the domain about the main diagonal for having another set
of PDBs was also used to solve the 15-puzzle and 24-puzzle with additive PDBs
[5,15]. It is easy to see that the twio— 8 partitionings for the 15-puzzle (and

similarly those of the 24 puzzle) in Figure 5 are reflections of each other about the
main diagonal and only one PDB is needed in practice. For another example of
geometric symmetry, consider Rubik’s cube and assume there is a PDB for the blue
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Fig. 6. Both.S and G are reflected about the main diagonal to get another possible PDB
lookup

face which gives values for all cubies with blue colors. Reflecting and rotating this
puzzle will enable similar lookups for any other face with a different color (e.g.,
yellow, red, etc.) since any two faces are symmetric.

Because all valid, alternative PDB lookups provide lower bounds on the distance
from stateS to G, their maximum can be taken as the value/ig6). Of course,
there is a tradeoff for doing this—each PDB lookup increases the time it takes to
computeh(S). Because additional lookups provide diminishing returns in terms
of the reduction in the number of nodes generated, it is not always best to use all
possible PDB lookups [1]. A number of methods exist for reducing the time needed
to computeh(S) by making inferences about some of the values without actually
looking them up in a PDB [10].

4 Simple Duality

In this paper, two types of duality are presented. This section introduces simple
duality, which applies to strict permutation state spaces (the number of objects and
locations is the same, as in Rubik’s cube) in which the operators have no precondi-
tions (every operator is applicable to every state). Section 8 generalizes the notion
of duality to state spaces in which there may be more locations than objects and
operators may have preconditions.

4.1 Assumptions for Simple Duality

Before defining the dual state, we first present four assumptions which are precon-
ditions for simple duality:



(1) Every state is an arrangementqof objects inton locations, withm = n
and exactly one object per location. In other words, for simple duality we
require that the state space is a strict permutation state space. For example, the
most natural representation of the 8-puzzle has 9 objects, eight representing
the individual tiles and one representing the blank. This assumption will be
relaxed in Section 8 to allow > m and at most one object per location.

(2) A setofoperatorss given that change the locations of some of the objects. We
assume that the operators’ actions laation-based permutationmeaning
that an operator re-arranges the contents of a certain set of locations without
any reference to specific objects. For example, an operator could swap the
contents of locationsl and B.

(3) The operators are invertible, and an operator and its inverse cost the same.
Consequently, if operator sequerieéean be applied to statg and transform
itinto S5, then its inverse() !, can be applied to stat and transform it into
S, at the same cost d3.

(4) Operators have no preconditions. That is, every operator is applicable to every
state. This assumption is only assumed for simple duality. In Section 8 as-
sumption 4 is dropped, resulting in the notion of general duality where the
operators are not necessarily applicable to every state but have internal pre-
conditions.

Example domains where assumption 4 is violated are the sliding tile puzzle and the
Towers of Hanoi. In the former there is a precondition which refers to the location
of the blank. In the latter, there is a precondition which refers to the topmost discs
on the operator’s source and destination pegs.

Two definitions for the dual state follow, and a proof that they are equivalent.

4.2 Simple Duality: Definition 1
(a) (b)
3194 2)=—=>]2723 4] =—> 294" 13"

n@abcd
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Fig. 7. Location-based permutatiarthat mapsS to G (a) andG to S¢ (b)

For any given pair of state§; andS,, there is a unique location-based permutation,
m, that transforms; to S,. For exampler in Figure 7(a) describes how the objects
move from their locations in the 4-pancake stéit® their goal locations id-. The

10



lettersa, b, c andd denote the locationst mapsa to ¢ in Figure 7(a) because the
object @) that is in locationa in S is in locationc in G. The permutationr is
entirely determined by the state description$'&ndG, it does not depend on the
operators that define the state space. In particulsrdefined whether or not there
exists a sequence of operators that transfasnrgo G.

Dual state (Definition 1): For stateS and goal staté-, let = be the location-based
permutation such that(S) = G. Then S¢, the simpledual of S for goal G, is
defined to ber(G).

This definition is illustrated in Figure 8. As will be shown below, with the as-
sumptions, the cost of reachirig from S and fromS< is the same, and therefore
max(h(S), h(S?)) is an admissible heuristic fa¥ for any admissible heuristik.

For example, if PDBs are being used and) = PDBJ[S], for some given PDB
for G, thenh(S?) = PDB[S] is also admissible fof.

Fig. 8. Simple duality; = 7(S) andS? = 7(Q)

In practiceS? is calculated by constructingfrom the descriptions of andG and
then applyingr to G as shown in Algorithm 1. Therefores? can be calculated
from the description of without the need to know any actual path fréhto GG as
illustrated in Figure 7(b).

Algorithm 1 Dual—Calculating the dual state according to Definition 1
Dual(StateS5)

1 letG be the goal state

2  for each locationr

2.1 leto be the object located inin S

2.2 lety be the location ob in G

2.3 definer, =y

3.3 endfor

3 Si=nx(G)

4  returnS?

11



4.3 Simple Duality: Definition 2

The advantage of our first definition is that it properly motivates the location of the
dual state in the search space. We now provide an alternative definition for the dual
state analogous to the dual concept in the constraint satisfaction field (e.g., [9]). We
then prove that the two definitions are equivalent.

In strict permutation state spaces, the roles played by objects and locations in rep-
resenting a state are interchangeable. Usually in the vector containing the state
description, thdocationsare thevariablesand theobjectsare thevalues This is

called theregular representatiomf the state. Flipping the roles objectsandlo-
cationsin the vector that describesyields thedual representationHere,objects

are thevariablesandlocationsare thevalues Given a vector of sizé( that repre-

sents a state, the regular representation treats it as the objects that occupy locations
{1... K}. The dual representation will treat them as the locations that are occupied
by objects{1... K'}. For example, if the representative vectokis, 1,4, 2 > then

the regular representation refers to a state< 3, 1, 4,2 > (object 3 in location 1,
object 1 in location 2, etc.). The dual representation of this vector corresponds to
the dual state5? where object 1 is in location 3, object 2 is in location 1, etc. The
dual state in its regular representatiorsis=< 2,4, 1,3 >

In this section, we assume a canonical definition of the goal &tatéhat is, given
an enumeration of both the objects and the locations, théhabject: is located
in location:. For the goal state, the regular and dual representation are identical.

Dual state (Definition 2): Given a vector representation of a stateS, the dual
state,5¢, is defined to be the state which is described/bin the dual representa-
tion.

Algorithm 2 is based on Definition 2 and calculates the regular representation of
the dual states? from the regular representation 8f

Algorithm 2 Dual—Calculating the dual state based on Definition 2
Dual(StateS)

1. For each object € S

1.1. Lety be the location of object in .S

1.2. InS? place objecy in locationz

2. Returns?

4.4 Analysis

A number of theorems concerning duality are now given. The following terminol-
ogy is usedLocs(x) = y indicates that objeaj is located at location in statesS.

12



Therefore, in the goal stat&, Vi Locg(i) = i. Cope(X,Y') denotes the cost of an
optimal path from stat& to stateY’.

Theorem 4.1 Definitions 1 and 2 are equivalent

Proof Let G be the canonical goal staté,be a stater be the permutation such
thatr(S) = G, andS? be the dual of stat§ obtained by Definition 1. It needs to
be shown that if inS an arbitrary objecj is located in location, then inS¢ object

7 will be located in locationy. Assume thatr moves the content of locationto
locationj. Applying = for the first time (onS) will move object; from location:
to locationj (its home location inz). Applying 7 for the second time (o6r) will
move object from its home location to location O

1 3 T - 1 5 3, 4
4 13zhGHaD |1 §‘i\\

NS
(a) state S Dual (b) goal state G
representation
3 ™ 1
T
z-(l DG AHE) L2 §\ 3
(c) goal state G (d) dual state S9

Fig. 9. The relation between a stafeand its dual stat&?. Given a representative vector
< 3,1,4,2 >, then its regular representation corresponds wehile its dual representation
corresponds t&<.

Figure 9 shows the relation between state veét¢Figure 9(a)) and its dua$?
(Figure 9(d)) according to both definitions. Figure 9(a,b) shévkging mapped to
G by the permutationr, with the definition ofr written beneath the arrow{(, 3)
means that the object in locatidnin S is mapped to locatiofi in G, etc.). In the
lower part of the figurer is applied toG to produceS®. The vector that describes
S, < 3,1,4,2 >, means that locatioh is occupied by object, 2 by 1, etc. In the
dual representatiorfwhereobjectsare thevariablesandlocationsare thevalueg
this vector means that objettis in location3, object2 is in location1, etc. The
state that corresponds to the dual representatiéf is Figure 9(d).

Theorem 4.2 (§%)" = §
Proof Show that these states have the same objects in the same location. We will
show thatvLocation y : (Locs(y) = x)==>(Loc(gaya(y) = )

And indeed,
VLocation y : (Locg(y) = x) 2 (Locga(z) = y) == L2 (Locigaya(y) = x). O

Theorem 4. 3 If O = {01,00,...,0,} is a legal path fromS to G thenO~! =
{071, ... 05", 07} is alegal path fronf? to G and has the same cost@s

Proof If O ={o0y,09,...,0,}isalegal path front to G thenO is also a legal path

13



from G to S¢ (Definition 1). Because all operators can be reversed (Assumption 3)
the sequence of operatats ! = {o;!,..., 05, 07"} is a legal path front? to G
Since operators and their inverses cost the same (Assumption 3) the ¢bandf
O~1isthe same. O

Theorem 4.4 C,,,.(S, G) = Cop (54, G)

Proof There are two cases to consider. If there does not exist an operator sequence
transformingS into G, then there cannot exist an operator sequence transforming
S4 into G and therefore”,,,.(S, G) = Cou (5% G) = oc. Alternatively, if there

does exist an operator sequence transfornsingto G, let O be a minimum-cost
sequence of operators that transfornssinto G. According to Theorem 4.8) ! is

a legal path fromt“ to G of the same cost and therefafg, (S, G) > C,,i (5%, G).
Applying the same reasoning to any minimum-cost path figfnto G implies

Copt (5%, G) > Cop((SH),G) T2l 2 ¢ 1(51.G) > Com(S, G). These two
inequalities together implg',,.(S, G) = C, (5S4, G). O

As a result, any admissible heuristic for stateis also admissible for stat&, and
vice versa. Therefore, given a heuristidor each state, its dual heuristich,(.5)
can also be calculated (the regular heuristic of the dual stat¢)). If PDBs are
being used, then a PDB lookup for the dual stéttés used as a heuristic bound for
S. Such a PDB lookup fof?, is called thedual PDB lookugfor S.*

5 Attributes of the Dual Heuristic
In this section different attributes of the dual heuristic are discussed.
5.1 When the Regular and Dual Heuristics Provide Different Values

Admissible heuristics for permutation problems can be divided into two types. Let
7 be the permutation that transforifiso GG. The first type of heuristic calculates its
value by considering the effect af(the current location) foall the objects of the
state. For example, Manhattan distance provides a heuristic bound for moving each
of the tiles. The second type of heuristic considers the effegtfof only asubset

of the objects. PDBs, for example, provide full solutions to the relaxed problem
that contains only a subset of the objects.

4 1n [7], the same idea of flipping the roles of objects and locations is used to prddate
patternsanddual PDB lookupsThe dual representation presented in this paper generalizes
this principle to the entire state and allows any heuristic of the dual Stafieot just PDBs)

to be used foiS. The definition of dual PDB lookups of [7] is different but is equivalent to
the regular lookup of the dual state (i.e.,R® B[S?]) which is defined here.
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Fig. 10. 15-puzzle duality and Manhattan distance

For the first type of heuristic (e.g., Manhattan distance), the dual and regular heuris-
tics are equal. This is because both states are reached from the goal state by apply-
ing the same permutation (in reverse directions) and the heuristic considers a
similar effect ofr for all the objects of the state for bofhand S¢. Consider state

S andS? as provided in Figure 10. For each tile$ha unique tile can be found in

S? with the same Manhattan distance (the same effeg).dfor example, irf, tile

1 (located in locatiord) has to move one up—the Manhattan distance of this tile is

1. Similarly, in S? tile 5 (located in locatiorl) has to move one step down. Note

that this is only true when all the objects in the state are considered.

For the second type, the regular and dual heuristics are not necessarily equal. Using
only a subset of objects might cause a different heuristic result. For example, as-
sume that only tilel is being considered by Manhattan distance. In Figure 10. tile
1I’'s Manhattan distance heuristic fhis 1 while inS? it is 4. For PDBs, only a sub-

set of the objects is considered and therefore the heuristic of the dual state can be
different. For example, assume that in Figure 10, the PDB based ofijles5, 7}

is used. The PDB lookup fdf has these tiles in locatiod8, 12, 13, 14}. The PDB
lookup for S¢ has these tiles in location®, 5, 15, 12}. These tiles now have to
travel different paths to get to the goal state and therefoend S¢ have com-
pletely different entries in the PDB with completely different values.

5.2 Inconsistency of the Dual Heuristic

A heuristich is consistentf for any two statesz andy, |h(z) — h(y)| < dist(z,y)
wheredist(z,y) is the optimal distance between them. In other words, the differ-
ence between the heuristic values of two states is never greater then the cost of a
path between them. When moving from a parent node to a child node, using the
heuristic of the dual state might produceonsistenf21] values even if the heuris-

tic itself (in its regular form) is consistent. In a standard search, a parent Btate,
and any of its children$, are neighbors by definition. Thus a consistent heuris-

tic must return consistent values when applied’tand S. However, the heuristic
values obtained foP? andS? might not be consistent becauBé and.S? are not
necessarily neighbors. This is a consequence of the following corollary.

15



State Cost | The corresponding pattern h
Lalefafafsfefafals] | 0 | [e[-[-[alsle[ ][] | O

s | [alefa]afslofrlofof 2 | [ofel-fals[el-[-[-] o0
S | Lelslafafelafrlolsl | 2 | [elsiaf-]-[-[-]-[-] |1
G| [alefalafslefslafsf | 0o | [-f-]-[als[e]-[-[] o0
S| Lalelalafslefrlofof | 2 | [-[-]-[als[e]l-[-[] o0
S| Lelslolafalafr[ofs] | 2 | [alslo[-[-[-[-[-][-] |2

Fig. 11. 9-pancake states

Corollary 5.1 Let P and .S be two states and letbe the actual distance between
them. The distance betweétf and S? is not necessarily. In particular it might
be larger.

Proof An example is sufficient. Consider tlfepancake puzzle states shown in
Figure 11. State&; is the goal state of this puzzle. Staig is the neighbor of>
obtained by reversing the tokens at locations 1-3 (shown in the bold frame), and
stateS, obtained by further reversing the tokens in locations 1-6. SGtes¢ and

S¢ are the dual states 6f, S; andS, respectively. Observe that while statgsand

S, are neighboring statesy and.S¢ (their duals) are not neighbors. Reversing any
consecutive: first tokens of stat&¢ will not arrive at nodesy.

A consistent heuristic might return values f§f and.S¢ which differ by more than

1. Using these values f¢f; and.S; would be inconsistent since they are neighbors.
This can be shown by the following PDB example. Suppose patterns fdi-the
pancake puzzle are defined by only considering tokens6 while ignoring the

rest of the tokens. The resulting PDB provides distances to the goal pattern from all
reachable patterns. The right column of Figure 11 shows the corresponding pattern
for each state obtained by using theymbol to represent a “don’t care”.

Regular PDB lookups produce consistent heuristic values during search [11]. In-
deed, since states, and S, are neighbors, their PDB heuristic values differ by at
most 1. In state;, tokensi — 6 are in their goal locations and therefdrgs,) = 0.

In stateS, tokens4 — 6 are not in their goal locations and we need to apply one
operator to reach the goal pattern and thuS,) = 1. Dual PDB lookups are ad-
missible, but not necessarily consistent. The dual PDB lookup for Statee., the

5 Note that in this particular examplgy andS¢ are identical. In this domain applying a
single operator twice in a row will reach the same state and Staitea single move away
from the goal.
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PDB lookup for state5{ returns 0 since tokens— 6 are in their goal location for
state S{. However, the pattern projected from stai¢ is two moves away from
the goal pattern. Thus, performing the dual lookup for stateand.sS; (i.e., PDB
lookups for states¢ and S¢) will produce heuristics that are inconsistent (0 and
2). Thus when moving fron%; to S, (or vice versa), even thoughwas changed
by 1,h was changed by 2.0

5.3 Geometrical Symmetries Versus Dual Symmetries

There is a major difference between states obtained by a dual symmetry and states
obtained by a geometrical symmetry. This difference is illustrated in Figure 12. As
derived from Corollary 5.1 above, given a stateand its dualS? the neighbors

of S¢ are not necessarily the dual states of the neighbots. gtis is shown in
Figure 12.b. For geometrically reflected states (suc$¥asf Figure 12.a), however,
exactly the opposite of Corollary 5.1 is true. That is if the distance between states
P andS is c then the distance betweéif andS? (the geometrical reflected state of

P andYS) is exactlyc. Geometrical symmetries only transform the domain without
changing its internal structure. As a result, neighbors of a reflected$tate also
reflections of the neighbors of. Therefore, using heuristics of the reflected states
(that is, using the PDB lookup towards the reflection of the goal as described above
in Section 3.2) also produce consistent heuristics.

(a) Geometrical symmetry (b) Dual symmetry

Fig. 12. Geometrical and dual symmetries

5.4 Bidirectional Pathmax

In [7,21], thebidirectional pathmaXBPMX) method for propagating inconsistent
heuristic values during search was introduced, and experiments showed that it can
be effective in pruning subtrees that would otherwise be explored.

The bidirectional pathmax method is illustrated in Figure 13. The left side of the
figure shows the (inconsistent) heuristic values for a node and its two children.
When the left child is generated, its heuristic<€ 5) can propagate up to the parent
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Fig. 13. Propagation of values with inconsistent heuristics

and then down again to the right child. To preserve admissibility, each propagation
reducesh by the cost of traversing that path (1 in this example). This results in

h = 4 for the root and: = 3 for the right child. When using IDA*, this bidirectional
propagation can cause many nodes to be pruned that would otherwise be expanded.
For example, suppose the current IDA* threshold is 2. Without the propagation of
h from the left child, both the root nod¢ (= g + h = 0 + 2 = 2) and the right

child (f = g+ h =1+ 1 = 2) would be expanded. Using the propagation just
described, the left child will increase the parerit'salue to 4, resulting in a cutoff
without even generating the right child. BPMX should be regarded as an integral
part of any search algorithm when the heuristic is inconsistent and the operators are
invertible, and it is used in all the experiments reported in this paper.

6 Dual Search

Traditionally, heuristic search algorithms find optimal solutions by starting at the
initial state and traversing the state space until the goal state is found. The various
traditional search algorithms differ in their decision as to which state to expand
next, but in all of them a solution path is found only after all the states on the path
have been traverse@ual searchhas the remarkable property of not necessarily
visiting all the states on the solution path. Instead, it constructs its solution path
from path segments that it finds in disparate regions of the state space. In this paper,
the focus is on DIDA*, the dual version of IDA*. Dual versions for other algorithms
can be similarly constructed.

6.1 Dual IDA* (DIDA%)

Recall that the distance to the ga@alfrom both.S and.S? is identical and therefore

the inverse O, of any optimal pathQ, from S? to G is an optimal path from

S to G. This fact presents a choice, which DIDA* exploits, for how to continue
searching fromS. For each statel, DIDA* computesh(S) andh(S?). Suppose

that max(h(S), h(S?)) does not exceed the current threshold. DIDA* can either
continue from this point using, as IDA* does, oiit can switch and continue its
search fromS?. Switching fromS to S¢ is calledjumping A simple policy for
making this decision is to jump i§¢ has a larger heuristic value thah— larger
heuristic values suggest that the dual side has a better chance of achieving a cutoff
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sooner (due to the locality of the heuristic values). This is referred to gsittye

if larger (JIL) policy. Deciding when to jump is an important part of the algorithm,
and alternatives to JIL are discussed later. Of course, later on in the search, DIDA*
might decide to jump back to the regular side (e.g., when that heuristic value is
better). Once the goal state is reached an optimal solution path can be reconstructed,
as described below, from the sequence of dual and regular path segments that led
to the goal from the start.

(&) No jumps (b) One jump (c) Two jumps

Fig. 14. Dual IDA* searchDIDA*)

Figure 14 illustrates the difference between IDA* and DIDA*. In Figure 14(a),
IDA* finds a path fromS, to GG. In Figure 14(b), the DIDA* search starts the same:
starting at regular stat§, moves1 and 2 are made, leading to statg. Then,
because of its jumping policy, DIDA* switches to the dual stafe No further
switches occur, and DIDA* continues on the dual side until the gbal reached.

In 14(c), the DIDA* search starts out the same as in Figure 14(b) but atSfate
jump is made back to the regular side and DIDA* continues fi$yno G.

6.2 Constructing the Solution Path

The correctness of DIDA* is best seen by considering how the path segments it
finds are joined together to create a path from start to goal. IDA* constructs its
solution path by backtracking from the goal state to the start state, recovering the
path in reverse order. This will not work in DIDA* since some of the moves are on
the regular side (i.e., the forward search) while some are on the dual side (i.e., the
backward search). The solution is to maintain an additional bit per state during the
search, thesidebit, indicating whether the search at that point is on the regular or
the dual side. At the start of the search, the side bit is set to REGULAR. A child
inherits the bit value of its parent, but if a jump occurs, the value of the side bit
is flipped. To construct the solution path, DIDA* backtracks up the search tree to
recover the moves made to reach the goal. If the side bit for the current move,
has the value REGULAR, thenis added to thgront of the partially built path as
usual. However, if the side bit indicates theis on the dual side, then its inverse,
o~1, is added at thend of the partially built path.

It is important to note that (based on Theorem 4.3) only the operators are taken
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from the dual side to the regular side. The exact states visited by the path in the
dual side are not necessarily the duals of the states of the actual solution path.

In Figure 14(a), when IDA* backtracks, the solution path is reconstructed by adding
the moves to the front of the partially built path, resulting in the path being built in
the order{6},{5,6},...,{1,2,3,4,5,6}. Figure 14(b) illustrates how this works

in DIDA*. Backtracking fromG will lead to the following pairs of values (corre-
sponding to the move and the side bit) in the orfl& !, D), (471, D), (571, D),

(671, D), (2,R), (1, R)}. Since the side bit of the first four moves indicates that
they belong to the dual side, the inverses of those moves are added to the end of the
partially built path, yielding the partially built paths 63}, {3,4},{3,4,5},{3,4,5,6}.
Now the side bit indicates that the search occurred in the regular side. Hence the
next two moves are inserted at the front of the path, obtaiging, 4, 5,6} and
{1,2,3,4,5,6}. The dashed line in Figure 14(b) shows how to concatenate the so-
lution path fromS¢ to G in its correct place.

Algorithm 3 DIDA*

1 DIDA*(initial _stateS) (returns an optimal solution)

2 letthreshold = max(h(S), h(S?))

3 letPath = NULL

4  repeaf

4.1 GoalFound = DDFS(S,NULL,NULL,0,REGULAR,Path,threshold)
4.2  threshold = nextthreshold

4.3 }until Goal Found

5 returnPath

Algorithm 3 presents the pseudocode for DIDA*. DIDA* mirrors IDA* by itera-
tively increasing a solution cost threshold until a solution is found. Each iteration
calls DDFS (dual depth-first search) which is presented in Algorithm 4. DDFS re-
curses until a solution is found or the cost threshold is exceeded. DIDA* differs
from a standard IDA* search in several respects. First, each call to DDFS includes
extra parameters: a sid®st (indicating if the search is currently on the REGULAR

or DUAL side) and the last move made on the regular and dual sides (used for op-
erator pruning, as explained in Section 6.4). Second, a jump decision is included in
DDFS, possibly resulting in a jump (linés- 5.4). Finally, when the goal has been
found, the reconstruction of the solution path distinguishes between the regular and
dual sides (lines.3.1 — 6.3.2).
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Algorithm 4 DDFS “::” adds an element to a list.

1 boolean DDFS(stat&, previousmovepm,.,
previousdualmovepm,, depthg, bool side_bit, List Path,int threshold)

2 leth = maz(h(S), h(S9))

3 if (h+ g) > threshold return false

4 if S = goal_state return true

5 if should_jump(S, S){

5.1 S = g4

5.2 swappm,. , pmy)

53 side_bit = —side_bit

5.4 } endif

6 for each legamovem {

6.1 if m = pm,~! continue /*operator pruning*/

6.2 generate child’ by applyingm to S

6.3 if DDFS(C,m,pmg, g+ 1, side_bit, Path, threshold) = true{

6.3.1 if (side_bit = REGULAR) thenPath = m :: Path
6.3.2 elsePath = Path :: m™*

6.3.3 return true

6.3.4 } endif

6.4 } endfor

7 return false

6.3 The Benefit of Jumping

The regular and dual states are different and, hence, there can be large differences
in the (admissible) heuristic values between st&temd S?.6 By using the side

that has the highest heuristic value (for the current context), one is increasing the
chances of moving into a region of the search space with values high enough to cre-
ate a cutoff. Of course, the decision to switch sides is a heuristic and not guaranteed
to improve the search every time a jump is made.

Consulting the heuristic of the dual state introduces diversity into the heuristic val-
ues obtained during the search; information is obtained from a different area of the
search space. DIDA* introduces a stronger diversity since it is not only peeking but
is physically jumping into that area.

6 For example, experiments on the 17-pancake problem with a heuristic which has a max-
imum value of 14, the difference observed was up to 8.
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6.4 The Penalty for Jumping

Usually, depth-first search algorithms avoid generating duplicate nodes by disal-
lowing operators that can be shown to be irrelevant based on the previous sequence
of operators. The simplest example of this is disallowing the inverse of the previous
operator. More sophisticated techniques enforce an ordering on the operators, disal-
lowing redundant sequences. Such mechanisms are referredperasor pruning

in this paper. Operator pruning can significantly reduce the branching factor. For
example, the branching factor of Rubik’s cube at the root node is 18, but the aver-
age branching factor below the root can be reduced by operator pruning to 13.34
[14].

There can be no operator pruning at the start state, because there is no search his-
tory. Let its branching factor b& Subsequent nodes in a normal search have a
smaller branching factor, at mast- 1, because of operator pruning. By contrast,
DIDA* sometimes pays a branching-factor penalty for jumping to a dual state. As
before, the start state has a branching factdr, ahd subsequent nodes on the reg-

ular side have a lower branching factor. However, on every branch of the search
tree, when a jump is made to the dual side for the first tmlg, the dual state has

no search history and will have a branching factob.dDn subsequent jumps on a
branch, the history on that side can be used to do operator pruning. In Algorithm 4,
the previous moves from the regular and dual sides are passed as parameters, al-
lowing DIDA* to prune the inverse of the previously applied operator on a given
side.

To illustrate this, consider Figure 14(c). DIDA* has to consider all operators at
the start state$,. Moves1 and2 are made on the regular side, reachifjgHere
DIDA* decides to jump taS¢; a completely new state with no history. Thus, oper-
ator pruning is not possible here and all the operators must be considered. DIDA*
makes moves~!, 5~ and4~! on the dual side until staté¢ is reached. DIDA*

then jumps to the dual state 6%, S,, back on the regular side. Because it is re-
turning to the regular side, a history of the previous moves is known and operator
pruning can be used in expandifg. For example, the previous operator on this
side is operato®, so its inverse2—!, can be ignored. To understand why operator
pruning can be applied, even thoughbears no apparent relation.$g, recall how
DIDA* constructs its final solution path. If a path is found leading frémto the

goal, the first operator on this path will be placed immediately after the operator
that leads ta5; in the final solution path. Since this path is optimal, it cannot pos-
sibly contain an operator followed immediately by its inverse. The same reasoning
justifies the use of more sophisticated operator pruning techniques as well. In IDA*,
operator pruning can be used at all nodes except the root. In DIDA*, the first time a
jump is made, on any given branch, no history is available and operator pruning is
unavailable. For example, in Rubik’s cube, when performing the first jump, on any
branch, DIDA* has 18 children to consider, as opposed to the average of 13.34 that
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would be seen by IDA*.

To avoid the penalty of jumping, a degenerate jumping policy, which only allows a
jump at the root node, can be used (JORJ.(ifoot) > h(root?) then the search is
conducted on the regular side, otherwise it is conducted on the dual side. No further
jumps are allowed for JOR.

7 Experimental Results for Simple Duality

This section provides experimental results that show the benefit of performing dual
lookups and using the dual search algorithm. Pattern databases are used in all the
experimental domains because they represent the state-of-the-art heuristics.

7.1 Rubik’'s Cube

Korf first solved the3 x 3 x 3 Rubik’s cube with PDBs [14]. As discussed above,
the cubies of Rubik’s cube can be divided to corner cubies and edge cubies. As a
first experiment to test the duality ideas, a 7-edge-cubies PDB was built, the largest
that can be stored in 1GB of memory. There are 510,935,040 possible permutations
of the seven edge cubies. At four bits per entry, 255MB are needed for this PDB.
The heuristics used in this set of experiments were based on this 7-edges PDB.

# | Heuristic OP | Search| Palicy Nodes| Time Jumps
1 r + IDA* - 90,930,662 28.18 -
2|d + IDA* - 8,315,116, 3.24 -
3 | max(r,d) + IDA* - 2,997,539 1.34 -
4 | max(r,d) + | DIDA* JIL 2,697,087, 1.16 15,013
5 | max(r,d) + | DIDA* | JOR | 2,464,685 1.02 0.23
6 | max(r,d) - IDA* - 29,583,452 30.27 -
7 | max(r,d) - | DIDA* JIL 19,022,292 20.44| 3,627,504
8 | max (4r,4d) + IDA* - 615,563| 0.51 -
9 | max(24r,24d)| + IDA* - 362,927| 0.90 -
Table 1

Rubik’s cube (7-edges PDB) results

Table 1 presents results for this set of experiments. The experiments above were on
100 instances with length 14. The table columns are as follows:
Heuristic: Which heuristic was used for the PDB lookupsstands for the regular
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state and/ for its dual state. Similarlyr (4d) means that we took the maximum

of 4 regular (dual) heuristics.

OP - operator pruning: “+” means that the operator leading to a node’s parent is
pruned; “=” means no operators are pruned.

Search Search algorithm (IDA* or DIDA*).

Policy: The jumping policy used by DIDA*.

NodesandTime: Average number of generated nodes and the average time needed
to solve a problem with 3.0GHz Pentium 4 machine with 2GB of memory.

Jumps: Average number of times that DIDA* jumped between the regular and dual
sides.

The first line of this table shows the results of IDA* using a regular PDB lookup.
These searches generated an average of 90 million nodes. Intuitively, one might
think that performing only a dual lookup should produce the same results since the
exact same PDB is being queried. Surprisingly, however, line 2 shows that when
using the dual heuristic the number of generated nodes decreases to only 8 million
nodes, an improvement factor of 11. The reason for this dramatic improvement
is as follows. While values in a PDB are locally correlated, the dual lookup fre-
guently looks in (“jumps” to) different areas of the PDB. Thus, the general flow
of the search benefits from a large diversity of areas in a PDB and a “bad” area
can be quickly escaped from. Since the dual heuristic is inconsistent, BPMX was
also used. In line 3, the maximum of both the regular and the dual heuristics is
used. This further reduced the number of generated nodes to roughly 3 million, an
improvement of a factor of 30 over the benchmark of line 1.

Lines4 — 5 shows the results for DIDA* using different jumping policies. DIDA*

with JIL (line 4) yields a modest improvement over liseApplying the JOR policy

(line 5) further improves the results by a modest amount. Jimapvalue reveals

that in 23 of the cases the dual heuristic at the start state was better and the search
was performed in the dual side; the other 77 cases had ties or a better regular heuris-
tic.

To better understand the penalty incurred by the first jump of DIDA*, operator
pruning was disabled and the results for IDA* and DIDA* compared. Results are
provided in lines6 — 7. Here, the operator that leads to a node’s parent is not
pruned. In both cases, the maximum of the PDB lookups for the regular and dual
states was used. Disabling operator pruning increases the search effort by a factor
of 10 when compared to line 3 where operator pruning was enabled. Results show
that in this setting DIDA* with JIL reduced the number of generated nodes by one
third compared to IDA*. The improvement factor of DIDA* over IDA* was more
significant than those reported in linésand 5 since now the penalty of the first
DIDA* jump was minor because the operator pruning was disabled.

7 In fact, we observed that a significant part of the 11-fold improvement (a 2.3-fold im-
provement) is due to activating BPMX See [7,21] for a deeper treatment of BPMX.
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Heuristics Nodes Time | Memory

max(8,6,6) 352,656,042,894 102,362| 130,757
max(8,6,6,6d,6d) 253,863,153,493 91,295| 130,757
max(8,7,7,7d,7d) 54,979,821,557 44,201| 299,757

Table 2
Rubik’s cube results

Due to geometrical symmetries in this domain there are multiple possible regu-
lar and dual lookups. Many combinations of geometrical reflected regular lookups
and geometrical reflected dual lookups were tried. Since DIDA* does not seem to
produce significant improvements for this domain, only IDA* was used here (no
jumping). The best results achieved reduced the number of nodes generated (when
taking 24r+24d) by a factor of 250, and the time (4r+4d) by a factor of 55. All this
was possible with just one 7-edge-cubies PDB stored in memory.

The results obtained for this set of experiments yield the following insights. First
they show that dual lookups are effective and using them reduces the search effort
by an order of magnitude. Second, these results show that operator pruning is im-
portant and using it reduced the search effort by an order of magnitude. Third, it
shows that in this domain, the penalty of DIDA* almost offsets the benefits and
using DIDA* only improves IDA* by a modest amount.

Korf’s original 1997 Rubik’s cube experiments on 10 random instances were re-
peated [14]. Again, since DIDA* does not seem to produce significant improve-
ment in this domain, only IDA* was used with dual PDB lookups for this set of
experiments. Korf used three PDBs for this domain: one PDB for the eight corner
cubies and two PDBs for two sets of six edge cubies. Since a legal move in this
domain moves eight cubies, the only way to combine these three PDBs is by taking
their maximum. Note that there are eight corner cubies and all eight are used by the
8-corner PDB. Thus, performing a dual lookup for this particular PDB is irrelevant.
Here, the entire space of corner cubies is in the database and both lookups give the
same result

Results for the same set of 10 random instances used in [14] were obtained and are
provided in Table 2. The results for Korf’s set ®f+ 6 + 6 PDBs were improved

by a modest amount by adding the dual lookups for both 6-edge PDBs (from 353
billion nodes to 253 billion). Increasing the edges PDB from six to seven cubies
and using & + 7r + 7r + 7d + 7d setting reduced the search to 54 billion nodes —

an improvement of a factor of 6.4 over Korf’s initial setting. The improvements of
adding dual lookups for the 6- and 7-edges PDBs are modest since most of the time

8 Since corner cubies can switch locations only with corner cubies and the entire space
corner cubies is in the database then the heuristic always returns the optimal cost. The
regular state and the dual state share the same optimal distance to the goal state thus both
evaluations will return the exact value (which is the real cost).
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the 8-corner PDB has the maximum value; this PDB is larger and contains more
cubies than the 6- and 7-edge PDBs. This can be seen in the following rates, which
were measured over 10 million random instances. FoBthe&r + 6r + 6d + 6d

setting, the 8-corner PDB had the maximum value for 73.5% of the instances while
one of the lookups in the 6-edges cubies was the maximum for only 7.3% of the
instances (the rest of the instances were a tie). These numbers changed to 40.8%
and 21.3% respectively for tlee+ 7r + 7r + 7d + 7d setting.

7.2 Pancake Puzzle

Unlike the other puzzles discussed in this paper, the pancake puzzle does not have
geometrical symmetries [2]. This is a consequence of the special structure of the
problem; each location has different attributes (such as how many operators are
applicable to a location and where the location can be permuted to). Therefore, the
dual heuristic is important because it provides the only additional possibility for
obtaining another heuristic “for free”.

Table 3 presents results averaged over 10 random instances of the 17-pancake puz-
zle. The heuristic used was a PDB based on the rightmost tokeng, . .., 16

(which gives slightly better average heuristic values than a PDB based on tokens
0,1,...,6). Here again, the phenomenon is observed that the dual heuristic is much
better than the regular heuristic and the improvement factor is 23.8 in terms of gen-
erated nodes. When taking the maximum of the regular and dual heuristic, an
improvement was obtained over the simple case of the regular heuristic: a factor of
138 in nodes generated and a factor of 92 in time.

Heuristic | Algorithm Nodes Time
r IDA* 342,308,368,717 284,054
d IDA* 14,387,002,121 12,485
max(r,d) | IDA* 2,478,269,076 3,086
max(r,d) | DIDA* (JIL) 260,506,693 362

Table 3
17-pancake puzzle results over 10 random instances

The last line of the table shows the results when DIDA* was used. DIDA* with the

JIL policy produces a roughly 10-fold performance improvement over IDA* (from
2,478 million to 260 million nodes) when using the same heuristic. In this domain
there are no obvious redundant operator sequences, so a depth-first search cannot
prune any of the operators based on the previous operators. Only the trivial pruning

9" Since the dual heuristic is inconsistent, BPMX was also used. Again, part of the 23.8-fold
improvement is due to activating BPMX.
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of the parent is possible, making the branching factor below the¥oet2. When
performing the first jump to the dual side, on any particular branch, the branching
factor increases by only one, from — 2to NV — 1.

Note that, while using the exact same PDB, the total improvement of DIDA* over
the simple case is by three orders of magnitude and the time to solve a problem was
reduced from more than three days to only six minutes.

Size| Ave. IDA* IDA* IDA* | DIDA* (JIL)
h=r h=d| h=max(r,d)| h=max(r,d)
11 9.83 16,407 867 404 275
12 10.50 148,380 6,414 2,538 1,597
13 11.88 4,268,700 98,605 29,423 15,291
14 | 12.67 66,213,088 2,143,328 474,082 229,348
15 13.78 864,968,140 38,953,014 6,259,061 2,306,745
16 14.72| 18,184,871,249 608,590,928 95,124,495 18,469,496
17 15.60| 342,308,368,717 14,387,002,121 2,478,269,07§ 260,506,693

Table 4
Pancake puzzle results for different sizes of problems

Table 4 compare results averaged over 100 random instances of the pancake puzzle
for sizes 11 to 15. For the last lines of the 16-pancake and the 17-pancake problems
(which demand days of computations) only results over 50 and 10 instances were
compared respectively. The heuristic used was a PDB based on the seven rightmost
tokens. The first column indicates the size of the pancake puzzle. The second col-
umn indicates the average optimal solution cost for each set of random instances.
The following columns presents the average number of generated nodes using dif-
ferent heuristics and different search methods. The table shows that the larger the

problem space (i.e., the bigger the IDA* search needed), the larger the improvement
for the various methods of using duality.

Figure 15 shows the improvement factor of the different variations over the basic
regular lookup (column 3 of Table 4). The figure shows that the improvement factor
of DIDA* steadily increases with the size of the problem. For the problem of size
11, it is a factor of 59. An improvement of 1,314-fold is seen for a problems of
size 17. For the smaller problems, the regular lookup in the 7-token PDB is more
accurate and provides tighter bounds on the solution, limiting the opportunities
for large performance improvements. When the problem is large the PDB is less
accurate, enabling other search and heuristic methods to find large performance
improvements. Note that the other variations are also always better than the simple

version (regular lookup only) but the improvement of these systems does not seem
to increase as dramatically as DIDA*.
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8 General Duality

The simple definition of duality used so far assumes that any operator sequence
that can be applied to any given statean also be applied to the gaal This only
applies to search spaces where operators have no preconditions (assumption 4 in
Section 4.1). In the sliding-tile puzzles, for example, operators have preconditions
(the blank must be adjacent to the tile that moves) and an operator sequence that
applies toS will not be applicable td~ if the blank is in different locations %

andG. A more general definition of duality, allowing preconditions on operators,
will now be given. Assumption 4 is dropped but assumptions 1-3 are still needed,
although assumption 1 is relaxed to allawthe number of locations, to be greater
thanm, the nmumber of objects. With this general definition, dual heuristic evalua-
tions and dual search are possible for a much wider range of state spaces, including
the sliding-tile puzzles, the Blocks World, and the Towers of Hanoi.

Fig. 16. General duality

Duality (general definition): The dual of a given state,, for goal state~, can be
defined with respect to any stakesuch that any sequence of operators that can be
applied to stat&' can also be applied to staeand vice versa. If is the location-
based permutation such thatS) = G, thenS%, the dual ofS with respect to
X, is defined to ber(X). This idea is illustrated in Figure 16. The same path that
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transformsS to G also transforms{ to S¢. As a special case, K = G (this is
possible if any operator sequence applicabl§ ie also applicable t6-) then this
definition becomes the simple definition given earlier.

6| |2 I 2
Sl?5|:(>345(3
4

3|8 6|78

P B

1 2 T 3|2
X3 5|:>6858

6 8 1

Bﬂ 112]3[4(s]6[7]8
3|2]6|8]5|1]a]7

Fig. 17. General dualitgé = 7(3(S)) = B(r(S))

The 8-puzzle staté and the goal staté& of Figure 17 do not have the same ap-
plicable operators. For example, the operatmoVe up the tile in the middles
applicable toS but not toG. A state X needs to be found such that all operator
sequences applicable towill be applicable toX. This is done with the mapping
G, which renames the tiles to transforshinto X. For the givenS this X could

be any state having the blank in the same positiof.as$} can be derived in two
ways, either by applying to X (as shown in Algorithm 5) or by renaming the tiles
in G according ta3. = (shown in Figure 17), for example, maps the tile in the upper
left location in S, or in X, to the lower left location irG, or S¢, respectively. By
contrast,3 renames objedt in S, or in G, to objectl in X, or S¢, respectively.

Algorithm 5 Calculation of the general dual state of S with respect to X
Dual(StateS, Goal G, StateX)

1 for each locatiom {

1.1 leto be the object located inin S

1.2 lety be the location 0b in G

1.3 definer, =y

1.4 } endfor

2 St =n7(X)

3 return 5%)

By definition, any legal sequence of operators that prod$gesvhen applied to

X can be legally applied t§' to produce, and vice versa. Because an operator
and its inverse cost the same, duality provides an alternative way to estimate the
distance fromS to G: any admissible estimate of the distance fréfp to X is

also an admissible estimate of the distance fiono G. If PDBs are being used,
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general duality suggests using a POB) By (with X as the goal state), in addition
to the usual PDBP D B (with GG as the goal). Given a stafg in addition to the
standard heuristic valué,D B[S], a heuristic value for the dual state can be used
by computingr for S and then looking ug® D Bx [7(X)].

It is possible to have multiple stateSX;}, each playing the role ok in the def-
inition. In this case, a stat€ could have more than one dual — it will have a dual
with respect to eaclX; that has the all-important property that any sequence of
operators applicable t6 is also applicable td; and vice versa. A PDBP D By,
would be built for eachX; (with X; as the goal). Lookups for the dual stateSf
could be made iP D By, for eachX; for which a dual ofS is defined.

For the sliding-tile puzzles, we defing; to be a state in which the blank is in
position, and build a PDB for eaclX;. Then, given a stat® with the blank in
positioni, the dual ofS with respect toX; is calculated and its value is looked-

up in PDBy,. For example, in the 8-puzzle there are nine different locations that
the blank could occupy. Define nine different stat&g, . . Xz, with X; having the

blank in position;, and compute nine PDBs, one for eaXh Of course, geometric
symmetries can be used to reduce the number of distinct PDBs that must actually be
created and stored. For example, below only four 7-tile PDBs are needed to cover
all possible blank locations in the 15-puzzle.

8.1 Other Domains

To convey the generality of general duality, we will briefly describe how it applies
to two additional domains, the Blocks World, and the Towers of Hanoi.

In the Blocks World, there ar& objects (blocks), each of which may be placed
on a “table” or on another block.There may be at most one block on a block, so
towers are formed of various heights when blocks are stacked upon eacH’ther.
The size of the state space is approximajgly) « (B!), wherep(B) is the number

of ways of partitioning the integeB. The standard Block World operators allow
any block to be picked up (by a “hand” that then holds the picked-up block) if it
has no block on top of it, and to put the block being held down onto the table or
onto any block that has nothing on top of it. Two states can have the same set of
operator sequences applied to them only if they have the same “structure”, i.e. they
partition B the same way (e.g. into two towers, one of heighthe other of size

B — 3). In order for each state to have a non-trivial dual, we needornfer each
different structure — in other words we negd3) differentX; states. This number
grows fairly quickly asB increases but it is not excessively large for the values

10 Note that there could bB different stacks, each with up # objects. A location is any
possible location in any of these stacks. Of course, many of the locations are empty. But,
notionally, the number of distinct locations(y B?).
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of B typically used in experiments. For example, for B=12 blocks the number of
structuresp(12), is 77. If practical considerations force only some of theX;7

PDBs to be computed, duals will exist for the states that have the same structure as
one of X;’s for which a PDB was built.

The Towers of Hanoi is the same as the Blocks World except for these differences:
(1) there are a limited number of locations on the table (called “pegs”), typically
three or four, and each peg has an identity; and (2) each block (called a “disc”) has
a distinct “size”, and a larger disc cannot be placed on top of a smaller one. The
latter constraint causes the number of distinct structures to explode exponentially
— two states can have the same set of operator sequences applied to them only if
they contain exactly the same towers of discs, which means they can differ only in
which pegs the various towers are on. General duality applies in this case, but it is
of no benefit.

8.2 Dual search for the general case

Suppose dual search is proceeding on the “regular side” (Wiéts the goal) and
decides at staté to jump to S¢, the dual ofS with respect toX;. Search now
proceeds withX; playing the role of the goal in all respects. In particular: (1Xjf

is reached, the search is finished and the final solution path can be reconstructed;
and (2) the permutation is calculated usingX; instead of(z. The latter point has

an important implication for the sliding-tile puzzles: the dual of any state generated
when the search goal is; will have the blank in location.

9 Experimental Results for the Sliding-tile Puzzles (General Duality)

General duality has been implemented for the 15-puzzle and 24-puzzle. In this
section, results for both using dual heuristics and using the dual search algorithm
are given for these domains.

9.1 15-puzzle

For the 15-puzzle, the sanfe- 8 PDB partitioning from [15] was used (as shown

in Figure 5). As explained in Section 8, for each possible blank location a unique
PDB has to be built to be able to perform a lookup for the dual state and calculate
the dual heuristic. However, the number of unique PDBs that must be built can be
reduced. Given the location of the blank, then a horizontal line (or a symmetric
vertical line) across the middle of the puzzle divides it into two regions of eight
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Fig. 18. Four different (dual) 7-tile pattern databases

locations. One region (call i) has 8 locations which are occupied by eight real
tiles, and another region of 8 location8)(which are occupied by seven real tiles
and the blank. The 8-tile group is not affected by the blank since it has exactly 8
location with exactly eight tiles in it and therefore, the regular 8-tile PDB can be
used for the dual state.

This is not the case for the 7-tile PDB which is affected by the location of the blank.
However, as shown in Figure 18 there are only four different unique blank locations
for the 7-8 partitioning. A unique 7-tile PDB should be built for each of these cases.
Any stateS of the 15-puzzle can be mapped into one of these cases in order to
calculate the relevant PDB for its dual st&té The frame on the left of Figure 18
indicates the relevant PDB for the dual lookup of each possible blank location. In
those locations where two PDBs are given, then the right label indicates the PDB
to use for a horizontal partition while the left corresponds to a vertical partition.

The amount of memory needed is 519KB for the 8-tile PDB and 57.5KB for a 7-tile
PDB. Thus the total memory needs (the 8-tile and 4 7-tile PDBs) is 749KB. The
three extra PDBs needed to handle all the dual cases correctly, represent a small
increase of memory.

Table 5 presents results of the different heuristics averaged over the same 1,000
instances used in [15]. The average solution for this set of instances is 52.52. The
first column indicates the heuristic used, with ‘r¥ and ‘d* representing the re-
flected regular and dual PDB lookups.

Line 1 presents the results when only the regular PDB is used, while line 2 presents
the results when only the dual heuristic is used. An interesting phenomenon is that
unlike the other domains, in the 15-puzzle the pure dual PDB lookup was worse
than the pure regular lookup (it generated almost twice as many nodes). The reason
for this is the location of the blank. Note that while the regular PDB lookup always
consults the 8-tile PDB and the 7-tile PDB labeleth Figure 18, the dual state
might also consult one of the other 7-tile PDBs (labeled andd). The current
stateS always aims for a regio® configuration such that the blank is located in a
corner (the goal state) while the dual stafeneeds to consider other possibilities

for region B. It turns out that getting the blank to the corner is a harder task and
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# | Heuristic Algorithm | Jump| Av. H Nodes| Time

One PDB lookup
1|r IDA* - 44.75| 136,289| 0.081
IDA* - 44.39 | 247,299| 0.139

N
o

Two PDB lookups

3 | max(r,r*) IDA* - 45.63| 36,710| 0.034

4 | max(r,d) IDA* - 44.40| 65,349| 0.069

5 | max(r,d) DIDA* JIL | 44.40| 51,633| 0.066

6 | max(r,d) DIDA* J15 | 44.40| 36,937| 0.047
Four PDB lookups

7 | max(r,r*,d,d*) | IDA* - | 46.12| 18,601| 0.022

8 | max(r,r*,d,d*) | DIDA* J15 | 46.12| 13,687| 0.019

Table 5
Results for the 15-puzzle

needs more moves. While the average value over all the entries of the PDB labeled
a in Figure 18 is20.91, the average values of the PDBs labeled andd are

20.81, 20.31 and 20.53 respectively. Thus, the values obtained by the PDBs that
correspond ta, ¢ andd will be smaller than those obtained by the PDBuof

Historically, the goal location of the blank is in the corner. However, if a goal state is
set such that the blank is in location 4 (as in Figure 18(c)) then the regular heuristic
will always look in the weakest PDB while the dual heuristic will consult the other
PDBs as well. Such experiments have been made and, indeed, the pure dual PDB
lookup generated nearly 40% fewer nodes than the pure regular PDB.

Given one PDB lookup, one either performs a lookup on the regular or the dual

PDB state. When two lookups are allowed many other combinations are possible.
Line 3 of Table 5 used the maximum of the regular and reflected PDBs. Note that

lines 1 and 3 are the same results obtained by [15], but on different (faster) hard-
ware. Line 3 presents the best published results for this puzzle [15]. Line 4 uses the
maximum of the regular and the dual heuristic. For the same reason as line 2, line 4
was worse than line 3 since it used all four PDBs and not just the best one.

DIDA* experiments included two jumping policies: JIL and J15. J15 works as fol-
lows. The sliding-tile puzzle has two important attributes that did not arise in the
previous domains, but should be taken into account in DIDA*'s jumping policy.
First, the branching factor is not uniform. It varies from two to four depending
on the location of the blank, and will often be different f®rand S¢. Second, as
explained above, there will be several different PDBs, each based ofi hav-
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ing the blank in a different position. Th¥, are chosen to maximally exploit the
geometrical symmetries of the puzzle, so that although there are 16 positions the
blank could be in, only four PDBs are needed. The average heuristic value for each
of these PDBs is different. Note that a small difference in average PDB value can
have a dramatic effect on the PDB'’s pruning power. Becauaad S¢ will often

have the blank in a different location, and therefore draw their heuristic values from
different PDBs, it is important for the jumping policy to take the average value of
the PDBs into account.

J15, considers both these attributes. It is a three-part decision process. First, the
effective branching factor of the regular and dual states is compared. This is done
by considering the blank location and the history of the previous moves, choosing
to prefer the state with the smaller effective branching fattogecond, if there is

a tie, then the quality (average value) of the relevant PDB is considered. Preference
is given to the PDB with the higher average. The average values of the four PDBs
were given above. Third, if there is still a tie, then the JIL policy is used.

The results for DIDA* with JIL and with J15 are presented in lines 5 and 6. DIDA*
with J15 is almost twice as efficient as IDA* usimgaz(r, d) (line 4). However,

as explained earlier the dual heuristic was inferior in this particular domain be-
cause the regular heuristic used a PDB with higher average values it d)

was almost two times slower than the benchmark results from [15] (line 3). Using
DIDA* with J15 can overcome this problem. DIDA* with J15 (line6 ) generated
roughly the same number of nodes as the benchmark results when using only two
PDB lookups.

Finally, the lines 7 and 8 perform all four possible PDB lookups on this domain.
This is achieved using both regular and dual lookups and their reflections about
the main diagonal. Line 7 presents the maximum over the four PDB combinations.
Using all four lookups reduces the number of generated nodes by more than a factor
of two and eliminated one third of the execution time compared to the best results
of [15] (line 3 of Table 5). The time improvement is smaller because in the new
setting four PDB lookups are performed, as opposed to only two PDB lookups for
the previous benchmark.

' The reliance of J15 on the branching factor causes a subtle problem. Suppose the start
state,S, has the blank in locatiod. It will have a branching factor of four but its dualg,
calculated with respect t&’5, will have a branching factor of 2, because, it will have the
blank in the same location as goal statéthe upper lefthand corner). Dual search with J15
will therefore jump toS¢ and proceed searching from there wih as the goal. The states
generated during this search will have branching factors of at most 3, but their duals will all
have a branching factor of 4. They will have the blank in the same location as the current
search goal X5, but without having any history on the other side (because the jump was
made at the root state). J15 will therefore never make another jump. To avoid this problem,
jumps from states with the blank at interior locations that are within a few moves of the
start state are not permitted.
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To the best of our knowledge using the four regular/dual normal/reflected PDB
lookups gives the best existing heuristic for this puzzle.

It is important to note that the dual lookups for the sliding-tile puzzles are of great
importance as there is only one geometrical symmetry available for the state-of-
the-art additive heuristic—the reflection about the main diagonal. Thus, the dual
idea doubles the number of possible lookups and achieved a speedup of a factor of
two over the previous benchmarks.

When performing all four possible lookups with DIDA* and J15, the resultis a new
state-of-the-art solver. The number of nodes is now reduced to only 13,687 and the
average time per problem is now 0.019. Of historical note is that the number of
generated nodes is now nearly 30,000 times smaller than when IDA* first solved
the 15-puzzle using only Manhattan distance [12].

Note from the table that the constant time per node is not significantly increased
when moving from IDA* to DIDA*. The reason is that the most time consuming
stage of these algorithms is the overhead of the PDB lookups which slow down
the calculations because they perform queries into main memory. This overhead
depends on the number of PDB lookups and is similar in both IDA* and DIDA*.
The only additional overhead in DIDA* is activating the jumping policy which is
relatively very small.

9.2 24-puzzle
PDB | Average
19.82
19.09
110/ 1 19.76
6116 0] 6 | 19.60
10 |11 {12 | 11|10 6 6 6 6 10 | 19.32
5/6|11/6|5 11 19.89
o|1/10|1]0 6 ‘6 6 |6 12 | 20.30
(a) symmetries (b) 6-6-6-6 PDB (c) Quality

Fig. 19. 24-puzzle heuristic

Similar experiments were performed using the 24-puzzle. The original 6-6-6-6 par-
titioning from [15] (Figure 5) needed storage for only two 6-tile PDBs since all
the3 x 2 rectangles are symmetric. As before, additional PDBs are needed to han-
dle the blank. Eight 6-tile PDBs are used: one for all the 2 rectangles and
their duals, and seven 6-tile PDBs for the irregular shape in the top left corner (see
Figure 5). They are numberéd1, 5,6, 10,11,12 in Figure 19, with the number
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reflecting the location of the blank in th¢; that defined the PDB. Figure 19(a) in-
dicates which PDB is to be used for each possible position of the blank, and Figure
19(b) shows two different 6-6-6-6 additive PDB partitioningd,) B, and PD B

(the PDB used in [15]). Figure 19(c) shows the average heuristic value for each of
the PDBs. Each 6-tile PDB needs 122MB and the new system needs eight times
as much memory. When using DIDA*, the JIL and J24 heuristics were used (J24
works exactly the same way as J15 but for the 24-puzzle).

# | Heuristic Search| Policy Nodes Jumps

Two PDB lookups

1 | max(r,r) IDA* | - 43,454,810,045 -
2 | max(r,d) IDA* | - 31,103,112,895 -
3 | max(r,d) DIDA* | JIL | 16,302,942,680 176,075,343
4 | max(r,d) DIDA* | J24 8,248,769,713 23,851,828

Four PDB lookups
5 | max(r,r*,d,d*) | IDA* | - 13,549,943,868 -
6 | max(r,r*,d,d*) | DIDA* | J24 3,948,614,947 13,083,286

Table 6
DIDA* results on the 24-puzzle on the first 25 random instances

In [15] 50 random instances were optimally solved. This data set was sorted in in-
creasing order of their optimal solutions. Table 6 presents the average results over
the first 25 random instances for all the different variations. Table A.3 in the ap-
pendix gives further results for the entire set of 50 instance for the best variations
of DIDA*. The first line presents the benchmark results from [15] where the max-
imum between the regular PDB)(and its reflection about the main diagonai)(

were taken. The second line is IDA* with regular and dual PDB lookups. Line 3,

is DIDA* with JIL. Finally, line 4 shows that DIDA* with J24 outperforms the
benchmark results by a factor of 5.3. Detailed results for each of the 50 instances
from [15] with variations on the PDB lookups is provided in the appendix.

The last two lines (5 and 6) present the case where all possible four PDB lookups
were used. IDA* with all four lookups improved the benchmark results by a factor
of 3.2. DIDA* with all four lookups further improved this to a total of improvement
factor of 11.0 over the benchmark. Furthermore, note that DIDA with two lookups
(r, d) outperform IDA* with the entire set of four lookups by a factor of 1.65.

The versions with two PDB lookups ran at around 300,000 nodes per second while
the versions with 4 PDB lookups ran at around 220,000 nodes per second. Thus,
as observed in the other domains the improvement in the total running time was a
little smaller.
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10 Conclusions and Future Work

Duality is a new form of symmetry between states in permutation state spaces and
it allows the usage of multiple heuristics for a given state. DIDA* is a novel search
algorithm which exploits this symmetry. DIDA* can switch between state represen-
tations to maximize the overall quality of the heuristic values seenin the search. The
algorithm has several surprising properties, including no need for a search frontier
data structure and solution path construction from disparate regions of the search
space. Using the dual heuristic significantly improves the heuristic value. Adding
the dual search algorithm provides additional performance gains (up to an order of
magnitude) in several application domains using a state-of-the-art heuristic search
algorithm.

Future work can continue in the following directions:

e Obtaining a better understanding of the jumping policies. Given an application,
how does one go about determining the best policy?

e Analysis to see if the duality concept can be generalized from permutation state
spaces to encompass a wider set of application domains and perhaps other forms
of permutation problems or even general search problems.

¢ Integrating the idea of duality into other search algorithms (e.g., A* [8], RBFS [13],
breadth-first heuristic search [23]). Initial results with Dual-A* on the 15-pancake
puzzle reduce search time by roughly 20%.
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A Experimental Results of the 24-puzzle

# | Heuristic Search| Policy Nodes Jumps

Two PDB lookups

1 | max(r,r*) IDA* | - 360,892,479,67( -
3 | max(r,d) DIDA* | J24 75,201,250,617 147,733,547

Four PDB lookups

5 | max(r,r*,d,d*) | DIDA* | J24 37,674,826,649 78,134,424
Table A.1
DIDA* results on the 24-puzzle on the 50 random instances

In this section, results for the entire set 50 random instances of the 24-puzzle are
given. They are compared to the results in [15]—IDA* wittux(r, r+)—and are
referred to as the “Benchmark” in the following tables. Table A.1 summarizes the
results on the entire set of 50 instances. The best version outperforms the bench-
mark by an order of magnitude.

The 50 instances have been sorted by increasing order of length of the optimal so-
lution. In Tables A.2 and A.3 the instances are given according to this order. The
number in the parenthesizes is the instance number given in [15]S@lo®lumn

gives the length of the optimal solution path. The next three columns provide the
number of generated nodes for the four different algorithms. Bérechmarkcol-

umn corresponds to the+ 7 system from [15]. The next columdDA * (r,d),

uses IDA* but takes the maximum between the regular and dual heuristic. Finally
the last two columns present results obtained by DIDA* with the J24 jumping pol-
icy and using two and four PDB lookups. For all instances one can see the improved
performance of the new methods. Table A.3 further gives results for DIDA* with
J24 and two and four PDB lookups for the rest of the 50 cases.
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No Sol | Benchmark (r,r*) IDA*(r,d) | DIDA*-J24 (r,d) | DIDA*-J24 (r,r*,d,d*)
1 (25) 81 292,174,444 547,754,446 152,941,190 86,623,738
2 (40) 82 65,099,578 78,265,289 13,720,424 8,027,134
3 (29) 88 4,787,505,637 29,093,280,876 2,811,214,623 1,052,360,568
4 (36) 90 2,5682,008,940 3,128,723,824 1,209,506,402 569,488,356
5 (20) 92 | 312,016,177,684 50,287,497,984 29,036,511,649 4,464,625,873
6 (30) 92 1,634,941,420 1,950,647,389 2,484,991,641 1,225,111,000
7 (47) 92| 30,443,173,162 18,915,533,169 6,421,296,555 4,151,834,900
8 (44) 93 867,106,238 373,833,955 37,432,750 27,828,310
9 (1) 95 2,031,102,635 815,220,874 114,270,740 60,208,978
10 (22)| 95 3,5692,980,531 4,006,328,755 1,762,446,935 814,538,591
11 (2) 96 | 211,884,984,525 149,827,435,325 22,818,488,960 14,893,883,061
12 (16)| 96 3,803,445,934 1,829,307,204 174,895,012 125,947,856
13 (38)| 96 38,173,507 45,976,055 8,435,471 5,298,259
14 (3) 97 | 21,148,144,928 49,550,582,547 29,121,290,662 9,394,905,290
15 (32)| 97 428,222,507  1,707,750,974 1,685,362,622 623,772,078
16 (4) 98 | 10,991,471,966 14,523,612,651 2,480,394,914 1,500,144,838
17 (28)| 98 2,258,006,870 2,106,454,886 543,149,059 360,755,098
18 (35)| 98| 116,131,234,743 74,794,747,604 6,553,916,243 3,763,906,855
19 (27)| 99| 53,444,360,033 34,150,080,391 3,447,475,095 1,999,173,109
20 (31)| 99| 26,200,330,686 19,627,677,414 20,768,799,210 14,456,575,816
21 (5) | 100 2,899,007,625 3,785,640,311 484,549,876 178,355,244
22 (37)| 100 1,496,759,944 1,471,627,382 1,563,432,726 1,014,271,808
23 (46)| 100| 65,675,717,510 57,066,411,687 32,733,564,072 18,191,427,181
24 (49)| 100| 108,197,305,702 56,056,805,705 9,106,414,744 5,362,475,537
25 (6) | 101 | 103,460,814,368 201,836,625,690 30,684,741,238 14,383,834,203
Average | 95| 43,454,810,045 31,103,112,895 8,248,769,713 3,948,614,947
Table A.2

24-puzzle first 25 instances. DIDA* uses the J24 jumping policy.
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No Sol | Benchmark (r+r*)| DIDA*-J24(r+d) | DIDA*-J24(r+r*+d+d*)
26 (13)| 101 1,959,833,487 2,196,890,327 1,525,086,336
27 (45)| 101 79,148,491,306 16,455,892,507 8,903,606,545
28 (34)| 102| 481,039,271,661 59,384,485,2589 33,346,319,761
29 (15)| 103| 173,999,717,809 104,581,763,68( 48,205,749,584
30 (21)| 103| 724,024,589,33% 47,574,279,914 23,105,133,315
31 (7) | 104| 106,321,592,792 112,115,069,816 41,489,057,096
32 (23)| 104 | 171,498,441,076 25,019,468,325 15,308,110,752
33 (39)| 104 | 161,211,472,633 34,094,740,377 21,449,225,371
34 (43)| 104 55,147,320,204 19,521,199,995 12,031,249,938
35 (26)| 105 12,397,787,391 4,710,801,259 2,293,128,380
36 (11)| 106 | 1,654,042,891,186 223,800,028,896 81,918,451,417
37 (19)| 106 | 218,284,544,233 71,328,672,853 29,200,386,532
38 (33)| 106 | 1,062,250,612,558 697,848,426,065 410,610,357,344
39 (41)| 106 26,998,190,480 1,831,465,730 866,811,661
40 (24)| 107 | 357,290,691,483 58,794,690,620 22,991,124,359
41 (48)| 107 | 555,085,543,507 102,741,654,32¢ 45,159,149,715
42 (8) | 108 | 116,202,273,788 46,087,884,506 32,266,488,302
43 (42)| 108 | 245,852,754,920 70,605,794,609 32,982,573,378
44 (12)| 109 | 624,413,663,951 33,355,872,842 14,264,946,735
45 (17)| 109| 367,150,048,758 64,989,490,579 33,540,174,776
46 (18)| 110| 987,725,030,433 560,055,473,29¢ 314,071,218,58%
47 (14)| 111 1,283,051,362,38% 531,467,600,978 220,384,669,29¢
48 (9) | 113 1,818,005,616,606 36,575,158,063 21,812,286,743
49 (50)| 113| 4,156,099,168,506 285,616,821,863 180,090,018,83¢
50 (10)| 114 1,519,052,821,9438 343,089,661,403 137,210,634,02§
Average | 107 | 678,330,149,297| 142,153,731,524 71,401,038,351
Table A.3

24-puzzle the rest of the 50 instances
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