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Abstract

Agents operating in the real world often have limited time available for planning their
next actions. Producing optimal plans is infeasible in these scenarios. Instead, agents must
be satisfied with the best plans they can generate within the time available. One class of
planners well-suited to this task are anytime planners, which quickly find an initial, highly
suboptimal plan, and then improve this plan until time runs out.

A second challenge associated with planning in the real world is that models are usually
imperfect and environments are often dynamic. Thus, agents need to update their models
and consequently plans over time. Incremental planners, which make use of the results of
previous planning efforts to generate a new plan, can substantially speed up each planning
episode in such cases.

In this paper, we present an A*-based anytime search algorithm that produces signifi-
cantly better solutions than current approaches, while also providing suboptimality bounds
on the quality of the solution at any point in time. We also present an extension of this
algorithm that is both anytime and incremental. This extension improves its current solu-
tion while deliberation time allows and is able to incrementally repair its solution when
changes to the world model occur. We provide a number of theoretical and experimental
results and demonstrate the effectiveness of the approaches in a robot navigation domain
involving two physical systems. We believe that the simplicity, theoretical properties, and
generality of the presented methods make them well suited to a range of search problems
involving large, dynamic graphs.

Keywords: planning, replanning, anytime planning, A*, search, anytime search, heuristic
search, incremental search.
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1 Introduction

In this paper we present search algorithms for planning paths through large, dy-
namic graphs. Such graphs can be used to model a wide range of problem do-
mains in AI and robotics. A number of graph-based search algorithms have been
developed for generating paths through graphs. A* search [1] and Dijkstra’s al-
gorithm [2] are two commonly used and extensively studied approaches that gen-
erate optimal paths. These algorithms are very efficient. In fact, they process the
minimum number of states possible while guaranteeing an optimal solution when
no other information besides the graph and heuristics (in the case of A*) is pro-
vided [3]. Realistic planning problems, however, are often too large to solve opti-
mally within an acceptable time. Moreover, even if an optimal plan is found ini-
tially, the model used to represent the problem is unlikely to be perfect and changes
may occur in the environment, and therefore an agent may find discrepancies in
its model while executing its plan. In such situations, the agent needs to update its
model and re-plan. Finding an optimal plan every time it needs to re-plan would
make the agent stop execution too often and for too long. Anytime planning [4, 5]
presents an appealing alternative. Anytime planning algorithms try to find the best
plan they can within the amount of time available to them. They quickly find an ap-
proximate, and possibly highly suboptimal, plan and then improve this plan while
time is available. In addition to being able to meet time deadlines, many of these
algorithms also make it possible to interleave planning and execution: while the
agent executes its current plan, the planner works on improving the plan.

In the first part of the paper we present an anytime version of A* search called
Anytime Repairing A* (ARA*). This algorithm has control over a suboptimality
bound for its current solution, which it uses to achieve the anytime property: it starts
by finding a suboptimal solution quickly using a loose bound, then tightens the
bound progressively as time allows. Given enough time it finds a provably optimal
solution. While improving its bound, ARA* reuses previous search efforts and, as a
result, is very efficient. We demonstrate this claim empirically on a motion planning
application involving a simulated robotic arm with several degrees of freedom.

While anytime planning algorithms are very useful when good models of the envi-
ronment are known a priori, they are less beneficial when prior models are not very
accurate or when the environment is dynamic. In these situations, the agent may
need to update its world model frequently. Each time its world model is updated,
all of the previous efforts of the anytime planners are invalidated and they need to
start generating a new plan from scratch. This is especially troublesome when one
tries to interleave planning with execution: all the efforts spent on improving a plan
during execution become wasted after a single update to the model, even though the
update may be minor. For example, in mobile robot navigation a robot may start
out knowing the map only partially, plan assuming that all unknown areas are safe
to traverse, and then begin executing the plan. While executing the plan, it senses
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the environment around it and as it discovers new obstacles it updates the map and
constructs a new plan (e.g., [6,7]). As a result, the robot has to plan frequently dur-
ing its execution. Anytime planners are not able to provide anytime capability in
such scenarios, as they are constantly having to generate new (highly-suboptimal)
plans from scratch.

A class of algorithms known as replanning, or incremental, algorithms are effective
in such cases as they use the results of previous planning efforts to help find a new
plan when the problem has changed slightly. Two such algorithms, Dynamic A*
(D*) and Lifelong Planning A* (LPA*), have been particularly useful for heuris-
tic search-based replanning in artificial intelligence and robotics. These algorithms
work by performing an A* search to generate an initial solution. Then, when the
world model is updated, they repair their previous solution by reusing as much of
their previous search efforts as possible. As a result, they can be orders of mag-
nitude more efficient than replanning from scratch every time the world model
changes. However, while these replanning algorithms substantially speed up a se-
ries of searches for similar problems, they lack the anytime property of ARA*: once
they find a solution they stop and do not improve the solution even if more planning
time is available. These algorithms can only be pre-configured either to search for
an optimal solution or to search for a solution bounded by a fixed suboptimality
factor.

We address this limitation in section 5 by presenting Anytime D* (AD*), a search
algorithm that is both anytime and incremental. The algorithm re-uses its old search
efforts while simultaneously improving its previous solution (as with ARA*) as
well as re-planning if necessary (as with D*/LPA*). Besides merely speeding up
planning, this combination allows one to interleave planning and execution more
effectively. The planner can continue to improve a solution without having to dis-
card all of its efforts every time the model of the world is updated. To the best of our
knowledge, AD* is the first search algorithm that is both anytime and incremental,
and just like ARA* and D*/LPA*, AD* also provides bounds on the suboptimality
of each solution it returns. In section 5 we experimentally demonstrate the advan-
tages of AD* over search algorithms that are either anytime or incremental (but not
both) on the problem of motion planning for a simulated robot arm. In section 6 we
demonstrate how AD* enables us to plan smooth paths for mobile robots navigating
through partially-known environments.

The development of the ARA* and AD* algorithms is due to a simple alternative
view of A* search that we introduce in section 4.2 and an extension of this view
presented in section 5.2. We hope that this interpretation of A* will inspire research
on other search algorithms, while the simplicity, generality and practical utility of
the presented algorithms will contribute to the research and development of plan-
ners well-suited for autonomous agents operating in the real world.
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2 Background

In this paper we concentrate on planning problems represented as a search for a
path in a known finite graph. We useS to denote the finite set of states in the graph.
succ(s) denotes the set of successor states of states ∈ S, andpred(s) denotes the
set of predecessor states ofs. For any pair of statess, s′ ∈ S such thats′ ∈ succ(s)
we require the cost of transitioning froms to s′ to be positive:0 < c(s, s′) ≤ ∞.
(In case of an infinite graph, the cost would also have to be bounded from below by
a (small) positive constant.)

Given such a graph and two statessstart andsgoal, the task of a search algorithm
is to find a path fromsstart to sgoal, denoted byπ(sstart), as a sequence of states
{s0, s1, . . . , sk} such thats0 = sstart, sk = sgoal and for every1 ≤ i ≤ k, si ∈
succ(si−1). This path defines a sequence of valid transitions between states in the
graph, and if the graph accurately models the original problem, an agent can execute
the actions corresponding to these transitions to solve the problem. The cost of the
path is the sum of the costs of the corresponding transitions

∑k
i=1 c(si−1, si). For

any pair of statess, s′ ∈ S we letc∗(s, s′) denote the cost of a least-cost path from
s to s′. Fors = s′ we definec∗(s, s′) = 0.

The goal of shortest path search algorithms such as A* search is to find a path from
sstart to sgoal whose cost is minimal, i.e. equal toc∗(sstart, sgoal). Suppose for every
states ∈ S we knew the cost of a least-cost path fromsstart to s, that is,c∗(sstart, s).
We useg∗(s) to denote this cost. Then a least-cost path fromsstart to sgoal can be
re-constructed in a backward fashion as follows: start atsgoal, and at any statesi

pick a statesi−1 = arg mins′∈pred(si)(g
∗(s′) + c(s′, si)) until si−1 = sstart (ties can

be broken arbitrarily). We will call this agreedypath based ong∗-values.

Consequently, algorithms like A* search try to computeg∗-values. In particular, A*
maintainsg-values for each state it has visited so far, whereg(s) is always the cost
of the best path found so far fromsstart to s. If no path tos has been found yet then
g(s) is assumed to be∞ (this includes the states that have not yet been visited by
the search). A* starts by settingg(sstart) to 0 and processing (expanding) this state
first. The expansion of states involves checking if a path to any successor states′

of s can be improved by going through states, and if so then setting theg-value of
s′ to the cost of the new path found and making it a candidate for future expansion.
This way,s′ will also be selected for expansion at some point and the cost of the
new path will be propagated to its children. Thus, theg-values are always the costs
of paths found and therefore are always upper bounds on the correspondingg∗-
values. Moreover, if theg-values of states on one of the least-cost paths fromsstart

to sgoal are exactlyequalto the correspondingg∗-values, then a path fromsstart to
sgoal reconstructed in the greedy fashion described earlier, but based ong-values, is
guaranteed to be a least-cost path. From now on, unless specified otherwise the term
“greedy path” will refer to a greedy path constructed based ong-values of states.
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(Note that the fact that the path is constructed in a greedy fashion by no means
implies that the algorithm used to computeg-values was a greedy algorithm.)

The challenge for shortest path search algorithms is to minimize the amount of
processing required to guarantee that theg-values of states on one or more of the
least-cost paths fromsstart to sgoal are exactly equal to the correspondingg∗-values.
A* expands all states (up to tie-breaking) whoseg- plush-values (i.e.,g(s)+h(s))
are less than or equal tog(sstart), whereh-values estimate the cost of a least-cost
path froms to sgoal. This focusses the search on the states through which thewhole
path fromsstart to sgoal looks promising. It can be much more efficient than expand-
ing all states whoseg-values are smaller than or equal tog(sstart), which is required
by Dijkstra’s algorithm to guarantee that the solution it finds is optimal.

3 Related Work

Anytime planning algorithms find an initial, possibly highly suboptimal solution
very quickly and then continually work on improving the solution until planning
time is exhausted. The idea of anytime planning was proposed in the AI community
some time ago [5], and much work has since been done on the development of
anytime planning algorithms (for instance, [8–12]).

However, much less work has been done on anytime graph-based searches. A sim-
ple and quite common way of transforming an arbitrary search algorithm into an
anytime search algorithm is to iteratively increase the region of the state space
searched through. To begin with, a small region of the state space surrounding the
current state of an agent is searched for a solution that looks most promising based
on goal distance estimates for the states on the fringe of the region and the costs of
reaching these states (such searches are commonly referred to as real-time [13] or
agent-centered searches [14, 15]). After this initial solution is returned, the region
can then be iteratively increased until either the time available for planning expires
or the region has grown to the whole state space. Such searches can usually exhibit
good anytime behavior in any domain. In particular, such searches are advanta-
geous in domains where producinganycomplete path is hard within the provided
time window and executing a partial path is an acceptable choice. Unfortunately,
such algorithms typically provide no bounds on the quality of their solutions and
may even return plans that lead to failures in domains that have states with irre-
versible conditions (e.g. a one-way road that leads to a dead-end).

The most closely related approach to the work we present in this paper is a complete
anytime heuristic search algorithm called Anytime A* [16, 17]. Anytime A* relies
on the fact that in many domains inflating the heuristic by some constantε > 1 can
drastically reduce the number of states A* has to examine before it can produce a
solution [16, 18–24]. An additional nice property of inflating heuristics is that the
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cost of the solution found for an inflation factorε is no larger thanε times the cost
of an optimal solution [25]. When obtaining an initial solution, Anytime A* inflates
heuristics by a largeε. After the first solution is found, the algorithm continues to
process the states whosef -values (g(s) + h(s), whereh(s) is un-inflated) are less
than or equal to the cost of the best solution found so far. Similarly to ARA*, the al-
gorithm we present in section 4, Anytime A* provides a bound on the suboptimality
of the solutions it returns. Providing suboptimality bounds is valuable as it allows
one to judge the quality of the current plan, decide whether to continue or preempt
search based on the current suboptimality bound, and evaluate the quality of past
planning episodes to allocate time for future planning episodes accordingly. Un-
like ARA*, however, Anytime A* does not have any control over its suboptimality
bound, except for the selection of the inflation factor of the first search. Such con-
trol helps in adjusting the tradeoff between computation and plan quality. ARA*, in
addition to providing suboptimality bounds for all its solutions, allows one to con-
trol these bounds. In the domains we experimented with, this control allows ARA*
to decrease the bounds much more gradually.1 Another advantage of ARA* is that
it guarantees to examine each state at most once during its first search, unlike Any-
time A*. This property is important because it provides a theoretical bound on the
amount of work before ARA* produces its first plan. Nevertheless, as described
in section 4, Anytime A* incorporates a number of interesting ideas that are also
applicable to ARA*.

A few other anytime heuristic searches that return complete solutions have been
developed [26–29]. Unlike ARA*, however, they all share the property of not be-
ing able to provide any non-trivial suboptimality bounds on their solutions. Some
of these algorithms are variants of depth-first search (e.g. Depth-first Branch-and-
Bound search [29] and Complete Anytime Beam search [28]) and may use much
less memory than A* and its variants, but may also process states exponentially
many times. Others are variants of breadth-first search (e.g. Beam-Stack search [26]
and ABULB [27]) and guarantee completeness. However, these too may process
states many times before producing even an initial solution. Our anytime algorithm
guarantees that states are never processed more than once while working onany
single solution. On the other hand, these algorithms are directed towards bound-
ing memory usage and as a result, may scale up to larger domains than ARA*, if
memory becomes a bottleneck in obtaining and improving a solution within the
provided time window.

Incremental planning algorithms efficiently repair previous solutions when changes
are made to the model. A variety of such algorithms have been developed, both by
artificial intelligence researchers and by theory researchers [30–50]. Many of these
algorithms were developed in the field of symbolic planning rather than graph-
based planning. They usually provide no suboptimality bounds on their solutions.

1 In fact, the latest work on Anytime A* shows that it is possible to incorporate the idea of
controllingε into Anytime A* search as well [17].
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The rest are graph searches but are primarily concerned with optimal solutions.
A number of these algorithms are (or can be viewed as) incremental heuristic
searches. The Lifelong Planning A* (LPA*) [41] and Dynamic A* (D*) [40] al-
gorithms directly generalize A* search to an incremental search and are efficient in
the sense that they only update states that need to be updated. As we explain later in
this paper, the anytime incremental planning algorithm we present can be viewed
as an anytime extension of the LPA* and D* algorithms.

Very few algorithms have been developed that are both anytimeand incremental
and, to the best of our knowledge, all are outside of search-based planning. In par-
ticular, the ones we know of have been developed in the framework of symbolic
planning. The CASPER system [51], for example, is capable of always returning
a plan and constantly works on improving and repairing the plan as changes in
the environment are detected. This is achieved, however, at the expense of poten-
tially returning plans that are only partial. A planner described in [52] uses local
subplan replacement methodology to quickly repair and then gradually improve a
plan whenever changes in the environment invalidate the current plan. Similarly to
the anytime incremental search described in section 5 of this paper, it also always
returns a complete plan rather than a partial plan. In contrast to our algorithm, how-
ever, it provides no guarantees on the suboptimality of its solutions.

4 ARA*: An Anytime A* Search Algorithm with Provable Bounds on Sub-
optimality

In this section we present the ARA* algorithm. We begin by showing how succes-
sive weighted A* searches can be used to produce a simple, naı̈ve anytime algo-
rithm. Next, we discuss a novel formulation of A* that enables us to reuse previous
search results. We use this formulation to develop ARA* – an efficient, anytime
heuristic search algorithm.

4.1 Using Weighted A* Searches to Construct an Anytime Heuristic Search with
Provable Suboptimality Bounds

Normally, theh-values used by A* search are consistent and therefore do not over-
estimate the cost of paths from states to the goal state. In many domains, how-
ever, A* search with inflated heuristics, known as Weighted A* search [53, 54],
can drastically reduce the number of states examined before a solution is pro-
duced [16,18–24]. In our framework this is equivalent to processing states in order
of g(s) + ε ∗ h(s), rather thang(s) + h(s). While the path the search returns can be
suboptimal, the search also provides a bound on this suboptimality, namely, theε
by which the heuristic is inflated [25]. (We will often refer to it asε-suboptimality.)
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ε = 2.5 ε = 1.5 ε = 1.0 (optimal search)

Fig. 1. A* searches with inflated heuristics

Thus, settingε to 1 results in standard A* with an uninflated heuristic and the re-
sulting path is guaranteed to be optimal. Forε > 1 the cost of the returned path is
no larger thanε times the cost of the optimal path.

For example, Figure 1 shows the operation of the A* algorithm with a heuristic
inflated byε = 2.5, ε = 1.5, andε = 1 (no inflation) on a simple grid world. In
this example we use an eight-connected grid with black cells denoting obstacles.
We can extract a graph from this grid by assigning a state to each cell and defining
the successors and predecessors of a state to be its adjacent states. S denotes the
start state, while G denotes the goal state. The cost of moving from one cell to its
neighbor is one. The heuristic used here is the larger of the x and y distances from
the cell to the goal. The cells that were expanded are shown in grey. (Our version of
A* search stops as soon as it is about to expand a goal state. Thus, the goal state is
not shown in grey.) The paths found by these searches are shown with grey arrows.
The A* searches with inflated heuristics expand substantially fewer cells than A*
with ε = 1, but their solutions are suboptimal.

To construct an anytime algorithm with suboptimality bounds, one could run a
succession of these A* searches with decreasing inflation factors, just as we did
in this example. This naı̈ve approach results in a series of solutions, each with
a suboptimality bound equal to the corresponding inflation factor. This approach
has control over the suboptimality bound, but wastes a lot of computation since
each search iteration duplicates most of the efforts of the previous searches. One
could try to employ incremental heuristic searches (e.g. [41]), but the suboptimality
bounds for each search iteration would no longer be guaranteed. In the following
subsections we introduce the ARA* (Anytime Repairing A*) algorithm, which is
an efficientanytime heuristic search that also runs a series of A* searches with
inflated heuristics but reuses search efforts from previous executions while ensuring
that the suboptimality bounds are still satisfied. By not re-computing the state costs
that have been correctly computed in previous iterations, the algorithm achieves
substantial savings in computation.
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The pseudocode below assumes the following :
(1) g(sstart) = 0 andg-values of the rest of the states are set to∞ (the initialization can also occur whenever Com-

putePath encounters new states);
(2) OPEN= {sstart}.

1 procedure ComputePath()
2 while(sgoal is not expanded)
3 removes with the smallestf(s) from OPEN;
4 for each successors′ of s

5 if g(s′) > g(s) + c(s, s′)

6 g(s′) = g(s) + c(s, s′);
7 insert/updates′ in OPENwith f(s′) = g(s′) + h(s′);

Fig. 2. A* Search: ComputePath function

4.2 Reformulating and Generalizing A* Search

We can re-formulate A* search to reuse the search results of its previous execu-
tions quite easily. To do this, we define the notion of an inconsistent state (initially
introduced in [41]) and then formulate A* search as the repeated expansion of in-
consistent states. This formulation can reuse the results of previous executions sim-
ply by identifying all of the states that are inconsistent. We will also generalize the
priority function that A* uses to any function satisfying certain restrictions. This
generalization leads us towards the ARA* algorithm.

4.2.1 Reformulation of A* Search Using Inconsistent States

A standard formulation of A* search is provided in Figure 2. In this pseudocode,
OPENis a priority queue containing states to be processed. The priorities according
to which states are chosen fromOPEN are theirf -values, the sum ofg- andh-
values. Sinceg(s) is the cost of the best path fromsstart to s found so far, and
h(s) estimates the cost of the best path froms to sgoal, f(s) is an estimate of the
cost of the best path fromsstart to sgoal via states. If the h-values are admissible,
that is, never overestimate the cost of the least-cost path froms to sgoal, then A* is
guaranteed to find an optimal path. If theh-values are also consistent, that is, for
any two statess, s′ ∈ S such thats′ ∈ succ(s), h(s) ≤ c(s, s′) + h(s′), then no
state is expanded more than once. The termexpansionof states usually refers to
the update ofg-values of the successors ofs (lines 4 through 7). These updates
decrease theg-values of the successors ofs whenever it is possible to do so using
g(s). Once the search finishes, the solution is given by the greedy path. Figure 3
demonstrates the operation of A* search on a simple example. We will later use the
same example to show the operation of our alternative formulation of A* search
(Figure 7).

We now introduce a new variable, calledv(s). The introduction ofv-values will
not affect the operation of a one-time A* search. However, as we will show later,
v-values will make it very easy to extend A* search so that it can reuse the results
of previous searches. Intuitively,v-values will also be estimates of start distances,
just as theg-values. However, whileg(s) is always the cost of the best path found
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(a) after initialization (b) after the expansion ofsstart

(c) after the expansion ofs2 (d) after the expansion ofs1

(e) after the expansion ofs4 (f) after the expansion ofsgoal

Fig. 3. An example of how A* search operates. The states that have bold borders are in
OPEN. Theg-values that have just changed are shown in bold. Aftersgoal is expanded, a
greedy path is computed and is shown in bold.

The pseudocode below assumes the following :
(1) v-values of all states are set to∞, g(sstart) = 0 and theg-values of the rest of the states are set to∞ (the

initialization can also occur whenever ComputePath encounters new states);
(2) OPEN= {sstart}.

1 procedure ComputePath()
2 while(sgoal is not expanded)
3 removes with the smallestf(s) from OPEN;
4 v(s) = g(s);
5 for each successors′ of s

6 if g(s′) > g(s) + c(s, s′)

7 g(s′) = g(s) + c(s, s′);
8 insert/updates′ in OPENwith f(s′) = g(s′) + h(s′);

Fig. 4. A* Search: ComputePath function withv-values

so far fromsstart to s, v(s) is always equal to the cost of the best path found at the
time of the last expansion ofs. Thus, everyv-value is initially set to∞, as with the
correspondingg-value (except forg(sstart)), and then it is reset to theg-value of the
state when the state is expanded. The new pseudocode that uses thesev-values is
given in Figure 4, with differences from the original version shown in bold.
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Since we setv(s) = g(s) at the beginning of the expansion ofs, v(s) remains
equal tog(s) while s is being expanded (lines 5 through 8). The only wayv(s)
could become different fromg(s) is if g(s) changed during the expansion ofs.
This is impossible, however, because for this to happens needs to be a successor
of itself with g(s) larger thang(s) + c(s, s) in order to pass the test on line 6. This
makesc(s, s) a negative edge cost which is inconsistent with our assumption that
all edge costs are positive. As a result, the execution of line 7 is equivalent to setting
g(s′) = v(s)+ c(s, s′), and sincev-values are updated only for states that are being
expanded, one benefit of introducingv-values is the following invariant that A*
always maintains: for every states′ ∈ S,

g(s′) =

 0, if s′ = sstart

mins′′∈pred(s′)(v(s′′) + c(s′′, s′)), otherwise
(1)

More importantly, however, it turns out thatOPENcontains exactly the statess for
which v(s) 6= g(s). This is the case initially, when all states except forsstart have
bothv- andg-values infinite andOPENonly containssstart which hasv(sstart) =
∞ andg(sstart) = 0. Afterwards, every time a state is selected for expansion it
is removed fromOPEN (line 3) and itsv-value is set to itsg-value on the very
next line. Finally, whenever theg-value of any state is modified (line 7) it has
been decreased and is thus strictly less than the correspondingv-value. After each
modification of theg-value, the state is added toOPEN if it is not already there
(line 8).

Let us call a states with v(s) 6= g(s) inconsistentand a state withv(s) = g(s)
consistent. Thus,OPENalways contains exactly those states that are inconsistent.
Consequently, since all the states for expansion are chosen fromOPEN, A* search
expands only inconsistent states.

Here is an intuitive explanation of the operation of A* in terms of inconsistent state
expansions. Since at the time of expansion a state is made consistent by setting
its v-value equal to itsg-value, a state becomes inconsistent as soon as itsg-value
is decreased and remains inconsistent until the next time the state is expanded.
That is, suppose that a consistent states is the best predecessor for some states′:
s = arg mins′′∈pred(s′)(v(s′′) + c(s′′, s′)). Then

g(s′) = min
s′′∈pred(s′)

(v(s′′) + c(s′′, s′)) = v(s) + c(s, s′) = g(s) + c(s, s′)

Thus, theg-value ofs is consistent with theg-value ofs′ in the following sense:
the cost of the found path fromsstart to s′ via states, given byg(s) + c(s, s′), can
not be used to decrease theg-value ofs′ any further,g(s′) is already equal to it.
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Now supposeg(s) decreases. It then becomes strictly smaller thanv(s) and there-
fore g(s′) becomes strictly larger thang(s) + c(s, s′). In other words, the decrease
in g(s) introduces an inconsistency between theg-value ofs and theg-value of its
successors′ (and possibly other successors ofs). Whenevers is expanded, on the
other hand, this inconsistency is corrected by settingv(s) to g(s) and re-evaluating
theg-values of the successors ofs. This in turn may potentially make the succes-
sors ofs inconsistent. In this way the inconsistency is propagated to the children
of s via a series of expansions. Eventually the children no longer rely ons, none of
theirg-values are lowered, and none of them are inserted into theOPEN list.

The operation of this new formulation of A* search is identical to the version in
Figure 2. The variablev just makes it easy for us to identify all the states that are
inconsistent: these are all the statess with v(s) 6= g(s). In fact, in this version of
the ComputePath function, theg-values only decrease, and since thev-values are
initially infinite, all inconsistent states havev(s) > g(s). We will call such states
overconsistent. In later versions of the algorithm we will encounter statess that
areunderconsistent, with v(s) < g(s). Such states will appear in problems with
increasing edge costs that lead to increasingg-values.

4.2.2 Generalizing Priorities

A* search uses one possible state expansion ordering: it expands states in the order
of increasingf -values. For any admissible heuristic, this ordering guarantees op-
timality. However, we can generalize A* search to handle more general expansion
priorities as long as they satisfy certain restrictions. These restrictions will allow
the search to guarantee suboptimality bounds even when heuristics are inadmissi-
ble. We first introduce a function key(s) that returns the priority of a states used for
ordering expansions. (For example, key(s) = g(s) corresponds to an uninformed
optimal search such as Dijkstra’s, key(s) = g(s) + h(s) corresponds to A* search,
key(s) = g(s)+ε∗h(s) corresponds to Weighted A* search, etc.) Thus, in Figure 4,
in line 3f(s) is replaced with key(s) and line 8 is replaced with

insert/updates′ in OPENwith key(s′);

The rest of the pseudocode remains the same. We restrict key() to be any function
satisfying the following restriction

for any two statess, s′ ∈ S such thatc∗(s′, sgoal) < ∞, v(s′) ≥ g(s′), v(s) > g(s) and
g(s′) > g(s) + ε ∗ c∗(s, s′), it must hold that key(s′) > key(s)

Fig. 5. key restriction

The suboptimality factorε can be any finite real value greater than or equal to
one. A simple example illustrates the need for this restriction. Imagine we have
two states: states′ that can potentially belong to a path fromsstart to sgoal (i.e.,
c∗(s′, sgoal) < ∞) and an overconsistent, and therefore a candidate for expansion,
states. We need to know whether states′ has been computed correctly. In particular,
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whether the cost of the found path fromsstart to states′ is no more thanε times the
cost of an optimal path. The conditiong(s′) > g(s)+ ε∗ c∗(s, s′), however, implies
that theg-value of states′ might potentially overestimate the cost of an optimal plan
from sstart to states′ by more than a factor ofε based on theg-value ofs. Hence,
we can not guarantee thats′ has been correctly computed yet, and states needs to
be expanded first so that the path through it can be propagated tos′ if it really is
a cheaper path. This can be ensured by having key(s) smaller than key(s′). Note
that omitting in the key restriction the conditions that involvev-values would also
result in a valid restriction but it would be more restrictive. Thus, the key restriction
we give does not apply to states if v(s) = g(s). This is so because the consistency
of s means that the path through it has already been propagated, and therefore the
expansion ofs can not result in finding a cheaper path fromsstart to s′.

If the restriction in Figure 5 is satisfied then the cost of a greedy path after the
search finishes is at mostε times larger than the cost of an optimal solution [55].
It is easy to see that the restriction is satisfied by the prioritization of uninformed
optimal searches such as Dijkstra’s algorithm, the prioritization of A* with con-
sistent heuristics, and the prioritization of A* with consistent heuristics inflated
by some constant. For example, in the case of an uninformed optimal search,
g(s′) > g(s) + ε ∗ c∗(s, s′) for any two statess, s′ ∈ S and ε = 1 implies that
key(s′) = g(s′) > g(s) + ε ∗ c∗(s, s′) = key(s) + ε ∗ c∗(s, s′) ≥ key(s) since costs
cannot be negative. Thus, the solution is optimal. In the case of A* search with
consistent heuristics inflated byε, g(s′) > g(s) + ε ∗ c∗(s, s′) for any two states
s, s′ ∈ S implies that

key(s′) = g(s′) + ε ∗ h(s′) > g(s) + ε ∗ h(s′) + ε ∗ c∗(s, s′) ≥
g(s) + ε ∗ h(s) = key(s)

where we used the fact thath(s) ≤ c∗(s, s′) + h(s′) when heuristics are con-
sistent [53]. In fact, it can be shown in the exact same way that the restric-
tion holds forkey(s) = g(s) + h(s), where heuristics areany values satisfy-
ing ε-consistency [56]:h(sgoal) = 0 and for any two statess, s′ ∈ S such that
s′ ∈ succ(s), h(s) ≤ ε ∗ c(s, s′) + h(s′). Many different heuristics areε-consistent
for a suitableε including consistent heuristics, consistent heuristics inflated byε,
the summation of consistent heuristics (as often used in heuristic search-based sym-
bolic planning) and general inadmissible heuristics with bounds on how much they
under- and overestimate the true values [56].

In general, when heuristics are inconsistent A* may re-expand states multiple
times. However, if we restrict the expansions to no more than one per state, then
the algorithm is still complete and possessesε-suboptimality if the heuristic isε-
consistent [55]. We restrict the expansions using the setCLOSED(Figure 6) in the
same way it is often used in A*: initially,CLOSEDis empty; afterwards, every
state that is being expanded is added to this set (line 4) and no state that is already
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The pseudocode below assumes the following:
(1) the function key(s) satisfies the restriction in Figure 5;
(2) v− and g−values of all states are initialized in such a way thatv(s) ≥ g(s) = mins′∈pred(s)(v(s′) +

c(s′, s)) ∀s 6= sstart andv(sstart) ≥ g(sstart) = 0 (the initialization can also occur whenever ComputePath
encounters new states);

(3) CLOSED= ∅ andOPENcontains the overconsistent states (i.e., statess whosev(s) > g(s)).
1 procedure ComputePath()
2 while(key(sgoal) > mins∈OPEN(key(s)))
3 removes with the smallest key(s) from OPEN;
4 v(s) = g(s); CLOSED= CLOSED∪ {s};
5 for each successors′ of s

6 if g(s′) > g(s) + c(s, s′)

7 g(s′) = g(s) + c(s, s′);
8 if s′ 6∈ CLOSED
9 insert/updates′ in OPENwith key(s′);

Fig. 6. A* search with a generalized priority function and generalized overconsistent ini-
tialization: ComputePath function

in CLOSEDis inserted intoOPEN to be considered for expansion (line 8).

4.2.3 Generalizing to Arbitrary Overconsistent Initialization

In the versions of A* presented so far, all states had theirg- andv-values initialized
at the outset. We set thev-values of all states to infinity, we set theg-values of
all states except forsstart to infinity, and we setg(sstart) to 0. We now remove this
initialization step and the only restriction we make is that no state is underconsistent
and allg-values satisfy equation 1 except forg(sstart) which is equal to zero. This
arbitrary overconsistent initialization will allow us to re-use previous search results
when running multiple searches.

The pseudocode under this initialization is shown in Figure 6. It uses the key(s)
priority function as described in the previous section. The only change necessary
for the arbitrary overconsistent initialization is the terminating condition (line 2) of
the while loop. The loop now terminates as soon as key(sgoal) becomes less than or
equal to the key of the state to be expanded next, that is, the smallest key inOPEN
(we assume that themin operator on an empty set returns∞). The reason for this
addition is that under the new initializationsgoal may never be expanded if it was
already correctly initialized. For instance, if all states are initialized to be consistent,
thenOPENis initially empty, and the search terminates without a single expansion.
This is correct, because when all states are consistent andg(sstart) = 0, then for
every states 6= sstart, g(s) = mins′∈pred(s)(v(s′) + c(s′, s)) = mins′∈pred(s)(g(s′) +
c(s′, s)), which means that theg-values are equal to the correspondingg∗-values
and no search is necessary—the greedy path is an optimal solution.

In Figure 7 we show the operation of this version of A* search. Some of the initial
state values are already finite. These values, for example, could have been generated
by previous searches. Such will be the case with the ARA* algorithm below, which
executes the ComputePath function repeatedly, gradually improving its solution.
Because some states are already consistent, the search in the example needs to
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(a) initial state values (b) after the expansion ofs4

(c) after the computation of a greedy path

Fig. 7. An example of how the ComputePath function operates under an arbi-
trary overconsistent initialization. States are expanded in the order off -values (i.e.
key(s) = g(s)+h(s)). All initially overconsistent states need to be inOPEN. The states in
OPENare shown with bold borders. Theg- andv-values that have just changed are shown
in bold. After the search terminates, a greedy path is computed and is shown in bold. Note
that the computed greedy path and allg-values are equivalent to those generated by regular
A* search (Figure 3).

expand only one state to obtain an optimal path.

This version of A* search has a number of nice properties. The central property of
the search is that it maintains the following invariant after each expansion.

Theorem 1 At line 2, for any states with (c∗(s, sgoal) < ∞ ∧ key(s) ≤ key(u)
∀u ∈ OPEN), it holds thatg∗(s) ≤ g(s) ≤ ε ∗ g∗(s).

In other words, every states that may theoretically be on a path fromsstart to
sgoal (c∗(s, sgoal) < ∞) and whose key is less than or equal to the smallest key in
OPEN has ag-value that is at worstε-suboptimal and therefore does not have to
be processed anymore. Since theg-value ofs is the cost of the best path found so
far from sstart to s, this path is at mostε-suboptimal. Given this property and the
terminating condition of the algorithm (line 2), it is clear that after the algorithm
terminates,g(sgoal) ≤ ε∗g∗(sgoal) and the greedy path fromsstart to sgoal is at most
ε-suboptimal.

Theorem 2 When the ComputePath function exits the following holds:g∗(sgoal) ≤
g(sgoal) ≤ ε ∗ g∗(sgoal) and the cost of a greedy path fromsstart to sgoal is no larger
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thanε ∗ g∗(sgoal).

As with A* search with consistent heuristics, this version guarantees no more than
one expansion per state.

Theorem 3 No state is expanded more than once during the execution of the Com-
putePath function.

Additionally, the following theorem shows that when the search is executed with a
non-trivial initialization of states, such as state values from previous searches, the
states with thev-values that cannot be lowered are not expanded. This can result in
substantial computational savings when using this search for repeated planning as
discussed in the next section.

Theorem 4 A states is expanded only ifv(s) is lowered during its expansion.

4.3 An Efficient Version of Anytime Search with Provable Suboptimality Bounds:
ARA*

The formulation of A* search presented in Figure 6 allows for the results of pre-
vious searches to be used in successive executions of the algorithm. As explained,
the search only expands the states that are inconsistent (in fact, a subset of them)
and tries to make them consistent. Therefore, if we begin with a number of consis-
tent states due to some previous search efforts, these states need not be expanded
again unless they become inconsistent during the search. Consequently, to reuse
previous search efforts we only need to make sure that before each execution of the
ComputePath functionOPENcontainsall the inconsistent states. Since the Com-
putePath function restricts each state to no more than one expansion during each
search iteration,OPENmay not contain all inconsistent states during the execution
of ComputePath. In fact,OPENcontains only the inconsistent states that have not
yet been expanded. We need, however, to keep track ofall inconsistent states since
they will be used to initializeOPEN in future searches. We do this by maintain-
ing a setINCONSof all the inconsistent states that are not inOPEN. Or, in other
words,INCONSis a set of all the inconsistent states that are inCLOSED. Thus, the
union ofINCONSandOPEN is exactly the set of all inconsistent states, and can be
used as a starting point for the inconsistency propagation before each new search
iteration.

Figure 8 presents the ComputePath function of Anytime Repairing A* (ARA*).
ARA* executes A* multiple times, starting with a largeε and decreasing this value
prior to each execution untilε = 1. Each search reuses the results of previous
searches by maintaining anINCONSset as mentioned above. Apart from the main-
tenance of this set, the ComputePath function of ARA* is almost identical to the
ComputePath function of A* search as presented in Figure 6. The only other dif-
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1 procedure ComputePath()
2 while(key(sgoal) > mins∈OPEN(key(s)))
3 removes with the smallest key(s) from OPEN;
4 v(s) = g(s); CLOSED= CLOSED∪ {s};
5 for each successors′ of s

6 if s′ was never visited by ARA* before then
7 v(s′) = g(s′) = ∞;
8 if g(s′) > g(s) + c(s, s′)

9 g(s′) = g(s) + c(s, s′);
10 if s′ 6∈ CLOSED
11 insert/updates′ in OPENwith key(s′);
12 else
13 insert s′ into INCONS;

Fig. 8. ARA*: ComputePath function. ARA* specific changes as compared with A* search
as formulated in Figure 6 are shown in bold.

ference is the explicit initialization of states as they are encountered by ARA*.
Note that each state is initialized once per ARA* execution andnot every time
ComputePath encounters it for the first time during its current search. The key()
function used by ComputePath is a summation of the state’sg-value and itsh-value
inflated by the current value ofε, as given in Figure 9.

Figure 9 also presents the Main function of ARA*, which performs a series of
search iterations. It first initializes the search and then repeatedly calls the Com-
putePath function with a series of decreasing values ofε. Before each call to the
ComputePath function, however, a newOPENlist is constructed by moving to it the
contents of the setINCONS. Consequently,OPENcontains all inconsistent states
before each call to ComputePath. Since theOPEN list has to be sorted by the cur-
rentkey-values of states, it is re-ordered between calls to ComputePath (line 12).2

The pseudocode below assumes the following:
(1) heuristics are consistent:h(s) ≤ c(s, s′) + h(s′) for any successors′ of s if s 6= sgoal andh(s) = 0 if s = sgoal.

1 procedure key(s)
2 returng(s) + ε ∗ h(s);

3 procedure Main()

4 g(sgoal) = v(sgoal) = ∞; v(sstart) = ∞;
5 g(sstart) = 0; OPEN= CLOSED= INCONS= ∅;
6 insertsstart into OPENwith key(sstart);
7 ComputePath();
8 publish currentε-suboptimal solution;
9 while ε > 1

10 decreaseε;
11 Move states fromINCONSinto OPEN;
12 Update the priorities for alls ∈ OPENaccording to key(s);
13 CLOSED= ∅;
14 ComputePath();
15 publish currentε-suboptimal solution;

Fig. 9. ARA*: key and Main functions

2 At least in our domains, the reordering operation tends to be inexpensive in compari-
son to the overall search. If necessary, however, one could also employ the optimization
discussed in [40, 57] in the context of the D* and D* Lite algorithms. This avoids the re-
ordering operation altogether.
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initial search (ε = 2.5) second search (ε = 1.5) third search (ε = 1.0)

Fig. 10. ARA* search

After each call to the ComputePath function we get a solution that is suboptimal by
at most a factor ofε. Similarly to how it is done in [17], a suboptimality bound for
the solution returned by ARA* can also be computed as the ratio betweeng(sgoal),
which gives an upper bound on the cost of an optimal solution, and the minimum
un-weightedf -value of any inconsistent state, which gives a lower bound on the
cost of an optimal solution:

g(sgoal)

mins∈OPEN∪INCONS(g(s) + h(s))
(2)

This is a valid suboptimality bound as long as the ratio is greater than or equal to
one. Otherwise,g(sgoal) is already equal to the cost of an optimal solution. Thus, the
actual suboptimality bound,ε′, for each solution ARA* publishes can be computed
as the minimum betweenε and this new bound.

ε′ = min(ε,
g(sgoal)

mins∈OPEN∪INCONS(g(s) + h(s))
). (3)

At first, one might think of using this actual suboptimality bound for deciding how
to decreaseε between search iterations (e.g., settingε to ε′ minus a small delta).
This can lead to large jumps inε, however, whereas based on our experiments
decreasingε in small steps seems to be more beneficial. The reason for this is
that a small decrease inε often results in the improvement of the solution, despite
the fact that the actual suboptimality bound of the previous solution was already
substantially less than the value ofε. A large decrease inε, on the other hand, may
often result in the expansion of many states during the next search, resulting in a
large computation time for the search.

Another useful suggestion from [17], which we have not implemented in ARA*,
is to pruneOPEN so that it never contains a state whose un-weightedf -value is
larger than or equal tog(sgoal). This may turn out to be useful in domains with very
high branching factors, where the expansion of one state may involve inserting into
OPEN a large number of states that will never be expanded due to their largef -
values.

Within each execution of the ComputePath function, computation is saved by not
re-expanding the states whosev-values were already correct before the call to Com-
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putePath. For example, Figure 10 shows a series of calls to the ComputePath func-
tion on the same example used in Figure 1. States that are inconsistent at the end of
an iteration are shown with an asterisk. While the first call (ε = 2.5) is identical to
the A* call with the sameε, the second call to the ComputePath function (ε = 1.5)
expands only 1 cell. This is in contrast to 15 cells expanded by A* search with
the sameε. For both searches the suboptimality factorε decreases from 2.5 to 1.5.
Finally, the third call to the ComputePath function withε set to 1 expands only 9
cells. The solution is now optimal, and the total number of expansions is 23. Only
2 cells are expanded more than once across all three calls to the ComputePath func-
tion. Even a single optimal search from scratch expands 20 cells. As shown in the
example, ARA* is an efficient way of computing a series of solutions that satisfy
gradually decreasing sub-optimality bounds. This property of the algorithm makes
it well-suited for planning under time constraints, when one needs to find the best
solution possible within a particular time.

If we are interested in interleaving search with the execution of the current best
plan, then we need to address the scenario where the state of the agent, and hence
sstart, is changing. One way to deal with this problem is to perform the search
backwards. That is, the goal state of the agent becomes the start of the search,
sstart, while the current state of the agent becomes the goal of the search,sgoal.
This way, the start of the search does not change when the agent moves and the
existingg-values remain valid. The search can still be performed on directed graphs
by reversing the direction of all the edges in the original graph. Since heuristics
estimate the distances to the goal of the search, then in this backward search they
estimate the distances from the current state of the agent to states in question. As
a result, the heuristics change as the agent moves. This in turn alters the priorities
of the states inOPEN. Since ARA* reordersOPEN after each iteration anyway,
however, we can recompute the heuristic values of the states inOPENduring the
reorder operation (line 12 in Figure 9).

4.4 Theoretical Properties of ARA*

ARA* inherits all of the properties of the version of A* presented in section 4.2.3.
We now list two of the most important of these properties. For the proofs of these
and other properties of the algorithm please refer to [58]. The first theorem states
that, for any states with a key smaller than or equal to the minimum key inOPEN,
we have computed a greedy path fromsstart to s whose cost is within a factor ofε
of the least-cost path.

Theorem 5 Whenever the ComputePath function exits, for any states with
key(s) ≤ min

s′∈OPEN(key(s′)), we haveg∗(s) ≤ g(s) ≤ ε ∗ g∗(s), and the
cost of a greedy path fromsstart to s is no larger thang(s).
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The correctness of ARA* follows from this theorem. Each execution of the Com-
putePath function terminates when key(sgoal) is no larger than the minimum key in
OPEN. This means that the greedy path from start to goal is within a factorε of
optimal. Sinceε is decreased before each iteration, ARA* gradually decreases the
suboptimality bound and finds new solutions to satisfy the bound.

Theorem 6 Each call to ComputePath() expands a state at most once and only if
its v-value is lowered during its expansion.

The second theorem formalizes how ARA* saves computation. A usual imple-
mentation of A* search with inflated heuristics performs multiple re-expansions
of many states. Each search iteration in ARA*, on the other hand, is guaranteed to
expand each state at most once. Also, it does not expand states whosev-values be-
fore the current call to the ComputePath function have already been correctly com-
puted. This theorem is important because the processing done by the ComputePath
function usually dominates all other processing and in particular the insertion of
INCONSinto OPENand the re-ordering ofOPEN. In the worst-case, however, the
re-ordering ofOPENcan be on the order ofO(|S| log(|S|)).

4.5 Experimental Analysis of the Performance of ARA*

In this section we evaluate the performance of ARA* on simulated 6 and 20 degree
of freedom (DOF) robotic arms (Figures 11 and 12) and compare it against other
anytime heuristic searches that can provide suboptimality bounds, namely, Anytime
A* [17] and a succession of A* searches with decreasingε values (as described in
section 4.1). The base of the arm is fixed, and the task is to move its end-effector to a
goal position while navigating around obstacles (indicated by grey rectangles). An
action is defined as a change of a global angle of any particular joint (i.e., the next
joint further along the arm rotates in the opposite direction to maintain the global
angle of the remaining joints.) We discretize the workspace into a grid of 50 by 50
cells. A single (and nearly instantaneous) execution of a 2D version of Dijkstra’s
algorithm is used to compute a distance from each cell to the cell containing the
goal. This distance measure takes into account that some cells are occupied by
obstacles and is used as our heuristic. In environments where all the obstacles are
connected to the boundary, this heuristic directs the arm in an approximately correct
direction.3 This property allows all the three algorithms we compare to provide
anytime behavior.

In order for the heuristic not to overestimate true costs, the actions are discretized

3 In environments with obstacles floating in the air, these 2D heuristics may not guide well.
For example, the heuristics may advocate that the robot arm should move above an obstacle
placed in the middle of the workspace, while the robot arm is short enough that it can only
move below the obstacle.
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(a) 6D arm trajectory forε = 3

(b) uniform cost results (c) non-uniform cost results

Fig. 11. 6D robot arm experiments. Anytime A* is the algorithm presented in [16].

so as to never move the end-effector by more than one cell. The resulting state space
is over 3 billion states for a 6 DOF robot arm and over1026 states for a 20 DOF
robot arm. Memory for the states is dynamically allocated.

Figure 11(a) shows the planned trajectory of the robot arm after the initial search
of ARA* with ε = 3.0. This search takes about 0.05 secs. The plot in Figure 11(b)
shows that ARA* improves both the quality of the solution and the bound on its
suboptimality faster and in a more gradual manner than either a succession of
Weighted A* searches or Anytime A* [17].4 In this experimentε is initially set
to 3.0 for all three algorithms. For all these experimentsε is decreased in steps of
0.02 (2% suboptimality) for ARA* and the succession of Weighted A* searches.
Anytime A* does not controlε, and in this experiment its suboptimality bound de-
creases sharply at the end of its search. On the other hand, it reaches the optimal
solution first. To evaluate the expense of the anytime property of ARA* we also ran

4 The latest experimental analysis of Anytime A* and ARA*, however, suggests that the
actual difference in performances between the two algorithms may depend on the properties
of the domain [17].
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(c) performance results

(a) Anytime A* and A* after 90 seconds (b) ARA* after 90 seconds

Fig. 12. 20D robot arm experiments (the trajectories shown are downsampled by 6). Any-
time A* is the algorithm presented in [17]. The costs of the solutions shown in (a) and (b)
are 682 and 657, respectively.

ARA* and an optimal A* search in an environment with a gap between the obsta-
cles large enough for the optimal A* search to become feasible (this environment
is not shown in the figures). Optimal A* search required about 5.3 mins (2,202,666
states expanded) to find an optimal solution, while ARA* required about 5.5 mins
(2,207,178 states expanded) to decreaseε in steps of 0.02 from 3.0 until a provably
optimal solution was found. This represents an overhead of 4%. In other domains
such as path planning for robot navigation, though, we have observed the overhead
to be up to 30%. While decreasingε, it is often the case that a search iteration ex-
pands no states. The termination criterion for the while loop (line 2 in Figure 8)
is satisfied as soon as the ComputePath function is entered. The overhead of such
iterations is then purely due to reordering the heap. For the domains we have exper-
imented with, the computational expense of this operation is usually substantially
less than the computational expense of efforts spent on expanding states.

In the experiment shown in Figure 11(b) all the actions have the same cost. We also
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experimented with non-uniform costs, to represent the scenario where changing a
joint angle closer to the base is more expensive than changing a joint angle further
away. Because of the non-uniform costs, our heuristic becomes less informative,
and so all searches are much more expensive. In this experiment we start with
ε = 10, and run all algorithms for 30 minutes. At the end, ARA* achieves a solu-
tion with a substantially smaller cost (200 vs. 220 for the succession of A* searches
and 223 for Anytime A*) and a better suboptimality bound (3.92 vs. 4.46 for both
the succession of A* searches and Anytime A*). Also, since ARA* controlsε it de-
creases the cost of the solution gradually. The results of this experiment are shown
in Figure 11(c). ARA* reaches a suboptimality boundε′ = 4.5 after about 59,000
expansions and 11.7 secs, while the succession of A* searches reaches the same
bound after 12.5 million expansions and 27.4 minutes (corresponding to a 140-fold
speedup by ARA*) and Anytime A* reaches it after over 4 million expansions and
8.8 minutes (corresponding to a 44-fold speedup by ARA*). Similar results hold
when comparing the amount of work each of the algorithms spend on obtaining
a solution of cost 225. While Figure 11 shows execution time, the comparison of
states expanded (not shown) is almost identical. Additionally, to demonstrate the
advantage of ARA* expanding each state no more than once per search iteration,
we compare the first searches of ARA* and Anytime A*: the first search of ARA*
performs 6,378 expansions, while Anytime A* performs 8,994 expansions, mainly
because some of the states are expanded up to seven times before the initial solution
is found.

Figures 12(a-c) show the results of experiments performed on a 20 DOF robot arm,
with actions that have non-uniform costs. All three algorithms start withε = 30.
Figures 12(a) and 12(b) show that in 90 seconds of planning the cost of the trajec-
tory found by ARA* and the suboptimality bound it can guarantee are substantially
smaller than for the other algorithms. For example, the trajectory in Figure 12(a)
contains more steps and also makes one extra change in the angle of the third joint
from the base of the arm (despite the fact that changing lower joint angles is very ex-
pensive) in comparison to the trajectory in Figure 12(b). The graph in Figure 12(c)
compares the performance of the three algorithms on twenty randomized environ-
ments similar to the environment in Figure 12(a). The environments had random
goal locations, and the obstacles were slid to random locations along the boundary.
The graph shows the additional time the other algorithms require to achieve the
same suboptimality bound reached by ARA*. To make the results from different
environments comparable, we normalize the bound by dividing it by the maximum
of the best bounds that the algorithms achieve before they run out of memory. Av-
eraging over all environments, the time for ARA* to achieve the best bound was
10.1 secs. Thus, the difference of 40 seconds at the end of the Anytime A* graph
corresponds to an overhead of about a factor of 4.
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5 Anytime D*: An Anytime Incremental A* Search Algorithm with Provable
Bounds on Suboptimality

The ARA* algorithm efficiently provides anytime performance when the graph re-
mains unchanged. However, in common real-world applications it is rarely the case
that the initial graph perfectly models the planning problem. For example, if a ro-
bot navigating to its goal begins without a perfect map of the environment, or the
environment is dynamic, then the robot will have to update its graph over time and
re-plan. In this section, we present an algorithm that is able to improve its solu-
tions over timeand repair its solutions when changes are made to any part(s) of
the graph. We begin by discussing how changes to the graph violate key properties
of ARA*. Next, we discuss how incremental planners are able to repair their solu-
tions when the graph changes. We then combine the major ideas behind ARA* and
incremental planners to develop Anytime D* – an efficient anytime, incremental
search algorithm.

5.1 The Effect of Cost Changes

In ARA* the ComputePath function is executed multiple times for different values
of ε, but always on the same graph. The gradual decrease ofε provides the anytime
behavior of the algorithm. Unfortunately, ARA* is not able to handle arbitrary edge
cost changes. This is because its ComputePath function assumes that all states are
either consistent or overconsistent, and this assumption can be violated when edge
costs change. To satisfy the requirement that allg-values are one step look-ahead
values based on thev-values of the predecessors, that is, for any states 6= sstart,
g(s) = mins′∈pred(s)(v(s′) + c(s′, s)), we need to update theg-values of states for
which the costs of incoming edges have changed, and theseg-values may become
bigger or smaller than their correspondingv-values.

Let us first consider the simpler scenario where edge costs can only decrease. Then,
as we update theg-values of the states for which the costs of incoming edges have
changed, they also can only decrease. This means that if a states was not under-
consistent before some edge costc(s′, s) decreased, then it cannot become under-
consistent due to the edge cost decrease either. This means that all the assumptions
of the ComputePath function will still be satisfied. Thus, the same ComputePath
function of ARA* can be used to handle decreasing edge costs.

The case of increasing edge costs is more troublesome. As we update theg-values
of states for which the costs of incoming edges have increased, these values may
also increase. As such they may become larger than the correspondingv-values,
and states may become underconsistent. An example demonstrating this is shown in
Figure 13. The initial state values are the same as in Figure 7 after the ComputePath

24



(a) state values after the previous execution of ComputePath (Figure 7(c))

(b) after the costc(s2, s1) changes (c) after theg-value ofs1 is updated

Fig. 13. An example of how an underconsistent state is created as a result of increasing the
cost of an edge. Overconsistent states are shown with solid bold borders. Underconsistent
states are shown with dashed bold borders. Theg-values that have just changed are shown
in bold.

function terminated. We now, however, change the cost of the edge froms2 to s1

and update theg-value ofs1 accordingly. This results ins1 becoming an under-
consistent state. Unfortunately, the presence of this underconsistent state violates
the assumption that no state is underconsistent before a call to the ComputePath
function.

Lifelong Planning A* (LPA*) is an incremental version of A* that computes a
shortest path repeatedly, updating edge costs in the graph in between each execu-
tion [41]. In the following section we briefly explain the ComputePath function of
LPA* in a similar manner to how the ComputePath function of ARA* was pre-
sented. We then show how it can be combined with ARA* to provide an anytime
incremental search.

5.2 The ComputePath function of LPA*

Unlike the ComputePath function of ARA*, the ComputePath function of LPA*
can operate even when underconsistent states exist in the graph. The way the Com-
putePath function of LPA* handles these states is based on a simple idea: every
underconsistent states can be made either consistent or overconsistent by setting
its v-value to∞. However, by settingv(s) = ∞ for each underconsistent states,
the g-values of successors ofs may increase, making these successors undercon-
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1 procedure FixInitialization ()

2 Q = {s | v(s) < g(s)};
3 while(Q is non-empty)
4 remove anys from Q;
5 v(s) = ∞;
6 for each successors′ of s

7 if s′ 6= sstart

8 g(s′) = mins′′∈pred(s′) v(s′′) + c(s′′, s′);
9 if (v(s′) < g(s′) AND s′ /∈ Q)

10 inserts′ into Q;

Fig. 14. Pseudocode that forces all states to become either consistent or overconsistent

The pseudocode below assumes the following:
(1) the function key(s) satisfies the restriction in Figure 5 and the restriction in Figure 16;
(2) v− andg− values of all states are initialized in such a way that all thev-values are non-negative,g(sstart) = 0

and for every states 6= sstart g(s) = mins′∈pred(s)(v(s′) + c(s′, s)) (the initialization can also occur whenever
ComputePath encounters new states);

(3) initially, CLOSED= ∅ andOPENcontains exactly all inconsistent states (i.e., statess whosev(s) 6= g(s)).
1 procedure UpdateSetMembership(s)
2 if v(s) 6= g(s)

3 if (s 6∈ CLOSED) insert/updates in OPENwith key(s);
4 else
5 if (s ∈ OPEN) removes from OPEN;

6 procedure ComputePath()
7 while(key(sgoal) > mins∈OPEN(key(s)) ORv(sgoal) < g(sgoal))

8 removes with the smallest key(s) from OPEN;
9 if v(s) > g(s)

10 v(s) = g(s); CLOSED= CLOSED∪ {s};
11 for each successors′ of s

12 if g(s′) > g(s) + c(s, s′)

13 g(s′) = g(s) + c(s, s′); UpdateSetMembership(s′);
14 else //propagating underconsistency
15 v(s) = ∞; UpdateSetMembership(s);
16 for each successors′ of s

17 if s′ 6= sstart

18 g(s′) = mins′′∈pred(s′) v(s′′) + c(s′′, s′); UpdateSetMembership(s′);

Fig. 15. ComputePath function that expands both overconsistent and underconsistent states

sistent. Thus, these successors need to have theirv-values set to∞ also. Figure 14
provides the pseudocode implementing this idea.

This is a simple way of forcing all states to be either consistent or overconsistent.
The computational expense of the pseudocode in Figure 14 though, can become a
burden sinceeveryunderconsistent state in the graph is fixed. LPA* incorporates
this method of fixing states into the ComputePath function itself and therefore does
it only for the states that need to be fixed rather thanall underconsistent states.

The ComputePath function of LPA* that achieves this is shown in Figure 15. The
version we show can handle inflated heuristics, just like the ComputePath function
of ARA*. Notice that its second assumption does not require that there are no un-
derconsistent states. The function fixes underconsistent states by expanding them
(lines 15 through 18). This means thatOPEN, the list of candidates for expansion,
now needs to contain both underconsistent and overconsistent states. The function
UpdateSetMembership inserts inconsistent states intoOPEN unless they have al-
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ready been expanded as overconsistent (i.e., they are inCLOSED) and removes
states fromOPEN that are consistent. This function is called every time ag- or
v-value is modified except for at line 10, wheres is consistent and has just been re-
moved fromOPEN. Initially, OPENmust containall inconsistent states, regardless
of whether they are overconsistent or underconsistent (this is the third assumption
in Figure 15).

To ensure that when an overconsistent states′ is expanded itsg-value is no more
thanε times itsg∗-value, we need to make sure that all the states that can possibly
belong to the current greedy path fromsstart to s′ are fixed so that they are not
underconsistent. To do this, we require that all underconsistent states that could
belong to a path fromsstart to s′ are expanded befores′ is expanded. This places a
second constraint on the state priorities inOPEN:

for any two statess, s′ ∈ S such thatc∗(s′, sgoal) < ∞, v(s′) ≥ g(s′), v(s) < g(s) and
g(s′) ≥ v(s) + c∗(s, s′), it holds that key(s′) > key(s)

Fig. 16. additional key restriction

Unlike the first restriction, shown in Figure 5, this restriction places the constraints
on the priorities ofs′ ands whens is underconsistent. In the first restriction,s was
overconsistent. The new restriction can be described as follows. Given an overcon-
sistent or consistent states′ that can potentially belong to a path fromsstart to sgoal

(i.e., c∗(s′, sgoal) < ∞) and an underconsistent states, the current path fromsstart

to s′ may potentially contains if g(s′) ≥ v(s) + c∗(s, s′). Therefore,s needs to
be expanded first and so key(s) needs to be strictly smaller than key(s′). If there
exists no underconsistent states such thatg(s′) ≥ v(s) + c∗(s, s′) then there is no
underconsistent state on the current greedy path fromsstart to s′.

The function also makes sure that when the search terminatessgoal itself is not
underconsistent. The second part of the terminating condition, namely,v(sgoal) <
g(sgoal) ensures that the search continues to expand states untilsgoal is either con-
sistent or overconsistent. Figure 17 demonstrates the operation of the ComputePath
function of LPA* when some states are initially underconsistent. The initial state
values are the same as in Figure 13(c).

While the pseudocode in Figure 15 is correct, there remains one significant opti-
mization. The re-evaluation ofg-values in line 18 is an expensive operation as it
requires us to iterate over all predecessors ofs′. We can decrease the number of
times this re-evaluation is done if we notice that it is invoked when states is ex-
panded as underconsistent and therefore itsv-value is increased to∞. Therefore,
only those successors ofs whoseg-values depend ons can be affected. To keep
track of these states we maintain back-pointers. For states′ = sstart, bp(s′) = null.
For all other states generated by search,

bp(s′) = arg min
s′′∈pred(s′)

v(s′′) + c(s′′, s′) (4)
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(a) initial state values (b) after the expansion ofs1

(c) after the expansion ofs3 (d) after the expansion ofs1

(e) after the computation of a greedy path

Fig. 17. An example of how the ComputePath function operates un-
der an arbitrary initialization. The example uses the prioritization function
key(s) = [min(g(s), v(s)) + h(s);min(g(s), v(s))]. This function satisfies the re-
quired restrictions. All inconsistent states need to be inOPEN initially. Overconsistent
states are shown with solid bold borders. Underconsistent states are shown with dashed
bold borders. Theg- and v-values that have just changed are shown in bold. After the
search terminates, a greedy path is computed and is shown in bold. The computed greedy
path and all theg-values are the same as those generated by A* search (provided it broke
ties in a certain manner when selecting states with the samef -values for expansion).

This is similar to how A* search maintains back-pointers to reconstruct the so-
lution. Whenever a state is expanded, in addition to updating theg-values of its
successors, we now also need to update their backpointers so that equation 4 holds.
In fact, if a back-pointer is set first, then theg-value is just set based on the new
state the back-pointer points to (lines 18 and 26 in Figure 18). The optimization is
that in case of an underconsistent state expansion, the re-evaluation of ag-value is
now only done for the state whose back-pointer points to the state being expanded
(line 24 in Figure 18). In addition, a greedy path, and hence the solution, can now
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be reconstructed in a backward fashion by just following back-pointers fromsgoal

to sstart. We will refer to the path re-constructed in this way as the path defined by
back-pointers.

5.3 An Efficient Anytime Incremental Search Algorithm: Anytime D*

Thus far, we have explained an anytime search algorithm suitable for solving com-
plex planning problems with limited deliberation time (ARA*) and an incremen-
tal search algorithm suitable for planning in dynamic domains (LPA*). We now
combine these two algorithms into a single anytime incremental search algorithm,
which we call Anytime D* (where D* stands for Dynamic A*, as in [40]). We will
often refer to Anytime D* simply as AD*. AD* can plan under time constraints,
just like ARA*, but is also able to reuse previous planning efforts in dynamic do-
mains.

Both ARA* and LPA* re-use their previous search efforts when executing the Com-
putePath function. The difference is that before each call to the ComputePath func-
tion ARA* changes the suboptimality boundε, while LPA* changes one or more
edge costs in the graph. The Anytime D* algorithm should be able to do both types
of changes simultaneously, so that it can improve a solution by decreasingε even
when the model of a problem changes slightly as reflected in the edge cost changes.

It turns out that the version of the ComputePath function that we have described
in section 5.2 is already sufficient to handle both of these types of changes. (The
ComputePath function of the original LPA* [41] can not handle changes inε as it
can only search for optimal solutions.) Just like the ComputePath function of ARA*
it can handle consistent and overconsistent states. In addition, it can also handle
underconsistent states which can be created when some edge costs are increased (as
discussed in section 5.1). Consequently, the version of the ComputePath function
described in section 5.2 is a generalization of the ComputePath function used by
ARA* and can be executed when changes inε and edge costs occur at the same
time, the scenario that Anytime D* needs to be able to handle.

The pseudocode of Anytime D* is shown in Figures 18 and 19. The code for the
ComputePath function is almost the same as the one described in section 5.2. The
differences, shown in bold, are that we maintain theINCONSlist to keep track of
all inconsistent states (lines 4 and 7, Figure 18), just like we did it in ARA* and
we explicitly initialize the states that Anytime D* (not just the current execution of
the ComputePath function) has not seen before (lines 14-15 and 22-23, Figure 18).
TheINCONSlist is used to restoreOPEN, so that it contains all inconsistent states,
before each call to the ComputePath function.

The key() function that Anytime D* uses is given in Figure 19. It is straightforward
to show that it satisfies the constraints on the key function (the first assumption in
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1 procedure UpdateSetMembership(s)
2 if (v(s) 6= g(s))

3 if (s 6∈ CLOSED) insert/updates in OPENwith key(s);
4 else if(s 6∈ INCONS) insert s into INCONS;
5 else
6 if (s ∈ OPEN) removes from OPEN;
7 else if(s ∈ INCONS) removes from INCONS;

8 procedure ComputePath()
9 while(key(sgoal) > mins∈OPEN(key(s)) ORv(sgoal) < g(sgoal))

10 removes with the smallest key(s) from OPEN;
11 if v(s) > g(s)

12 v(s) = g(s); CLOSED= CLOSED∪ {s};
13 for each successors′ of s

14 if s′ was never visited by AD* before then
15 v(s′) = g(s′) = ∞; bp(s′) = null;

16 if g(s′) > g(s) + c(s, s′)

17 bp(s′) = s;
18 g(s′) = g(bp(s′)) + c(bp(s′), s′); UpdateSetMembership(s′);
19 else //propagating underconsistency
20 v(s) = ∞; UpdateSetMembership(s);
21 for each successors′ of s

22 if s′ was never visited by AD* before then
23 v(s′) = g(s′) = ∞; bp(s′) = null;

24 if bp(s′) = s

25 bp(s′) = arg mins′′∈pred(s′) v(s′′) + c(s′′, s′);
26 g(s′) = v(bp(s′)) + c(bp(s′), s′); UpdateSetMembership(s′);

Fig. 18. Anytime D*: ComputePath function. The changes as compared with the Com-
putePath described in section 5.2 are shown in bold.

The pseudocode below assumes the following:
(1) heuristics are consistent:h(s) ≤ c(s, s′) + h(s′) for any successors′ of s if s 6= sgoal andh(s) = 0 if s = sgoal.

1 procedure key(s)
2 if (v(s) ≥ g(s))

3 return[g(s) + ε ∗ h(s); g(s)];
4 else
5 return[v(s) + h(s); v(s)];

6 procedure Main()

7 g(sgoal) = v(sgoal) = ∞; v(sstart) = ∞; bp(sgoal) = bp(sstart) = null;
8 g(sstart) = 0; OPEN= CLOSED= INCONS= ∅; ε = ε0;
9 insertsstart into OPENwith key(sstart);

10 forever
11 ComputePath();
12 publishε-suboptimal solution;
13 if ε = 1

14 wait for changes in edge costs;
15 for all directed edges(u, v) with changed edge costs
16 update the edge costc(u, v);
17 if (v 6= sstart AND v was visited by AD* before)
18 bp(v) = arg mins′′∈pred(v) v(s′′) + c(s′′, v);
19 g(v) = v(bp(v)) + c(bp(v), v); UpdateSetMembership(v);
20 if significant edge cost changes were observed
21 increaseε or re-plan from scratch (i.e., re-execute Main function);
22 else ifε > 1

23 decreaseε;
24 Move states fromINCONSinto OPEN;
25 Update the priorities for alls ∈ OPENaccording to key(s);
26 CLOSED= ∅;

Fig. 19. Anytime D*: key and Main functions
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Figure 15). One can also design other key functions that satisfy these constraints
and are better suited for certain domains (see section 7 for some examples).

The Main() function of Anytime D* (Figure 19) first setsε to a sufficiently high
valueε0, so that an initial, possibly highly suboptimal, solution can be generated
quickly, and performs the initialization of states (lines 7 through 9) so that the
assumptions of the ComputePath function (assumptions listed in Figure 15) are
satisfied. It then generates and publishes an initial solution (lines 11 and 12). Af-
terwards, unless changes in edge costs are detected, the Main function decreases
ε (line 23) and improves the quality of its solution by re-initializingOPEN and
CLOSEDproperly (lines 24 through 26) and re-executing the ComputePath func-
tion.This process is identical to how the function Main() in ARA* works: before
each execution of ComputePath theOPENlist is made to contain exactly all incon-
sistent states by movingINCONSinto OPENandCLOSEDis emptied.

If changes in edge costs are detected, then Main() updates thebp- and g-values
(lines 18 and 19) of immediately affected states so that the second assumption of
the ComputePath function in Figure 15 is satisfied. If edge cost changes are wide-
spread, then it may be computationally expensive to repair the current solution to
regain or improveε-suboptimality. In such a case (detected in line 20), one alterna-
tive for the algorithm is to increaseε so that a less optimal solution can be produced
quickly. In some cases, however, this may be a good time to release all the currently
used memory and just re-execute the Main() function with the initial value ofε.
While we do not give a specific strategy for deciding whether the changes in edge
costs are large enough to plan from scratch, in section 6 we give an example of a
strategy that works well for mobile robot navigation. If the changes in edge costs
are not substantial and are unlikely to cause expensive re-planning efforts, Main()
can decreaseε (line 23), so that it both repairs and improves the solution in a single
execution of the ComputePath function.

The suboptimality bound for each solution Anytime D* publishes is the same as
for ARA*:

ε′ = min(ε,
g(sgoal)

mins∈OPEN∪INCONS(g(s) + h(s))
). (5)

If the second term inside themin function is less than one theng(sgoal) is already
equal to the cost of an optimal solution.

When interleaving planning with execution using Anytime D*, the agent executes
the best plan it has so far while Anytime D* works on fixing and improving the plan.
As with ARA*, it can be useful to perform the search backwards (see section 4.3).
Consequently, the heuristics change as the agent moves and we can recompute the
heuristic values of the states inOPEN during the reorder operation (line 25 in
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Figure 19).5

5.4 Anytime D* Example

Figures 20 and 21 illustrate the approaches discussed in this article on a simple grid
world planning problem. In this example we have an eight-connected grid where
black cells represent obstacles and white cells represent free space. As before (Fig-
ure 1), we can extract a graph from this grid by assigning a state to each cell and
defining the successors and predecessors of a state to be its adjacent states. The cell
marked R denotes the position of an agent navigating this environment towards the
goal cell, marked G (in the upper left corner of the grid world). The cost of moving
from one cell to any non-obstacle neighboring cell is one. The heuristic used by
each algorithm is the larger of the x (horizontal) and y (vertical) distances from the
current cell to the cell occupied by the agent. All of the algorithms search back-
wards from the goal cell to the agent cell. The cells expanded by each algorithm for
each subsequent agent position are shown in grey. The resulting paths are shown as
dark grey arrows.

The first row in each figure shows the operation of backwards A*, withε = 1
in Figure 20 and withε = 2.5 in Figure 21. The initial search performed by A*
with ε = 1 provides a provably optimal path for the agent. In contrast, the initial
search by inflated A* withε = 2.5 produces a suboptimal solution but it produces
this solution much more quickly. After the agent takes two steps along this path, it
receives information indicating that one of the cells in the top wall is in fact free
space. It then replans from scratch using the corresponding A* search to generate
a new path to the goal. While both paths happen to be the same, and optimal, they
are only guaranteed to beε-suboptimal by each search. In total, A* withε = 1
performed 31 expansions, while inflated A* performed 19 expansions.

The second row shows the operation of optimal LPA* in Figure 20 and LPA* with
a constant inflation factor ofε = 2.5 in Figure 21. The bounds on the quality of
the solutions returned by these approaches are equivalent to those returned by the
first two versions of A*. However, because LPA* reuses previous search results, it
is able to produce its solutions with fewer overall cell expansions. LPA* without
an inflation factor expands 27 cells (almost all in its initial solution generation)
and always maintains an optimal solution, and LPA* with an inflation factor of2.5
expands 13 cells but producesε-suboptimal solutions.

The last row in Figure 20 shows the results of planning with ARA* and the last row
in Figure 21 shows the results of planning with AD*. Each of these approaches be-

5 The heap reorder operation might become expensive when the heap is large. An opti-
mization based on the idea in [40] can be done to avoid heap reordering. This is discussed
in [59].
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optimal A*

ε = 1.0 ε = 1.0 ε = 1.0

optimal LPA*

ε = 1.0 ε = 1.0 ε = 1.0

ARA*

ε = 2.5 ε = 1.5 ε = 1.0

Fig. 20. An example of planning with optimal A*, optimal LPA*, and ARA*. Each algo-
rithm directed its searches from the goal state G to the agent state R. The states expanded
by the algorithms are shown in grey. Note that after the third planning episode each of the
algorithms can guarantee solution optimality (ε = 1.0).

gins by computing a suboptimal solution using an inflation factor ofε = 2.5. While
the agent moves one step along this path, this solution is improved by reducing the
value ofε to 1.5 and reusing the results of the previous search. The path cost of
this improved result is guaranteed to be at most1.5 times the cost of an optimal
path. Up to this point, both ARA* and AD* have expanded the same 15 cells each.
However, when the agent moves one more step and finds out the top wall is bro-
ken, each approach reacts differently. Because ARA* cannot incorporate edge cost
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A* with ε = 2.5

ε = 2.5 ε = 2.5 ε = 2.5

LPA* with ε = 2.5

ε = 2.5 ε = 2.5 ε = 2.5

Anytime D*

ε = 2.5 ε = 1.5 ε = 1.0

Fig. 21. An example of planning with A* with an inflation factorε = 2.5, LPA* with an
inflation factorε = 2.5, and AD*. Each algorithm directed its searches from the goal state
G to the agent state R. The states expanded by the algorithms are shown in grey. Note
that after the third planning episode only Anytime D* can guarantee solution optimality
(ε = 1.0).

changes, it must replan from scratch with this new information. Using an inflation
factor of1.0 it produces an optimal solution after expanding 9 cells (in fact this so-
lution would have been produced regardless of the inflation factor used). AD*, on
the other hand, is able to repair its previous solution given the new information and
lower its inflation factor at the same time. Thus, the only cells that are expanded
are the 5 whose costs are directly affected by the new information and that reside
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between the agent and the goal.

Overall, the total number of cells expanded by AD* is 20. This is 4 less than the
24 required by ARA* to produce an optimal solution, and much less than the 27
required by optimal LPA*. Because AD* reuses previous solutions in the same way
as ARA* and repairs invalidated solutions in the same way as LPA*, it is able to
efficiently provide anytime solutions in dynamic environments.

5.5 Theoretical Properties of Anytime D*

In [60] we prove a number of properties of Anytime D*, including its termination
andε-suboptimality. Here we state the most important of these theorems.

Theorem 7 When the ComputePath function exits, the following holds for any state
s with (c∗(s, sgoal) < ∞∧ v(s) ≥ g(s) ∧ key(s) ≤ mins′∈OPEN(key(s′))): g∗(s) ≤
g(s) ≤ ε ∗ g∗(s), and the cost of the path fromsstart to s defined by back-pointers
is no larger thang(s).

This theorem guaranteesε-suboptimality of the solution returned by the Com-
putePath function, because when it terminatesv(sstart) ≥ g(sstart) and the key
value of sstart is at least as large as the minimum key value of all states in the
OPENqueue. The following theorems relate to the efficiency of Anytime D*.

Theorem 8 No state is expanded more than twice during the execution of the Com-
putePath function. A state can be expanded at most once as underconsistent and at
most once as overconsistent.

According to the next theorem no state is expanded needlessly. A state is expanded
only if it was inconsistent before the ComputePath was invoked or if it needs to
propagate the change in itsv-value.

Theorem 9 A states is expanded by ComputePath only if either it is inconsistent
initially or its v-value is altered by ComputePath at some point during its execution.

5.6 Experimental Analysis of the Performance of Anytime D*

To evaluate the performance of AD*, we compared it to ARA* and LPA* on a
simulated 3 degree of freedom (DOF) robotic arm manipulating an end-effector
through a dynamic environment (see Figures 22 and 23). In this set of experiments,
the base of the arm is fixed, and the task is to move into a particular goal config-
uration while navigating the end-effector around fixed and dynamic obstacles. We
used a manufacturing-like scenario for testing, where the links of the arm exist in an
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Fig. 22. Environment used in our first Anytime D* experiment, along with the optimal
solution and the end-effector trajectory (without any dynamic obstacles). The links of the
arm exist in an obstacle-free plane (and therefore in the shown view from the top they look
as if intersecting obstacles). The end-effector projects down into a cluttered space. Also
shown are the solution cost of the path traversed and the number of states expanded by
each of the three algorithms compared. D* Lite is an extension of LPA* to a moving agent
case.

obstacle-free plane, but the end-effector projects down into a cluttered space (such
as a conveyor belt moving goods down a production line).

In each experiment, we started with a known map of the end-effector environment.
As the arm traversed its trajectory, however, at each step there was some probability
Po that an obstacle would appear in its current path, forcing the planner to repair
its previous solution.

We have included results from two different initial environments and several dif-
ferent values ofPo, ranging fromPo = 0.04 to Po = 0.2. In these experiments,
the agent was given a fixed amount of time for deliberation,T d = 1.0 seconds, at
each step along its path. The cost of moving each link was non-uniform: the link
closest to the end-effector had a movement cost of 1, the middle link had a cost of
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Fig. 23. Environment used in our second experiment, along with the optimal solution and
the end-effector trajectory (without any dynamic obstacles). Also shown are the solution
cost of the path traversed and the number of states expanded by each of the three algorithms
compared.

4, and the lower link had a cost of 9. The heuristic used by all algorithms was the
maximum of two quantities; the first was the cost of a 2D path from the current
end-effector position to its position at the state in question, accounting for all the
currently known obstacles on the way; the second was the maximum angular dif-
ference between the joint angles at the current configuration and the joint angles at
the state in question. This heuristic is admissible and consistent.

In each experiment, we compared the cost of the path traversed by ARA* with
ε0 = 20 and LPA* with ε = 20 to that of AD* with ε0 = 20, as well as the
number of states expanded by each approach.6 Our first environment had only
one general route that the end-effector could take to get to its goal configuration,
so the difference in path cost between the algorithms was due to manipulating the
end-effector along this general path more or less efficiently. Our second experiment

6 We used an extension of LPA* designed for the case where the agent is moving, known
as D* Lite [57].
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Fig. 24. An illustration of the anytime behavior of AD*. Each graph shows the total path
cost (the cost of the executed trajectory so far plus the cost of the remaining path under the
current plan) as a function of how many steps the agent has taken along its path.

presented two qualitatively different routes the end-effector could take to the goal.
One of these had a shorter distance in terms of end-effector grid cells but was
narrower, while the other was longer but broader, allowing for the links to move in
a much cheaper way to get to the goal.

Each environment consisted of a 50× 50 grid, and the state space for each consisted
of slightly more than 2 million states. The results of the experiments, along with
95% confidence intervals, can be found in Figures 22 and 23. As can be seen from
these graphs, AD* was able to generate significantly better trajectories than ARA*
while processing far fewer states. LPA* processed very few states, but its overall
solution quality was much worse than that of either of the anytime approaches. This
is because it is unable to improve its suboptimality bound.

We have also included results focussing exclusively on the anytime behavior of
AD*. To generate these results, we repeated the above experiments without any
randomly-appearing obstacles (i.e.,Po = 0). We kept the deliberation time avail-
able at each step,T d, set at the same value as in the original experiments (1.0
seconds). Figure 24 shows the total path cost (the cost of the executed trajectory so
far plus the cost of the remaining path under the current plan) as a function of how
many steps the agent has taken along its path. Since the agent plans before each
step, the number of steps taken corresponds to the number of planning episodes
performed. These graphs show how the quality of the solution improves over time.
We have included only the first 20 steps, as in both cases AD* has converged to the
optimal solution by this point.

We also ran the original experiments using LPA* with no inflation factor and un-
limited deliberation time to get an indication of the cost of an optimal path. On
average, the path traversed by AD* was roughly 10% more costly than the optimal
path, and it expanded roughly the same number of states as LPA* with no inflation
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(a) segbot robot (b) ATRV robot (c) 3D Map constructed by ATRV

Fig. 25. Robotic platforms that used AD* for planning

factor. This is particularly encouraging: not only is the solution generated by AD*
very close to optimal, but it is providing this solution in an anytime fashion for
roughly the same total amount of processing as would be required to generate the
solution in one shot.

6 Application of Anytime D* to Outdoor Mobile Robot Navigation

The motivation for the planning algorithms presented in this paper was in part the
development of more efficient path-planning for mobile robots, such as the ones in
Figure 25. Robots often operate in open, large and poorly modelled environments.
In open environments, optimal trajectories involve fast motion and sweeping turns
at speed. So, it is particularly important to take advantage of the robot’s momentum
and find dynamic rather than static plans.

To do this we plan over a four dimensional state space, where each state is charac-
terized by anxy-position, the orientation of the robot, and the translational velocity
of the robot. The task of the planner is to generate a plan that minimizes execution
time given the constraints of the robot. For example, the robot’s inertial constraints
prevent the planner from coming up with plans where a robot slows down faster
than its maximum deceleration permits. 2D planners that only consider thexy-
position of the robot are usually unable to take into account these constraints in a
general and systematic way. Perhaps more importantly, constraints on the rotational
velocity of the robot limit how much the robot can turn given its current transla-
tional velocity. 2D planners assume that the robot can make arbitrarily sharp turns,
and therefore in practice a robot controller that executes a plan generated by such
planner must drive the robot slowly and may have to stop when the robot has to
turn.

As an example, Figure 26(a) shows the optimal 2D plan, and Figure 26(b) shows
the optimal 4D plan through an outdoor environment. The map of the environment
was constructed from 3D data gathered by an ATRV robot (see Figure 25(c) [61]).
Shown in black are obstacles in the environment. The size of the environment is
91.2 by 94.4 meters discretized into cells of 0.4 by 0.4 meters. The robot’s initial
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(a) optimal 2D search with A* (b) optimal 4D search with A*

Fig. 26. The comparison of optimal 2D plan with optimal 4D plan.

state is the dark circle to the left, while its goal is the light circle to the right. To
ensure the safe operation of the robot we created a buffer zone around each obstacle
with high costs. The squares in the upper-right corners of the figures show a mag-
nified fragment of the map with grayscale proportional to cost. As the fragments
show, the optimal 2D plan makes a 90 degree turn when going around the obstacles,
requiring the robot to come to a complete stop. The optimal 4D plan, on the other
hand, results in a wider turn, and the velocity of the robot remains high throughout
the whole trajectory.

Unfortunately, higher dimensionality combined with large environments results in
very large state spaces for the 4D planner. Moreover, in poorly modelled environ-
ments, the planning problem changes often as we discover new obstacles or as
modelling errors push us off of our planned trajectory. As a result, the robot needs
to re-plan its trajectory many times on its way to the goal, and it needs to do this
quickly while moving. Anytime D* is very well-suited for performing this planning
task.

We built a two-level planner for this navigation problem: we combined a 4D planner
that uses Anytime D* with a 2D (x andy) planner that performs A* search and
whose results are used to initialize the heuristics for the 4D planner. (This approach
of using a lower-dimensional search to derive heuristics for a higher-dimensional
search is closely related to the approach of using pattern databases [62].) The 4D
planner searches backward from the goal state to the robot state, while the 2D
planner searches forward. This way the 4D planner does not have to discard the
search tree every time the robot moves. The 2D planner, on the other hand, is very
fast and can be re-run every time the robot moves without causing any delay.

The 4D planner continuously runs Anytime D* until the robot reaches its goal. Ini-
tially, Anytime D* setsε to a high value (to be specific, 2.5) and comes up with
a plan very quickly. While the robot executes this plan, the plan is improved and
repaired if new information about the environment is gathered. Every 500 millisec-
onds, the robot updates its plan to the most recent solution. Thus, at any point of
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(a) optimal 4D search with A* (b) 4D search with AD* (c) 4D search with AD*
after 25 secs after 0.6 secs (ε = 2.5) after 25 secs (ε = 1.0)

Fig. 27. The comparison of planning with A* and Anytime D* for outdoor robot navigation
(cross shows the position of the robot). Both 4D searches used 2D search to compute heuris-
tics when necessary as described in the text. In this example no information inconsistent
with the initial map was observed during execution (i.e. no edge cost changes occurred).

time, the robot has access to a 4D plan and does not have to stop. In between each
call to ComputePath, the goal state of the search,sgoal, is set to the current robot
state, so that the plan corresponds correctly to the position of the robot.

In most of our experiments, initially the robot only knows what it can observe from
its starting location. As the robot moves it senses obstacles and adds them to the
map. When no new information about the environment is observed, Anytime D*
decreasesε in between calls to ComputePath to provide improved solutions. When
new information about the environment is gathered, Anytime D* has to re-plan. As
discussed in section 5.3, before calling the ComputePath function, however, it has
to decide whether to continue improving the solution (i.e., to decreaseε), whether
to quickly re-compute a new solution with a looser suboptimality bound (i.e., to
increaseε), or whether to plan from scratch by discarding all search efforts so far
and resettingε to its initial, large value. We chose to make this decision based on the
solution computed by the 2D planner. If the cost of the 2D path remained the same
or changed little after the 2D planner finished its execution, then the 4D planner
decreasedε before the new call to ComputePath. In cases when the cost of the 2D
path changed substantially, on the other hand, the 4D planner always re-planned
from scratch by clearing all the memory and resettingε. In our implementation we
chose to never increaseε without discarding the current search tree. Because the
robot was moving through the environment, a large number of previously computed
states quickly became irrelevant. By clearing the memory, we were able to ignore
these irrelevant states and make room for those that were relevant.

Using our approach we were able to build a robotic system that can plan and re-plan
in outdoor environments while navigating at relatively high speed. The system was
deployed on two real robotic platforms: the Segway Robotic Mobility Platform
shown in Figure 25(a) and the ATRV vehicle shown in Figure 25(b). Both used
laser range finders (one on the Segway and two on the ATRV) for mapping and
inertial measurement units combined with global positioning systems for position
estimation.
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Fig. 28. The performance of AD* planner in the same environment as in Figure 27 but for
a different configuration of goal and start locations (a harder scenario) and for a fixed robot
position (i.e., the robot does not move).

As mentioned before, the size of the environment in the example in Figure 26 is
91.2 by 94.4 meters and the map is discretized into cells of 0.4 by 0.4 meters.
Thus, the 2D state space consists of 53,808 states and the 4D state space has over
20 million states. As a result, the 4D state space is too large for efficient planning
and re-planning optimally. In Figure 27 we show the advantage of the anytime
capability of AD* in this environment. For the sake of easier analysis, this figure
shows execution in simulation on the map that is fully-known in advance. We will
show execution on a real-robot with a map that is initially completely unknown in
Figure 29.

Figure 27(b) shows the initial plan computed by the 4D planner running Anytime
D* starting atε = 2.5. In this suboptimal plan, the trajectory is much smoother
and therefore can be traversed much faster than the 2D plan (Figure 26(a)). It is,
however, somewhat less smooth than the optimal 4D plan (Figure 27(a)). The time
required for the optimal 4D planner was 11.196s, whereas the time required for
the 4D planner that runs Anytime D* to generate its initial plan was 556 ms. (The
planning for all experiments was done on a 1 GHz Pentium processor.) As a result,
the robot that runs Anytime D* can start executing its plan much earlier. The cross
in Figure 27(a) (close to the initial robot location) shows the location of the robot
after 25 seconds from the time it receives a goal location. In contrast, Figure 27(c)
shows the position of the robot running Anytime D* after the same amount of time.
The robot using Anytime D* has advanced much further, and its plan by now has
converged to optimal and thus is no different from the one in Figure 27(a).

In Figure 28(a) and Figure 28(b) we show the cumulative number of states ex-
panded and the cost of the path found so far, as a function of1/ε. This experiment
was done in the same environment as before but for a different configuration of
start and goal states, so that the optimal path is longer and harder to find. We also
kept the start state fixed to more easily analyze the performance of the algorithm.
Initially, the number of states expanded is small (about 76 thousand). The result-
ing path is about 10% suboptimal. For each subsequent call to ComputePath the
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(a) ATRV while navigating (b) initial map and plan (c) current map and plan

(d) current map and plan (e) current map and plan (f) ATRV at its goal

Fig. 29. A run by an ATRV robot in an initially unknown environment. Figure (a) shows the
ATRV navigating in the environment, which was a parking lot full of cars. Figure (b) shows
the initial map and the initial plan AD* constructs. Figures (c-e) show the updated map and
the plan generated by AD* at different times. Figure (f) shows the map constructed by the
robot by the time it reaches its goal.

number of states expanded continues to be small (sometimes less than ten thou-
sand) until one particular invocation of ComputePath. During that iteration, over
952 thousand states are expanded. At exactly this iteration the solution drastically
changes and becomes optimal. There are no states expanded during the rest of the
iterations despiteε decreasing. The overall number of states expanded over all it-
erations is about 1.3 million. To compare, the number of states expanded by the
optimal planner would have been over 953 thousand. Thus, over all iterations about
30 percent more states are expanded by Anytime D* but a solution that is roughly
10% suboptimal was obtained for only 8% of the state expansions performed by
the optimal approach. It is important to remember though that the number of ex-
pansions Anytime D* performs before it converges to a provably optimal solution
(that is,ε = 1) is at least the number of expansions performed by an optimal A*
search.

In the example we have just seen the environment was consistent with the initial
map and thus during execution there were no edge cost changes. In contrast, in
the example in Figure 29 the ATRV robot navigates to its goal location in an en-
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tirely unknown environment (Figure 29(b)). In this experiment the robot navigates
a parking lot full of cars (Figure 29(a)). The robot assumes that all unknown area is
traversable (the ‘freespace’ assumption). Under this assumption the robot performs
4D planning using Anytime D*. While executing the plan it uses its two laser range
finders to gather new information about the environment, updates its map accord-
ingly and repairs and improves its plan. Figures 29(b) through (f) show how the
robot progresses towards its goal while building the map. This process involves a
substantial amount of re-planning as the map updates are often substantial and the
plan needs to be re-computed after every map update. Nevertheless, the Anytime
D* based planner was able to provide the robot with safe 4D plans at any point in
time and allowed the robot to navigate unknown and partially known environments
at speeds up to 1.5 meters/sec.

Most recently, we have used Anytime D* to build a 4D (x, y, orientation and trans-
lational velocity) planner for performing complex maneuvers with a full-size au-
tonomous SUV. Implemented for Carnegie Mellon University’s robotic entry into
the 2007 DARPA Urban Challenge, this planner is used to plan and re-plan dy-
namically feasible motion trajectories for the vehicle operating in parking lots, in
off-road scenarios and in on-road situations requiring non-trivial avoidance of ob-
stacles or execution of U-turns. These trajectories involve complex maneuvers such
as backing up, parking and moving through dense fields of irregular obstacles. This
planner has been tested in environments of sizes up to 500 meters by 500 meters
and with speeds up to 5 meters/second.

7 Discussion and Extensions

The anytime behavior of ARA* and AD* strongly relies on the properties of the
heuristics used. In particular, it relies on the assumption that a sufficiently large
inflation factorε substantially expedites the planning process. While in many do-
mains this assumption is true, this is not guaranteed. In fact, it is possible to con-
struct pathological examples where the best-first nature of searching with a largeε
can result in much longer processing times. In general, the key to obtaining any-
time behavior in ARA* is finding heuristics for which the difference between the
heuristic values and the true distances these heuristics estimate is a function with
only shallow local minima. Note that this is not the same as just keeping small the
magnitude of the differences between the heuristic values and the true distances. In-
stead, the difference will have shallow local minima if the heuristic function has a
shape similar to the shape of the true distance function. For example, in the case of
robot navigation a local minimum can be a U-shaped obstacle placed on the straight
line connecting a robot to its goal (assuming the heuristic function is Euclidean
distance). The size of the obstacle determines how many states weighted A*, and
consequently ARA* and AD*, will have to visit before getting out of the minimum.
The conclusion is that with ARA* (and AD*), the task of developing an anytime
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(re-)planner for various hard planning domains becomes the problem of designing
a heuristic function that contains shallow local minima. In many cases (although
certainly not always) the design of such a heuristic function can be a much simpler
task than the task of designing from scratch a whole new anytime (re-)planning
algorithm for solving the problem at hand.7

The memory requirements of the presented algorithms are also strongly related
to the heuristic function used. If the heuristic function guides searches well and
the branching factor is not very large, then ARA* and AD* can handle very large
graphs. For example, in our experiments on the motion planning for a 20 DOF robot
arm, the state-spaces contained up to1026 states. The branching factor, however,
was limited to 40 (only one joint angle was changed at a time). Thus, ARA* could
decreaseε from 10 to less than 4 without running out of memory. Trying to compute
a solution for a much smallerε, however, would result in ARA* running out of
memory. One way to prevent this is not allow for the planner to decreaseε to values
smaller than some value (e.g., 1.5). A better way perhaps, would be to query the
amount of remaining free memory and use this information to decide whether the
planner can be allowed to decreaseε or not in real-time. There also exist many
search problems that have a very high branching factor. Retaining all the generated
states for such problems becomes infeasible. To address this, a number of heuristic
searches have been developed that control the amount of memory they consume at
the expense of computational efficiency [64–66]. It would be valuable to investigate
whether the ideas behind these searches can be incorporated into ARA* and AD*.

Incremental searches in general, and AD* in particular, are very effective for re-
planning in the context of mobile robot navigation. Typically, in such scenarios the
changes to the graph are occurring close to the robot (through the robot’s observa-
tions). Their effects are therefore usually limited and much of the previous search
efforts can be reused if the search is performed backwards from the goal state to-
wards the state of the robot. Using an incremental replanner such as AD* in such
cases will be far more efficient than planning from scratch. However, this is not
universally true. If the areas of the graph being changed are not necessarily close
to the goal of the search (the state of the robot in the robot navigation problem),
it is possible for AD* to be evenlessefficient than weighted A* with the heuris-
tics inflated by the same constant. Mainly, this is because it is possible for AD*
to process every state in the environment twice – once as an underconsistent state
and once as an overconsistent state. A*, on the other hand, will only ever process
each state once. The worst-case scenario for AD*, and one that illustrates this pos-

7 It would also be interesting to extend ARA* and AD* to be able to search for partial
paths (in the same way that agent-centered searches only search few steps ahead). This
would guarantee that the algorithms can provide a plan at any point in time inanydomain,
no matter how hard it is to find a complete plan for it. This property, though, would come at
the expense of not being able to provide bounds, other than polynomial in the total number
of states [63], on the suboptimality of the solution found.
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sibility, is when changes are being made to the graph in the vicinity of the start of
the search. Similarly, AD* can also be less efficient than weighted A* if there are
a lot of edge cost changes. It is thus advisable for systems using AD* to abort the
replanning process and plan from scratch whenever either major edge cost changes
are detected or some predefined threshold of replanning effort is reached. The dis-
cussion in section 6 gives one method for deciding when to plan from scratch, at
least in the domain of robot navigation using 4D planning.

In general, it is important to note that planning from scratch every so often has the
benefit of freeing up memory from the states that are no longer relevant. This is
especially so in cases when the agent moves and the regions where it was before
are no longer relevant to its current plan. If, however, replanning from scratch needs
to be minimized as much as possible then one might consider limiting the expense
of re-orderingOPEN as well as inserting and deleting states from it by splitting
OPEN into a priority queue and one or more unordered lists containing only the
states with large priorities. The states from these lists need only be considered if
the priority of the goal state becomes sufficiently large. Therefore, we only need to
maintain the minimum priority among states on the unordered lists (or even some
lower bound on it) which can be much cheaper than leaving them on the priority
queue. Another more sophisticated and potentially more effective idea that avoids
the re-order operation altogether is based on adding a bias to newly-inconsistent
states [40]. Its implementation for ARA* and AD* is discussed in [59].

There also exist a few other optimizations to the algorithms presented here. For
example, Delayed D* [67] tries to postpone the expansion of underconsistent states
in LPA*. This seems to be quite beneficial in the domains where edge cost changes
can occur in arbitrary locations rather than close to the agent. This optimization
is directly applicable to AD*. As another example, in domains with a very high
branching factor, ARA* and AD* can be sped up by pruning states fromOPEN
that are guaranteed not to be useful for improving the current plan [17]. These and
other optimizations are described more thoroughly in [68].

A series of other optimizations concern the key function in AD*. The key function
we give in this paper is a two-valued function presented in Figure 19. A number of
other key functions, however, can also be designed that satisfy the restrictions on
the state priorities (the restrictions in Figure 5 and Figure 16). These functions are
suited better for certain domains. For example, it is usually desirable to decrease
the expense of maintainingOPENas much as possible. While in generalOPENcan
be implemented as a heap, it can be quite expensive to maintain it as such. In cases
when the number of distinct priorities is small,OPENcan instead be implemented
using buckets. To this end, one can achieve a significant decrease in the number of
distinct priorities by settingkey(s) = [g(s) + ε ∗h(s); 1] if s is not underconsistent
andkey(s) = [v(s) + h(s); 0] otherwise. In some domains this key function can
decrease the number of distinct priorities to a number small enough forOPEN to
be implemented using buckets. [56] presents a number of other valid key functions
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including one that breaks ties among the candidates for expansions with the same
f -values towards the states with the largerg-values. This tie-breaking criterion has
been known to be important in domains where many optimal solutions exist and we
want to avoid exploring all of them.

8 Conclusions

Planners used by agents operating in the real world must be able to provide plans
within limited deliberation time. In addition, world models used for planning are
often imperfect and so these models and the plans generated using these models
need to be updated as agents receive new information about the world. The com-
bination of these requirements makes planning for real-world tasks a challenging
area of research.

In this paper we contribute to this research in three ways. First, we present a novel
formulation of the well-known and widely-used A* search algorithm as a search
that expands inconsistent states. This formulation provides the basis for incremental
execution of an A* search: the search can be executed with an arbitrary initializa-
tion of states as long as all inconsistent states in the graph are identified beforehand.
The search will then concentrate on correcting only the inconsistent states and will
ignore the consistent states whose values are already correct.

Next, we use our formulation of A* search to construct an anytime heuristic search,
ARA*, that provides provable bounds on the suboptimality of any solution it pro-
duces. As an anytime algorithm it finds a feasible solution quickly and then con-
tinually works on improving this solution until the time available for planning runs
out. While improving the solution, ARA* reuses previous search efforts and, as a
result, is significantly more efficient than other anytime search methods. ARA* is
an algorithm well-suited for operation under time constraints. We demonstrate this
through experiments on a simulated high-dimensional robot arm and a complex
path planning problem for an outdoor mobile robot.

Based on our formulation of A* search, we also develop Anytime D*, an algorithm
that is both anytime and incremental. Anytime D* produces solutions of bounded
suboptimality in an anytime fashion. It improves the quality of its solution un-
til the available search time expires, at every step reusing previous search efforts.
When updated information regarding the underlying graph is received, the algo-
rithm can simultaneously improve and repair its previous solution. It thus combines
the benefits of anytime and incremental planners and provides efficient solutions to
complex, dynamic planning problems under time constraints. We demonstrate its
effectiveness on a simulated robot arm and the problem of complex path planning
for robots navigating in partially-known outdoor environments. To the best of our
knowledge, Anytime D* is the only heuristic search algorithm that is both anytime
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and incremental.

All the algorithms presented here are simple to implement and extend, are theo-
retically well-founded and are very useful in practice. As such, we hope they will
contribute to and motivate other researchers developing search algorithms for real
world applications.
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