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Abstract

Results about the redundancy of circumscriptive and default theories are presented.

In particular, the complexity of establishing whether a given theory is redundant is

establihsed.

1 Introduction

In this paper, we study the problem of whether a circumscriptive [McC80] or default [Rei80]
theory is redundant, that is, it contains unnecessary parts. Formally, a theory is redundant
if it is equivalent to one of its proper subsets; a part is redundant in a theory if the theory
is not semantically changed by the removal of the part. The redundancy of propositional
theories in CNF, 2CNF, and Horn form has already been analyzed in other papers [Lib05b,
Lib05c] where motivations are also given. Other problems related to redundancy have been
considered by various authors [Gin88, SS97, MS72, Mai80, ADS86, HK93, HW97, LM00,
Uma98, GF93, BZ05, PW88, FKS02, Bru03].

Circumscription and default logic are two forms of non-monotonic reasoning, as opposite
to classical logic, which is monotonic. A logic is monotonic if the consequences of a set of
formulae monotonically non-decrease with the set. In other words, all formulae that are
entailed by a set are also entailed by every superset of it. Circumscription and default logic
do not have this property, and are therefore non-monotonic.

The difference between monotonic and non-monotonic logic is important in the study of
redundancy. In propositional logic, as in all forms of monotonic logic, if a set does not entail
a formula, the same is true for all of its subsets. As a result, if Π is a set of clauses, γ is one of
its clauses, and Π\{γ} is not equivalent to Π, no subset of Π\{γ} is equivalent to Π. In the
other way around, if all clauses of a set of clauses Π are irredundant, then Π is irredundant.
We call this property local redundancy. The converse of this property is obviously true: if
a clause is redundant in a formula, the formula is redundant because it is equivalent to the
subset composed of all its clauses but the redundant one.

Local redundancy holds for all monotonic logic. In nonmonotonic logics, removing a
clause from a formula might result in a decrease of the set of consequences, which can
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however grow to the original one when another clause is further removed. However, some
nonmonotonic logics have the local redundancy property. We prove that local redundancy
holds for circumscriptive entailment and for the redundancy of the background theory in
default logic when all defaults are categorical (prerequisite-free) and normal. In the general
case, default logic does not have the local redundancy property.

Since redundancy is defined in terms of equivalence (namely, equivalence of a formula
with a proper subset of it), it is affected by the kind of equivalence used. In particular,
equivalence can be defined in two ways for default logic: equality of extensions and equality
of consequences. This lead to two different definitions of redundancy in default logic.

Regarding the complexity results, we show that checking whether a clause is redundant
in a formula according to circumscriptive inference is Πp

2-complete. For default logic, we
mainly considered redundancy in the background theory according to Reiter semantic using
both kinds of equivalence, but we also considered justified default logic [Luk88], constrained
default logic [Sch92, DSJ94], and rational default logic [MT95]. The results are as follows:
the redundancy of a clause in the background theory is Πp

2-complete and Πp
3-complete for

equivalence based on extensions and consequences, respectively. The problems of redundancy
of the background theory are Σp

3-complete and Σp
4-complete, respectively. The proofs of the

latter two results are of some interest, as they are done by first showing that the problems are
Πp

2-complete and Πp
3-complete, respectively, and then showing that such complexity results

can be raised of one level in the polynomial hierarchy. This technique allows for a proof of
hardness for a class such as Σp

4 without involving complicated QBFs such as ∃W∀X∃Y ∀Z.F .
We also considered the redundancy of defaults in a default theory. We show that these

problems are at least as hard as the corresponding problems for the redundancy of the
background theory for Reiter and justified default logics.

2 Preliminaries

If Π and Γ are sets, Π\Γ denotes the set of elements that are in Π but not in Γ. This
operator is often called set subtraction, because the elements of Γ are “subtracted” from Π.
An alternative definition of this operator is: Π\Γ = Π ∩ Γ, where Γ is the complement of Γ.

All formulae considered in this paper are propositional and finite Boolean formulae over
a finite alphabet. We typically use formulae in CNF, that is, sets of clauses. We simply
refer to sets of clauses as formulae. We assume that no clause is tautological (e.g., x ∨ ¬x):
formulae containing tautological clauses can be simplified in linear time. By Var(Π) we mean
the set of variables mentioned in the formula Π.

In some places, we use the notation ¬γ, where γ is a clause, to denote the formula
{¬l | l ∈ γ}. Note that γ is a clause, while both {γ} and ¬γ are formulae (sets of clauses).
A clause is positive if and only if it contains only positive literals.

A propositional model is an assignment from a set of propositional variables to the set
{true, false}. We denote a model by the set of variables it assigns to true. We use the notation
Mod(Π) to denote the set of models of a formula Π. We sometimes use models as formulae,
e.g., Π∧ω where Π is a formula and ω is a model. In the context where a formula is expected,
a model ω represents the formula {x | x ∈ ω} ∪ {¬x | x 6∈ ω}. If Π is a formula and ωX
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is a model over the variables X , we denote by Π|ωX
the formula obtained by replacing each

variable of X with its value assigned by ωX in Π.
A quasi-order is a reflexive and transitive relation (formally, a quasi-order is a pair com-

posed of a set and a reflexive and transitive relation on this set, but the set will be implicit
in this paper). The set containment relation ⊆ among models is a quasi-order. According
to our definition, a model is a set of positive literals; as a result M ⊆ M ′ holds if and only
if M assigns to false all variables that M ′ assign to false.

A clause is (classically) redundant in a CNF formula Π if Π\{γ} |= γ. A CNF formula is
(classically) redundant if it is equivalent to one of its proper subsets. Propositional logic has
the local redundancy property: a formula is redundant if and only if it contains a redundant
clause. The local redundancy property is defined as follows.

Definition 1 (Local redundancy) A logic has the local redundancy property if, in this
logic, a theory is redundant only if it contains a redundant clause.

Propositional logic has the local redundancy property. This is however not true for all
logics.

3 Circumscription

Circumscriptive inference is based on the minimal models of a theory, i.e., the models that
assign the maximum quantity of literals to false. Formally, we define the set of minimal
models as follows.

Definition 2 The set of minimal models of a propositional formula Π, denoted by CIRC(Π),
is defined as follows.

CIRC(Π) = min
⊆

(Mod(Π))

We define CIRC(Π) to be a set of models instead of a formula, although the latter is more
common in the literature. Circumscriptive entailment is defined like classical entailment but
only minimal models are taken into account.

Definition 3 The circumscriptive inference |=M is defined by: Π |=M Γ if and only if Γ is
satisfied by all minimal models of Π:

Π |=M Γ if and only if CIRC(Π) ⊆ Mod(Γ)

Equivalence in propositional logic can be defined in two equivalent ways: either by equal-
ity of the models or by equality of the sets of entailed formulae. These two definitions of
equivalence coincide for circumscriptive inference as well. We define ≡M as follows: Π ≡M Γ
if and only if CIRC(Π) = CIRC(Γ). Redundancy of a clause is defined as follows.
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Definition 4 A clause γ ∈ Π is CIRC-redundant in the CNF formula Π if and only if
Π\{γ} ≡M Π.

A formula is redundant if some of its clauses can be removed without changing its se-
mantics.

Definition 5 A formula is CIRC-redundant if it is ≡M -equivalent to one of its proper sub-
sets.

A formula is therefore redundant if some clauses can be removed from it while preserving
equivalence. In the next section we show that a formula is CIRC-redundant if and only
if it contains a CIRC-redundant clause, that is, circumscription has the local redundancy
property.

3.1 Clause-Redundancy vs. Formula-Redundancy

Propositional logic has the local redundancy property. Showing why is interesting for com-
parison with logics not allowing the same proof to be used. If Π does not contain a redun-
dant clause, then Π\{γ} 6≡ Π for any clause γ ∈ Π. Therefore, Mod(Π) 6= Mod(Π\{γ}).
Since Π\{γ} is a subset of Π, we have Mod(Π) ⊆ Mod(Π\{γ}) in general and Mod(Π) ⊂
Mod(Π\{γ}) in this case. If Π′ ⊂ Π then Π′ ⊆ Π\{γ} for a clause γ. Therefore, Mod(Π) ⊂
Mod(Π\{γ}) ⊆ Mod(Π′), which proves that Π and Π′ are not equivalent.

This proof does not work for circumscription because the set of minimal models of a
formula can grow or shrink in response to a clause deletion. In principle, Π and Π\{γ}
might have different sets of minimal models and yet Π and Π′ ⊂ Π\{γ} have the same
minimal models. We show that this is not possible. The proof is based on the following
simple result about quasi-orders (reflexive and transitive relations.)

Lemma 1 If ≤ is a quasi-order (a reflexive and transitive relation) and A and B are two
finite sets such that A ⊆ B and min≤(A) 6= min≤(B), then min≤(B)\A is not empty.

Proof. Since min≤(A) 6= min≤(B), then either min≤(A)\min≤(B) or min≤(B)\min≤(A) is
not empty. We consider these two cases separately.

Let x ∈ min≤(B)\min≤(A). We prove that x 6∈ A. Since x is minimal in B, there is no
element of y ∈ B such that y < x. Since A ⊆ B, the same holds for every element of A in
particular. As a result, if x ∈ A then x ∈ min≤(A), contradicting the assumption.

Let us instead assume that min≤(A)\min≤(B) is not empty. Let x ∈ min≤(A)\min≤(B).
Since x ∈ A, it holds x ∈ B. Since x ∈ B, x 6∈ min≤(B), and B is a finite set, there exists
y ∈ min≤(B) such that y < x. Since x is minimal in A, we have that y 6∈ A.

The order ⊆ on propositional models is a quasi-order. As a result, if A and B are two sets
of models such that A ⊆ B and the set of minimal elements of A and B are different, then
B has a minimal element that is not in A. When applied to circumscription, this result tells
that a formula can be non-equivalent to a stronger one only because of a minimal model that
is not a model of the stronger formula. In the other way around, if a formula is weakened,
the set of minimal models either remains the same or acquires a new element.
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Theorem 1 If Mod(Π) ⊆ Mod(Π′) ⊆ Mod(Π′′) and CIRC(Π) 6= CIRC(Π′) then CIRC(Π) 6=
CIRC(Π′′).

Proof. Let us assume that CIRC(Π) = CIRC(Π′′). Since CIRC(Π) 6= CIRC(Π′), we have
CIRC(Π′) 6= CIRC(Π′′). Since ⊆ on propositional models is a quasi-order, Lemma 1 applies:
there exists M such that M ∈ CIRC(Π′′) and M 6∈ Mod(Π′). Since Mod(Π) ⊆ Mod(Π′), the
latter implies M 6∈ Mod(Π). As a result, M 6∈ CIRC(Π). Since M ∈ CIRC(Π′′), we have
CIRC(Π) 6= CIRC(Π′′).

The redundancy of a formula and the presence of a redundant clause in the formula are
related by the following theorem, which is an application of the above to the case in which
Π′ = Π\{γ} and Π′′ is a subset of Π′.

Theorem 2 A CNF formula Π is CIRC-redundant if and only if it contains a CIRC-
redundant clause.

Proof. The “if” direction is obvious: if γ is redundant in Π, then Π\{γ} ≡M γ, and
Π\{γ} is therefore a strict subset of Π that is equivalent to it. The “only if” direction is a
consequence of the above theorem. Assume that CIRC(Π\{γ}) 6= CIRC(Π) holds for every
γ ∈ Π. Let us consider Π′′ ⊂ Π: we prove that CIRC(Π′′) 6= CIRC(Π). Since Π′′ ⊂ Π,
there exists γ ∈ Π′′\Π. Consider one such clause γ. Since Π ⊂ Π\{γ} ⊆ Π′′, we have
that Mod(Π′′) ⊆ Mod(Π\{γ}) ⊂ Mod(Π). We are thus in the conditions to apply the above
theorem: since CIRC(Π\{γ}) 6= CIRC(Π), we have that CIRC(Π′′) 6= CIRC(Π). Therefore,
Π is not equivalent to any of its proper subsets.

This theorem shows that circumscription, although nonmonotonic, has the local redun-
dancy property.

3.2 Redundant Clauses

The following lemma characterizes the clauses that are redundant in a formula.

Lemma 2 The following three conditions are equivalent:

1. the clause γ ∈ Π is CIRC-redundant in Π;

2. for each M ∈ Mod(Π\{γ} ∪ ¬γ) there exists M ′ ∈ Mod(Π) such that M ′ ⊂ M ;

3. for each M ∈ Mod(Π\{γ} ∪ ¬γ) there exists M ′ ∈ Mod(Π\{γ}) such that M ′ ⊂ M .

Proof. The models of Π\{γ} that are not models of Π are exactly the models of Π\{γ}∪¬γ.
The two formulae Π and Π\{γ} are |=M -equivalent if none of these models (if any) is minimal,
that is, all these models contain other models of Π. In other words, γ is redundant if and
only if every model of Π\{γ} ∪ ¬γ contains a model of Π.

The fact that we can check M ′ ∈ Mod(Π\{γ}) instead of M ′ ∈ Mod(Π) follows from the
fact that Mod(Π\{γ}) is composed of all models of Π and all models of Π\{γ}∪¬γ. Consider
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a model M that is a minimal model of Π\{γ}∪¬γ. The condition M ′ ⊂ M implies that M ′

is not a model of Π\{γ} ∪ ¬γ, and is therefore a model of Π. By transitivity, the condition
that there exists M ′ ∈ Mod(Π) such that M ′ ⊂ M holds for all models of Π\{γ} ∪ ¬γ.

Computationally, checking the second or third condition of this lemma can be done by
checking whether for all M ∈ . . . there exists M ′ ∈ . . . such that a simple condition is met.
As a result, the problem is in Πp

2. For positive clauses, checking CIRC-redundancy is easier,
as it amounts to checking classical redundancy.

Lemma 3 A positive clause is CIRC-redundant in Π if and only if it is classically redundant
in Π.

Proof. If a clause is redundant in Π it is also CIRC-redundant in Π. Let us now prove the
converse: assume that γ is a positive clause that is CIRC-redundant in Π. By Lemma 2,
every model of Π\{γ} ∪ ¬γ contains a model of Π, which is the same as Π\{γ} ∪ {γ}. Let
γ = xi1 ∨ · · · ∨ xik . Since γ is CIRC redundant, each model of Π\{γ} ∪ {¬xii , . . . ,¬xik}
contains at least a model of Π\{γ} ∪ {xii ∨ · · · ∨ xik}. All models of the latter formula
contain at least a variable among xii , . . . , xik while no models of the former contain any of
them. Therefore, no model of the first formula contains a model of the second. Therefore, the
condition can be true only if Π\{γ}∪{¬xi1 ∨ · · ·∨¬xik} has no models, that is, Π\{γ} |= γ:
the clause γ is classically redundant in Π.

Intuitively, positive clauses only exclude models with all their literals assigned to false.
Therefore, whenever a positive clause is irredundant w.r.t. |=, it is because such models were
not otherwise excluded; therefore, it is also irredundant w.r.t. minimal models.

According to this argument, it may look like all negative clauses are redundant because
they exclude models with positive literals, and these models are not minimal. This is however
not the case: a model with some positive literals might be minimal because no other model
of the formula has less positive literal. Consider, for example, the following formula:

Π = {¬x1 ∨ ¬x2, x1 ∨ x3, x2 ∨ x3}

The clause ¬x1 ∨ ¬x2, although negative, is irredundant. Indeed, Π\{¬x1 ∨ ¬x2} =
{x1 ∨ x3, x2 ∨ x3}, and this formula has {x1, x2} and {x3} as its minimal models. The
first one is not a model of Π because of the clause ¬x1 ∨ ¬x2. Therefore, ¬x1 ∨ ¬x2 is
CIRC-irredundant in Π.

Intuitively, a negative clause excludes the possibility of setting all variables to true, while
minimal inference only tries to set variables to false. Therefore, removing the clause may
generate a model that have its variables set to true ({x1, x2} in the example), but is minimal
because of the values of the other variables (x3 in the example).

Lemma 3 can be extended to clauses containing negative literals via the addition of new
clauses and new variables. To this aim, the following property of quasi-orders is needed.

Lemma 4 If ≤ is a quasi-order, X ∈ min≤(A), X ∈ B, and B ⊆ A, then X ∈ min≤(B).
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Proof. Since X ∈ min≤(A), there is no element Y ∈ A such that Y < X . Since B ⊆ A,
there is no element of B with the same property. Since X is an element of B such that
Y < X does not hold for any Y ∈ B, it holds X ∈ min≤(B) by definition.

Applied to formulae: if M is a minimal model of Π and satisfies Π′, then M is a minimal
model of Π ∪ Π′.

Lemma 5 A clause γ is classically redundant in Π if and only if it is CIRC-redundant in
Π ∪ {x ∨ x′ | ¬x ∈ γ}.

Proof. If γ is redundant in Π then Π\{γ} |= γ and therefore Π∪{x∨x′ | ¬x ∈ γ}\{γ} |= γ.
Since γ is redundant in Π ∪ {x ∨ x′ | ¬x ∈ γ}, it is also CIRC-redundant.

Let us now assume that γ is irredundant in Π, that is, Π\{γ}∪¬γ has some models. Let
M be one such model. Since this model satisfies ¬γ, it assigns false to any variable x such
that x ∈ γ and true to any variable x such that ¬x ∈ γ. Extending M to assign false to all
variables x′, this model also satisfies Π ∪ {x ∨ x′ | ¬x ∈ γ}\{γ} ∪ ¬γ.

We show that M cannot contain a model of Π∪{x∨x′ | ¬x ∈ γ}. This model assigns false
to all x ∈ γ and also false to all x′ such that ¬x ∈ γ. On the other hand, {γ}∪{x∨x′ | ¬x ∈ γ}
entails the clause

∨

{x | x ∈ γ}∨
∨

{x′ | ¬x ∈ γ}; this can be proved for example by iteratively
resolving upon all literals x such that ¬x ∈ γ. As a result, no model of Π∪{x∨x′ | ¬x ∈ γ}
has a model that assign false to all x ∈ γ and all x′ such that ¬x ∈ γ. Since this is instead
done by M , it follows that no model of Π ∪ {x ∨ x′ | ¬x ∈ γ} is contained in M .

Note that the clauses x ∨ x′ are not necessarily CIRC-irredundant in the considered
formula. On the other hand, Lemma 3 can be applied to them: they are CIRC-redundant if
and only if they are classically redundant.

3.3 Complexity of Clause Redundancy

Let us now turn to the hardness of the problem of checking the redundancy of a clause in a
formula. We first show a reduction that proves the hardness of the problem of redundancy of
a clause and then show how this result can be used to prove that the problem of redundancy
of a formula has the same complexity.

Theorem 3 Checking the CIRC-redundancy of a clause in a formula is Πp
2-complete.

Proof. Lemma 2 proves that the redundancy of a clause in a formula can be checked by
solving a ∀∃QBF (for all M ... there exists M ′...), and is therefore in Πp

2.
Let us now show hardness. We show that the QBF formula ∀X∃Y.Γ, where Γ =

{δ1, . . . , δm} and n = |Y |, is valid if and only if γ is CIRC-redundant in Π, where:

Π = {xi ∨ pi} ∪ {¬a ∨ yi} ∪ {a ∨ δi | δi ∈ Γ} ∪ {γ}

γ = ¬a ∨ ¬y1 ∨ · · · ∨ ¬yn

7



The clause γ is CIRC-redundant in Π if and only if all minimal models of Π\{γ} ∪ ¬γ
contain some models of Π. The following equivalences holds:

Π ≡ {xi ∨ pi} ∪ {¬a} ∪ Γ

Π\{γ} ∪ ¬γ ≡ {xi ∨ pi} ∪ {a, y1, . . . , yn}

The first equivalence holds because {¬a∨yi}∪{¬a∨¬y1∨· · ·∨¬yn} is equivalent to ¬a,
as can be checked by resolving upon each yi in turn. The second equivalence holds because
¬γ = {a, y1, . . . , yn} and this set implies all clauses ¬a ∨ yi and a ∨ δi.

The formula Π\{γ}∪¬γ ≡ {xi ∨pi}∪{a, y1, . . . , yn} has a minimal model for each truth
evaluation ωX over the variables xi:

IωX
= ωX ∪ {pi | xi 6∈ ωX} ∪ {a} ∪ {yi | 1 ≤ i ≤ n}

We show that the model IωX
contains a model of Π if and only if Γ|ωX

is satisfiable.
By Lemma 2, the redundancy of γ corresponds to this condition being true for all possible
models of Π′ ∪ ¬γ. This would therefore prove that the QBF is valid if and only if γ is
redundant in Π.

Since Π ≡ {xi ∨ pi} ∪ {¬a} ∪ Γ, if Γ has a model with a given value of ωX then Π has a
model that is strictly contained in IωX

: add to the satisfying assignment of Γ the setting of
every pi to the opposite of xi and a to false.

On the converse, if Π contains a model that is strictly contained in IωX
, this model must

have exactly the same value of X ∪P because Π contains xi∨pi and either xi or yi is false in
IωX

. On the other hand, this model of Π must also set a to false and satisfy Γ, thus showing
that there exists an assignment extending ωX and satisfying Γ.

3.4 Complexity of Formula Redundancy

In order to characterize the complexity of the problem of checking the CIRC-redundancy
of a formula, we use the fact that a formula is CIRC-redundant if and only if it contains a
CIRC-redundant clause by Theorem 2. In particular, Lemma 3 shows that the problem of
checking the CIRC-redundancy of a clause γ in Π is Πp

2-hard. In order for this result to be
used as a proof of hardness for the problem of CIRC-redundancy of formulae, we need to
modify the formula Π in such a way all its clauses but γ are made CIRC-irredundant. This
is the corresponding of Lemma 4 of the paper of redundancy of propositional CNF formulae
[Lib05b], which has been useful because it allows to “localize” problems about redundancy.

Lemma 6 For every consistent formula Π and Π′ ⊆ Π, the only CIRC-redundant clauses of
I(Π,Π′) are the clauses ¬s ∨ ¬t ∨ γi such that γi ∈ Π′ and γi is CIRC-redundant in Π.

I(Π,Π′) = {s ∨ t} ∪ {s ∨ a, t ∨ b} ∪

{¬s ∨ t ∨ ci ∨ di} ∪ {¬s ∨ ¬ci} ∪

{¬t ∨ ci ∨ γi | γi ∈ Π\Π′} ∪ {s ∨ ¬t ∨ x ∨ x′ | x ∈ Var(Π)} ∪

{¬s ∨ ¬t ∨ γi | γi ∈ Π′}

8



Proof. There are four possible assignment to the variables s and t. Since the models
of I(Π,Π′) can be partitioned into the models of I(Π,Π′) ∪ {¬s,¬t}, I(Π,Π′) ∪ {s,¬t},
I(Π,Π′)∪{¬s, t}, and I(Π,Π′)∪ {s, t}, the minimal models of I(Π,Π′) are necessarily some
of the minimal models of these formulae.

In the table below we show what remains of I(Π,Π′)\{s∨ t} in each of the four possible
assignment to s and t after removing entailed clauses and false literals. We also show the
minimal models of the resulting formulae.

assignment subformula minimal models
{¬s,¬t} {a, b} {a, b}
{s,¬t} {b} ∪ {ci ∨ di} ∪ {¬ci} {s, b} ∪ {di}
{¬s, t} {a} ∪ {ci ∨ γi | γi ∈ Π\Π′}∪ {t, a}+ some subsets of (C ∪X ∪X ′)

{x ∨ x′ | x ∈ Var(Π)}
{s, t} {¬ci} ∪ {ci ∨ γi | γi ∈ Π\Π′} ∪Π′ {s, t}+ a minimal model of Π

The four subformulae are all satisfiable. Moreover, no minimal model of one is contained
in the minimal models of the other ones because of either the values of {s, t} and {a, b}.
As a result, the minimal models of I(Π,Π′)\{s ∨ t} are exactly the minimal models of the
four subformulae. The clause s ∨ t is irredundant because its addition deletes the minimal
model {a, b}. The minimal models of I(Π,Π′) are therefore exactly the minimal models of
the remaining three subformulae.

We show that the remaining clauses but the ones derived from Π′ are irredundant. This
is shown by removing a clause from the set and showing that some of the minimal models of
a subformula can be removed some elements. Since the minimal models of these three sub-
formulae are exactly the minimal models of Π, this is a proof that the clause is irredundant.

1. The clauses s∨a and t∨b are irredundant because their removal would allow a and b to
be set to false in the minimal models of the third and second subformula, respectively.

2. The clauses ¬s ∨ t ∨ ci ∨ di and ¬s ∨ ¬ci are irredundant because their removal would
allow di to be set to false in the minimal model of the second subformula.

3. The clauses ¬t ∨ ci ∨ γi and s ∨ ¬t ∨ x ∨ x′ require a longer analysis. In the third
assignment, I(Π,Π′) becomes:

C = {a} ∪ {ci ∨ γi} ∪ {x ∨ x′ | x ∈ Var(Π)}

The clauses x ∨ x′ are positive. By Lemma 3, they are CIRC-redundant if and only if
they are redundant. In turn, they are not redundant because {a} ∪ {ci} ∪ {y | y 6= x}
is a model of all clauses but x ∨ x′.

Since ci occurs positive in ci∨γi, Lemma 5 ensures that this clause is CIRC-redundant
in C if and only if it is redundant in C\{x ∨ x′ | ¬x ∈ γi}. This is false because the
removal of ci ∨ γi creates the following new model:

9



M = {cj | j 6= i} ∪ {x′} ∪ {x | ¬x ∈ γi}

This model M satisfies C\{x ∨ x′ | ¬x ∈ γi}\{ci ∨ γi}: all clauses cj ∨ γj are satisfied
because cj ∈ M and all clauses x∨x′ are satisfied because x′ ∈ M . On the other hand,
M does not satisfy ci ∨ γi because it assigns all its literals to false.

The only clauses that can therefore be redundant are those corresponding to the clauses
of Π′. In particular, these clauses only occur in the fourth subformula, which is equivalent to
{c} ∪ {¬ci} ∪Π. A clause ¬s∨¬t∨ γi with γi ∈ Π′ is therefore CIRC-redundant in I(Π,Π′)
if and only if γi is CIRC-redundant in Π.

More precisely, this theorem shows a way to make the clauses of Π′ necessary, that is,
contained in all equivalent subsets of Π. The theorem allows to characterize the complexity
of formula CIRC-redundancy.

Theorem 4 The problem of CIRC-redundancy is Πp
2-complete.

Proof. By Theorem 2, Π is redundant if and only if it contains a redundant clause. Therefore,
we have to solve a linear number of problems in Πp

2. Since these problems can be solved in
parallel, the whole problem is in Πp

2.
Hardness is proved by reduction from the problem of CIRC-redundancy of a single clause.

By Lemma 6, a clause γ is CIRC-redundant in Π if and only if ¬s∨¬t∨γ is CIRC-redundant
in I(Π, {γ}) and all other clauses of I(Π, {γ}) are irredundant.

4 Default Logic

A default theory is a pair 〈D,W 〉, where W is formula and D is a set of default rules, each
rule being in the form:

α : β

γ

The formulae α, β, and γ are called the precondition, the justification, and the conse-
quence of the default, respectively. In this paper, we assume that W is a CNF finite formula
(a finite set of clauses) and that the set of variables and defaults are finite. We also assume
that each default has a single justification, rather than a set of justifications. Given a default
d = α:β

γ
, its parts are denoted by prec(d) = α, just(d) = β, and cons(d) = γ.

We use the operational semantics of default logics [AS94, Ant99, FM92, FM94], which is
based on sequences of defaults with no duplicates. If Π is such a sequence, we denote by Π[d]
the sequence of defaults preceeding d in Π, and by Π · [d] the sequence obtained by adding
d at the end of Π. We extend the notation from defaults to sequences, so that prec(Π) is
the conjunction of all preconditions of the defaults in Π, just(Π) is the conjunction of all
justifications, and cons(Π) is the conjunction of all consequences.

10



Implication is denoted by |=, ⊤ indicates (combined) consistency, and ⊥ indicates incon-
sistency. For example, A⊤B means that A∧B is consistent, while A⊥B means that A ∧B

is inconsistent.
Default logic can be defined in terms of the selected processes, that are the sequences of

defaults that are considered applicable by the semantics [Ant99]. A sequence of defaults Π
is a process if W ∪ cons(Π[d]) |= prec(d) holds for any d ∈ Π. A default d is locally applicable
in a sequence Π if cons(Π) ∪W |= prec(d) and cons(Π) ∪W⊤just(d). Global applicability
also requires cons(Π) ∪ W⊤just(Π · [d]). Each semantics defines the sequences of defaults
that are applied in a particular theory. Formally, the definitions are as follows:

Reiter: a process Π is selected if cons(Π)∪W⊤just(d) for each d ∈ Π and no default d′ 6∈ Π
is locally applicable in Π;

Justified: a process is selected if it is a maximal process such that cons(Π) ∪ W⊤just(d)
for each d ∈ Π;

Constrained: a process is selected if it is a maximal process such that cons(Π)∪W⊤just(Π);

Rational: a process is selected if cons(Π) ∪W |= prec(d) and no default d′ 6∈ Π is globally
applicable in Π.

The conditions on selected processes can be all broken in two parts: success (the con-
sistency condition) and closure (the non-extendibility of the process). For example, for
constrained default logic the condition of success is cons(Π) ∪W⊤just(d) and the condition
of closure is that Π · [d] is not successful for any d′ 6∈ Π.

Remarkably, the conditions above only mention the background theory W in conjunction
with cons(Π), that is, W only occurs in subformulae of the form W ∪ cons(Π). The only
conditions for which this is not true is that of Π being a process.

If Π is a selected process of 〈D,W 〉, the formula Cn(W ∪ cons(Π)) is an extension of
〈D,W 〉. We denote by Ext(〈D,W 〉) or ExtD(W ) the set of all formulae that are equivalent
to an extension of 〈D,W 〉. Including formulae that are equivalent to the extensions in this
set allows to write E ∈ ExtD(W ) to denote the equivalence of E with an extension of 〈D,W 〉.

A default theory 〈D,W 〉 entails a formula W ′ if and only if E |= W ′ for every E ∈
ExtD(W ). This condition is equivalent to ∨ExtD(W ) |= W ′; as a result, the set of all
consequences of a default theory is equivalent to ∨ExtD(W ). The condition that 〈D,W 〉
entails W ′ is denoted by 〈D,W 〉 |= W ′ or W |=D W ′. The latter notation emphasizes that
every fixed set of defaults D induces a nonmonotonic inference operator |=D.

Some semantics of default logic do not assign any extension to some theories. In this
paper, we try to derive the hardness results using only theories having extensions.

4.1 Equivalence in Default Logics

The monotonic inference operator |=D induced by a set of defaultD is a consequence relation.
Therefore, the definitions of redundancy of a clause and of a formula for |= and |=M can be
given for |=D as well: a clause γ of a formula W is redundant w.r.t. default D if and only
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if W and W\{γ} are equivalent; a formula W is redundant if there exists W ′ ⊂ W that is
equivalent to it.

Both definitions are based on equivalence of two formulae, and in particular the equiva-
lence of a formula with one of its proper subsets. In this section, we show that three different
form of equivalence can be defined; we compare them in general and in the particular case
of equivalence of a formula with one of its proper subsets. The first form of equivalence is
based on entailment.

Definition 6 (Entailment and Mutual Equivalence) For a given set of defaults D, for-
mula W entails W ′, denoted by W |=D W ′, if ∨ExtD(W ) |= W ′. These two formulae are
mutual equivalent, denoted by W ≡m

D W ′, if W |=D W ′ and W ′ |=D W .

In classical logic, this definition of equivalence is the same as W and W ′ having the same
set of consequences and the same set of models. In default logic, this is not the case. We
define the equivalence based on the set of consequences as follows.

Definition 7 (Consequence-Entailment and Consequence-Equivalence) For a given
set of defaults D, formula W consequence-entails W ′, denoted W |=c

D W ′, if ∨ExtD(W ) |=
∨ExtD(W

′). These two two formulae are consequence-equivalent, denoted W ≡c
D W ′, if

∨ExtD(W ) ≡ ∨ExtD(W
′).

Note that the comparison of the two formulae is based on a fixed set of defaults D. A
more stringent condition of equivalence of two defaults theories is that of having the same
extensions.

Definition 8 (Faithful Entailment and Faithful Equivalence) For a given set of de-
faults D, a formula W faithfully entails W ′, denoted W |=e

D W ′, if ExtD(W ) ⊆ ExtD(W
′).

These two formulae are faithfully equivalent, denoted W ≡e
D W ′, if ExtD(W ) = ExtD(W

′).

For all three definition, equivalence is the same as each formula implying the other one.
We are especially interested into ≡c

D and ≡e
D, that is, equality of consequences and equality

of extensions. Mutual equivalence has been defined for technical reasons. Redundancy in
default logic is defined as follows.

Definition 9 (Redundancy of a Clause) For a given set of defaults D, a clause γ is
redundant in a formula W according to equivalence ≡x

D if W ≡x
D W\{γ}.

Definition 10 (Redundancy of a Formula) For a given set of defaults D, a formula W

is redundant according to equivalence ≡x
D if there exists W ′ ⊂ W such that W ≡x

D W ′.

In both cases, we are comparing for equivalence a formula and one of its subsets. In the
following section we study the equivalence of W ′ and W when W ′ ⊆ W .

12



4.1.1 Correspondence, General

We now compare the three forms of equivalence defined above. The following chain of
implications is easy to prove:

W ′ |=e
D W ⇒ W ′ |=c

D W ⇒ W ′ |=D W

The latter implication is proved by the following lemma.

Lemma 7 If W ′ |=c
D W then W ′ |=D W .

Proof. By assumption, ∨ExtD(W
′) |= ∨ExtD(W ). Since every extension of 〈D,W 〉 entails

W , we have ∨ExtD(W ) |= W . As a result, ∨ExtD(W
′) |= W , which is by definition W ′ |=D

W .

Redundancy is defined in terms of equivalence of two formulae, one contained in the
other. As a result, it makes sense to study the conditions of equivalence in the particular
case in which W ′ ⊆ W . We prove that the above chain of implication can be wrapped around
in this case, thus proving that the three conditions are equivalent.

Lemma 8 If W ′ ⊆ W and W ′ |=D W , then W ′ |=e
D W .

Proof. Let Π be a selected process of 〈D,W ′〉. We prove that it is also a selected process
of 〈D,W 〉. Since W ′ |=D W , the formula W is entailed by every extension in ExtD(W

′). In
particular, W ′ ∪ cons(Π) |= W . Therefore, W ′ ∪ cons(Π) ≡ W ∪ cons(Π). As a result, all
conditions (such as success and closure) whereW ′ only occurs in the subformula W ′∪cons(Π)
are not changed by replacing W ′ with W . This is in particular true for all considered
conditions of success and closure.

The only condition that mentions the background theory not in conjunction with cons(Π)
is the condition of a sequence being a process: Π is a process of 〈D,W ′〉 if and only if
W ′∪cons(Π[d]) |= prec(d) for any d ∈ Π. The same condition is however true for W because
W ′ ⊆ W implies W |= W ′.

The following is a consequence of the above.

Corollary 1 If W ′ ⊆ W , then:

W ′ |=D W ⇔ W ′ |=c
D W ⇔ W ′ |=e

D W

4.1.2 Non-Correspondence, General

The last corollary proves that the three definitions of entailment fromW ′ toW are equivalent
if W ′ ⊆ W . The same does not hold for equivalence, and therefore does not hold for
entailment from W to W ′.

Theorem 5 There exists D, W , and W ′ ⊂ W such that W ′ ≡m
D W and W ′ 6≡c

D W

13



Proof. Since W ′ |=D W , every extension of 〈D,W ′〉 implies W . A wrong proof of W ′ ≡e
D W

could then be based on the fact that, onceW is derived from 〈D,W ′〉 applying some defaults,
we can proceed by applying the defaults of an arbitrary process of 〈D,W 〉.

❧ ❧ ❧❧✲ ✲
W ′

Π′

WW ∪W ′′

Π

This figure shows why a process Π′ of 〈D,W ′〉 and a process Π of 〈D,W 〉 cannot always
be concatenated: while Π′ allows the derivation of W , this process might also derive another
formula W ′′ that makes the process Π inapplicable. An example in which this situation
arises is the following one:

D = {d1, d2}

where:

d1 =
: a ∧ ¬b

a ∧ ¬b

d2 =
a : b

b
W = {a}

W ′ = ∅

The only process of 〈D,W ′〉 is [d1], which generates the extension Cn(a ∧ ¬b). This
extension entails W , but it also entails ¬b. The theory 〈D,W 〉 has also the process [d2],
generating the extension Cn(a ∧ b). These two processes cannot however be concatenated,
as the consequence ¬b of d1 is inconsistent with the justification of d2.

Since W ′ ⊂ W , we have that W |=D W ′. In this example, we also have W ′ |=D W

because the single extension of W ′ entails W = {a}. However, W ′ and W have different set
of extensions; in particular, ∨ExtD(W

′) ≡ a ∧ ¬b and ∨ExtD(W ) ≡ a.

A similar result can be proved about ≡c
D and ≡e

D.

Theorem 6 There exists D, W , and W ′ ⊂ W such that W ′ ≡c
D W but W ′ 6≡e

D W in Reiter
and justified default logic.

Proof. Rather than the counterexample itself, it is interesting to show how it has been
derived. The idea is the same as that of Theorem 5: a process of 〈D,W ′〉 that cannot be
concatenated with a process of 〈D,W 〉. The proof for this case, however, is complicated
by the fact that we assume W ′ ≡c

D W , that is, ∨ExtD(W
′) and ∨ExtD(W ) are equivalent.

The theories used in Theorem 5 do not work, as any other pair of theories having one
extension each: in this cases, indeed, ∨ExtD(W ) is equivalent to ExtD(W ). In order for the
counterexample to work, 〈D,W ′〉 must have multiple processes, each entailing W and some
other formula.

14



✞
✝

☎
✆

✞
✝

☎
✆

✞
✝

☎
✆

✞
✝

☎
✆

✞
✝

☎
✆

✟✟✟✟✟✟✟✟✯

❍❍❍❍❍❍❍❍❥

✲Π
W ′ W

W ∪W2

W ∪W1Π1

Π2

In order for the counterexample to work, some defaults of Π cannot be applied after Π1

or Π2 because their justifications are inconsistent with W1 or W2. In order for W ≡c
D W ′ to

hold, however, W ∪ cons(Π) must be equivalent to W ∪ (W1 ∨W2). As a result, every model
of W ∪ cons(Π) is a model of W ∪W1 or W ∪W2.

The precondition of the first default of Π is entailed by W ∪W1 and W ∪W2. Since the
justifications of the defaults in Π are consistent with the consequences of Π, there is a model
that is both a model of cons(Π) ∪W and a model of just(d) for any d ∈ Π. But this is also
a model of W ∪W1 or W ∪W2. As a result, the default d is applicable in Πi.

This arguments cannot be extended further, however. Indeed, Π may be composed of
two defaults, one applicable to W ∪W1 and one applicable to W ∪W2. This is possible in a
selected process because Reiter and justified semantics does not enforce joint consistency of
justifications.

A minimal counterexample requires two defaults that can be applied in W ′ leading to
two disjoint extensions W ∪W1 and W ∪W2, and two other defaults that can be applied in
sequence from W , but not from W ∪W1 or W ∪W2.

The background theoryW of this counterexample is composed of the four possible models
A, B, C, and D. We define D so that W has a process that generates an extension E having
A and B as its models. In order for the consequences to be the same of those of W ′, both
A and B have to be part of some extensions of W ′. We define the defaults so that W ′ has
two processes generating A and B, respectively. Namely, the first process generates A, but
its justifications are satisfiable because the extension contains C; the other one contains B,
but consistency with justifications are ensured by the model D. This trick is necessary to
avoid these processes to be extended with the defaults that generate W ′.

In order to make the discussion more intuitive, we identify models with terms, and define
formulae and defaults based on terms. We then convert terms into real formulae. The
defaults that are applicable from W ′ are defined as follows.

d1 =
: C

A ∨ C

d2 =
: D

B ∨D

Both d1 and d2 can be applied fromW ′, leading to a consequence that is inconsistent with
the justification of the other default. Moreover, each extension contains a model of {A,B},

15



as required. For example, d1 produces A. However, the consistency of the extension with
the justification is ensured by the other model C. This is necessary to avoid these defaults
to be applicable in the new extension E of W . Let us now define the two defaults that are
applicable from W only and generate this extension E.

d3 =
W : A

A ∨B ∨ C

d4 =
A ∨B ∨ C : B

A ∨B

The processes of W ′ are [d1d3] and [d2]. There is no way to avoid the first default d3 of
the new extension to be part of some process of W ′ as well. However, as in this case, it may
have no effects. Indeed, the extensions are A ∨ C and B ∨ D. Let us now consider which
defaults can be applied to W . Both processes of W ′ are still processes of W . However, d3 is
applicable to W , leading to a state in which both d1 and d2 are applicable. However, both
processes only contain models that are among the previous ones.

The above terms can be translated into the following formuale:

A = abc

B = ab¬c

C = a¬bc

D = a¬b¬c

The defaults will be then defined as follows.

d1 =
: ¬b ∧ c

a ∧ c

d2 =
: ¬b ∧ ¬c

a ∧ ¬c

d3 =
a : b ∧ c

b ∨ c

d4 =
a ∧ (b ∨ c) : b ∧ ¬c

b

In W ′, only d1 and d2 are applicable. The first one leads to a ∧ c, which is consistent
with the justification of d3. The first selected process of W ′ is therefore [d1d3], leading to
the extension a ∧ c.

The second process fromW ′ starts with d2, which generates a∧¬c, which is not consistent
with d1 and d3, and does not imply the precondition of d4. As a result, [d2] is the second
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selected process of W ′, leading to the extension a ∧ ¬c. We therefore have ∨ExtD(W
′) ≡

(a ∨ c) ∧ (a ∨ ¬c) ≡ a.
Let us now consider the extensions from W . All selected processes of W ′ are also selected

processes of W . However, we can now apply d3, as a is true in the background theory. We
therefore obtain b∨ c. This conclusion is inconsistent with the justification of d2, but d1 and
d4 can be applied. The first one leads to the extension a ∧ c, which is also an extension of
〈D,W ′〉. On the other hand, [d3d4] leads to a ∧ b, which is a new extension. Nevertheless,
∨ExtD(W ) ≡ (a ∨ c) ∧ (a ∨ ¬c) ∧ (a ∨ b) ≡ a: the theory 〈D,W 〉 has some extensions that
〈D,W ′〉 does not have, but the skeptical consequences are the same.

In the proof, we used two defaults that are applicable in W but not in the processes of
〈D,W ′〉. These two defaults cannot have mutually consistent justifications; otherwise, they
would be both applicable in some process of 〈D,W ′〉 thanks to the fact that any extension
of 〈D,W 〉 contains only models of some extensions of 〈D,W ′〉. This proof does not work for
constrained and rational default logic; however, the same claim can be proved in a different
way.

Theorem 7 There exists D, W , and W ′ ⊂ W such that W ′ ≡c
D W but W ′ 6≡e

D W , for
constrained and rational default logic.

Proof. The idea is as follows: the constrained extensions of a default theory are each
characterized by a model that is consistent with all justifications and consequences of the
defaults used to generate the extensions [Lib05d]. Therefore, we might have a situation like
the one depicted below:

❧ ❧

❧ ❧

✡

☛

✠

✟

✡

☛

✠

✟

✡

☛

✠

✟

✛

✛

✻

A

B

C

D

E3

E1

E2

The arrows indicate the model associated to each extension: C is the model associated
with E1, etc. Note that E1 ∨ E2 ∨ E3 ≡ E1 ∨ E2. As a result, a default theory having only
the extensions E1 and E2 is equivalent to a theory having all three extensions, but yet these
two theories have the same consequences.

We define 〈D,W 〉 in such a way it has all three extensions, but 〈D, ∅〉 does not have the
extension E3 because the model B is excluded by a default that generates W . The above
condition can be realized using two variables a and b to distinguish the four models A, B,
C, and D, and a variable x to distinguish W from W ′.
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D = {d1, d2, d3, d4}

W = {x}

W ′ = ∅

the defaults are:

generates W from W ′d1 =
: x ∧ a

x

generates the extension E1 = Cn(x ∧ b)d2 =
x : a ∧ b

b

generates the extension E2 = Cn(x ∧ ¬b)d3 =
x : a ∧ ¬b

¬b

generates the extension E3 = Cn(x)d4 =
x : ¬a ∧ ¬b

x

The justification of d2, d3, and d4 are mutually inconsistent. In 〈D,W 〉, the three exten-
sions are generated by the processes [d2, d1], [d3, d1], and [d4]. The presence of d1 in these
processes do not change their generated extensions, as cons(d1) = x, which is already in W .
We have E1 ∨ E2 ∨ E3 ≡ x.

Let us now consider 〈D,W ′〉. The only default that is applicable in W ′ = ∅ is d1, which
generates x but also have a as a justification. As a result, the defaults d2 and d3 are still
applicable, but d4 is not. As a result, the only extensions of 〈D,W ′〉 are E1 and E2. We
therefore haveW ′ 6≡e

D W . On the other hand, E1∨E2 ≡ x, which is equivalent to E1∨E2∨E3.
As a result, W ′ ≡c

D W .

4.1.3 Correspondence, Particular Cases

While ≡c
D and ≡e

D are not the same in general, they coincide when all defaults are normal
and one formula is contained in the other one.

Theorem 8 If W ′ ⊆ W and D is a set of normal defaults, then W ′ ≡c
D W impliesW ′ ≡e

D W

in constrained default logic.

Proof. Given the previous result, we only have to prove that W ≡c
D W ′ implies that

ExtD(W ) ⊆ ExtD(W
′), that is, 〈D,W 〉 does not have any extension that is not an extension

of 〈D,W ′〉.
To the contrary, assume that such extension exists. Let Π be the process that generates

the extension of 〈D,W 〉 that is not an extension of 〈D,W ′〉. By definition of process,
cons(Π)∪W ∪ just(Π) is consistent. Therefore, it has a model M . Since this model satisfies
both W and cons(Π), it is a model of the extension generated by Π.

Since the conclusions of the two theories are the same, every model of the extension
generated by Π is a model of some extensions of 〈D,W ′〉. Let Π′ be the a process of 〈D,W ′〉
that generates an extension that contains the model M . We prove that all defaults of Π are
in Π′.
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Since M is a model of the extension generated by Π′, it is a model of cons(Π′) ∪ W ′.
Therefore, it is a model of cons(Π′), and a model of just(Π′) because defaults are normal.
We have already proved that M is a model of cons(Π) and just(Π) and of W . As a result,
the set cons(Π) ∪ cons(Π′) ∪W ∪ just(Π) ∪ just(Π′) is consistent. As a result, we can add
all defaults of Π to Π′ without contradicting the justifications.

As a result, the defaults of Π are not in Π′ only if their preconditions are not entailed
from the consequences of Π. This is impossible: since Π is a process of 〈D,W 〉, we have
W |= prec(d), where d is the first default of Π. As a result, d must be part of Π′, otherwise Π′

would not be a maximal process. The consequences of d are therefore part of cons(Π′)∪W ′.
Repeating the argument with the second default of Π we get the same result. We can
therefore conclude that all defaults of Π are in Π′.

Since Reiter, justified, constrained, and rational default logics coincide on normal default
theories, the equality of the definitions of equivalence holds when defaults are normal.

Theorem 9 If D is a set of normal defaults and W ′ ⊆ W , then W ′ ≡c
D W if and only if

W ′ ≡e
D W .

When all defaults are categorical (prerequisite-free), the following lemma allows proving
that the three considered forms of equivalence coincide.

Lemma 9 If D is a set of categorical defaults, W ′ ⊆ W , and W ′ |=D W , then W |=e
D W ′

in constrained default logic.

Proof. Let Π be a selected process of 〈D,W 〉. We prove that Π is a selected process of
〈D,W ′〉 generating the same extension.

Since Π is a selected process of 〈D,W 〉, it holds that W ∪ cons(Π)∪ just(Π) is consistent.
Since W ′ ⊆ W , it also holds that W ′ ∪ cons(Π) ∪ just(Π) is consistent. Since no default
has preconditions, Π is a successful process of 〈D,W ′〉. Since constrained default logic is a
failsafe semantics [Lib05e], there exists Π′ such that Π · Π′ is a selected process of 〈D,W 〉.

Since every extension ofW ′ entailsW , this is in particular true for the extension generated
by Π · Π′. In other words, W ′ ∪ cons(Π · Π′) |= W . As a result, W ′ ∪ cons(Π · Π′) ≡
W∪cons(Π·Π′). Since Π·Π′ is a process of 〈D,W ′〉, we have thatW ′∪cons(Π·Π′)∪just(Π·Π′)
is consistent, which is therefore equivalent to the consistency of W ∪cons(Π ·Π′)∪just(Π ·Π′).
Therefore, Π · Π′ is a successful process of 〈D,W 〉. Since Π is by assumption a maximal
successful process of 〈D,W 〉, it must be Π′ = [ ], that is, Π ·Π′ = Π. We have already proved
that W ′∪ cons(Π ·Π′) ≡ W ∪ cons(Π ·Π′), that is, Π generates the same extension in W and
in W ′.

Since constrained and Reiter default logics coincide on normal default theories, we have
the following consequence.

Corollary 2 If D is a set of normal and categorical defaults and W ′ ⊆ W , the conditions
W ′ ≡m

D W , W ′ ≡c
D W , and W ′ ≡e

D W are equivalent.
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4.2 Redundancy of Clauses vs. Theories

The redundancy of a clause γ in a formula W is defined as the equivalence of W and W\{γ}.
The redundancy of a formula W is defined as its equivalence to one of its proper subsets.
A formula containing a redundant clause is redundant, but the converse is not always true:
a formula might contain no redundant clause but yet it is equivalent to one of its proper
subsets.

In this section, we compare the redundancy of a set of clauses with the redundancy of a
single clause in default logic. In propositional logics, these two concepts are the same: Π is
equivalent to one of its proper subsets if and only if it contains a redundant clause. In default
logic, it may be that γ1 and γ2 are both irredundant in {γ1, γ2} while {γ1, γ2} is redundant,
as shown by the theory 〈D,W 〉 defined below.

W = {a, b}

D = {d1, d2, d3}

where

d1 =
a : ¬b

¬b

d2 =
b : ¬a

¬a

d3 =
: a ∧ b

a ∧ b

The theory 〈D,W 〉 has the single extension Cn({a, b}). Indeed, d1 and d2 are not appli-
cable because their justifications are inconsistent with W . The third default is applicable,
but its consequence is a ∧ b, which is already in the theory.

The theory 〈D,W\{b}〉 still has the extension {a, b}, which results from the application
of d3, which then blocks the application of d1 and d2. However, it also has a new extension:
since d1 is applicable, it generates ¬b, which blocks the application of d3. This produces the
extension {a,¬b}. In the same way, 〈D,W\{a}〉 has the two extensions {a, b} and {¬a, b}

The theory 〈D,W\{a, b}〉 has again a single extension: d3 is the only applicable default,
leading to the addition of a ∧ b. Neither d1 nor d2 are applicable. Therefore, {a, b} is the
only extension of this theory.

The set of extensions of the theory is changed by removing any single clause, but is not
changed by the removal of both clauses. In other words, both a and b are irredundant in
{a, b}, but {a, b} is redundant. Since D is a set of normal default, this counterexample holds
even for normal default theories.

The two theories obtained by removing a single clause of W differ from W because of
a new extension. This can be proved to be always the case if the removal of both clauses
leads to the original set of extensions. This is proved by first showing a sort of “continuity”
of extensions.

Lemma 10 If E is an extension of 〈D,W ′〉 and of 〈D,W 〉 with W ′ ⊆ W , then every selected
process of 〈D,W ′〉 generating E is a selected process of 〈D,W 〉 generating E.
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Proof. Let Π be a selected process of 〈D,W ′〉 that generates E. Since W ′ ⊆ W we have
W |= W ′; therefore, Π is a process of 〈D,W 〉. Remains to prove that it is also selected.
However, all conditions for a process to be selected in 〈D,W ′〉 contains W ′ only in the
subformula W ′ ∪ cons(Π). Since E = W ′ ∪ cons(Π), and E is an extension of 〈D,W 〉, we
have that E |= W . As a result, W ′ ∪ cons(Π) ≡ W ∪ cons(Π). Therefore, every condition
for Π in 〈D,W ′〉 is equivalent to the same condition for 〈D,W 〉.

The following lemma relates the selected processes of three formulae.

Lemma 11 If Π is a selected process of both 〈D,W ′〉 and 〈D,W 〉 and generates the same
extension in both theories, it is also a selected process of every 〈D,W ′′〉 with W ′ ⊆ W ′′ ⊆ W

and generates the same extension in 〈D,W ′′〉.

Proof. If W ′ ⊆ W does not hold, the claim is trivially true because there is no W ′′ such
that W ′ ⊆ W ′′ ⊆ W .

Since Π is a process of 〈D,W ′〉, it is also a process of 〈D,W ′′〉 because W ′′ |= W ′. Since
Π generates the same extensions in W ′ and W , we have that W ′ ∪ cons(Π) ≡ W ∪ cons(Π).
Since W |= W ′′ |= W ′, we also have W ′ ∪ cons(Π) ≡ W ′′ ∪ cons(Π). Therefore, every
condition that is true for W ′ ∪ cons(Π) is also true for W ′′ ∪ cons(Π).

The following lemma proves that extensions of both a theory and a subset of it are also
extensions of any theory “between them”.

Lemma 12 If E is an extension of both 〈D,W ′〉 and 〈D,W 〉, with W ′ ⊆ W , then it is an
extension of any 〈D,W ′′〉 with W ′ ⊆ W ′′ ⊆ W

Proof. By Lemma 10, every selected process Π of 〈D,W ′〉 that generates E is also a selected
process of 〈D,W 〉 and generates the same extension E in this theory. As a result, Lemma 11
applies, and Π is a selected process of 〈D,W ′′〉 and generates the same extension.

This theorem shows that extensions have a form of “partial monotonicity”: an extension
of both a subset and a superset of a formula is also an extension of the formula. This is
important to our aims, as it shows that the equivalence W ′ ≡e

D W implies that all default
theories 〈D,W ′′〉 with W ′ ⊆ W ′′ ⊆ W have the same extensions of 〈D,W 〉. Therefore,
〈D,W ′′〉 can differ from 〈D,W 〉 only because of new extensions.

Corollary 3 If W ′ ≡e
D W , W ′ ⊆ W ′′ ⊆ W , and W ′′ 6≡e

D W , then ExtD(W ) ⊂ ExtD(W
′′).

The existence of extensions of W ′′ that are not extensions of W does not imply that W ′′

theory is not consequence-equivalent to W and W ′′. On the other hand, W ′′ 6≡c
D W implies

W ′′ 6≡e
D W , which leads to the following consequence.

Corollary 4 If W ′ ≡e
D W , W ′ ⊆ W ′′ ⊆ W , and W ′′ 6≡c

D W , then ExtD(W ) ⊂ ExtD(W
′′).

While it is not true that the irredundancy of two clauses proves the irredundancy of the
set composed of them, it is however true that this can only happen because of new extensions
that are created by removing a single clause. For some special cases of default logics, such
creation is not possible.
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Theorem 10 If D is a set of normal and categorical defaults, then W ′ ≡e
D W implies that

W ≡e
D W ′′ for any W ′′ such that W ′ ⊆ W ′′ ⊆ W .

Proof. By Lemma 12, all extensions of 〈D,W 〉 are also extensions of 〈D,W ′′〉. We therefore
only have to prove the converse. Let Π be a process of 〈D,W ′′〉. Since the theory has no
preconditions, all defaults d ∈ Π satisfy W ′ ∪ cons(Π[d]) |= d. In other words, Π is a process
of 〈D,W ′〉. Since W ′′ ∪ cons(Π) ∪ just(d) is consistent for every d ∈ Π, and W ′ is logically
weaker than W ′′, the same condition is true for W ′. Since normal default logic is fail-safe
[Lib05e], there exists Π′ such that Π ·Π′ is a selected process of 〈D,W ′〉. By Lemma 10 and
Lemma 12, W ∪ cons(Π · Π′) is an extension of 〈D,W ′′〉.

Let us assume that W ∪ cons(Π · Π′) and W ′′ ∪ cons(Π) are not equivalent. This is only
possible if W ∪ cons(Π ·Π′) |= W ′′ ∪ cons(Π) but not vice versa. This is however impossible,
because in normal default logic all extensions are mutually inconsistent [Rei80].

Since the two definitions of equivalence are the same on normal default theories, as proved
in Theorem 9, this result extends to the definition of redundancy based on consequences.

Corollary 5 If D is a set of normal and categorical defaults, then W ≡c
D W ′′ implies that

W ≡c
D W ′ for any W ′ such that W ′′ ⊆ W ′ ⊆ W .

This result does not hold for normal default theories with preconditions, as the counterex-
ample at the beginning of the section is only composed of normal defaults with preconditions.

Corollary 6 If D is a set of normal and categorical defaults, then a formula is redundant
if and only if it contains a redundant clause.

In other words, default logic restricted to the case of normal and categorical defaults has
the local redundancy property.

4.3 Making Clauses Irredundant

Modifying a theory in order to make some parts irredundant proved useful for classical and
circumscriptive logics. We show a similar result for default logic.

Definition 11 The M-irredundant version of a default theory 〈D,W 〉, where M ⊆ W =
{γ1, . . . , γm}, is the following theory, where {c1, . . . , cm} are new variables.

I(〈D,W 〉,M) = 〈D′,W ′〉

where:

W ′ = {ci ∨ γi | γi ∈ W}

D′ = D1 ∪D2 ∪D3

D1 =
{

: ¬c1 ∧ · · · ∧ ¬cm
¬c1 ∧ · · · ∧ ¬cm

}

∪
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D2 =

{

ci ∨ γi : ci ∧ {¬ci | 1 ≤ j ≤ k, i 6= i}

ci ∧ {¬ci | 1 ≤ j ≤ k, i 6= i}

∣

∣

∣

∣

∣

γi ∈ M

}

∪

D3 =

{

¬c1 ∧ · · · ∧ ¬cm ∧ α : β

γ

∣

∣

∣

∣

∣

α : β

γ
∈ D

}

The clauses of M are made irredundant by this transformation, while the redundancy of
the other clauses does not change.

Theorem 11 If M ⊆ W , 〈D′,W ′〉 = I(〈D,W 〉,M), and W ′′ ⊂ W , then W ′ ≡e
D′ W ′′ holds

if and only if {γi | ci∨γi ∈ W ′′} ≡e
D W and W ′′ contains all clauses ci∨γi such that γi ∈ M .

The same holds for consequence-equivalence.

Proof. The default of D1 can be applied provided that W is consistent. Its application
makes all defaults of D2 inapplicable and makes the background theory and the defaults
of D3 equivalent to W and to D, respectively. As a result, I(〈D,W 〉,M) has an extension
Cn(E ∧¬c1 ∧ · · · ∧¬cm) for any extension E of 〈D,W 〉. As a result, a subset of W ′ has this
extension if and only if the corresponding subset of W has the same extension.

The i-th default of D2 is applicable to W because ci ∨ γi is in the background theory.
Since all clauses of W contain the literals cj only positively, these literals cannot be removed
by resolution. As a result, every non-tautological consequence of W\{ci ∨ γi} is disjoined
with at least a variable cj with j 6= i. As a result, no subset of W ′ allows for the application
of this default unless it contains the clause ci ∨ γi.

The application of this default makes all other defaults of D′ inapplicable. The generated
extension is moreover inconsistent with all other extensions of the theory. As a result,
any subset of W ′ not containing ci ∨ γi necessarily has a different set of extensions and
consequences than W ′.

4.4 Complexity of Clause Redundancy

In this section, we analyze the complexity of checking the redundancy of a clause in a formula.
Formally, this is the problem of whether W\{γ} is equivalent to W according to ≡c

D or ≡e
D.

By Corollary 1, these two forms of equivalence are related, as W ′ |=c
D W is equivalent to

W ′ |=e
D W and also to W ′ |=D W , if W ′ ⊆ W . As a result, checking whether W ′ |=D W

allows for telling whether the “first part of equivalence” between W ′ and W holds, for both
kinds of equivalence. In other words, in order to check whether W ′ andW are equivalent with
W ′ ⊆ W , we can first check whether W ′ |=D W ; if this condition is true, we then proceed
checking whether W |=c

D W ′ or W |=e
D W ′ depending on which equivalence is considered.

Lemma 8 tells that W ′ |=D W implies that all processes of 〈D,W ′〉 are also processes of
〈D,W 〉. This condition does not imply equivalence because 〈D,W 〉 may contain some other
processes, as in the default theory 〈D,W 〉 below.

W = {a}
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D = {d1, d2}

where:

d1 =
a : b

b

d2 =
: a ∧ ¬b

a ∧ ¬b

The theory 〈D,W 〉 has two extensions: applying either d1 or d2, the other is not applica-
ble. The resulting extensions are Cn(a ∧ b) and Cn(a ∧ ¬b). Let W ′ = ∅. The only default
that is applicable in W ′ is d2, leading to the only extension Cn(a ∧ ¬b). This extension
implies W . As a result, we have that W ′ |=D W but W ′ and W do not have the same
extensions and the same consequences. In particular, W has some extensions that W ′ does
not have. This is always the case if W ′ |=D W but W and W ′ are not equivalent.

In order to check equivalence of W ′ and W with W ′ ⊆ W , two conditions have to be
checked:

1. W ′ |=D W ; and

2. W |=c
D W ′ or W |=e

D W ′.

An upper bound on the complexity of checking the redundancy of a clause is given by
the following theorem.

Theorem 12 Checking whether W ′ ≡e
D W in Reiter and justified default logic is in Πp

2 if
W ′ ⊆ W .

Proof. Checking whetherW ′ |=D W is in Πp
2. The other condition to be checked isW |=e

D W ′.
The converse of this condition is that there exists a formula E ⊆ W ∪ cons(D) such that
E is an extension of 〈D,W 〉 but is not an extension of 〈D,W ′〉. Since checking whether a
formula is a Reiter or justified default logic is in ∆p

2[log n] [Ros99], the whole problem is in
Σp

2. Its converse is therefore in Πp
2. The problem of redundancy of a clause can be solved by

solving two problems in Πp
2 in parallel.

The hardness of the problem for the same class is proved by the following theorem.

Theorem 13 Checking whether W ′ ≡e
D W is Πp

2-hard even if W = W ′∪{a} and all defaults
are categorical and normal.

Proof. The claim could be proved from the fact that entailment in default logic is Πp
2-hard

even if the formula to entail is a single positive literal, and all defaults are categorical and
normal [Got92, Sti92]. If all defaults are categorical and normal, Corollary 2 proves that
W ′ ≡m

D W is equivalent to the two other forms of equivalence.
We however use a new reduction from ∀∃QBF because this is required by the proof of

Σp
3-hardness of formula redundancy. The formula ∀X∃Y . F is valid if and only if a is

redundant in the theory below:
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〈{

: xi

xi

,
: ¬xi

¬xi

}

∪
{

: F ∧ a

a

}

, {a}
〉

This theory has an extension for every possible truth evaluation over the variables X .
For each such extension, the last default can be applied only if F is consistent with the given
evaluation of X . As a result, if F is consistent with every truth evaluation over the variables
X , then a can be removed from the background theory without changing the consequences
of these extensions. Otherwise, the removal of a would cause some of these extensions not
to entail a any more.

We now consider the problem of redundancy of clauses when consequence-equivalence
is used. The difference between the two kinds of equivalence is that two sets of extensions
may be different but yet their disjunctions are the same. The necessity of calculating the
disjunction of all extensions intuitively explains why checking redundancy for consequence-
equivalence is harder than for faithful equivalence.

Theorem 14 The problem of checking whether W ′ ≡c
D W is in Πp

3 if W ′ ⊆ W .

Proof. W ′ and W are consequence-equivalent if W ′ |=D W and W |=c
D W ′. The first

problem is in Πp
2. We prove that the converse of the second condition is in Σp

3. By definition,
W 6|=c

D W ′ holds if and only if ∨ExtD(W ) 6|= ∨ExtD(W
′). In terms of models, we have

∪{Mod(E) | E ∈ ExtD(W )} 6⊆ ∪{Mod(E) | E ∈ ExtD(W
′)}, that is, there exists M and E

such that M ∈ Mod(E), E ∈ ExtD(W ), but M is not a model of any extension of W ′. The
whole condition can therefore be expressed by the following formula.

∃M∃E . M ∈ Mod(E) ∧ E ∈ ExtD(W ) ∧ (∀E ′ . E ′ 6∈ ExtD(W
′) ∨M 6∈ Mod(E ′))

Since E ′ 6∈ ExtD(W
′) is in ∆p

2[log n] for Reiter [Ros99] and justified default logic and
in Πp

2 for constrained and rational [Lib05a], the problem of checking W |=c
D W ′ is in Πp

3.
Therefore, the problem of consequence-equivalence is in Πp

3 as well for all four considered
semantics.

We show that the problem is hard for the same class.

Theorem 15 The problem of checking whether W ′ ≡c
D W for Reiter and justified default

logics is Πp
3-hard even if W = W ′ ∪ {a}.

Proof. Since checking whether W ′ ≡e
D W is in Πp

2, a proof of Π
p
3-hardness necessarily requires

the use of theories having different extensions but might have the same consequences.
We prove that the problem of non-equivalence of default theories is Σp

3-hard by reduction
from QBF.We reduce a formula ∃X∀Y ∃Z.F into the problem of checking whetherW ≡c

D W ′,
where W ′ = ∅, W = {a}, and D = D1 ∪D2 ∪D3 ∪D4 ∪D5 ∪D6. We show each Di at time.
First, we generate a complete evaluation over the variables X using the following defaults.
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D1 =
{

: xi

xi ∧ hi

,
: ¬xi

¬xi ∧ hi

}

Since these defaults have no preconditions, they can be applied regardless of whether W
or W ′ is the background theory. They generate a process for any truth evaluation ωX over
the variables in X . The variables hi are all true only when all variables xi have been set to
a value.

✞
✝

☎
✆

✞
✝

☎
✆

✞
✝

☎
✆

✞
✝

☎
✆✲

✲W

ωX

ωX

W ′

The processes of W and W ′ are so far the same. Once all hi are true, we can apply the
defaults of D2 = {d1, d2, d3, d4}, which are the ones used in Theorem 6 to show two theories
that have the same consequences but different extensions:

D2 = {d1, d2, d3, d4}

d1 =
h1 ∧ · · · ∧ hn : ¬b ∧ c

a ∧ c

d2 =
h1 ∧ · · · ∧ hn : ¬b ∧ ¬c

a ∧ ¬c

d3 =
h1 ∧ · · · ∧ hn ∧ a : b ∧ c

b ∨ c

d4 =
h1 ∧ · · · ∧ hn ∧ a ∧ (b ∨ c) : b ∧ ¬c

b

Since these default have h1 ∧ · · · ∧ hn as a precondition, they can only be applied once
a truth assignment over X has been generated by the previous defaults. They act as in the
proof of Theorem 6. Only [d1d3] and [d2] are processes of W ′; their consequences are a ∧ c

and a∧¬c. The theory W has the same processes, but also [d3d1] and [d3d4], which generate
the extensions a ∧ c and a ∧ b, respectively. While the first is also an extension of W ′, the
second is not. The disjunction of all extensions is equivalent to a for both W and W ′.
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✞
✝

☎
✆

✞
✝

☎
✆

✞
✝

☎
✆

✞
✝

☎
✆

✞
✝

☎
✆

✞
✝

☎
✆

✞
✝

☎
✆

✞
✝

☎
✆

✞
✝

☎
✆✲ ✟✟✟✟✟✟✟✯

✲ ✲✟✟✟✟✟✟✟✯

❍❍❍❍❍❍❍❥

✲W ′

W

ωX

ωX

a¬cωX

a¬cωX

acωX

abωX

acωX

The idea is as follows: from abωX , which is obtained from W but not from W ′, we always
generate the extension abωXdǫY , where ǫY is the assignment of false to all variables Y ; from
the two other points a¬cωX and acωX we instead generate an arbitrary assignment ωY , which
then has abωXdǫY as a model only if F is satisfiable.

This way, if there exists a value ωX such that for all ωY the formula F is satisfiable, then
there is no extension of W ′ having the model abdωXǫY . Vice versa, if there exists even a
single ωY such that F is unsatisfiable, an extension acωX . . . for W ′ will be generated, and
this extension has the model abωXdǫY .
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✞
✝

☎
✆

✞
✝

☎
✆

✞
✝

☎
✆

✞
✝

☎
✆

✞
✝

☎
✆

✞
✝

☎
✆

✞
✝

☎
✆

✞
✝

☎
✆

✞
✝

☎
✆

✞
✝

☎
✆

✞
✝

☎
✆

✞
✝

☎
✆

✲

✲ ✲
❍❍❍❍❍❍❍❥

✲ ✘✘✘✘✘✘✘✿

❳❳❳❳❳❳❳③

✲

�
�
�
�
�
�
�✒

✘✘✘✘✘✘✘✿

❳❳❳❳❳❳❳③

�
�
�
�
�
�
�✒

W ′

W

ωX

ωX acωX

abωX

abωXdǫY

a¬cωX

same as above

acωXωY¬d

(one extension for each ωY )
a¬cωXωY¬d
OR
a¬cωX(d ∨ ωY )

OR
acωX(d ∨ ωY )

(one extension for each ωY )

The required defaults are the following ones. First, we generate the considered model
from the process that has generated abωX :

D3 =

{

b : ⊤

d ∧ ¬y1 ∧ · · · ∧ ¬yn

}

From a¬cωX and acωX we generate an arbitrary truth evaluation over Y . Since the
model abdωXǫY assigns false to all variables yi, we cannot simply add yi as a conclusion. A
similar effect can be achieved by the following defaults.

D4 =

{

¬c : ¬d ∧ yi

d ∨ (yi ∧ li)
,
¬c : ¬d ∧ ¬yi
d ∨ (¬yi ∧ li)

∣

∣

∣

∣

∣

1 ≤ i ≤ n

}

D5 =

{

c : ¬d ∧ yi

d ∨ (yi ∧ li)
,

c : ¬d ∧ ¬yi
d ∨ (¬yi ∧ li)

∣

∣

∣

∣

∣

1 ≤ i ≤ n

}

The two defaults associated with yi and ¬yi cannot be applied both at the same time, as
the consequence of one contains the negation of the justification of the other one. Since the
following defaults can only be applied when d ∨ (l1 ∧ · · · ∧ ln) has been derived, the current
extensions before their application are a¬cωX(d∨ (ωY ∧L)) and acωX(d ∨ (ωY ∧L)), where
ωY is an arbitrary truth assignment over Y .

These extensions have all models of abωXdǫY . The following default removes these models
from the extensions if and only if F is satisfiable for these given assignments over X and Y .
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D6 =

{

d ∨ (l1 ∧ · · · ∧ ln) : ¬d ∧ F

¬d

}

This default is not applicable from abωXdǫY because its justification contains ¬d. It is
applicable from the other processes but only after the i-th default of D4 or D5 has been
applied for each i and only if the consequences of the applied defaults of D4 or D5 are
consistent with ¬d ∧ F . In other words, (d ∨ (ωY ∧ L)) ∧ ¬d ∧ F must be consistent, which
is equivalent to the consistency of ωY ∧ F because d and L are not mentioned in ωY and F .

We can therefore conclude that:

1. for each truth assignment ωX , three “partial extensions” are generated fromW : a¬cωX ,
acωX , and abωX ; the first two ones are also generated by W ′;

2. from abωX , the extension abωXdǫY is generated; if the models of this extension are not
models of an extension of W ′, equivalence between W and W ′ does not hold;

3. from a[¬]cωX we generate a[¬]cωX(d ∨ (ωY ∧ L)) for each truth evaluation ωY on the
variables Y ; to this formula, ¬d is added if and only if F is consistent with ωX and ωY .

As a result, the models of abωXdǫY are not models of an extension of W ′ if and only if
F ∧ωX is satisfiable for every truth evaluation of Y . Since non-equivalence has to be checked
for every ωX , we have that non-equivalence holds if and only if ∃X∀Y ∃Z . F .

A similar proof holds for constrained or rational default logics by replacing the default
theory of Theorem 6 with that of Theorem 7. The proof can also slightly simplified in
this case, as the defaults of D4 and D5 can be modified with justifications yi or ¬yi and
consequence d ∨ li.

Since we have proved that the problem of clause redundancy w.r.t. consequence-equivalence
is both in Πp

3 and hard for the same class, we have the following theorem.

Theorem 16 The problem of checking whether W ′ ≡c
D W is Πp

3-complete if W ′ ⊆ W ;
hardness holds even if W = W ′ ∪ {a}.

4.5 Complexity of Formula Redundancy

The next problem to analyze is whether a formula (a set of clauses) is redundant, for a
fixed set of defaults. The complexity of formula redundancy w.r.t. faithful and consequence-
equivalence is in Σp

3 and Σp
4, respectively.

Theorem 17 The problem of formula redundancy for faithful and consequence-equivalence
is in Σp

3 and Σp
4, respectively.
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Proof. Both problems can be expressed as the existence of a subset W ′ ⊂ W such that
W ′ is equivalent to W . Since equivalence is in Πp

2 and Πp
3, respectively, for faithful and

consequence-equivalence, the claim follows.

Regarding hardness, we first show a theorem characterizing the complexity of the problem
for the case of faithful equivalence. We then show a more general technique allowing an
hardness result to be raised one level in the polynomial hierarchy.

Theorem 18 The problem of formula redundancy based on faithful equivalence is Σp
3-hard.

Proof. We reduce the problem of validity of ∃X∀Y ∃Z.F to the problem of redundancy of a
formula. Let n = |X|. The default theory corresponding to the formula ∃X∀Y ∃Z.F is the
theory 〈D,W 〉 defined as follows.

W = {si | 1 ≤ i ≤ n} ∪ {ri | 1 ≤ i ≤ n}

D = D1 ∪D2 ∪D3 ∪D4 ∪D5 ∪D6

D1 =

{

si ∧ ri : ¬sj
a

,
si ∧ ri : ¬rj

a

∣

∣

∣

∣

1 ≤ i ≤ n

1 ≤ j ≤ n

}

D2 =

{

: ¬si ∧ ¬ri
a

∣

∣

∣

∣

1 ≤ i ≤ n

1 ≤ j ≤ n

}

D3 =

{

: yi
yi ∧ hi

,
: ¬yi

¬yi ∧ hi

∣

∣

∣

∣

∣

1 ≤ i ≤ n

}

D4 =

{

: xi

pi ∧ xi

,
: ¬xi

pi ∧ ¬xi

∣

∣

∣

∣

∣

1 ≤ i ≤ n

}

D5 =

{

xi ∧ ri : ⊤

∧W
,
¬xi ∧ si : ⊤

∧W

∣

∣

∣

∣

∣

1 ≤ i ≤ n

}

D6 =

{

p1 . . . pnh1 . . . hn : F

∧W

}

The defaults of D1 and D2 cannot be applied from W . The defaults of D3 and D4

generates an extension for every possible truth evaluation over X ∪ Y ; this extension also
contains all variables hi and pi. Whether or not the last default is applicable, its consequence
is equivalent to the background theory.

Let W ′ ⊂ W . If there is an index i such that both si and ri are in W ′, one of the
defaults of D1 is applicable, generating a. Therefore, W ′ is not equivalent to W . If there
exists an index i such that neither si nor ri is in W ′, the i-th default of D2 is applicable, still
generating a.

In order to check for redundancy, we therefore only have to consider subsets W ′ ⊂ W for
which either si ∈ W or ri ∈ W but not both. Let ωX be the assignment on the variables X
such that xi is assigned to true if si ∈ W ′ and to false if ri ∈ W ′. The defaults of D3 and
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D4 generate an arbitrary truth evaluation of the variables X ∪ Y . If the assignment on X is
not equal to ωX , the formula ∧W is generated, thus leading to an extension that is also an
extension of W . As a result, all extensions of W ′ that do not match the value ωX are also
extensions of W . If the same holds also for the extensions for which the values of X match
ωX , then W ′ is equivalent to W .

For a given W ′ we consider the extensions consistent with ωX . There is exactly one such
extension for each possible truth evaluation over Y . If the default of D6 can be applied, it
generates ∧W , thus making W ′ equivalent to W . In turn, the default of D6 can be applied
for all truth evaluation over Y if and only if for all such truth evaluation, F is satisfiable. As
a result, W ′ is equivalent to W if and only if, for all possible truth evaluations over Y , the
formula F is satisfiable. Since there exists a relevant W ′ for each truth evaluation over X ,
the formula W is redundant if and only if there exists a truth evaluation over X such that,
for all possible truth evaluations over Y , the formula F is satisfiable.

In order to prove the Σp
4-hardness of the problem of formula redundancy under consequence-

equivalence, we should provide a reduction from ∃∀∃∀QBF validity into this problem. A
simpler proof can however be given, based on the following consideration: checking clause
redundancy has been proved Πp

2-hard or Πp
3-hard using reductions from QBFs that results

in default theories having W = {a} as the background theory. As a result, these reductions
also prove that formula redundancy is Πp

2-hard or Πp
3-hard. In other words, we can reduce

the validity of a ∀∃QBF or a ∀∃∀QBF into the problems of formula redundancy. What we
show is that, if such reductions satisfy some assumptions, we can obtain new reductions from
QBFs having an additional existential quantifier in the front. The assumptions are that the
default theory resulting from the reduction is such that:

1. the background theory that results from the reduction is classically irredundant;

2. the matrix of the QBF is only used in the justification of a single default.

The reductions used for proving the hardness of clause redundancy satisfies both assump-
tions. In particular, ∀X∃Y ∀Z.F is valid if and only if the background theory of the following
theory is consequence-redundant, where D, α, β, γ, do not depend on F but only on the
quantifiers of the QBF and W is classically irredundant.

〈

D ∪

{

α : β ∧ F

γ

}

, W

〉

The fact that the matrix of the QBF is copied “verbatim” in the default theory is exploited
as follows: if ωw is a truth evaluation over the variable w, then ∀X∃Y ∀Z.F |ωw

is valid if and
only if the background theory of 〈D ∪ {α:β∧F∧ωw

γ
}, W 〉 is redundant. This default theory

can be modified in such a way the subsets of the background theory are in correspondence
with the truth evaluations over ωw. This way, the resulting theory is redundant if and only
if ∃w∀X∃Y ∀Z . F . The resulting default theory still satisfies the two assumptions above on
the background theory and on the use of the matrix of the QBF; therefore, this procedure
can be iterated to obtain a reduction from ∃∀∃∀QBF validity into the problem of formula
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redundancy under consequence-equivalence. A similar technique can be used for faithful
equivalence.

The details of this technique are in the following three lemmas. The first one shows that
a literal can be moved from the justification of a default to the background theory and vice
versa, under certain conditions.

Lemma 13 If the variable of the literal l is not mentioned in W , D, prec(d), and cons(d),
the processes of the following two theories are the same modulo the replacement of d with d′

and vice versa.

〈D ∪ {d},W ∪ {l}〉

〈D ∪ {d′},W 〉

where

d′ =
prec(d) : just(d) ∧ l

cons(d)

Proof. The literal l and its negation only occur in the background theory W ∪ {l} and in
the justification of d and d′. The conditions on a process of the first theory being selected
either involve (W ∪ {l}) ∪ just(d) or W ∪ {l} with other formulae not containing l. As a
result, moving l from the background theory to the justification of d or vice versa does not
change these conditions.

Note that the processes are the same, but the extensions are different in that l is in all
extensions of the first theory but not in the extensions of the second.

The second lemma is an obvious consequence of the above: under the same conditions,
moving a literal from the justification of a default to the background theory or vice versa
does not change the redundancy of a theory.

Lemma 14 If W ′ ⊆ W , it holds W ′ ≡e
D′ W if and only if W ′ ∪ {l} ≡e

D′′ W ∪ {l}, where l

is a literal that is not mentioned in W , D, prec(d), and cons(d), where D′ and D′′ are as
follows.

D′ = D ∪

{

prec(d) : just(d) ∧ l

cons(d)

}

D′′ = D ∪ {d}

Proof. Obvious consequence of the lemma above: 〈D′,W ′〉 and 〈D′,W 〉 have the same
processes of 〈D′′,W ′ ∪ {l}〉 and 〈D′′,W ∪ {l}〉, respectively.

A consequence of this lemma is that W is redundant according to D′ if and only if W ∪{l}
is redundant according to D′′. Indeed, l is not mentioned in the consequences of the defaults;
therefore, a subset of W ∪ {l} can only be equivalent to W ∪ {l} if it contains l. The lemma
is formulated in the more complicated way because it is necessary for proving the following

32



lemma. The same property can be proved using consequence-equivalence because moving l

from the justification of the default to the background theory has the only effect of adding
l to all extensions.

Lemma 15 IfW is classically irredundant, then there exists W ′ ⊂ W such that W ′∪{w} ≡e
D

W ∪ {w} or W ′ ∪ {¬w} ≡e
D W ∪ {¬w} if and only if the following theory is redundant:

〈

Dw ∪

{

p ∧ α : β

γ

∣

∣

∣

∣

∣

α : β

γ
∈ D

}

, W ∪ {w+, w−}

〉

where:

Dw =

{

w+ ∧ w− : ¬W

¬p
,
: ¬w+ ∧ ¬w−

¬p
,
w+ : w ∧ p

w ∧ p
,
w− : ¬w ∧ p

¬w ∧ p

}

and w+, w−, and p are new variables.

Proof. Since w+ and w− are new variables not contained in W and W is classically irredun-
dant, W ∪ {w+, w−} is classically irredundant as well.

We now consider the processes that can be generated from W ∪ {w+, w−} and from
its subsets. From W ∪ {w+, w−} we can apply only one of the last two defaults of Dw,
generating either w ∧ p or ¬w ∧ p. From this point on, we have exactly the same processes
of 〈D,W ∪ {w}〉 and 〈D,W ∪ {¬w}〉, the generated extensions only differing because of the
addition of p and w+ or w−.

The proper subsets of W ∪ {w+, w−} are W ′ ∪ {w+, w−} where W ′ ⊂ W , W ′ ∪ {w+},
W ′ ∪ {w−}, and W ′, where W ′ ⊆ W . The fourth subset W ′ is not equivalent to W because
the second default of Dw allows the derivation of ¬p, which is not derivable from W . If
W ′ ⊂ W , since W is (classically) irredundant, W ′ ∪ {w+, w−} allows for the application of
the first default of Dw, deriving ¬p; therefore, this subset is not equivalent to the background
theory.

The only two other subsets to consider are W ′∪{w+} and W ′∪{w−}. In the first subset,
only w ∧ p can be generated. In the second subset, only ¬w ∧ p can be generated. From this
point on, we have exactly the same processes of W ′ ∪ {w} and W ′ ∪ {¬w} according to D.
The generated extensions are the same but for the addition of p.

These three lemmas together proves that a reduction from QBF to formula redundancy
can be “raised” by the addition of an existential quantifier in the front of the QBF.

Lemma 16 If there exists a polynomial reduction from formulae Q.E, where Q is a sequence
of quantifier of a given class, to the problem of formula redundancy of a default theory in the
following form, then there exists a polynomial reduction from formulae of the form ∃wQ.F

to the formula redundancy of a theory in the following form.
〈

D ∪

{

α : β ∧ F

γ

}

, W

〉
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The formulae in D, {α, β, γ}, and W do not depend on F . The background theory W is
classically irredundant.

Proof. Let Q be a sequence of quantifiers so that the validity of the formula Q.E can be
reduced to formula redundancy of a default theory of the above form. We show a reduction
from the validity of ∃wQ.F to formula redundancy of a default theory of the same form.

By definition, both Q.F |w=true and Q.F |w=false can be reduced to the problem of for-
mula redundancy. These two formulae only differ on their matrixes, which are F |w=true and
F |w=false. Therefore, the resulting default theories are:

〈

D ∪

{

α : β ∧ F |w=true

γ

}

, W

〉

〈

D ∪

{

α : β ∧ F |w=false

γ

}

, W

〉

Since w does not occur anywhere else in the theory, we can replace F |w=true and F |w=false

with F ∧w and F ∧¬w, respectively. Indeed, justifications are only checked for consistency,
and for any formula R not containing w, the consistency of R ∪ F |w=true is the same as the
consistency of R∪ (F ∧w), and the consistency of R∪F |w=false is the same as the consistency
of R ∪ (F ∧ ¬w).

〈

D ∪

{

α : β ∧ F ∧ w

γ

}

, W

〉

〈

D ∪

{

α : β ∧ F ∧ ¬w

γ

}

, W

〉

By Lemma 14, formula redundancy of these two theories corresponds to formula redun-
dancy of the same theories with w or ¬w moved to the background theory. More precisely,
the redundancy of the first theory correspond to the existence of a subset W ′ ⊂ W such that
W ′ ∪ {w} is equivalent to W ∪ {w} according to the defaults D ∪

{

α:β∧F

γ

}

. The same holds
for the second theory.

〈

D ∪

{

α : β ∧ F

γ

}

, W ∪ {w}

〉

〈

D ∪

{

α : β ∧ F

γ

}

, W ∪ {¬w}

〉

By Lemma 15, since W is classically irredundant, we have that either the first or the
second of the two theories are redundant if and only if the following theory is redundant:

〈

Dw ∪

{

p ∧ α : β

γ

∣

∣

∣

∣

∣

α : β

γ
∈ D

}

, W ∪ {w+, w−}

〉
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where Dw is defined in the statement of Lemma 15. As a result, this formula is redundant
if and only if either Q.F |w=true is valid or Q.F |w=false is valid, that is, ∃wQ.F is valid.

In order to complete the lemma, we have to show that the background theory of the above
theory is classically irredundant, and the theory is in the form specified by the statement
of the theorem. Since W is classically irredundant by assumption and w+ and w− are new
variables, W ∪{w+, w−} is classically irredundant. In the above theory, the matrix F of the
QBF is only mentioned in the justification of the default p∧α:β∧F

γ
. Therefore, the theory that

results from the reduction is in the form specified by the theorem.

The above lemmas are also valid for consequence-equivalence. In both cases, we have
that the hardness of formula redundancy is one level higher in the polynomial hierarchy
than clause redundancy.

Theorem 19 Formula redundancy is Σp
3-hard for faithful equivalence and Σp

4-hard for consequence-
equivalence.

Proof. The reduction shown after Theorem 13 and the reduction used in Theorem 15 are
reductions from ∀∃QBF and ∀∃∀QBF, respectively, into the problem of formula redundancy.
These reductions produce a default theory in which the background theory contains a single
non-tautological clause, and is therefore irredundant, and the matrix of the QBF only occurs
in the justification of a single default. These are the conditions of Lemma 16. As a result, one
can reduce an ∃∀∃QBF or an ∃∀∃∀QBF to the problem of formula redundancy by iteratively
applying the modification of Lemma 16 for all variables of the first existential quantifier.

4.6 Redundancy of Defaults

The redundancy of a default is defined in the same way as redundancy of clauses.

Definition 12 (Redundancy of a default) A default d is redundant in 〈D,W 〉 if and
only if 〈D\{d},W 〉 is equivalent to 〈D,W 〉.

This definition depends on the kind of equivalence used. Therefore, a default can be
redundant w.r.t. faithful or consequence-equivalence. The redundancy of defaults is defined
as follows.

Definition 13 (Redundancy of a theory) A default theory 〈D,W 〉 is default redundant
if and only if there exists D′ ⊂ D such that 〈D′,W 〉 is equivalent to 〈D,W 〉.

4.6.1 Making Defaults Irredundant

The following lemma is the version of Theorem 11 to the case of default redundancy rather
than clause redundancy. It proves that some defaults can be made irredundant while not
changing the redundancy status of the other ones.
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Lemma 17 For every default theory 〈D,W 〉, set of defaults DI ⊆ D, and D1, D2, D3

defined as follows:

D1 = {d+, d−}

where:

d+ =
: p ∧ q

p ∧ q

d− =
: ¬p ∧ q

¬p ∧ q

D2 =

{

q ∧ (¬p ∨ α) : ¬p ∨ β

(p ∨ vi) ∧ (¬p ∨ γ)

∣

∣

∣

∣

∣

α : β

γ
∈ DI

}

D3 =

{

q ∧ p ∧ α : β

γ

∣

∣

∣

∣

∣

α : β

γ
∈ D\DI

}

if 〈D,W 〉 has extensions and W is consistent, it holds that:

1. the processes of 〈D1 ∪D2 ∪D3,W 〉 are (modulo the transformation of the defaults) the
same of 〈D,W 〉 with d+ added to the front and a number of processes composed of d−
and a sequence containing all defaults of D2;

2. the extension of 〈D1 ∪D2 ∪D3,W 〉 are the same of 〈D,W 〉 with {p, q} added plus the
single extension {¬p, q} ∪ {vi};

3. a subset of D1 ∪D2 ∪D3 is equivalent to it if and only if it contains D1 ∪D2 and the
set of original defaults corresponding to those of D2 ∪D3 is equivalent to D.

Proof. Since all defaults of D2 ∪D3 have q as a precondition, they are not applicable from
W . The only defaults that are applicable to W are therefore d+ and d−, which are mutually
exclusive.

Let us consider the processes with d− in first position. Since d− generates ¬p, the
defaults of D3 are not applicable. We prove that [d−] · Π2 is a successful process, where Π2

is an arbitrary sequence containing all defaults of D2. The preconditions of all defaults of
D2 are entailed by q∧¬p. The union of the justifications and consequences of all defaults of
this process is {¬p, q} ∪ {¬p ∨ β, p ∨ vi,¬p ∨ γ}, which is equivalent to {¬p, q} ∪ {vi}. This
set is consistent with the background theory, which does not contain the variables p, q, and
vi.

If a subset of D1∪D2∪D3 does not contain d−, the literal ¬q cannot derived because no
other default has ¬q as a conclusion. If a subset of D1 ∪D2 ∪D3 does not contain a default
of D2, the corresponding variable vi is not in this extension. As a result, every subset of
D1 ∪D2 ∪D3 that is equivalent to it contains {d−} ∪D2.

Let us now consider the processes with d+ in first position. Such a process cannot contain
d−. Since p and q are generated, the defaults of D2∪D3 can be simplified to α:β

γ
by removing

all clauses containing p or q and all literals ¬p and ¬q from the clauses containing them. As
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a result, the processes having d+ in first position correspond to the processes of the original
theory.

Provided that the original theory has extensions, every subset of D1 ∪ D2 ∪ D3 not
containing d+ lacks these extensions. The defaults of D3 are redundant if and only if they
are redundant in the original theory. More precisely, a subset D′ ⊂ D1∪D2∪D3 is equivalent
to D1 ∪ D2 ∪ D3 if and only if D′ contains D1 ∪ D2, and the set of original defaults D′′

corresponding to the defaults of D′ ∩ (D2 ∪D3) is equivalent to D.

4.6.2 Redundancy of Defaults vs. Sets of Defaults

While a formula is classically redundant if and only if it contains a redundant clause, the
same does not happen for default redundancy. The following theorem indeed proves that
Reiter and rational default logic do not have the local redundancy property w.r.t. redundancy
of defaults.

Theorem 20 There exists a set of defaults D such that, according to Reiter and rational
default logic:

1. for any d ∈ D, the theory 〈D\{d}, ∅〉 has extensions and 〈D\{d},W 〉 6≡c
D 〈D, ∅〉;

2. there exists D′ ⊂ D such that 〈D′, ∅〉 ≡e
D 〈D, ∅〉.

Proof. We use a pair of defaults that lead to failure is they are together in the same process.
Removing one of them from the default theory leads to a new extension, while removing
both of them lead to the original set of extensions. The following defaults are a realization
of this idea.

D = {d1, d2, d3}

where:

d1 =
: b

b ∧ c

d2 =
: b

b ∧ ¬c

d3 =
: ¬b

¬b

The extensions of some 〈D′, ∅〉, with D′ ⊆ D, are as follows:

D′ = D we can either apply both d1 and d2 (leading to a failure) or d3 alone; the only
extension of this theory is therefore ¬b;

D′ = {d1, d3} both d1 and d3 can be applied, but not both; that results in two processes
having conclusions ∨Ext(〈D, ∅〉) = (b ∧ ¬c) ∨ ¬b ≡ ⊤;

D′ = {d2, d3} same as above: ∨Ext(〈D, ∅〉) = (b ∧ c) ∨ ¬b ≡ ⊤;
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D′ = {d3} the only selected process is [d3], which leads to ∨Ext(〈D′,W 〉) = ¬b.

As a result, 〈D\{d}, ∅〉 has extensions for every d ∈ D. The default d3 is not irredundant,
but can be made so by the transformation of Theorem 17, which preserves processes almost
exactly; an alternative is to replace d3 with :¬b

b∧d
and :¬b

b∧e
. The resulting set of default has no

redundant default, but has an equivalent subset.

The same result holds for constrained default logic.

Theorem 21 There exists a set of defaults D such that, according to constrained default
logic:

1. for any d ∈ D, it holds 〈D\{d},W 〉 6≡c
D 〈D, ∅〉;

2. there exists D′ ⊂ D such that 〈D′, ∅〉 ≡e
D 〈D, ∅〉.

Proof. The defaults are the following ones:

D = {d1, d2, d3}

where:

d1 =
: x

a

d2 =
: x

b

d3 =
: ¬x ∧ ¬y

ab

The theory 〈D, ∅〉 has two selected processes (modulo permutation of defaults): [d1, d2]
and [d3], both generating the extension ab. Removing either d1 or d2 causes the first process
to become [d1] or [d2], thus creating a new extension that is either a or b. On the other hand,
removing both d1 and d2 makes the only remaining process to be [d3], which generates the
only extension ab of the original theory. The default d3 is not redundant, but can be made
so by applying the transformation of Theorem 17.

Justified default logic has the local redundancy property w.r.t. default redundancy. This
is a combination of two factors: first, justified default logic is failsafe [Lib05e] (every successful
process can be made selected by adding some defaults); second, every extension is generated
by an unique set of defaults. The proofs requires two lemmas. The first one is about
extendibility of processes when new defaults are added to a theory.

Lemma 18 In justified default logic, if Π is a selected process of 〈D′,W 〉 and D′ ⊆ D, then
there exists a sequence Π′ of defaults of D\D′ such that Π ·Π′ is a selected process of 〈D,W 〉.

Proof. Let Π be a selected process of 〈D′,W 〉. By definition, it holds W ∪ cons(Π[d]) |=
prec(d) and W ∪ cons(Π)⊤just(d) for every d ∈ Π. As a result, Π is a also a successful
process of 〈D,W 〉. Therefore, there exists Π′ such that Π ·Π′ is a selected process of 〈D,W 〉
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because justified default logic is failsafe [Lib05e]. If Π′ contains defaults of D′, then Π would
not be a closed process of 〈D′,W 〉.

In order for proving the second lemma, we need an intermediate result, which is already
well known.

Lemma 19 In justified default logic, the selected processes of 〈D,W 〉 generating the exten-
sion E are composed of exactly the defaults of the following set:

GEN(E,D) = {d ∈ D | E |= prec(d) and E⊤just(d) ∪ cons(d)}

Proof. Assume that Π is a selected process generating E that does not contain a default
d ∈ GEN(E,D). Since E |= prec(d), E⊤just(d) ∪ cons(d), and E = W ∪ cons(Π), we have
that W ∪ cons(Π) |= prec(d) and W ∪ cons(Π)⊤just(d) ∪ cons(d). As a result, Π · [d] is a
successful process, contradicting the assumption.

Let Π be a selected process containing a default d not inGEN(E,D). By definition, either
E 6|= prec(d) or E⊥just(d) ∪ cons(d). The first condition implies that W ∪ cons(Π[d]) 6|= d

whichever the position of d in Π is. The second condition implies W ∪ cons(Π)⊥just(d) ∪
cons(d): the process Π is not successful contrary to the assumption.

The next lemma relates the processes of two theories when they are assumed to have the
same extension. In this lemma and in the following theorem, when a process is used in a
place where a set of defaults is expected, it means the set of defaults of the process. For
example, if Π is a sequence of defaults and D′ a set of defaults, Π ∩D′ is the set of defaults
that are both in Π and in D.

Lemma 20 In justified default logic, if D′ ⊆ D, 〈D′,W 〉 ≡e
D 〈D,W 〉, and Π is a selected

process 〈D,W 〉, then there exists a selected process of 〈D′,W 〉 made exactly of the defaults
of Π ∩D′ and generating the same extension generated by Π.

Proof. Let E = W ∪ cons(Π) be the extension that is generated by Π. By the lemma above,
it is generated by the defaults in GEN(E,D). Since E is also an extension of 〈D′,W 〉, it is
generated by a process Π′ made exactly of the defaults of GEN(E,D′) = GEN(E,D)∩E ′ =
Π ∩D′.

The main theorem relating the extensions of theories differing for the set of defaults in
justified default logic is the following one.

Theorem 22 If D′ ⊆ D′′ ⊆ D and 〈D′,W 〉 ≡e 〈D,W 〉 then 〈D′,W 〉 ≡e 〈D′′,W 〉 for
justified default logic.

Proof. We first show that every extension of 〈D′′,W 〉 is also an extension of 〈D,W 〉, and
then show the converse.

Let E be an extension of 〈D′′,W 〉. Let Π is one its generating processes. By Lemma 18,
there exists a sequence Π′ of defaults of D\D′′ such that Π·Π′ is a selected process of 〈D,W 〉.
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Let E ′ be its generated extension. Since E is generated by Π and E ′ is generated by Π ·Π′,
we have E ′ |= E. We prove that E |= E ′, which implies E ≡ E ′.

By Lemma 20, since Π is a selected process of 〈D,W 〉 and this theory is faithfully
equivalent to 〈D′,W 〉, there exists a selected process Π′′ of 〈D′,W 〉 made of the defaults of
(Π · Π′) ∩ D′ and generating the extension E ′. Since Π′ is made of defaults of D\D′′ and
D′ ⊆ D′′, we have that (Π · Π′) ∩ D′ = Π ∩ D′. As a result, Π′′ is only made of defaults
in Π ∩ D′. Since Π′′ generates E ′ and Π generates E, we have E |= E ′. We can therefore
conclude that E ≡ E ′.

Let us now prove the converse: we assume that E is an extension of 〈D,W 〉 and prove
that it is also an extension of 〈D′′,W 〉. Let Π be the process of 〈D,W 〉 that generates E.
By definition, the following two properties are true:

1. W ∪ cons(Π) |= prec(d) for every d ∈ Π;

2. W ∪ cons(Π)⊥just(d) ∪ cons(d) for every d 6∈ Π.

By Lemma 20, the theory 〈D′,W 〉 has a selected process Π′ that is composed exactly
of the defaults of Π ∩ D′ and that generates the same extension E. Since W ∪ cons(Π′) ≡
W ∪ cons(Π), the two properties are equivalent to the following two ones:

1. W ∪ cons(Π′) |= prec(d) for every d ∈ Π;

2. W ∪ cons(Π′)⊥just(d) ∪ cons(d) for every d 6∈ Π.

The first property implies that every default d ∈ Π∩ (D′′\D′) is applicable to Π′: this is
because the precondition of d is entailed by W ∪cons(Π′) and the process Π′ · [d] is successful
because so is Π, which contains all default of Π′ · [d]. The second property implies that no
default of D′′\Π is applicable to Π′. As a result, Π′ and the sequence composed of all defaults
of Π∩ (D′′\D′) in any order form a selected process of D′′. The extension generated by this
process is equivalent to E because this process is composed of a superset of the defaults of
Π′ and a subset of the defaults of Π, and these two processes both generate E.

We therefore have as a corollary that justified default logic has the local redundancy
property when redundancy of defaults is considered.

Corollary 7 Justified default logic has the local redundancy property w.r.t. redundancy of
defaults.

4.6.3 Redundancy of Clauses and of Defaults

For Reiter and rational default logic, an upper bound on complexity can be given by showing a
reduction from the complexity of clause or formula redundancy to the corresponding problems
for defaults. This is possible thanks to the following lemma.

Lemma 21 〈D,W ∪ {γ}〉 has the same Reiter and rational extensions of 〈D ∪ {dγ},W 〉,
where dγ = :⊤

γ
.
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Proof. Since dγ has no precondition and a tautological justification, it is always applicable.
Therefore, every process of 〈D∪{dγ},W 〉 contains this default, and therefore generates γ.

This lemma can be iterated for all clauses of W , leading to the following result.

Theorem 23 For Reiter and rational default logic, the problems of checking the redundancy
of a default or of a default theory are at least as hard as the corresponding problems for
clause redundancy.

Proof. The clause γ is redundant in 〈D,W 〉 if and only if dγ is redundant in 〈D∪{dγ},W\{γ}〉.
Indeed, 〈D,W 〉 has the same extensions of 〈D ∪ {dγ},W\{γ}〉, and removing γ from the
first theory or removing dγ from the second theory lead both to 〈D,W\{γ}〉.

The problems of formula redundancy can be reduced to default redundancy by first
applying Lemma 21 to all clauses of W , and then making all original defaults irredundant
using the transformation of Lemma 17.

The complexity of redundancy for defaults can be therefore characterized as follows.

Corollary 8 For Reiter and justified default logic, the problem of redundancy of a default is
Πp

2-hard and Πp
3-hard for faithful and consequence-equivalence, respectively; the problem of re-

dundancy of a default theory is Σp
3-hard and Σp

4-hard for faithful and consequence-equivalence,
respectively.

Equivalence of extensions can be proved to be in Πp
2 even if the defaults or the background

theories are not even related.

Theorem 24 Checking whether 〈D,W 〉 ≡e
D 〈D′,W ′〉 is in Πp

2 for Reiter and justified default
logic.

Proof. The contrary of the statement amounts to checking whether any of the two theories
have an extension that the other one does not have. The number of possible extensions,
however, is limited by the fact that any extension is generated by the set of consequences of
some defaults.

Checking whether 〈D,W 〉 has an extension that 〈D′,W ′〉 has not can be done as follows:
guess a subset D′′ ⊆ D, and let E = cons(D′′); check whether E is an extension of 〈D,W 〉
but is not an extension of 〈D′,W ′〉.

Checking whether a formula E is an extension of a default theory can be done with a
logarithmic number of satisfiability tests [Ros99, Lib05a]. As a result, the problem can also
be expressed as a QBF formula ∃∀QBF. In order to check whether there exists D′′ such that
E = cons(D′′) is in this condition, we only have to add an existential quantifier to the front
of this formula. The problem is therefore in Πp

2.

The problem of checking the default redundancy of a theory is obviously in Σp
3, as it can

be solved by guessing a subsets of defaults and then checking equivalence.

Corollary 9 The problem of checking the redundancy of a default or the default redundancy
of a theory are Πp

2-complete and Σp
3-complete, respectively, for Reiter and justified default

logic for faithful equivalence.
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Consequence equivalence can also be proved to have the same complexity as for the case
studied for clauses.

Theorem 25 Checking the consequence-equivalence for Reiter and justified default logic is
in Πp

3.

Proof. The converse of the problem can be expressed as: there exists a model M that is a
model of an extension of the first theory but not of the second, or vice versa. This corresponds
to two quantifications over extensions and a check for whether a formula is an extension.
The latter is in ∆p

2[log n] for the two considered semantics [Ros99, Lib05a]. Therefore, the
whole problem is in Πp

3.

As a consequence, the complexity of redundancy for consequence-equivalence is exactly
characterized for Reiter and justified default logics.

Corollary 10 The problem of checking the redundancy of a default or the default redun-
dancy of a theory are Πp

3-complete and Σp
4-complete, respectively, for Reiter default logic and

consequence-equivalence.
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