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Abstract
The satisfiability problem is a basic core NP-complete problem. In recent years, a lot of heuristic
algorithms have been developed to solve this problem, and many experiments have evaluated and
compared the performance of different heuristic algorithms. However, rigorous theoretical analysis
and comparison are rare. This paper analyzes and compares the expected runtime of three basic
heuristic algorithms: RandomWalk, (1+1) EA, and hybrid algorithm. The runtime analysis of these
heuristic algorithms on two 2-SAT instances shows that the expected runtime of these heuristic
algorithms can be exponential time or polynomial time. Furthermore, these heuristic algorithms have
their own advantages and disadvantages in solving different SAT instances. It also demonstrates that
the expected runtime upper bound of RandomWalk on arbitrary k-SAT(k ≥ 3) is O((k − 1)n), and
presents a k-SAT instance that has Θ((k − 1)n) expected runtime bound.
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1 Introduction
The satisfiability problem (SAT) of a propositional formula plays a central role in computer
science and artificial intelligence. It is the first proposed NP-complete problem [7,24] and one
of the basic core NP-complete problems [12]. In addition to its theoretical importance, the SAT
problem is also directly applied in VLSI formal verification, software automation, and so on.

Researchers have been trying to look for an effective algorithm for the SAT problem. Since
the SAT problem is an NP-complete problem in nature, a polynomial algorithm is not currently
available to solve it, although we cannot prove that such an algorithm does not exist. In fact,
a basic conjecture of modern computer science and mathematics is that no polynomial
algorithm exists for NP-complete problems. At present, the main methods for solving the SAT
problems are complete algorithms [8,4,37] and incomplete algorithms [28,34,15,35,18,9,32,
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14,23,18,30]. There are several very successful complete algorithms (e.g., SATO [37]). A
complete algorithm often explores the whole search space and can always determine whether
a given propositional formula is satisfiable or not; however, its time complexity is usually
exponential. An incomplete algorithm does not carry out a complete search on the search space;
instead, it often explores some part of the search space using heuristic information within a
limited time; however it does not give the correct answer with certainty.

Since the 1990s, the use of incomplete algorithm for solving the SAT problem has grown
quickly. The basic incomplete heuristic methods are RandomWalk algorithm [28], GSAT
algorithm [34,15], WalkSat algorithm [35], UnitWalk [18], population-search-based
evolutionary algorithms [9,14,23] and so on. In recent years, some powerful concepts and
techniques of statistical physics have been applied to the SAT problem. One of these incomplete
algorithms, known as “survey propagation” [25,5], which is based on statistical physics
methods, shows good performance on some difficult randomly generated SAT instances. It is
well known that one of the earliest applications of statistical physics in the optimization
problem is the simulated annealing algorithm [22]. WalkSat [35] used a probability selection
mechanism similar to that of the simulated annealing algorithm.

For some heuristic algorithms for the SAT problem, theoretical results about computational
complexities have been obtained to some extent. Papadimitiou [28] was the first to prove that
the average time upper bound of RandomWalk for 2-SAT is O(n2). Schöning [32] presented
a restarting local-search algorithm to show that, for any satisfiable k-CNF formula with n

variables, the algorithm has to repeat  times, on average, to find a satisfying
assignment. Specially if k = 3, the average time is O(1.334n) ( the upper bound of an exhaustive
search is O(2n)). There have been several improvements on the upper bound by hybrid
algorithms based on randomized algorithms by Paturi et al[30] and Schöning [32], e.g. O
(1.324n) [21] and O(1.322n) [31]. Alekhnovich et al [2] proved that, when the clause density
is less than 1.63, the average time complexity of RandomWalk for 3-SAT is linear.

Since there are many incomplete heuristic algorithms for SAT problems, comparing and
understanding the working principals of these heuristic algorithms is useful. The first thing we
have to accept is that no one algorithm beats all other algorithms on all problems. There have
been many numerical experiments that compared various heuristic algorithms on SAT
problems, but theoretical study has been rare. This paper analyzes and compares the expected
running time of three basic heuristic algorithms: RandomWalk, (1+1) EA, and hybrid
algorithm. We use absorbing Markov chains to model search processes of these heuristic
algorithms, and use explicit expressions of the first hitting time of a Markov chain to analyze
and estimate their expected runtime. Through runtime analysis of three SAT instances, we
show that the expected runtime of these heuristic algorithms can be exponential or polynomial.
We also find that these heuristic algorithms have their own comparative advantage under
different circumstances.

The rest of this paper is organized as follows. Section 2 introduces the concepts of the SAT
problem, some heuristic algorithms for the SAT problem, and the first hitting time of an
absorbing Markov chain. Section 3 discusses the worst-case bound and the worst-case example
on RandomWalk. Section 4 analyzes and compares the expected runtime bounds of three
heuristic algorithms on two 2-SAT instances. Section 5 presents our conclusions and
suggestions for further research.
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2 Heuristic algorithms for satisfiability and the first hitting time of the Markov
chain
2.1 The SAT problem

We begin by stating some definitions and notations that will be used throughout the paper.

In Boolean logic, a literal is a variable or its negation, and a clause is a disjunction of literals.
The formula f = c1 ∧ c2 ∧ ··· ∧ cm is in k conjunctive normal form (k-CNF) if it is a conjunction
of clauses with each clause as a disjunction of at most k literals. We view a CNF Boolean
formula as both a Boolean function and a set of clauses. Satisfiability is the problem of
determining whether the variables of a given Boolean formula can be assigned truth values in
such a way as to make the formula evaluate to true.

SAT is originally stated as a decision problem. In this paper we consider the more general
MaxSAT, so, our goal is to look for an assignment that satisfies the maximum number of
clauses.

Evolutionary algorithms (EAs) are the heuristic algorithms that have been applied to SAT and
to many other NP-complete problems. EAs usually use a fitness value to guide the search
process. In the MaxSAT formulation, the fitness value is defined as the number of satisfied
clauses, i.e.

(1)

where ci(x)(1 ≤ i ≤ m) represents the true value of the ith clause. This fitness function is used
in most EAs for SAT problems.

Throughout this paper, for x = (x1 ··· xn), y = (y1 ··· yn) ∈ {0, 1}n, we denote by H(x, y) the

Hamming distance between two points x and y, i.e. . We also denote |x|
= x1 + ··· + xn, and let Si = {x|x ∈ S = {0, 1}n, |x|= i}(i = 0, 1, ···, n) be a partition of search
space S = {0, 1}n.

2.2 Heuristic algorithms for the SAT problem
RandomWalk, first introduced by Papadimitiou [28], is one of the most basic incomplete
algorithms, and many other heuristics have been developed based on the improvement of this
algorithm, e.g. the Walk-SAT [35], combines RandomWalk with a greed bias towards
assignments that satisfy more clauses. RandomWalk algorithm first randomly selects a clause
that is not satisfied with the CNF, then randomly selects a flip in the clause (see Algorithm 1).

Algorithm 1

The RandomWalk algorithm

begin

 initialization: Select an initial bit string x at random;

 while (termination-condition does not hold) do

  Select c:= an unsatisfied clause chosen at random;

  Select xi:= a variable in c chosen at random;

  Flip the value of xi;
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 od

end

Evolutionary algorithms are inspired from modeling the processes of natural selection and
genetic evolution. Here we consider a simple EA using mutation and selection approaches with
population size of 1 denoted as (1+1) EA [11]. (1+1) EA is a simple but effective random hill-
climbing EA. Its general description is:

Algorithm 2

(1+1) EA

begin

 initialization: Choose randomly an initial bit string x;

 while (termination-condition does not hold) do

  Mutation: y:= mutate(x);

  Selection: If fitness(y) >fitness(x), x:= y;

 od

end

(1+1) EA generally uses two kinds of mutation, called local mutation and global mutation:

1. Local mutation randomly chooses a bit xi(1 ≤ i ≤ n) from the individual x = (x1 ··· xn)
∈ {0, 1}n and flips it.

2. Global mutation flips each bit of individual x = (x1 ··· xn) ∈ {0, 1}n independently

with the probability of . The expected number of bit flips for the global mutation is
1.

The hill-climbing algorithm is usually trapped in a region which is a local optimum and needs
to be restarted with a random new assignment. Another widely-used mechanism for escaping
such a local optimum of the maximization problem is to permit the search to make occasional
downhill moves. The following hybrid strategy, which combines (1+1) EA and RandomWalk,
is closely related to WalkSat [35] in that it allows for the possibility of downhill moves.

Algorithm 3

The hybrid algorithm of local (1+1) EA and RandomWalk

begin

 initialization: Set parameters, choose randomly an initial bit string;

 while (termination-condition does not hold) do

  With probability p, follow the RandomWalk scheme;

  With probability 1 − p, follow the Local (1+1) EA scheme;

 od

end
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2.3 The absorbing Markov Chain
Most heuristic algorithms are memory-less in the sense that the processes of selecting the next
point in the search space depend only on the current point. This allows us to model these search
processes as absorbing Markov chains whose absorbing set is the optimal solution (s). Such
models are widely used in two heuristic algorithms: Simulated Annealing [1] and Genetic
Algorithms [27,17]. Basic knowledge of absorbing Markov chains can be found in any
literature regarding random processes, e. g. [20].

Let (Xt; t = 0, 1, ···) denote a discrete homogenous absorbing Markov chain in a finite state
space S. T is the transient state set, H = S − T is the absorbing set. Assume there are r absorbing
states and t transient states, i.e. |T|= t and |H|= r where |·| denotes the cardinality of a set, then
the transition matrix can be written in the canonical form as

where I is an r-by-r identity matrix, O is an r-by-t zero matrix, R is a nonzero t-by-r matrix,
and Q is a t-by-t matrix. For the power of P, a standard matrix argument shows that the region
I remains I. This corresponds to the fact that once the Markov chain reaches an absorbing state,
it will never leave that absorbing state.

Definition 1—Let (Xt; t = 0, 1, ···) be an absorbing Markov chain. The first hitting time from
status i(i ∈ S) to the absorbing status set H is:

if the right hand side involves the empty set, let τi = ∞.

We are interested in the question: Given that the chain starts in state i, what is the expected
number of steps before the chain is absorbed? Theorem 1 provides an answer.

Theorem 1—Given that the absorbing Markov chain Xt starts in transient state i, let mi be
the expected number of steps before the chain is absorbed, i.e. mi = E[τi]. Denote m =
[mi]i∈T. Then

(2)

where 1 represents the column vector all of whose entries are 1.

Proof: See literature [20].

Several corollaries can be derived directly from Theorem 1.

Corollary 1—Let {Xt| t = 0, 1, ···} be an absorbing Markov chain with finite state space S =
{0, 1, ···, n, n + 1} and absorbing state set {0, n + 1}, and its transition probabilities are defined
as follows:

1. For i = 0 or n + 1,
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2. For 1 ≤ i ≤ n,

Then for this absorbing Markov chain, its mean first hitting time to the absorbing state is given
by

Corollary 2—Let {Xt| t = 0, 1, ···} be an absorbing Markov chain with finite state space S =
{0, 1, ···, n,} and absorbing state set 0, and its transition probabilities are defined as follows:

1. For i = 0 or n + 1,

2. For 1 ≤ i < n,

3. For i = n,

Then for this absorbing Markov chain, its mean first hitting time to the absorbing state is given
by
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The difference between the two Corollaries lies in the fact that the Markov chain of Corollary
1 has two absorbing states while the Markov chain of Corollary 2 has only one. He et al [17]
used Corollary 2 to estimate the expected running time of evolutionary algorithms.

For our time complexity discussion and analysis, Theorem 1 and its corollaries play a key role.
These methods are close to the Markov chain analysis of the stochastic local search algorithms
by Schöning [32,33]. The main difference is: We use linear system (2) to estimate the absorbing
time of the Markov chain while Schöning calculated the “success probability”.

Now we introduce two vector norms, the average vector norm and the maximum vector norm,
both of which are often used in the vector analysis. For vector m = [mi]i∈S, let μ0(i) = P(X0 =
i) be the initial distribution, the average vector norm ||m||1 and the maximum vector norm ||
m||∞ are defined as

and

Specially, if the initial distribution is the uniform distribution on S, i.e. , then
we have

Norms ||m||1 and ||m||∞ present average case and worst case performance measures respectively
in the time complexity analysis.

3 Bounds on RandomWalk
It is well known that the most simple algorithm, complete enumeration, needs Θ(2n) steps to
find the satisfying assignment of the SAT problem with n variables. In the following, we shall
show that the general upper bound of the average iteration number of RandomWalk for k-SAT
is O((k − 1)n). We also construct a SAT instance for which this bound is tight, i.e. for which
the expected runtime of RandomWalk is Θ((k − 1)n).

Proposition 1
The expected runtime of RandomWalk for any k-SAT(k ≥ 3) instance is at most O((k − 1)n).
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Proof—Let S = {0, 1}n be the search space, and S* the satisfying assignment set for given k-
CNF formula ω. Let d(x) = miny∈S* {H(x, y)} denote the distance between a point x ∈ S and
the set S*.

Define Di to be Di = {x ∈ S| d(x) = i}, i = 0, 1, ···, n. Then the search space S is partitioned into
n + 1 subspaces: .

Suppose we are given a string x ∈ Di(1 ≤ i ≤ n), for any clause σ that is not satisfied, there
exists at least one of the k bits to be flipped to decrease d(x) by 1. Since RandomWalk picks a
variable in some unsatisfied clause and flips its truth assignment, the probability that

RandomWalk transfers x to some string y ∈ Di−1 is at least , and the probability that it transfers

x to some string y ∈ Di+1 is at most .

Construct an auxiliary homogeneous Markov chain which is defined on the state space {D0,
D1, ···, Dn} with the transition matrix

According to Corollary 2, its mean first hitting time to the absorbing state D0 is

By induction, we have

Hence

This completes the proof.

We have shown that the expected running time of RandomWalk for any k-SAT instance is O
((k −1)n), but this does not mean that RandomWalk needs, on average, Θ((k − 1)n) steps to find
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a satisfying assignment in every k-SAT instance. In the following we present a k-SAT instance
ϕ(k)(x)(k > 2), where the average case expected time complexity is Θ((k − 1)n).

Definition 2
The SAT instance ϕ(k)(x)(k < n) has the following clauses:

where 1 ≤ i ≤ n, and (i1, ···, ik) ranges over all k-element subsets of {1, ···, n}.

It is evident that the SAT instance ϕ(k)(x) has the unique satisfying assignment x* = (1 ··· 1).

Papadimitiou [29] first proposed the special cases k = 3 of ϕ(k)(x) and claimed that it was a
difficult instance for RandomWalk. Here we discuss the general situation and derive its worst
case and average case bounds of the expected runtime on RandomWalk.

Proposition 2
Given an integer k ≥ 3, the expected runtime of RandomWalk for SAT instance ϕ(k)(x) is

1. ||m||∞ = O((k − 1)n),

2. ||m||1 = Θ((k − 1)n).

Proof
1. It follows immediately from Proposition 1.

2. From the consequence of (1), it is sufficient to show ||m||1 = Ω((k − 1)n). Let Ti = {x|
x ∈ S = {0, 1}n, |x|= n − i} (i = 0, 1, ···, n) be the partition of search space S. We denote
by Xt(t = 0, 1, ···) the random string describing at which point RandomWalk is during
iteration t. Then Xt is a homogeneous Markov chain with the absorbing state set T0.
The transition probabilities among the subspaces can be described as follows.

When i = 0,

When 1 ≤ i ≤ n − (k − 1),

When n − (k − 1) < i ≤ n,
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Denote

Construct an auxiliary homogeneous Markov chain Zt(t = 0, 1, ···) which is defined on the state
set S = {0, 1, ···, n} with the transition matrix

(3)

For this absorbing Markov chain, according to Corollary 2, its mean first hitting time to the
absorbing state 0 is given by

(4)

Note that for 1 ≤ i ≤ n − (k − 1),

(5)

and

(6)

Here we use the inequality .

From equations (4), (5) and (6), we get
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Because

we have

Finally, by the monotonicity of the sequence mi we obtain

This completes the proof.

From Proposition 2, it should be mentioned that even the exhaustive search (with upper bound
of 2n) behaves much better than RandomWalk on SAT instance ϕ(k)(x)(k > 3).

Droste et al [10] studied the expected running time of (1+1) EA on the special case ϕ(3)(x) and
demonstrated that the average time complexity is a exponential time. Wei et al [36] presented
a class of formulas involving a so-called ternary chain which is similar to ϕ(3)(x). They also
showed the expected runtime of RandomWalk on the ternary chain formula is exponential and
proposed the “accelerating random walk” on this problem.

For ϕ(k)(x), according to equation (1), the fitness function used in evolutionary algorithms is
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The fitness function fitϕ(k) (x) induces the MaxSAT problem ϕ(k)(x) into a polynomial in s (the
number of 1 in x) of degree k. We might expect that the heuristic algorithms using fitness
function have difficulty finding the all-one string because the non-monotone polynomial fitness
function might give misleading hints regarding the all-one string.

4 Behavior of three heuristic algorithms on SAT instances
In this section, in order to obtain a theoretical understanding of the behavior of different
heuristic algorithms, we construct two SAT instances and analyze the average time complexity
of RandomWalk, (1+1) EA and hybrid algorithm on these SAT instances.

Definition 3
For x = (x1 ··· xn) ∈ {0, 1}n, the SAT instance ψ1(x) is defined as

The satisfying assignments of ψ1(x) are (0 ··· 0) and (1 ··· 1).

We start from (1+1) EA for solving the MaxSAT instance ψ1(x). According to equation (1),
for |x|= k, the fitness function of ψ1(x) is given as

When x = (0* ··· *) (or x = (1* ··· *)), the fitness function fitψ1(x) decreases (or increases)
monotonously with an increase of the number of ones. The fitness function fitψ1(x) with n =
20 is shown in Fig. 1.

In the following, we consider local (1+1) EA and global (1+1) EA on ψ1(x) respectively. We
shall show that they both find the satisfying assignment in time Θ(n ln n).

For simplicity, in Proposition 3 below we assume that n is even.

We further divide the search space S into 2n subspaces:
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Proposition 3
For SAT instance ψ1(x), for any x ∈ Su,k(u = 0, 1; k = 0, ···, n), denote by mu,k the mean first
hitting time of local (1+1) EA starting from state x, then

i.e. the expected runtime of the local (1+1) EA is ||m||∞ = Θ(n ln n).

Proof—Let Xt ∈ {0, 1}n(t = 0, 1, ···) be the random variable describing the state of local (1
+1) EA solving SAT instance ψ1(x) at time t, then the transition probabilities can be described
as follows.

When k = 0,

When ,

When ,

Similarly, when k = n,

When ,

When ,
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Introduce an auxiliary homogeneous Markov chain Zt(t = 0, 1, ···) with the state space {z0,0,
z0,1, ···, z0,n−1; z1,1, z1,2, ···, z1,n}, the transition probabilities are defined by

where u, v ∈ {0, 1}, and h, k ∈ {0, ···, n}.

Then Zt is an absorbing Markov chain with the absorbing state z0,0 and z1,n, and for any x ∈
Su,k(u ∈ {0, 1}, k ∈ {0, ···, n}), the mean first hitting time mx equals mzu,k.

According to Theorem 1, the mean first hitting time of stochastic process Zt is given by

The above linear equations can be solved as

(7)

In the following, we prove

(8)

by induction.

When , from (7), we obtain
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Thus we have that (8) holds for .

Assume it is true for some , i.e. , from (7), we have

Therefore (8) holds for all k.

Similarly, we have .

This proves the claim.

Proposition 4
For SAT instance ψ1(x), the expected runtime of the global (1+1) EA is

1. ||m||∞ = O(n ln n),

2. ||m||1 = Θ((n ln n),

Proof
1. We decompose the state space S = {0, 1}n into n subspaces by the Hamming distance

between the string in S and the satisfying assignment: 

where

and

In contrast to the notations S0,k and S1,k, both of which are used in the proof of
Proposition 3, we see that T0,k = S0,k and T1,k ≠ S1,k. For x = (1 * ··· *) ∈ S, x ∈ S1,k
means that the Hamming distance between x and (0 ···0) is k while x ∈ T1,k means
that the Hamming distance between x and (1 ··· 1) is k.

For x ∈ Uk(k = 1 ··· n − 1), note that fitψ1(x) = 2n − k. Thus the probability that the
global (1+1) EA leads x to some y ∈ Uk−1 ∪ ··· ∪ U0 is greater than .

Therefore we get .

2. According to the result of (1), it is sufficient to prove that ||m||1 = Ω((n ln n). The
proof below is similar to that of the linear functions with non-zero weights by Droste
et al [11]. The main difference is that the linear function has only one optimum (0 ···
0) while SAT instance ψ1(x) has two satisfying assignments (0 ··· 0) and (1 ··· 1).

By Chernoff bounds [26], for any , the probability that the initial string x
satisfies  (for the simplicity of analysis, we assume that
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 is an integer) is exponentially close to one, i.e. 1 − e−Ω(n). It is equivalent that
with probability 1 − e−Ω(n) the randomly initialized string has at least  zeros
and  ones. In order to reach the satisfying assignment, each of these strings
needs to flip its all zeros (or all ones) at least once.

Let X be a random variable defined to be the number of generations required to flip
the all zeros (or ones) of the above initialized string at least once, then its expectation
is

Since the probability that one bit does not flip at all in t − 1 steps is , the probability
for the event that at least one of the  bits never flips in t − 1 steps is

.

Hence we have

In the above, we use .

Therefore

This completes the proof.

Papadimitiou [28] proved that RandomWalk on any satisfiable 2-SAT will reach a satisfying
assignment in time O(n2) by the theory of random walks. In the following Proposition 5, we
shall demonstrate that RandomWalk has the ψ(n2) worst case and average case expected
runtime bound on 2-SAT instance ψ1(x).

Now we introduce a Lemma which provides the upper bound for the tail of the binomial
distribution function. It will be used in Proposition 5 for estimating the average case expected
runtime of RandomWalk.

Lemma 1
Let X be a random variable following the binomial distribution with parameters n and p. Given
a integer 0 ≤ k ≤ n, the cumulative distribution is expressed as
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Then .

Proof—It follows immediately from Hoeffding’s inequality [19].

Proposition 5
For SAT instance ψ1(x), the average case expected runtime of RandomWalk is ||m||1 = Θ(n2).

Proof—According to the above discussion, it is sufficient to show that ||m||1 = Ω(n2).

We denote by Xt(t = 0, 1, ···) the stochastic process of RandomWalk for SAT instance ψ1(x).
Then Xt is a homogeneous Markov chain with two absorbing states (0 ··· 0) and (1 ··· 1). The
transition probabilities among the subspaces can be described as follows.

When i = 0,

When 1 ≤ i ≤ n − 1,

When i = n,

Construct an auxiliary homogeneous Markov chain Zt(t = 0, 1, ···) which is defined on the state
space {0, 1, ···, n} with the transition probabilities

where i, j = 0, ···, n.

According to Corollary 1, the mean first hitting time of absorbing chain Zt is given by

Hence

Zhou et al. Page 17

Artif Intell. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Finally, we reach the conclusion.

For SAT instance ψ1(x), from Proposition 3–5, we see that the Θ(n ln n) expected runtime
bound of (1+1) EA is better than the Θ(n2) expected runtime bound of RandomWalk. In the
following, we construct another SAT instance ψ2(x), for which we shall have an opposite
situation under some conditions.

Definition 4
The SAT instance ψ2(x) has the following clauses:

The only satisfying assignment of SAT instance ψ2(x) is the all True assignment (1 ··· 1).

According to equation (1), for |x| = k, the fitness function of ψ2(x) is given as

which is a polynomial in k of degree 2. The fitness function fitψ2(x) with n = 21 is shown in
Fig. 2. We note that this fitness function has its local minimum at |x|= 10 while all one string
is the only global optimum. If the local hill-climbing (1+1) EA starts from x(|x|< 10), it will
never reach the global optimum.

Proposition 6
Let Tk = {x|x ∈ S = {0, 1}n, |x|= n − k}(k = 0, 1, ···, n) be the partition of search space {0,
1}n, and n an odd number. For SAT instance ψ2(x), for any i ∈ Tk(k = 1, ···, n) the expected
runtime of the local (1+1) EA is

Proof—When , since the fitness function fitψ2(x) decrease monotonously as |x| increases,
the local (1+1) EA starting from any initial string i ∈ Tk will never reach the satisfying
assignment (1 ··· 1).

When , similar to that of OneMAX[13], the local (1+1) EA starting from any initial
string i ∈ Tk will find the satisfying assignment in O(n ln n) on average.
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RandomWalk on ψ2(x) has the same worst case expected runtime bound as that of ψ1(x):

Proposition 7
For SAT instance ψ2(x), the expected runtime of RandomWalk is ||m||∞ = Θ(n2).

Proof—It is sufficient to show that ||m||∞ = Ω(n2).

The following proof is similar to that of Proposition 2.

Let Xt(t = 0, 1, ···) be the random variable describing at which point RandomWalk is during
iteration t. Then Xt is an homogeneous Markov chain with the absorbing state set T0. The
transition probabilities among the subspace can be described as follows.

When k = 0,

When 1 ≤ k ≤ n − 1,

When k = n,

Denote

Construct an auxiliary homogeneous Markov chain Zt(t = 0, 1, ···) which is defined on the state
set {0, 1, ···, n} with the transition matrix (3) (see the proof of Proposition 2).

For this absorbing Markov chain, according to Corollary 2, its mean first hitting time to the
absorbing state 0 is given by

(9)

When n ≥ 2 and , we have
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It follows that

This completes the proof.

Contrary to the prior result that the expected runtime of (1+1) EA for SAT instance ψ1(x) is
better than that of RandomWalk, here we demonstrate that for SAT instance ψ2(x), the worst
case expected runtime of RandomWalk is better than that of local (1+1) EA.

In the following, we analyze the behavior of the hybrid algorithm of (1+1) EA and
RandomWalk on SAT instance ψ2(x). We first set the selection probability p = 0.5.

Proposition 8
If the selection probability p = 0.5, then for SAT instance ψ2(x), the expected runtime of the
hybrid algorithm is

Proof—For simplicity, we assume that n is odd.

The proof is similar to that of Proposition 7 and the notations are the same as specified in the
proof of Proposition 7.

The transition probability of the stochastic process Xt(t = 0, 1, ···) introduced by the hybrid
algorithm of local (1+1) EA and RandomWalk with a probability p = 0.5 can be described as
follows.

When k = 0,

When 1 ≤ k ≤ (n + 1)/2,
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When (n + 1)/2 < k ≤ n,

Denote

(10)

(11)

Construct an auxiliary homogeneous Markov chain Zt(t = 0, 1, ···) which is defined on the state
{0, 1, ···, n} space with the transition matrix (3). Its mean first hitting time to the absorbing
state 0 is given by equations (9).

Now we show that the lower bound is .

By assumption p = 0.5, according to equations (9), we have

Note that
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Using Stirling formula

(12)

and

(13)

we have

Therefore . That proves the lower bound.

The upper bound can be proved as follows.

Similar to the above equations, we have

(14)

Note that  and , we obtain

This completes the proof.

In the above Proposition 8, we fixed the selection probability p = 0.5. In fact, when p ≤ 0.5,
the result of the upper bound still holds.
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Proposition 9
If the selection probability p ≤ 0.5, then for SAT instance ψ2(x), the expected runtime of the

hybrid algorithm is .

Proof—The proof is essentially the same that of Proposition 8.

Proposition 10
If the selection probability , then for SAT instance ψ2(x), the expected runtime of the
hybrid algorithm is O(n2).

Proof—The proof is similar to that of Proposition 8.

For , according to equations (10) and (11), notice that , we have .

For , we have

Then, for 1 ≤ j ≤ k < n, we get

Note that , we have

This completes the proof.

Remark 1
For the selecting probability p ≤ 0.5 or , we obtain lower and upper bounds of the
expected runtime for the hybrid algorithm on ψ2(x). Can we do better for it, i.e. can we get the
tight bounds?

Remark 2
For , the time complexity analysis of the hybrid algorithm on ψ2(x) is much more
complicated. However, we conjecture that the expected runtime changes from an exponential
time to a polynomial time.
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Tables 1 and 2 summarize the expected runtime bounds of three heuristic algorithms solving
two SAT instances ψ1(x) and ψ2(x). From Table 1, we see that for instance ψ1(x), (1+1) EA is
faster than RandomWalk. From Table 2, for instance ψ2(x), starting from the initial string x
satisfying |x| ≤ (n − 1)/2, (1+1) EA can never reach the satisfying assignment and RandomWalk
finds the satisfying assignment in Θ(n2) on average. But (1+1) EA is still faster than
RandomWalk when the initial string x satisfies |x| ≤ (n − 1)/2.

For instance ψ2(x), our analysis demonstrates the hybrid algorithm may help local (1+1) EA
to escape from the local optimum. It also shows that the expected runtime of the hybrid
algorithm changes from a exponential time bound to a polynomial time bound as the selection
probability varies. However, it remains unclear how this phase transition gradually happens,
and it is worth further investigating.

5 Conclusion
Incomplete heuristic algorithms are now among the most prominent and frequently applied
techniques for SAT problems. Many experimental comparisons with different heuristic
algorithms have been reported, although theoretic comparisons are rare. This paper contributes
to the theory of heuristic algorithms for SAT problems. We derive the expected runtime bounds
of RandomWalk on k-SAT problem. We construct two 2-SAT instances and provide analytic
comparisons among RandomWalk, (1+1) EA, and hybrid algorithm on these instances. It is
shown that these heuristic algorithms have their own advantages and disadvantages in solving
two SAT instances and their expected runtime ranges from a polynomial time to an exponential
time. Our analysis provides an insight into the runtime behavior among these heuristic
algorithms. Admittedly, two SAT instances ψ1(x) and ψ2(x) considered in this paper are
relatively simple. Future investigation should be extended to a broader class of SAT problems
and more heuristic algorithms, such as UnitWalk [18] and PPSZ [30].

Theoretic runtime analysis and comparison for heuristic algorithms on the SAT problem lag
far behind experimental comparisons. Effort should be made to fill in the gap between
theoretical studies on SAT and the design and application of practical algorithms, even though
such an investigation will be challenging.
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Fig. 1.
The fitness function of ψ1(x) with n = 20
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Fig. 2.
The fitness function of ψ2(x) with n = 21
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Table 1

The expected runtime bounds of RandomWalk and (1+1) EA on SAT instance ψ1(x)

Local (1+1) EA(Prop. 3) Global (1+1) EA(Prop. 4) RandomWalk(Prop. 5)

Θ(n ln n) Θ(n ln n) Θ(n2)
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Table 2

The expected runtime bounds of three heuristic algorithms on SAT instance ψ2(x)

Local (1+1) EA(Prop. 6) RandomWalk(Prop. 7) Hybrid algorithm(Prop. 9, 10)

+ ∞ ( ∣ x ∣ < n − 1
2 )

Θ(n2)
Ω( 1

n 2 ( 4
e )n/2) (p ≤ 0.5)

O(n ln n) ( n − 1
2 ≤ ∣ x ∣ ≤ n) O(n 2)( n − 1

n ≤ p ≤ 1)
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