Logic Programs with Abstract Constraint Atoms: The
Role of Computations

Lengning Liu', Enrico Pontelff, Tran Cao Sof and Mirostaw Truszczyski'

! Department of Computer Science, University of Kentucky, Lexingkdn40506, USA,
{I'liul, mrek}@s. uky. edu
2 Department of Computer Science, New Mexico State University, Lasg3rtNM 88003,
USA, {epontel | ,tson}@s. nnsu. edu

Abstract. We provide new perspectives on the semantics of logic programs with
constraints To this end we introduce several notionssomputatiorand propose

to use theresultsof computations as answer sets of programs with constraints.
We discuss the rationale behind different classes of computations ahdtbtu
relationships among them and among the corresponding conceptseafraaets.
The proposed semantics generalize the answer set semantics frarpsogith
monotone, convex and/or arbitrary constraints described in the literature

1 Introduction and Motivation

In this paper we study logic programs wihbitrary abstract constraints (which we also
simply refer to asonstraint3. Programs with constraints generalize normal logic pro-
grams, programs with monotone and convex constraints gl lahd several classes of
programs with aggregates (e.g., [2, 6, 18]). IntuitivelgoastraintA represents aon-
dition on models of the program containialy The definition ofA includes arexplicit
description of conditions interpretations have to meetriteo to satisfy it. The syn-
tax of such programs and one possible semantics have begospin [15]. Another
semantics has been proposed in [21]. Following the apprpambosed in [11], and
exploiting analogies to the case of normal logic progranesjmroduce several other
semantics based aomputationgor programs with constraints. We argue that the
sultsof (some types of) computations adequately generalimsaver set®f programs
with constraints.

The notion of aranswer sebf a logic program [8] is the foundation for answer-set
programming (ASP) [14, 17]. Intuitively, an answer set eants beliefs of an agent,
given a logic program encoding its knowledge base. Reseexdfeveloped several
characterizations of answer sets, providing a reasonér altiérnative ways to deter-
mine them. The original definition of answer sets [8] natyrkdads to a “guess-and-
check” approach. We first guess a candidate for an answearsétthen we validate
the guess. The validation consists of recomputing the ggtasing with the empty set
and iterating theone-step provability operatd2?2] for the Gelfond-Lifschitzorogram
reduct [8]. Alternatively, we can compute an answer setistawith the empty set.
At each step, we include in the set under construction thdshebsomeof the rules
applicable at this step; typically, we include all the rusetected during the previous
stepsplussome additional ones. Once the process stabilizes, we aedebtk that the

final result does not block any rules chosen to fire earlier I32 In this second ap-
proach, we replace the initial non-deterministic step aégging the answer set with
non-deterministic choices of rules to fire at each step ottmstruction.

Example 1.Let us consider the progra#, consisting of the following rules:

a < not b c—a b+ not a d <« b.
This program has two answer sefg, ¢} and {b,d}. In the “guess-and-check” ap-
proach, we might gues:, ¢} as a candidate answer set. To verify the guess, we com-
pute the Gelfond-Lifschitz reduct, consisting of the rules- , ¢ < a andd < b. Next,
we iterate the one-step provability operator for the retmcompute its least Herbrand
model—which corresponds fa, c}. Since it coincides with the initial guess, the guess
is validated as an answer set. In this way, we can also valitiet gues$b, d}. How-
ever, the validation ofa} fails—i.e.,{a} is not an answer set.

The other approach starts with the empty interpretatipmhich makes two rules
applicable:a «+ not b andb < not a. The algorithm needs to select some of them to
“fire”, say, it selects: < not b. The choice results in the new interpretati¢a}. Two
rules are applicable now: < not b andc < a. The algorithm selects both rules for
firing. The interpretation that results{s, c}. The same two rules that were applicable
in the previous step are applicable now. Thus, there is nsilpiiy to add new elements
to the current set. The computation stabilize$atc}. Since{a, ¢} does not block any
of the rules fired in the procesfy, c} is an answer set. O

We note that the first approach starts with a tentative ansetesf the program, while
the second starts with tlemptyinterpretation. In the first approach, we guess the entire
answer set at once and, from that point on, proceed in a digiistin fashion. In the
second approach we construct an answeirsgementallymaking non-deterministic
choices along the way. Thus, each approach involves narrditism. However, in the
second approach, the role of non-determinism is generetlyaed. In this paper we
cast these two approaches in terms of abstract princigitedeto a notion ofomputa-
tion. We then lift these principles to the case of programs witttralst constraints and
propose several new semantics for such programs.

The interest in ASP has been fueled by the development ofvardtto compute
answer-sets of logic programs, most notablyd®eLs and DLv, which allow pro-
grammers to tackle complex real-world problems (e.g., [109). To facilitate declara-
tive solutions of problems in knowledge representationr@agoning, researchers pro-
posed extensions of the logic programming language, whigipart constraints and
aggregates [2—-4, 6,9, 17-19]. This development stimuletiedest in logic program-
ming formalisms based abstract constraint atorm45, 16]. The concept of an abstract
constraint atom is general and encompasses several lagag extensions including
aggregates. The introduction of constraints brought fimghquestion of how to extend
the semantics of answer sets to the case of programs witlraioms. Researchers pro-
posed several possible approaches [3, 4, 6,19-21]. @hegree on specific classes
of programs with constraints including normal logic pragsa(viewed as programs
with constraints), programs witimonotoneconstraints [16], and programs witionvex
constraints [11]. However, they differ on programs withigielsy constraints.

What makes the task of defining answer sets for programs viftray constraints
difficult and interesting is thaonmonotonidehavior of such constraints. For instance,

let us consider the constraiffp(1), p(—1)}, {{p(1)}}) (we introduce this notation in
Section 3), which can be seen as an encoding of the aggregaé{X | p(X)}) >
1.3 This aggregate atom is true in the interpretatjp(il) } but false in{p(1), p(—1)}.
The contribution of this paper is the development of a gdriexaework for defin-
ing and studying answer sets for logic programs with arbjtcanstraints. Our propos-
als rely on an abstract notion of incremergamputatiorand can be traced back to one
of the two basic approaches to computing answer sets of héwgia programs that we
mentioned above. This notion generalizes an approachajmein [11, 16] for the case
of programs with monotone and convex constraints. In thepaype study properties
of the notions of answer set we introduce, and relate theimetearlier proposals.

2 Computations in Normal Logic Programs—~Principles

We start by motivating the notion of @mputationwhich is central to our paper. To
this end, we look at the case of normal logic programs andlkmril our discussion in
Example 1. In particular, we show how to use computationsi#macterize answer-sets.
We represent propositional interpretations as sets ofatdmprogram rule whose body
is satisfied by an interpretatial/ is calledM-applicable We write P(M) to denote
the set of allM-applicable rules in a prograr®. The one-step provability operator
assigns to an interpretatidd the set of the heads of all rules i 1/). We denote this
operator byI'p. Fixpoints of T» aresupportedmodels of P. An interpretation} is a
stable modebr, as we will say here, amnswer sebf P if M is the least model of the
Gelfond-Lifschitz reduct?.

We define computations as sequencEg) s, of sets of atoms (propositional inter-
pretations), whereX; represents the status of the computation at stéyp particular,
we requirethat Xy = . The basic intuition is that a computation, at each step1,
revises its previous status;_;. We base the revision on a non-deterministic operator,
Conclp(X), that provides the set of revisions &fthat can be justified according to a
logic programP’ and a set of atom& . Formally, a set of atom¥’ is groundedin a set
of atomsX and a progran® if

Y C{a | (a« body) € PandX |= body}.

We write Concl p(X) to denote the set of all possible s&tgrounded inX and P.
We require that computations satisfy ghiénciple of revision

(R) Revision principle each successive element in a computation must be
grounded in the preceding one and the program, Xe.£ Conclp(X;-1),
for everyi, 1 < i.

A computation of an answer set of a program, using a methoeésgitded in Example
1, produces a monotonically increasing sequence of sets besng a part of the answer
set being built. Thus, at each step not only new atoms are gtwadpbut also all atoms
established earlier are recomputed. This suggests thaglarof persistence of beliefs

(P) Persistence of beliefgach next element in the computation must contain
the previous one (once we “revise an atom in”, we keep it), XKe_; C X;,
for everyi, 1 <.

3 We assume that, —1 are the two available constants.

For a sequencéX;):2, satisfying the principldP), we defineX, to be theresult

of (X;)°, by settingX., = ;- X;. The result of the computation should be an
interpretation that could not be revised further. This ®8gg one more basic principle
for computations, the principle @bnvergence

(C) Convergencethe computation process continues until it becomes stable
(no additional revisions can be made), i.8,, = Tr(X), WhereTp is the
one-step provability operator. In other words,, is a supported model ap.

Definition 1. Let P be a normal logic program. A sequent¥;):°, is acomputation
for P if (X;)5°, satisfies the principle€R), (P) and(C), and X, = 0.

Computations are indeed relevant to the task of describisgar sets of normal logic
programs. We have the following result.

Proposition 1. Let P be a normal logic program. If a set of atomisis an answer set
of P then there exists a computation Bt (X;)°,, such thatX = X .

Proof (Sketch)The sequencéX)s°, can be obtained from the iterations of the one-
step provability operator of the Gelfond-Lifschitz redo€éthe programP. O

Proposition 1 implies that the principléR.), (P) and(C) give a notion of computation
broad enough to derive any answer set. Is this concept of etatipn what is needed
to precisely characterize answer sets? In other words, elaaysequence of sets of
atoms starting with th@ and satisfying the principle&R), (P) and(C) result in an
answer set? This is indeed the casegiositivenormal logic programs, more commonly
referred to as Horn programs.

Proposition 2. Let P be a positive logic program. The result of every computaison
equal to the least model @, that is, to the unique answer setBf

However, in the case of arbitrary normal programs, therecangputations that do not
result in answer sets.

Example 2.Consider the program®, containing the two rules < not a anda « a.
The sequenc& = 0, X; = {a}, X2 = {a}, ... satisfie§R), (P) and(C) and so, it

oo

is a computation fo’. However, X = J.-, X; = {a} is not an answer set df,. 0O

It follows that the notion of a computation defined by the piptes(R), (P) and
(C) is too broad to describe exactly the notion of an answer sgttus come back
to Example 2. Thereg € X; because the body of the first rule is satisfied by the
set(). However, the body of the first rule isot satisfied in every seX; for i > 1.
Neverthelessy € X, for i > 2, since the body of theecondule is satisfied byX; ;.
Thus, the reason for the presence:.@f the next revision changes between the first and
second step. This is why that sequence does not result insaveaset, even though it
satisfies the principléP), which guarantees that atoms once revised in will remain in
throughout the rest of the computation.

These considerations suggest that useful classes of catigmst can be obtained by
requiring that not only atoms but alssasondor including atoms persist. Intuitively, we
would like to associate with each atom includedkipa rule that supports the inclusion,
and this rule should remain applicable from that point onréformally, we state this
principle as follows:

(Pr) Persistence of Reasarfsr everya € X, there is aruler, € P (called
thereasonfor a) whose head ig and whose body holds in evelj;, i > i, —1,
wherei, is the least integer such thatc X, _.

This principle is exactly what is needed to characterizevensets of normal logic
programs.

Definition 2. Let P be a normal logic program. A computati@X)2, for P is persis-
tentif it satisfies the principléPr).

Proposition 3. Let P be a normal logic program. A seX is an answer set aP if and
only if there is a persistent computation fBrsuch that its result isX.

We now observe that, in general, the operaforn.ci p offers several choices for revising
acurrent interpretatio(;_; into X; during a computation. The question is whether this
freedom is necessary or whether we can restrict the prim¢i) and still characterize
answer sets of normal logic programs.

Example 3.Let P; be the normal logic program:
a <« not b c+—notbh e« a,c f < a,not c.

This program has only one answer 8ét= {a, ¢, ¢}, which corresponds to the com-
putationf), {a, c}, {a,c,e}. In this computation, at each steép= 1, 2, we take as¥X;

a greatest element @foncip, (X;_1), which exists and is given b¥p, (X;_1). Thus,
the next element of the computation is the result of fidtigapplicablerules.

On the other hand, selecting an elementimcl p, (X) other tharl'p, (X) can re-
sult in sequences that cannot be extended to a computatoexBmple, the sequence
0, {a}, {a, f} represents a potential computation since it satisfiesRharfd @) prin-
ciples. Yet, no possible extension of this sequence satitfeeC) principle. ad

This example indicates that interesting classes of contipntacan be obtained by re-
stricting the operato€onclp. Since for everyX we havelp(X) € Conclp(X), we
could restrict the choice for possible revisions¥dbased orP to 7> (X). The class of
computations obtained under this restriction a@per subset of the class of computa-
tions. For instance, the prograf from Example 1 does not admit computations that
reviseX,;_; into X; = Tp(X,_1). Thus, the class of such computations is not adequate
for the task of characterizing answer sets of normal logagmam. We note, though,
that they do characterize answer sets for some speciakslagdogic programs, for
instance, for stratified logic programs.

To obtain a general characterization of answer sets byiatsty the choices offered
by Conclp(X), we need to modify the operat®i-(X). The first approach to comput-
ing answer sets, discussed in the introduction providesie ele need to change the
notion of satisfiability used in the definition 6% (X).

Let M C At. We define the satisfiability relatios:,;, between sets of atoms and
conjunctions of literals, as follows: we say thfat=), F' holds (whereS C At andF'
is a conjunction of literals) it = F andM = F. That is, the satisfaction is based not

only on .S but also onM (the “context”). We now define the (context-based) one-step
provability operato’A! as follows:

TM(X)={a | a <« body € P, X =y body}.
We note that'3’ (X)) € Conclp(X). Thus, we obtain the following result.

Proposition 4. Let P be a normal logic program. A sequentg,;)s° , of sets of atoms
that satisfies propertieéP) and (C), as well as the property(; = T3 (X;_,), for
1=1,2,...,is a computation fo".

If a computation is determined by the satisfiability relatie,, in the way described
in Proposition 4, we call it ad/-computation. Not all/-computations define answer
sets. Let us consider the progrdfrom Example 2. The sequendg = 0, X; = {a},

i =1,2,..., is af-computation forP,. But the result of this computatiod {}) is not
an answer set faps.

The problem is that\/-computations may not to be persistent. In fact, fhe
computation described above is not. It turns out that if wpdee the condition of
persistence o/ -computations, their results are answer sets.

Proposition 5. Let P be a normal logic program and/ C At. If an M-computation
is persistent then its result is an answer setfor

It is also the case that every answer set is the result of scensistentM -
computation.

Proposition 6. Let P be a normal logic program. A st/ of atoms is an answer set of
P if and only if there exists a persisteiM-computation whose result i¥/.

A even stronger result can be proved—in which answer setstaacterized by a
proper subclass of persistent-computations. We call ai/-computatiorself-justified
if its result isM.

Proposition 7. Let P be a normal logic program. A sét/ C At is an answer set oP
if and only if P has a self-justifyingl/-computation (whose result, by the definition, is
M).

One can check that self-justified -computations are persistent. Moreover, in gen-
eral, the class of self-justifietf -computations is a proper subclass\éfcomputations.
Thus, we can summarize our discussion in this section asAfsllAnswer sets of nor-
mal logic programs can be characterized as the results siSpant computations, per-
sistentM -computations, and self-justified -computations, with each subsequent class
being a proper subclass of the preceding one.

Our goal, in this section, was to recast answer sets of nolwgéd programs in
terms of computations. More specifically, taking two wayscofmputing answer sets
as the departure point, we introduced three characterimatf answer sets in terms of
persistent computations. In Sections 4 and 5, we will showtoayeneralize the classes
of computations discussed here to the case of programs wfitstraints. In this way,
we will arrive at concepts of answer sets for programs withsti@ints that generalize
the concept of answer sets for normal logic programs.

3 Programs with Abstract Constraints—Basic Definitions

We recall here some basic definitions concerning progrartis egnstraints [11, 15,
16]. We fix an infinite setd¢ of propositional variables. Aonstraintis an expression
A= (X,C),whereX C Atis afiniteset, and” C P(X) (P(X) denotes the powerset
of X). The setX is called thedomainof A = (X, C), denoted byA4 4,,,,. Elements of
C are callecsatisfiersof A, denoted byA,,;. Intuitively, the sets ind,,; are precisely
those subsets of 4., thatsatisfythe constraint. A constraim is said to benonotone
ifforevery X CY C Agom, X € Ay implies thaty € A,,;. A constraintA is said
to beconvexfforall X CY C Z C Agom SuchthatX, Z € Ay, Y € Agat, tOO.
Constraints are building blocks of rules and programsula is an expression

A— Ay, ... A Q)

where A, Ay, ..., A, are constraints. Aonstraint program(or a progran) is a col-
lection of rules. A program isnonotongconvey if every constraint occurring in it is
monotone (convex).

Given a ruler of the form (1), the constraim is theheadof r and the sef 4, .. .,
Ay} of constraints is thé@odyof r (sometimes we view the body of a rule as tua-
junction of its constraints). We denote the head and the bodytnf hd(r) andbd(r),
respectively. We define theeadsebf r, written hset(r), as the domain of the head of
r. Thatis,hset(r) = hd(r) dom.

We view subsets ofi¢ as interpretations. We say th&f satisfiesa constraint4,
denoted byM = A, if M N Agom € Asq:. The satisfiability relation extends in the
standard way to conjunctions of constraints, rules andrarog.

Let M C At be an interpretation. A rule i8/-applicableif M satisfies every
constraint inbd (). We denote withP (M) the set of allM -applicable rules irP. Let
P be a program. A modelf of P is supportedf M C hset(P(M)).

Let P be a program and/ a set of atoms. A se!’ is non-deterministically one-
step provabldrom M by means ofP, if M’ C hset(P(M)) and M’ |= hd(r) for
every ruler € P(M). The nondeterministic one-step provability operafBg? for a
programP is an operator ofP(At) such that for every! C At, TR (M) consists of
all sets that are non-deterministically one-step provabia A/ by means ofP.

For an arbitrary atona € At, the constraint{a}, {{a}}) is called anelementary
constraint Since({a}, {{a}}) has the same models as({a}, {{a}}) is often iden-
tified with (and denoted by). For the same reasof{a}, {(}) can be identified with
not a. Given a normal logic progran®, by C(P) we denote the program with con-
straints obtained fron® by replacing every positive atomin P with the constraint
({a},{{a}}), and replacing every literalot « in P with the constraint{a}, {0}).

We note that’ (P) is a convex program [11]. One can show that supported models
of P coincide with supported models 6f(P), and answer sets dP coincide with
answer sets of’(P) (according to the definition from [11]). In other words, prags
with constraints are sufficient to express normal logic prots. Therefore, in this paper
we focus on programs with abstract constraints only.

4 Computations for Programs with Constraints

Our goal is to extend the concept of a computation to prograitisconstraints. Once
we have such a concept in hand, we will use it to define ansvief@eprograms with
constraints. To this end, we will build on the two charaaations of answer sets for
the case of normal logic programs, which we developed ini@eet

In order to define computations of programs with constraimésconsider the prin-
ciples identified in Sect. 2. The key step is to generalizerévésion principle. For
normal programs, it was based on sets of atoms grounded o a®msX (current
interpretation) andP. We will now extend this concept to programs with constiint

Definition 3. Let P be a program with constraints and I& C At be a set of propo-
sitional atoms. A set” is grounded inX and P if for some program@ C P(X),
Y e ng(X). We denote byonclp(X) the set of all sety” grounded inX and P.

The intuition is the same as before: a %eis grounded inX and P if it can be
justified by means of some rules i on the basis ofX. It follows directly from the
definition that ifQ C P thenTg;;d(X) C Conclp(X), which generalizes a similar
property in the cas® is a normal logic program: i) C P thenTg(X) € Conelp(X).

With this definition of Conclp(X), the principle(R) lifts without any changes. The
same is true for the principl@) (which is independent of the choice of the class of pro-
grams). The principl¢C) is also easy to generalize thanks to its alternative stateme
in terms of models:

(C) ConvergenceX ., is a supported model @?, i.e., Xo, € Th¢(Xo).

Finally, the principle(Pr) generalizes, as well. At a stepof a computation that
satisfies(R), we select asX; an element ofConclp(X;_1). By the definition of
Conclp(X;_1), there is a progran®;_; C P(X,;_1) such thatX, € Tgf_l(Xi,l).
Each such program can be viewed asa@sonfor X;. We can now state the generalized
principle (Pr) as follows:

(Pr) Persistence of ReasarEhere is a sequence of prografi3)°, such
that for everyi, 0 < i, P; C P11, P; C P(X;), Xi1 € TpH(X,).

Having extended the principléR), (P), (C) and(Pr) to the class of programs
with constraints, we define computations literally extegdie earlier definitions.

Definition 4. Let P be a program with abstract constraints. A sequef&e)>, is a
computationfor P if X, = () and the sequence satisfies the princifRs, (P) and
(C). A computation ipersistentf it also satisfies the principléPr).

As before, we have the following containment property.

Proposition 8. Let P be a program with constraints. The class of persistent cdazpu
tions is apropersubset of the class of computations.

Proof (Sketch)The containment is evident. To show that it is proper, we canrghe
programC(P,), whereP is the normal logic program from Example 2. The sequence
#,{a},...is a computation but not a persistent computation¥6f).

It is also the case, that computations for programs with ttaimgs generalize com-
putations for normal logic programs.

Proposition 9. Let P be a normal logic program. The class of computations (respec
tively, persistent computations) Bf according to the definitions in Section 2, coincides
with the class of computations (respectively, persistentputations) of the program
C(P), according to definitions in Section 3.

We conclude this section by proposing the first definitionhaf toncept oanswer set
for programs with constraints. To this end, we generalieectiaracterization of answer
sets of normal logic programs in terms of persistent contfmuits discussed in Section
2.

Definition 5. Let P be a program with constraints. A séf is ananswer sebf P if
there is a persistent computation f&, whose result isX.

Since persistent computations satisfy the princ{jelg, answer sets of a program
P with constraints are supported modelsigfgeneralizing a property of normal logic
programs. As a matter of fact, the results of arbitrary catafpans are supported mod-
els (because ofC)). However, there are programs such that some of their stggpor
models cannot be reached by a computation. For instdn¢es a supported model of
the programC'(P), whereP = {a — a}, but there is no computation far(P) with
the result{a}.

Proposition 9 implies that our definition of answer sets foygoams with con-
straints generalizes the definition of answer sets for nblogé programs.

Corollary 1. Let P be a normal logic program. A séf C At is an answer set aP if
and only ifX is an answer set af'(P).

It is also the case that this concept of answer sets exteatimtioduced in [11, 16]
for monotone and convex programs.

Proposition 10. Let P be a monotone or convex program. Then, a set of aténis At
is an answer set a? according to the definitionin [11, 16] if and only X is the answer
set of P according to Definition 5.

5 Computations and Quasi-Satisfiability Relations

The notion of a computation discussed so far makes use ofoth@eterministic oper-
ator Conclp to revise the interpretations occurring along a computaiis we men-
tioned earlier, the use af'onclp provides a wide range of choices for revising a state
of a computation, essentially considering all the subseapplicable rules.

We will now study computations, as well as related concegdslting by relaxing
some of the postulates for computations, which can be aiddig narrowing down the
set of choices given byonclp(X) as possible revisions of. In the case of normal
logic programs, we accomplished this goal by means of anetmer2!, based on the
satisfiability relation=,,. We will now generalize that idea to the case of programs
with constraints.

Definition 6. A sequence” = (X;)2, is a weak computatiorfor a program with
constraints,P, if Xy = () and if C satisfies the propertigd®®) and (C).

Thus, weak computations are sequences that do not rely ongaaon P when
moving from step to stepi+ 1. We will now define a broad class of weak computations
that, at least to some degree, restore the rolé a6 a revision mechanism.

Letr be a relation between sets of atoms (interpretations) asitlzeth constraints.
We extend the relation to the case of conjunctions (sets) of constraints as follows
XAy, ..., A if XA, foreveryi, 1 < i < k. This relation is intended to represent
some concept of satisfiability of constraints and their goagjions. We will call such
relations quasi-satisfiabilityrelations. They will later allow us to generalize the radati
|:]VI-

For a quasi-satisfiability relatian we define

PP(X)={reP | Xvbd(r)}.

In other words,P”(X) is the set of all rules irP that are applicable with respect 16
under the relation. Next, we defin’;;*" (X) to consist of all set§” C hset(P” (X))
such thaft” |= hd(r), for everyr € P*(X). In other wordsI':*> works similarly to
Trd, except that rules if> (X) are “fired” rather than those iR (X).

Definition 7. Let> be a quasi-satisfiability relation. A weak computat@n= (X;)$°,
is ar-weak computatioffor P if X; € Tp% (X;_,), fori > 1.

Since we do not impose any particular properties>pit is not guaranteed that
T,Zd»(X) C Conclp(X). Thus,>-weak computations are not guaranteed to be com-
putations.

We say that a quasi-satisfiability relatisiis a sub-satisfiabilityrelation if for every
X C At and every abstract constraift XA implies X = A.

We note that relations=), considered in Section 2 are sub-satisfiability relations
(with respect to the standard satisfiability relatiei

Proposition 11. Let P be a program with constraints. fis a sub-satisfiability relation
then for everyX C At, Tﬁd;D(X) C Conclp(X) and every--weak computation is a
computation.

From now on, if> is a sub-satisfiability relation, we will write-computatiorinstead
of >-weak computation. We will now define another class of ansets for programs
with constraints.

Definition 8. Let P be a program with constraints anda sub-satisfiability relation.
Then,M is ar-answer sedf P if M is the result of a persistentcomputation.

Sincer-computations are computations, we have the followingaticensequence
of the appropriate definitions.

Proposition 12. Let P be a program with constraints anda sub-satisfiability relation.
Then everg-answer set folP is an answer set foP.

A natural questions arises whether every answer set of agrogith constraints is
ar-answer set of that program for some sub-satisfiabilityti@ta-. Unlike in the case
of normal logic programs, it is not the case.

Example 4.Let P consist of three rules:

({a}, {{ajh). ({03, {{63})- (e}, {{e}}) = ({a, b, ¢}, {{a}, {a, ¢}, {a, b, c}}).

We first note thatX, = 0, X; = {a}, X2 = {a,c}, X; = {a,b,c}, i > 3,isa
persistent computation faP. Thus,{a, b, c} is an answer set aP. However, there is
no sub-satisfiability relation such that{a, b, ¢} is ar-answer set fo. Indeed, for
each such relation we haveT;*" () = {a,b}, and it is impossible to derive, as
the third rule is not applicable with respect {a, b} (and so, also not a member of

P*({a,b})). O

Thus, given a progran®, the class of-answer sets is a proper subset of the class of
answer sets aoP.

The class of--answer sets forms a generalization of answer sets of ndogial
programs given by Proposition 5. We will now propose a waydinagalize answer sets
of normal logic programs to programs with constraints base&roposition 7. In our
considerations we extend the approach proposed and studj2dl]. Our method re-
quires a fixed mapping that assigns to each weak computativa quasi-satisfiability
relationbé. For some mappingg it yields models that are not “grounded enough” to
be called answer sets. For some other mappjhd®wever, it does result in classes of
models that arguably generalize answer sets of normal fgigrams.

Definition 9. Let P be a program with constraints anfla mapping assigning to each
weak computatiod’ a quasi-satisfiability relation}é. A weak computatiofy is (P, f)
self-justifiedif C' is abé—weak computation foP. A set of atomd/ is an f-model of
Pif M is the result of & P, f) self-justified weak computation.

The definition of anf-model is sound. Since weak computations satisfy the ptpper
(C), their results are indeed models®f in fact, even supported models.

Several interesting classes of models of programs withtaings can be described
in terms of f-models by specializing the mappirfg
Supported models.Let C' be a weak computation. We define the relatigf’” as
follows: given a set of atom&X and a constraintl, X>/,"" A if X, = A. One can
show that for every supported mod®l of P, the sequenc€ = (B, M, M,...) is
a weak computation self-justified with respectoand>/;*”. Thus, every supported
model of P is a supp-model of P. As we observed earlier, afl-models are supported
models. It follows that supported modelsBfare preciselyupp-models ofP.
Mr-models.Let C be a weak computation. We define the relati@ii as follows: given
a set of atoms\ and a constraintl, X" A if there isY’ C X such thatt” = A and
X~ E A. One can show thatr-models of P are precisely the answer sets Bfas
defined by [15].

The discussion ofupp-models andnr-models was meant to show the flexibility of
our approach. It took us away, however, from the main thente@paper — general-
izations of the concept of an answer set. Indeed, neitf{éf -weak computations nor

>&"-weak computations are computations (they do not satigfyehision principle).
Therefore, we do not view their results as “generalizedarssets but only as some
special classes of models.

To specialize the general approach of self-justified weakmdations so that it
yields extensions of the concept of an answer set, we neegbtofor mappingsf
that ensure that self-justified weak computations are ceatipas (satisfy the revision
principle) and are persistent.

We already saw that requiring tha@ be a sub-satisfiability relation guaran-
tees thabé-weak computations are indeed computations (referred ¢oremall, as
%—computations). We will now seek conditions guaranteehng iersistence @fé—
computations.

Under the assumption thatis a sub-satisfiability relation?”(X) C P(X). This
property and the appropriate definitions imply that

ng;D(X) - T;SE‘;()(X) = TITDLg(X)(X)'

Consequently, we can show the following result.

Proposition 13. Let > be a sub-satisfiability relation and let' = (X;)°, be ar-
computation. If for every constraind and everyi = 0,1,..., X;>A implies that
X;11>A, thenC is persistent.

We will now define the mapping, which assigns to every weak computat©m re-
lation>¢.. Namely, for a set of atom& and a constrainti we defineX¢ A if there is:
such thatX = X, andX; |= A, for everyj > i. Itis clear that-{, is a sub-satisfiability
relation. Thusp¢,-weak computations are computation$.{computations, to be pre-
cise). Moreover, it follows from Proposition 13 theft-computations are persistent.

Definition 10. Let P be a program with constraints. A set of atofé is a strong
answer sebf P (or, ans-answesset for P) if it is an s-model forP, that is, if M is the
result of a(P, s) self-justified computation.

We will now summarize our discussion so far. Taking charé&aéons of answer
sets of normal logic programs as the starting point, we pegdhree notions of an-
swer sets for programs with constraints. For normal logagpams, for programs with
monotone constraints, and for programs with convex coimggrall three concepts co-
incide with the standard notion of an answer set. For gepeograms with constraints,
these three concepts are different. The following resuitsrsarizes the relationships
between the three classes of answer sets we introduced so far

Proposition 14. Let P be a program with constraints. The class of strong answex set
for P is a proper subset of the classwfinswer-sets foP which, in turn, is a proper
subset of the class of answer sets for

Example 5.Consider the prograr®? (remember that is shorthand fo({a}, {{a}})):

a — ({a,b,¢,d}, P({a,b,c,d}))
b ({a,b},{{a},{a,b}})
¢+ ({a,b,¢c,d},{0,{a},{a,b},{a,b,c,d}})

whereP(X) is the powerset ofX. Let us defineX>A if for every Y, X N Agom C

Y C Ayom, Y € Ayqe- Clearly,> is a sub-satisfiability relation. Furthermdbe{a},
{a,b},{a,b}... is ar-weak computation, sag’. On the other hand, we have that
0 & ({a,b,c,d}, P({a,b,c,d})) and O ({a,b,c,d}, {0, {a},{a,b},{a,b,c,d}}).
Thus, any(P, s) self-justified computation will need to have, ¢} as its second el-
ement and will be unable to rea¢h, b}. This shows thafa, b} is not a strong answer
set of P. We note that it follows from Example 4 that the second inidinss proper. O

6 Yet another class of answer sets

Given a computatiorC’, we defined the relation¢, so that it is the weakest sub-
satisfiability relation satisfying the assumptions of Risifion 13. However, in general
there may be other ways to define a sub-satisfiability redatiowith respect to a given
computation”'. One such definition was proposed in [21]. Namely, given akveen-
putationC' = (X;)$2,, we define>%" as follows: X>7* A if X |= A and for each set
Y such thatX N Agom C Y C Xoo N Ao We have thal?” = A (or equivalently,
Y € Agq). Itis easy to see thafcpt is a sub-satisfiability relation. Thus, it defines
computations. Secondlyg’t-computations are persistent as the relaﬂ@ﬁ“i satisfies
the assumptions of Proposition 13. Thus, the mappingives rise to yet another class
of answer sets —spt-answer sets. One can show that spt-answer sets captuisafyec
the semantics for aggregates proposed in [18, 19].

We have the following result relatingyt-answer sets to other classes of answer sets

considered in the previous section.

Proposition 15. Let P be a program with constraints. If a computatiéhis a>gﬁ-

computation then it is alsow&,-computation.

Example 6.Let us consider the prograi consisting of two rules

({6}, {{0}}) = ({a}, {{a}}) ({a}, {{a}}) <= ({a, b}, {0, {a}, {a,b}})

The sequenc®, {a}, {a, b} is ar{,-computation ofP. On the other hand, it is not a
2" computation sinc@ g% ({a, b}, {0, {a}, {a,b}}). 0

Corollary 2. Let P be a program with constraints. I/ is an spt-answer set oP then
M is a strong answer set d?.

Next, we note that, similarly to our other classes of answts,she semantics defined
by spt-answer sets also collapses to the standard answer-setatiestior normal logic
programs and to the answer-sets semantics for programsaitlex constraints [11].

The approach based on the mappipg takes a more “skeptical” perspective than
the one embodied by the mappingTo ensure persistence, it requires talhtpossible
extensions of the state in which a constraitolds satisfyA (and not only those
actually encountered during the computation). In this wag, reIationst?t are, in a
sense, the strongest relations satisfying the assumpfdPr®position 13. This may be
perceived as a problem of this semantics»sc—’”f—computations are localized to convex
subfragments of constraints forming program rules. In othards, they cannot jump
over “missing” satisfiers.

7 A Note on the Complexity

In this paper we introduced several classes of answer sgisdfgrams with constraints.
We have the following result concerning the computatiomahplexity of the problem
concerning the existence of answer sets.

Proposition 16. Assuming an explicit representation of constraints, gisgorogram
with constraints, it is NP-complete to decide whether thegpam has an answer set
(respectively»-answer set, strong answer seb-answer set).

8 Discussion and Conclusions

We grounded our study in four basic principles: revisiorrsigence of beliefs, per-
sistence of reasons, and convergence. We showed that tieeseveral ways in which
the principle of revision can be realized. In a least restacapproach, we allow any
element of Conclp(X) to be a valid revision of. This choice defines the class of
persistent computations and we take the results of such utatigns as the definition
of the first notion of an answer set. In the case of normal lpgigrams and programs
with convex constraints, computations capture precidedyconcept of an answer sets
as defined for these classes of programs earlier in [8, 11].

More restrictive approaches to the revision principle aardown choices offered
by Conclp to those offered b)T,’jd?D, wherer is a sub-satisfiability relation. The re-
sults of persistent-computations form another class of answer setanswer sets,
which forms a proper subclass of the previous one. Howenethe case of normal
logic programs and programs with convex constraints botfons of the answer set
coincide.

The final two approaches result from the two specializatming general schema
to define f-models of a program with constraints. The schema is degigmgener-
alize the guess-and-check approach for normal logic progré relies on a mapping
that assigns to weak computations quasi-satisfiabiligtiats. We demonstrated two
mappings,s and spt, for which the resulting weak computations are in fact [sesit
computations and so, their results can be used as answefketmapping seems to
be more appropriate as it is less restrictive. The mappijrigon the other extreme of
the spectrum, seems to be too restrictive. As we noted earligrams that intuitively
should have answer sets do not haye-answer sets.

This work draws attention to the concept of computation, stmolvs that, for pro-
grams with arbitrary constraints, there are many classe®wiputations of interest.

In general, they give rise to different classes of answensgetormalizing in different
ways the negation-as-failure implicitly present in (noobsatone) constraints. Three
classes of computations seem especially well suited asatkis for the generalization.
Specifically,s-answer setsy-answer sets and answer sets are viable candidates for the
answer set semantics of programs with constraints, as tieeyraunded in some basic
and intuitive principles imposed on computations and orestlta to define computa-
tions generalizing those used earlier in the context of mbtagic programs. The class

of spt-answer sets may be too restrictive. The issue whether attyeathree classes
identified here has any significant advantage over the otleerdquires further studies.

We note that some of our methods go beyond generalizatiopsbanswer sets.
if we weaken requirements on computations and considerléiss of weak computa-
tions, the general schema of definifignodels of programs yields characterizations of
supported models and mr-answer sets [15] and so also dedartieer attention.

References

1. M. Balduccini, M. Gelfond, and M. Nogueira. Answer Set Basedig@esf Knowledge
Systems Annals of Mathematics and Artificial Intelligenc2006.
2. T. DellArmi et al. Aggregate Functions in Disjunctive Logic Prograimga Semantics,
Complexity, and Implementation in DLV. IRCAI, pages 847-852, 2003.
3. M. Denecker, N. Pelov, and M. Bruynooghe. Ultimate well-founded stable semantics
for logic programs with aggregatekCLP, Springer Verlag, pages 212-226, 2001.
4. |. Elkabani, E. Pontelli, and T.C. Son. Smodels with CLP and its applicatidn Int.
Conference on Logic Programmin8pringer Verlag, pages 73-89, 2004.
5. E. Erdem, V. Lifschitz, and D. Ringe. Temporal phylogenetic néteand logic program-
ming. TPLP, 6(5):539-558, 2006.
6. W. Faber, N. Leone, and G. Pfeifer. Recursive aggregates jundisve logic programs:
Semantics and complexity. FELIA, pages 200-212, 2004.
7. P.Ferraris. Answer sets for propositional theorief.dgic Programming and Nonmonotonic
ReasoningSpringer Verlag, pages 119-131, 2005.
8. M. Gelfond and V. Lifschitz. The stable model semantics for logic Egning. InJoint
Int. Conf. and Symp. on Logic Programmjmges 1070-1080, MIT Press, 1988.
9. M. Gelfond. Representing Knowledge in A-Prolog. Computational Logic: Logic Pro-
gramming and Beyongages 413-451. Springer Verlag, 2002.
10. K. Heljanko and I. Niemél Bounded LTL model checking with stable moddiseory and
Practice of Logic Programmindg(4,5):519-550, 2003.
11. L. Liuand M. Truszczfiski. Properties of programs with monotone and convex constraints.
National Conference on Artificial Intelligencpages 701-706. AAAI/MIT Press, 2005.
12. V.W. Marek, A. Nerode and J. Remmel. Logic Programs, Weleongs, and Forward
Chaining.Annals of Pure and Applied Logf6:231-276, 1999.
13. V.W. Marek and M. Truszchski. Nonmonotonic Logic; Context-Dependent Reasoning.
Springer Verlag, 1993.
14. V.W. Marek and M. Truszciyski. Stable models and an alternative logic programming
paradigm.The Logic Programming Paradigrpp. 375-398, Springer, 1999.
15. V.W. Marek and J.B. Remmel. Set constraints in logic programnhimigogic Programming
and Nonmonotonic Reasonirpges 167-179, Springer Verlag, 2004.
16. V.W. Marek and M. Truszchski. Logic programs with abstract constraint atoms Nax
tional Conference on Artificial Intelligence (AAAMAAI Press / The MIT Press, 2004.
17. 1. Nieme&. Logic programming with stable model semantics as a constraint pnogrey
paradigm.Annals of Mathematics and Artificial Intelligencs(3,4):241-273, 1999.
18. N. Pelov.Semantic of Logic Programs with Aggregat®hD thesis, K.U. Leuven, 2004.
19. T.C. Sonand E. Pontelli. A Constructive Semantic Characterizatibggregates in Answer
Set ProgrammingTheory and Practice of Logic Programmin2007.
20. T.C. Son, E. Pontelli, and I. Elkabani. An Unfolding-Based SemsufticLogic Program-
ming with AggregatesComputing Research RepositpAp06. cs.SE/0605038.
21. T.C. Son, E. Pontelli, and P.H. Tu. Answer Sets for Logic Prograith Arbitrary Abstract
Constraint AtomsJournal of Artificial Intelligence ResearcB007. Accepted.
22. M.H. van Emden and R.A. Kowalski. The Semantics of Predicatéclasga Programming
LanguageJournal of the ACM23(4), 733-742, 1976.

