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Abstract

We examine four approaches for dealing with the logical omniscience problem and
their potential applicability: the syntactic approach, awareness, algorithmic knowledge,
and impossible possible worlds. Although in some settings these approaches are equi-
expressive and can capture all epistemic states, in other settings of interest (especially
with probability in the picture), we show that they are not equi-expressive. We then
consider the pragmatics of dealing with logical omniscience—how to choose an approach
and construct an appropriate model.

1 Introduction

Logics of knowledge based on possible-world semantics are useful in many areas of knowl-
edge representation and reasoning, ranging from security to distributed computing to game
theory. In these models, an agent is said to know a fact ϕ if ϕ is true in all the worlds she
considers possible. While reasoning about knowledge with this semantics has proved useful,
as is well known, it suffers from what is known in the literature as the logical omniscience
problem: under possible-world semantics, agents know all tautologies and know the logical
consequences of their knowledge.

While logical omniscience is certainly not always an issue, in many applications it is.
For example, in the context of distributed computing, we are interested in polynomial-time
algorithms, although in some cases the knowledge needed to perform optimally may require
calculations that cannot be performed in polynomial time (unless P=NP) [Moses and Tuttle
1988]; in the context of security, we may want to reason about computationally bounded
adversaries who cannot factor a large composite number, and thus cannot be logically
omniscient; in game theory, we may be interested in the impact of computational resources
on solution concepts (for example, what will agents do if computing a Nash equilibrium is
difficult).

Not surprisingly, many approaches for dealing with the logical omniscience problem
have been suggested (see [Fagin, Halpern, Moses, and Vardi 1995, Chapter 9] and [Moreno
1998]). A far from exhaustive list of approaches includes:

• syntactic approaches [Eberle 1974; Moore and Hendrix 1979; Konolige 1986], where an
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agent’s knowledge is represented by a set of formulas (intuitively, the set of formulas
she knows);

• awareness [Fagin and Halpern 1988], where an agent knows ϕ if she is aware of ϕ and
ϕ is true in all the worlds she considers possible;

• algorithmic knowledge [Halpern, Moses, and Vardi 1994] where, roughly speaking, an
agent knows ϕ if her knowledge algorithm returns “Yes” on a query of ϕ; and

• impossible worlds [Rantala 1982], where the agent may consider possible worlds that
are logically inconsistent (for example, where p and ¬p may both be true).

Which approach is best to use, of course, depends on the application. One goal of
this paper is to elucidate the aspects of the application that make a logic more or less
appropriate. We start by considering the expressive power of these approaches. It may
seem that there is not much to say with regard to expressiveness, since it has been shown
that all these approaches are equi-expressive and, indeed, can capture all epistemic states
(see [Wansing 1990; Fagin, Halpern, Moses, and Vardi 1995] and Section 2). However, this
result holds only if we allow an agent to consider no worlds possible. As we show, this
equivalence no longer holds in contexts where agents must consider some worlds possible.
This is particularly relevant once we have probability in the picture. But expressive power is
only part of the story. We consider here (mainly by example) the pragmatics of dealing with
logical omniscience—an issue that has largely been ignored: how to choose an approach and
construct an appropriate model.

2 The Four Approaches: A Review

We now review the standard possible-worlds approach and the four approaches to dealing
logical omniscience discussed in the introduction. For ease of exposition we focus on the
single-agent propositional case. While in many applications it is important to consider
more than one agent and to allow first-order features (indeed, this is true in some of our
examples), the issues that arise in dealing with multiple agents and first-order features are
largely orthogonal to those involved in dealing with logical omniscience. Thus, we do not
discuss these extensions here.

2.1 The Standard Approach

Starting with a set Φ of propositional formulas, we close off under conjunction, negation,
and the K operator. Call the resulting language LK . We give semantics to these formulas
using Kripke structures. For simplicity, we focus on approaches that satisfy the K45 axioms
(as well as KD45 and S5). In this case, a K45 Kripke structure is a triple (W,W ′, π), where
W is a nonempty set of possible worlds (or worlds, for short), W ′ ⊆W is the set of worlds
that the agent considers possible, and π is an interpretation that associates with each world
a truth assignment π(w) to the primitive propositions in Φ. Note that the agent need not
consider every possible world (that is, each world in W ) possible. Then we have

(M,w) |= p iff π(w)(p) = true if p ∈ Φ.
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(M,w) |= ¬ϕ iff (M,w) 6|= ϕ.

(M,w) |= ϕ ∧ ψ iff (M,w) |= ϕ and (M,w) |= ψ.

(M,w) |= Kϕ iff (M,w′) |= ϕ for all w′ ∈W ′.

This semantics suffers from the logical omniscience problem. In particular, one sound
axiom is

(Kϕ ∧K(ϕ⇒ ψ)) ⇒ Kψ,

which says that an agent’s knowledge is closed under implication. In addition, the knowledge
generalization inference rule is sound:

From ϕ infer Kϕ.

Thus, agents know all tautologies. As is well known, two other axioms are sound in K45
Kripke structures:

Kϕ⇒ KKϕ

and
¬Kϕ⇒ K¬Kϕ.

These are known respectively as the positive and negative introspection axioms. (These
properties characterize K45.)

In the structures we consider, we allow W ′ to be empty, in which case the agent does
not consider any worlds possible. In such structures, the formula K(false) is true. A KD45
Kripke structure is a K45 Kripke structure (W,W ′, π) where W ′ 6= ∅. Thus, in a KD45
Kripke structure, the agent always considers at least one world possible. In KD45 Kripke
structures, the axiom

¬K(false)

is sound, which implies that the agent cannot know inconsistent facts. The logic KD45
results when we add this axiom to K45. S5 Kripke structures are KD45 Kripke structures
where W = W ′; that is, the agent considers all worlds in W possible. In S5 Kripke
structures, the axiom

Kϕ⇒ ϕ,

which says that the agent can know only true facts, is sound. Adding this axiom to the
KD45 axioms gives us the logic S5.

2.2 The Syntactic Approach

The intuition behind the syntactic approach for dealing with logical omniscience is simply
to explicitly list, at every possible world w, the set of formulas that the agent knows at w.
A syntactic structure has the form M = (W,W ′, π, C), where (W,W ′, π) is a K45 Kripke
structure and C associates a set of formulas C(w) with every world w ∈W . The semantics of
primitive propositions, conjunction, and negation is just the same as for Kripke structures.
For knowledge, we have

(M,w) |= Kϕ iff ϕ ∈ C(w).
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2.3 Awareness

Awareness is based on the intuition that an agent should be aware of a concept before
she can know it. The formulas that an agent is aware of are represented syntactically; we
associate with every world w the set A(w) of formulas that the agent is aware of. For an
agent to know a formula ϕ, not only does ϕ have to be true at all the worlds she considers
possible, but she has to be aware of ϕ as well. A K45 awareness structure is a tuple
M = (W,W ′, π,A), where (W,W ′, π) is a K45 Kripke structure and A maps worlds to sets
of formulas. We now define

(M,w) |= Kϕ iff (M,w′) |= ϕ for all w′ ∈W ′ and ϕ ∈ A(w).1

We can define KD45 and S5 awareness structures in the obvious way: M = (W,W ′, π,A)
is a KD45 awareness structure when (W,W ′, π) is a KD45 structure, and an S5 awareness
structure when (W,W ′, π) is an S5 structure.

2.4 Algorithmic Knowledge

In some applications, there is a computational intuition underlying what an agent knows;
that is, an agent computes what she knows using an algorithm. Algorithmic knowledge is
one way of formalizing this intuition. An algorithmic knowledge structure is a tuple M =
(W,W ′, π, A), where (W,W ′, π) is a K45 Kripke structure and A is a knowledge algorithm
that returns “Yes”, “No”, or “?” given a formula ϕ.2 Intuitively, A(ϕ) returns “Yes” if the
agent can compute that ϕ is true, “No” if the agent can compute that ϕ is false, and “?”
otherwise. In algorithmic knowledge structures,

(M,w) |= Kϕ iff A(ϕ) = “Yes”.

An important class of knowledge algorithms consists of the sound knowledge algorithms.
When a sound knowledge algorithm returns “Yes” to a query ϕ, then the agent knows (in
the standard sense) ϕ, and when it returns “No” to a query ϕ, then the agent does not
know (again, in the standard sense) ϕ. Thus, if A is a sound knowledge algorithm, then
A(ϕ) = “Yes” implies (M,w) |= ϕ for all w ∈W ′, and and A(ϕ) = “No” implies there exists
w ∈W ′ such that (M,w) |= ¬ϕ. (When A(ϕ) = “?”, nothing is prescribed.)

2.5 Impossible Worlds

The impossible-worlds approach relies on relaxing the notion of possible world. Take the
special case of logical omniscience that says that an agent knows all tautologies. This is a
consequence of the fact that a tautology must be true at every possible world. Thus, one
way to eliminate this problem is to allow tautologies to be false at some worlds. Clearly,

1In [Fagin and Halpern 1988], the symbol K is reserved for the standard definition of knowledge; the
definition we have just given is denoted as Xϕ, where X stands for explicit knowledge. A similar remark
applies to the algorithmic knowledge approach below. We use K throughout for ease of exposition.

2In [Halpern, Moses, and Vardi 1994], the knowledge algorithm is also given an argument that describes
the agent’s local state, which, roughly speaking, captures the relevant information that the agent has.
However, in our single-agent static setting, there is only one local state, so this argument is unneeded.
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those worlds do not obey the usual laws of logic—they are impossible possible worlds (or
impossible worlds, for short).

A K45 (resp., KD45, S5 ) impossible-worlds structure is a tuple M = (W,W ′, π, C),
where (W,W ′ ∩W,π) is a K45 (resp., KD45, S5) Kripke structure, W ′ is the set of worlds
that the agent considers possible, and C associates with each world in W ′ − W a set of
formulas. W ′, the set of worlds the agent considers possible, is not required to be a subset
of W—the agent may well include impossible worlds in W ′. The worlds in W ′ −W are the
impossible worlds. We can also consider a class of impossible-worlds structures intermediate
between K45 and KD45 impossible-worlds structures. A KD45− impossible-worlds structure
is a K45 impossible-worlds structure (W,W ′, π, C) where W ′ is nonempty. In a KD45−

impossible-worlds structure, we do not require that W ′ ∩W be nonempty.
A formula ϕ is true at a world w ∈W ′ −W if and only if ϕ ∈ C(w); for worlds w ∈W ,

the truth assignment is like that in Kripke structures. Thus,

• if w ∈W , then (M,w) |= p iff π(w)(p) = true;

• if w ∈W , then (M,w) |= Kiϕ iff (M,w′) |= ϕ for all w′ ∈W ′;

• if w ∈W ′ −W , then (M,w) |= ϕ iff ϕ ∈ C(w).

We remark that when we speak of validity in impossible-worlds structures, we mean truth
at all possible worlds in W in all impossible-worlds structures M = (W, . . .).

3 Expressive Power

There is a sense in which all four approaches are equi-expressive, and can capture all states
of knowledge.

Theorem 3.1: [Wansing 1990; Fagin, Halpern, Moses, and Vardi 1995] For every finite set
F of formulas and every propositionally consistent set G of formulas, there exists a syntactic
structure (resp., K45 awareness structure, KD45− impossible-worlds structure, algorithmic
knowledge structure) M = (W, . . .) and a world w ∈W such that (M,w) |= Kϕ if and only
if ϕ ∈ F , and (M,w) |= ψ for all ψ ∈ G.3

Proof. We review the basic idea of the proof, since it will set the stage for our later results.

• For syntactic structures, let M = ({w},∅, π, C), where C(w) = F and π(w) is such
that (M,w) |= ψ for all ψ ∈ G. (Since G is propositionally consistent, there must be
a truth assignment that makes all the formulas in G true; we can take π(w) to be that
truth assignment.)

• For K45 awareness structure, let M = ({w},∅, π,A), where A(w) = F and π(w)
makes all the formulas in G true.

• For KD45− impossible-worlds structure, let M = ({w}, {w′}, π, C), where C(w′) = F
and π(w) makes all the formulas in G true.

3This result extends to infinite sets F of formulas for syntactic structure, K45 awareness structures, and
KD45− impossible-worlds structures. For algorithmic knowledge structures, the result extends to recursive
sets F of formulas.
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• For algorithmic knowledge, let M = ({w},∅, π, A), where A(ϕ) = “Yes” iff ϕ ∈ F and
π(w) makes all the formulas in G true.

Despite the name, the introspective axioms of K45 are not valid in K45 awareness
structures or K45 impossible-worlds structures. Indeed, it follows from Theorem 3.1 that
no axioms of knowledge are valid in these structures. (Take F to be the empty set.) To
make this precise, let Prop be the axiom

ϕ is a valid formula of propositional logic (Prop)

and MP be the inference rule

From ϕ⇒ ψ and ϕ infer ψ. (MP)

Theorem 3.2: {Prop,MP} is a sound and complete axiomatization of LK with respect to
K45 awareness structures (resp., K45 and KD45− impossible-worlds structures, syntactic
structures, algorithmic knowledge structures).

Proof. Suppose that ϕ is consistent with {Prop,MP}. It suffices to show that ϕ is satis-
fiable in a K45 awareness (resp., K45 and KD45− impossible-worlds structure, syntactic
structure, algorithmic knowledge structure). Viewing formulas of the form Kψ as primitive
propositions, ϕ must be propositionally consistent. Thus, there must be a truth assign-
ment v to the primitive propositions and formulas of the form Kψ that appear in ϕ such
that ϕ evaluates to true under this truth assignment. Let F consist of all formulas ψ
such that v(Kψ) = true and let G consist of all the propositional formulas ψ such that
v(ψ) = true. Let M be the structure guaranteed to exist by Theorem 3.1. It is easy to see
that (M,w) |= ϕ.

It follows from Theorem 3.2 that a formula is valid with respect to K45 awareness struc-
tures (resp., K45 and KD45− impossible-worlds structures, syntactic structures, algorithmic
knowledge structures) if and only if it is propositionally valid, if we treat formulas of the
form Kϕ as primitive propositions. Thus, deciding if a formula is valid is co-NP complete,
just as it is for propositional logic.

Theorems 3.1 and 3.2 rely on the fact that we are considering K45 awareness structures
and KD45− (or K45) impossible-worlds structures. (Whether we consider K45, KD45, or S5
is irrelevant in the case of syntactic structures and algorithmic knowledge structures, since
the truth of a formula does not depend on what worlds an agent considers possible.) There
are constraints on what can be known if we consider KD45 and S5 awareness structures
and impossible-worlds structures. The constraints depend on which structures we consider.
To make the constraints precise, we need a few definitions. We say a set of formulas F is
downward closed if the following conditions hold:

(a) if ϕ ∧ ψ ∈ F , then both ϕ and ψ are in F ;

(b) if ¬¬ϕ ∈ F , then ϕ ∈ F ;
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(c) if ¬(ϕ ∧ ψ) ∈ F , then either ¬ϕ ∈ F or ¬ψ ∈ F (or both); and

(d) if Kϕ ∈ F , then ϕ ∈ F .

We say that F is k-compatible with F ′ if Kψ ∈ F ′ implies that ψ ∈ F .

Proposition 3.3: Suppose that M = (W,W ′, . . .) is a KD45 awareness structure (resp.,
KD45 impossible-worlds structure), w ∈ W , and w′ ∈ W ′ (resp., w′ ∈ W ∩ W ′). Let
F = {ϕ | (M,w) |= Kϕ} and let F ′ = {ψ | (M,w′) |= ψ}. Then

(a) F ′ is propositionally consistent downward-closed set of formulas that contains F ;

(b) if M is a KD45 impossible-worlds structure then F is k-compatible with F ′.

Proof. Suppose that M = (W,W ′, . . .) is a KD45 awareness structure. Let w, w′, F , and
F ′ be as in the statement of the theorem. Clearly F ⊆ F ′. Since w′ is a possible world, it
is easy to see that F ′ satisfies the first three conditions of being downward closed. For the
last condition, note that if (M,w′) |= Kψ, then we must have (M,w′′) |= ψ for all worlds
w′′ ∈ W ′, so (M,w′) |= ψ. Finally, F ′ must be propositionally consistent, since w is a
possible world. The argument is the same ifM is a KD45 impossible-worlds structure, since
w′ ∈W ∩W ′ in this case. To see that F ′ is k-compatible if M is a KD45 impossible-worlds
structure, suppose that Kϕ ∈ F ′. By the definition of F ′, this means that (M,w′) |= Kϕ.
It follows that (M,w′′) |= ϕ for all ϕ ∈W ′. Hence, (M,w) |= Kϕ, so ϕ ∈ F . Note that this
argument does not work for awareness structures, since we may not have ϕ ∈ A(w).

The next result show that the constraints on F described in Proposition 3.3 are the only
constraints on F .

Theorem 3.4: If F and F ′ are such that F ′ is propositionally consistent downward-
closed set of formulas that contains F , then there exists a KD45 awareness structure M =
({w,w′}, {w′}, π,A) such that (M,w) |= Kϕ iff ϕ ∈ F and (M,w′) |= ψ for all ψ ∈ F ′. If,
in addition, F is k-compatible with F ′, then there exists a KD45 impossible-worlds structure
M = ({w,w′}, {w′, w′′}, π, C) such that (M,w) |= Kϕ iff ϕ ∈ F and (M,w′) |= ψ for all
ψ ∈ F ′. Finally, if F = F ′, then we can take w = w′, so that M is an S5 awareness (resp.,
S5 impossible-worlds) structure.

Proof. In the case of KD45 awareness structures, letM = ({w,w′}, {w′}, π,A), where π(w′)
makes all the propositional formulas in F ′ true, A(w) = F , and A(w′) = {ϕ | Kϕ ∈ F ′}.
We now prove by induction that if ϕ ∈ F ′ then (M,w′) |= ϕ. This is true by construction
in the case of primitive propositions and follows easily from the induction hypothesis in the
case of conjunctions. If ϕ has the form Kψ then, since ψ must be in F ′, it follows from
the induction hypothesis that (M,w′) |= ψ and, by construction, that ψ ∈ A(w′). Thus,
(M,w′) |= Kψ. Finally, if ϕ has the form ¬ψ, we consider the possible forms of ψ. If ψ is
a primitive proposition it follows from the definition of π(w′). If ψ has the form ¬ψ′, then
ψ′ ∈ F ′, so, by the induction hypothesis, (M,w′) |= ψ′. Hence, (M,w′) |= ϕ. Similarly,
the result follows from the definition of downward closure and the induction hypothesis if
ψ has the form ψ1 ∧ ψ2. Finally, if ψ has the form Kψ′, then the result follows from the
definition on A(w′). It is now immediate that (M,w) |= Kϕ iff ϕ ∈ F : if (M,w) |= Kϕ
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then it follows from the definition of A(w) that we must have ϕ ∈ F . Conversely, if ϕ ∈ F ,
then ϕ ∈ A(w) and (M,w′) |= ϕ (since F ⊆ F ′), so (M,w) |= Kϕ.

If F = F ′, then we can take w = w′ in this argument to get an S5 awareness structure.
In the case of impossible-worlds structures, let M = ({w,w′}, {w′, w′′}, π, C}, where

π(w′) makes all the propositional formulas in F ′ true and C(w′′) = F . A proof by induction
on the structure of formulas much like that above shows that (M,w′) |= ϕ if ϕ ∈ F ′. To
deal with the case that ϕ = Kψ, we use the fact that F is k-compatible with F ′ to get that
ψ ∈ F , so that (M,w′′) |= ψ. To see that (M,w) |= Kϕ iff ϕ ∈ F , first observe that if
ϕ ∈ F then, by construction ϕ ∈ C(w′′), and, since F ⊆ F ′, (M,w′) |= ϕ, so (M,w) |= Kϕ.
For the converse, if (M,w) |= Kϕ, then (M,w′′) |= ϕ, so ϕ ∈ F .

We can characterize these properties axiomatically. Let (V er) (for Veridicality) be the
standard axiom that says that everything known must be true:

Kϕ⇒ ϕ. (Ver)

Let AXVer be the axiom system consisting of {Prop,MP ,Ver}. The fact that the set of
formulas known must be a subset of a downward closed set is characterized by the following
axiom:

¬(Kϕ1 ∧ . . . ∧Kϕm) if AXVer ⊢ ¬(ϕ1 ∧ . . . ∧ ϕn). (DC )

The key point here is that, as we shall show, a propositionally consistent set of formulas
that is downward closed must be consistent with AXVer .

The fact that the set of formulas that is known is k-compatible with a downward closed
set of formulas is characterized by the following axiom:

(Kϕ1 ∧ . . . ∧Kϕn) ⇒ (Kψ1 ∨ . . . ∨Kψm)

if AXVer ⊢ ϕ1 ∧ . . . ∧ ϕn ⇒ (Kψ1 ∨ . . . ∨Kψm).
(KC )

Axiom DC is just the special case of axiom KC where m = 0. It is also easy to see that
KC (and therefore DC ) follow from Ver .

Let AXDC = {Prop,MP ,DC } and let AXKC = {Prop,MP ,KC}.

Theorem 3.5:

(a) AXDC is a sound and complete axiomatization of LK with respect to KD45 awareness
structures;

(b) AXKC is a sound and complete axiomatization of LK with respect to KD45 impossible-
worlds structures;

(c) AXVer is a sound and complete axiomatization of LK with respect to S5 awareness
structures and S5 impossible-worlds structures.

Proof. We first prove soundness. Consider axiom DC . Suppose that AXVer ⊢ ¬(ϕ1 ∧ . . . ∧
ϕn). Let M = (W,W ′, π,A) be a KD45 awareness structure. For each world w′ ∈ W ′, it
easily follows from Proposition 3.3 (taking w = w′) that each instance of axiom Ver holds at
(M,w′), as does each instance of Prop. An easy argument by induction on the length of proof
then shows that, if AXVer ⊢ ψ, then (M,w′) |= ψ. In particular, (M,w′) |= ¬(ϕ1 . . . ∧ ϕn).
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It follows that, for each w ∈ W , we must have (M,w) |= ¬(Kϕ1 ∧ . . . ∧Kϕn). Essentially
the same argument shows that axiom DC is sound in KD45 impossible-worlds structures.

A similar argument also shows the soundness of KC with respect to KD45 impossible-
worlds structures. For suppose that M = (W,W ′, π, C) is an impossible-worlds structure,
w ∈ W , AXVer ⊢ (ϕ1 ∧ . . . ∧ ϕn) ⇒ (Kψ1 ∨ . . . ∨Kψm), and (M,w) |= Kϕ1 ∧ . . . ∧Kϕn.
Thus, (M,w′′) |= ϕ1 ∧ . . . ∧ ϕn for all w′′ ∈ W ′. But since each world in W ∩ W ′ is a
model of AXVer , if w

′ ∈ W ∩W ′, we must have (M,w′) |= Kψ1 ∨ . . . ∨Kψm. Moreover,
since W ∩W ′ 6= ∅, there must be some world w′ ∈ W ∩ W ′. It follows that, for some
j ∈ {1, . . . ,m}, (M,w′) |= Kψj. Thus, (M,w′′) |= ψj for all w

′′ ∈W ′, so (M,w) |= Kψj. It
follows that (M,w) |= Kψ1 ∨ . . . ∨Kψm, as desired.

Finally, as we have already observed, the soundness of Ver in S5 awareness and impossible-
worlds structures follows easily from Proposition 3.3.

For completeness, we start with part (a). It suffices to show that, given an AXDC -
consistent formula ϕ, there exists a KD45 awareness structure M and world w such that
(M,w) |= ϕ. So suppose that ϕ is AXDC -consistent. Let G be a maximal AXDC -consistent
set containing ϕ. Let F = {ψ | Kψ ∈ G}. We claim that F is AXVer -consistent. If not, then
there exists ϕ1, . . . , ϕn ∈ G such that AXVer ⊢ ¬(ϕ1∧ . . .∧ϕn). But then by axiom DC , we
have that AXDC ⊢ ¬(Kϕ1 ∧ . . . ∧Kϕn), contradicting the fact that G is AXDC -consistent.
Thus, F is consistent with AXVer . Let F ′ be a maximal AXVer -consistent set extending
F . Then it is easy to check that F ′ is a propositionally-consistent downward-closed set
of formulas that contains F . Thus, by Theorem 3.4, there is a KD45 awareness structure
M = ({w,w′}, {w′}, π,A) such that (M,w) |= Kψ for all ψ ∈ F . We can assume without
loss of generality that w 6= w′ and that π(w) makes all the primitive propositions in F true.
(Note that this would not be the case if we were dealing with S5 awareness structures.) An
easy induction on the structure of formulas then shows that (M,w) |= ψ for all ψ ∈ G. In
particular, (M,w) |= ϕ.

For part (b), we use much the same argument. Suppose that ϕ is AXKC -consistent. Let
G be a maximal AXKC -consistent set containing ϕ. Let F = {ψ | Kψ ∈ G}, and let G′ =
F ∪{¬ψ | ¬Kψ ∈ G}. We again claim that G′ is AXVer -consistent. If not, then there exists
Kϕ1, . . . ,Kϕn,Kψ1, . . . ,Kψm ∈ G such that AXVer ⊢ (ϕ1∧ . . .∧ϕn) ⇒ (Kψ1∨ . . .∨Kψm).
By axiom KC , we have that AXKC ⊢ (Kϕ1∧. . .∧Kϕn) ⇒ (Kψ1∨. . .∨Kψm), contradicting
the fact that G is AXKC -consistent. Thus, G′ is consistent with AXVer . Again, let F ′

be a maximal AXVer -consistent set extending G′. Then it is easy to check that F ′ is a
propositionally-consistent downward-closed set of formulas that contains F ; moreover the
construction guarantees that F is k-compatible with F ′. Thus, by Theorem 3.4, there is
a KD45 impossible-worlds structure M = ({w,w′}, {w′, w′′}, π, C) such that (M,w) |= Kψ
for all ψ ∈ F . We can assume without loss of generality that w 6= w′ and that π(w) makes
all the primitive propositions in F true. An easy induction on the structure of formulas
then shows that (M,w) |= ψ for all ψ ∈ G. In particular, (M,w) |= ϕ.

Finally, for part (c), let AX = {Prop,MP ,Ver}. Suppose that ϕ is consistent with
AX. Extend ϕ to a maximally AX-consistent set F of formulas. It suffices to show that
F is satisfiable in an S5 awareness structure and in an S5 impossible-worlds structure.
In the case of awareness structures, consider the structure M = ({w}, {w}, π,A), where
π(w)(p) = true iff p ∈ F and A(w) = {ψ | Kψ ∈ F}. We now show by induction on the
structure of formulas that (M,w) |= ψ iff ψ ∈ F . If ψ is a primitive proposition, then this is
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immediate from the definition of π. If ψ has the form ¬ψ′, then the result is immediate from
the induction hypothesis. If ψ has the form ψ1∧ψ2, this is immediate from the observation
that, since F is a maximal AX-consistent set and propositional reasoning is sound in AX
that ψ1 ∧ψ2 ∈ F iff ψ1 ∈ F and ψ2 ∈ F . If ψ has the form Kψ′, note that if Kψ′ ∈ F then
ψ′ ∈ F (since Ver ∈ F ). By the induction hypothesis, (M,w) |= ψ′. Thus, (M,w) |= Kψ′.
For the converse, if (M,w) |= Kψ′, suppose, by way of contradiction, that Kψ′ /∈ F . Then,
by construction, ψ′ /∈ A(w)}. Thus, (M,w) |= ¬Kψ′, a contradiction.

To show that F is satisfiable in an S5 impossible-worlds structure, consider the structure
M = ({w}, {w,w′}, π, C}, where π(w)(p) = true iff p ∈ F and C(w′) = {ψ | Kψ ∈ F}.
Thus, C(w′) is the same set of formulas as A(w) in the argument for S5 awareness structures.
An almost identical argument as in the case of S5 awareness structures now shows that
(M,w) |= ψ iff ψ ∈ F . We leave details to the reader.

Corollary 3.6: The satisfiability problem for the language LK with respect to KD45 aware-
ness structures (resp., KD45 impossible-worlds structures, S5 awareness structures) is NP-
complete.

Proof. NP-hardness follows immediately from the observation that LK contains proposi-
tional logic. The fact that the satisfiability problem with respect to each of these classes
of structures is in NP follows from the construction of Theorem 3.5, which shows that if a
formula ϕ is satisfiable with respect to KD45 awareness structures (resp., KD45 impossible-
worlds structures, S5 awareness structures), then it is consistent with respect to AXDC (resp.
AXKC , AXVer ), which in turn implies that it is satisfiable in a KD45 awareness structure
(resp., KD45 impossible-worlds structure, S5 awareness structure) M = (W,W ′, . . .) with
two (resp., three, one) world(s). Without loss of generality, we can also assume that, in the
case of awareness structures, at each world w ∈ W , A(w) is a subset of Sub(ϕ), the set of
subformulas of ϕ, and π(w)(p) = true only if p is a subformula of ϕ; similarly, in the case
of impossible-worlds structures, we can assume that for each impossible world w′, C(w′) is
a subset of the subformulas of ϕ. (If this is not true in M , then we can easily modify M
so that this is true without affecting the truth of ϕ or any subformula of ϕ in any world.)
Thus, we can guess a satisfying structure for ϕ and verify that it satisfies ϕ in time linear
in the length of ϕ.

4 Adding Probability

While the differences between K45, KD45−, and KD45 impossible-worlds structures may
appear minor, they turn out to be important when we add probability to the picture. As
pointed out by Cozic [2005], standard models for reasoning about probability suffer from
the same logical omniscience problem as models for knowledge. In the language considered
by Fagin, Halpern, and Megiddo [1990] (FHM from now on), there are formulas that talk
explicitly about probability. A formula such as ℓ(Primen) = 1/3 says that the probability
that n is prime is 1/3. In the FHM semantics, a probability is put on the set of worlds that
the agent considers possible. The probability of a formula ϕ is then the probability of the
set of worlds where ϕ is true. Clearly, if ϕ and ψ are logically equivalent, then ℓ(ϕ) = ℓ(ψ)
will be true. However, the agent may not recognize that ϕ and ψ are equivalent, and so
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may not recognize that ℓ(ϕ) = ℓ(ψ). Problems of logical omniscience with probability can
to some extent be reduced to problems of logical omniscience with knowledge in a logic
that combines knowledge and probability [Fagin and Halpern 1994]. For example, the fact
that an agent may not recognize ℓ(ϕ) = ℓ(ψ) when ϕ and ψ are equivalent just amounts
to saying that if ϕ ⇔ ψ is valid, then we do not necessarily want K(ℓ(ϕ) = ℓ(ψ)) to hold.
However, adding knowledge and awareness does not prevent ℓ(ϕ) = ℓ(ψ) from holding. This
is not really a problem if we interpret ℓ(ϕ) as the objective probability of ϕ; if ϕ and ψ
are equivalent, it is an objective fact about the world that their probabilities are equal, so
ℓ(ϕ) = ℓ(ψ) should hold. On the other hand, if ℓ(ϕ) represents the agent’s subjective view
of the probability of ϕ, then we do not want to require ℓ(ϕ) = ℓ(ψ) to hold. This cannot
be captured in all approaches.

To make this precise, we first clarify the logic we have in mind. Let LK,QU be LK

extended with linear inequality formulas involving probability (called likelihood formulas),
in the style of FHM. A likelihood formula is of the form a1ℓ(ϕ1) + · · · + anℓ(ϕn) ≥ c,
where a1, . . . , an and c are integers. (For ease of exposition, we restrict ϕ1, . . . , ϕn to be
propositional formulas in likelihood formulas; however, the techniques presented here can
be extended to deal with formulas that allow arbitrary nesting of ℓ and K). We give
semantics to these formulas by extending Kripke structures with a probability distribution
over the worlds that the agent considers possible. A probabilistic KD45 (resp., S5) Kripke
structure is a tuple (W,W ′, π, µ), where (W,W ′, π) is KD45 (resp., S5) Kripke structure,
and µ is a probability distribution over W ′. To interpret likelihood formulas, we first define
[[ϕ]]M = {w ∈ W | π(w)(ϕ) = true}, for a propositional formula ϕ. We then extend the
semantics of LK with the following rule for interpreting likelihood formulas:

(M,w) |= a1ℓ(ϕ1)+ · · ·+anℓ(ϕn) ≥ c iff a1µ([[ϕ1]]M ∩W ′)+ · · ·+anµ([[ϕn]]M ∩W ′) ≥ c.

Note that the truth of a likelihood formula at a world does not depend on that world; if a
likelihood formula is true at a world of a structure M , then it is true at every world of M .

FHM give an axiomatization for likelihood formulas in probabilistic structures. Aside
from propositional reasoning axioms, one axiom captures reasoning with linear inequalities.
A basic inequality formula is a formula of the form a1x1 + · · ·+ akxk + ak+1 ≤ b1y1 + · · ·+
bmym + bm+1, where x1, . . . , xk, y1, . . . , ym are (not necessarily distinct) variables. A linear
inequality formula is a Boolean combination of basic linear inequality formulas. A linear
inequality formula is valid if the resulting inequality holds under every possible assignment
of real numbers to variables. For example, the formula (2x + 3y ≤ 5z) ∧ (x − y ≤ 12z) ⇒
(3x+ 2y ≤ 17z) is a valid linear inequality formula. To get an instance of Ineq , we replace
each variable xi that occurs in a valid formula about linear inequalities by a likelihood
term of the form ℓ(ψ) (naturally, each occurrence of the variable xi must be replaced by
the same primitive expectation term ℓ(ψ)). (We can replace Ineq by a sound and complete
axiomatization for Boolean combinations of linear inequalities; one such axiomatization is
given in FHM.)

The other axioms of FHM are specific to probabilistic reasoning, and capture the defining
properties of probability distributions:

ℓ(true) = 1

ℓ(¬ϕ) = 1− ℓ(ϕ)
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ℓ(ϕ ∧ ψ) + ℓ(ϕ ∧ ¬ψ) = ℓ(ϕ)

It is straightforward to extend all the approaches in Section 2 to the probabilistic set-
ting. In this section, we only consider probabilistic awareness structures and probabilistic
impossible-worlds structures, because the interpretation of both algorithmic knowledge and
knowledge in syntactic structures does not depend on the set of worlds or any probability
distribution over the set of worlds.

A KD45 (resp., S5) probabilistic awareness structure is a tuple (W,W ′, π,A, µ) where
(W,W ′, π,A) is a KD45 (resp., S5) awareness structure and µ is a probability distribution
over the worlds in W ′. Similarly, a KD45− (resp., KD45, S5) probabilistic impossible-
worlds structure is a tuple (W,W ′, π, C, µ) where (W,W ′, π, C) is a KD45− (resp., KD45,
S5) impossible-worlds structure and µ is a probability distribution over the worlds in W ′.
Since the set of worlds that are assigned probability must be nonempty, when dealing with
probability, we must restrict to KD45 awareness structures and KD45− impossible-worlds
structures, extended with a probability distribution over the set of worlds the agent considers
possible. As we now show, adding probability to the language allows finer distinctions
between awareness structures and impossible-worlds structures.

In probabilistic awareness structures, the axioms of probability described by FHM are
all valid. For example, ℓ(ϕ) = ℓ(ψ) is valid in probabilistic awareness structures if ϕ
and ψ are equivalent formulas. Using arguments similar to those in Theorem 3.4, we can
show that ¬K¬ℓ(ϕ) = ℓ(ψ) is valid in probabilistic awareness structures. Similarly, since
ℓ(ϕ) + ℓ(¬ϕ) = 1 is valid in probability structures, ¬K(¬(ℓ(ϕ) + ℓ(¬ϕ) = 1)) is valid in
probabilistic awareness structures.

We can characterize properties of knowledge and likelihood in probabilistic awareness
structures axiomatically. Let Prob denote a substitution instance of a valid formula in
probabilistic logic (using the FHM axiomatization). By the observation above, Prob is
sound in probabilistic awareness structures. Our reasoning has to take this into account.
There is also an axiom KL that connects knowledge and likelihood:

Kϕ⇒ ℓ(ϕ) > 0. (KL)

Let AXPVer denote the axiom system consisting of {Prop,MP ,Prob,KL,Ver}. Let DCP

be the following strengthening of DC , somewhat in the spirit of KC :

(Kϕ1 ∧ . . . ∧Kϕn) ⇒ (ψ1 ∨ . . . ∨ ψm)

if AXPVer ⊢ ϕ1 ∧ . . . ∧ ϕn ⇒ (ψ1 ∨ . . . ∨ ψm)

and ψ1, . . . , ψm are likelihood formulas.

(DCP )

Finally, even though Ver is not sound in KD45 probabilistic awareness structures, a weaker
version, restricted to likelihood formulas, is sound, since there is a single probability distri-
bution in probabilistic awareness structures. Let WVer be the following axiom:

Kϕ⇒ ϕ if ϕ is a likelihood formula. (WVer)

Let AXPDC = {Prop,MP ,Prob,DCP ,WVer ,KL} be the axiom system obtained by re-
placing DC in AXDC by DCP and adding Prob, WVer , and KL.
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Theorem 4.1:

(a) AXPDC is a sound and complete axiomatization of LK,QU with respect to KD45 prob-
abilistic awareness structures.

(b) AXPVer is a sound and complete axiomatization of LK,QU with respect to S5 probabilis-
tic awareness structures.

Proof. We first prove soundness. We have already argued that Prob is sound in KD45 proba-
bilistic awareness structures. It is easy to see thatKL is sound: letM = (W,W ′, π,A, µ) be a
KD45 probabilistic awareness structure, and let w be a world inW such that (M,w) |= Kϕ.
This means that ϕ is true at every world w′ ∈W ′, and therefore, µ([[ϕ]]M∩W ′) = µ(W ′) > 0,
that is, (M,w) |= ℓ(ϕ) > 0. Similarly, WVer is sound: let M = (W,W ′, π,A, µ) be a KD45
probabilistic awareness structure, and let w be a world in W such that (M,w) |= Kϕ, with
ϕ a likelihood formula. This means that ϕ is true at every world w′ ∈W ′, and because ϕ is
a likelihood formula, the truth of ϕ does not depend on the world. Thus, if ϕ is true at some
world, it is true at every world; in particular, it is true at w, so that (M,w) |= ϕ, as required.
Finally, we show soundness of DCP , using an argument similar to that in the proof of The-
orem 3.5. Suppose that M = (W,W ′, π,A, µ) is a KD45 probabilistic awareness structure,
w ∈W , AXP

Ver ⊢ (ϕ1 ∧ . . .∧ϕn) ⇒ (ψ1 ∨ . . .∨ψm), for likelihood formulas ψ1, . . . , ψm, and
(M,w) |= Kϕ1 ∧ . . .∧Kϕn. Thus, (M,w′′) |= ϕ1 ∧ . . .∧ϕn for all w′′ ∈W ′. But since each
world in W ′ is a model of AXPVer , if w

′ ∈W ′, we must have (M,w′) |= ψ1 ∨ . . . ∨ψm. Since
W ′ 6= ∅, let w′ be an element of W ′. For some j ∈ {1, . . . ,m}, we must have (M,w′) |= ψj .
Because ψj is a likelihood formula, and therefore its truth does not depend on the world,
if ψj is true at some world, then ψj is true at every world. In particular, (M,w) |= ψj , and
it follows that (M,w) |= ψ1 ∨ . . . ∨ ψm, as desired.

The soundness of Ver in S5 probabilistic awareness structures follows easily by induction
on the structure of ϕ in Kϕ, using the fact that WVer—the special case of Ver when ϕ is
a likelihood formula—is sound in probabilistic awareness structures, and the argument for
the soundness of Ver in S5 awareness structures.

For completeness, first consider part (a). Completeness follows from combining tech-
niques from the FHM completeness proof with those of Theorem 3.5. We briefly sketch
the main ideas here. Define SubP (ϕ) to be the least set containing ϕ, closed under sub-
formulas, and containing ℓ(ψ) > 0 if it contains a propositional formula ψ. It is easy to
see that |SubP (ϕ)| ≤ 2|ϕ|. Suppose that ϕ is consistent with AXPDC . Let F be a maximal
AXPDC -consistent subset of SubP (ϕ) that includes ϕ. Let S consist of all truth assignments
to primitive propositions. Using techniques of FHM, we can show that there must be a
probability measure µ on S that makes all the likelihood formulas in F true. We remark for
future reference that the FHM proof shows that we can take the set of truth assignments
which get positive probability to be polynomial in the size of |ϕ|, and we can assume that
the probability is rational, with a denominator whose size is polynomial in |ϕ|.

Let H = {ψ | Kψ ∈ F} ∪ {ψ | ψ ∈ F,ψ is a likelihood formula}. Arguments almost
identical to those in Theorem 3.5 show that H must be AXPDC -consistent. Hence there
is a maximal AXPDC -consistent subset F ′ of SubP (ϕ) that contains H. We now construct
a KD45 awareness structure ({w} ∪W ′,W ′,A, µ′) as follows. There is a world wv in W ′

corresponding to each truth assignment v such that µ(v) > 0 and a world w′ corresponding
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to F ′; we define µ′ onW ′ so that µ′(w′) = 0 and µ′(wv) = µ(v). Define π so that π(wv) = v,
π(w)(p) = true iff p ∈ F and π(w′)(p) = true iff p ∈ F ′. Finally, define A so that
A(wv) = ∅, A(w′) = {ψ | Kψ ∈ F ′} and A(w) = {ψ | Kψ ∈ F}. Now the same ideas
as in the proof of Theorem 3.5 show that, for each formula ψ ∈ SubP (ϕ) we have that
(M,w′) |= ψ iff ψ ∈ F ′ and (M,w) |= ψ iff ψ ∈ F . Thus, (M,w) |= ϕ.

The proof of completeness for part (b) is similar in spirit; the modifications required are
exactly those needed to prove Theorem 3.5(c). We leave details to the reader.

Things change significantly when we move to probabilistic impossible-worlds structures.
In particular, Prob is no longer sound. For example, even if ϕ ⇔ ψ is valid, ℓ(ϕ) = ℓ(ψ)
is not valid, because we can have an impossible possible world with positive probability
where both ϕ and ¬ψ are true. Similarly, ℓ(ϕ) + ℓ(¬ϕ) = 1 is not valid. Indeed, both
ℓ(ϕ) + ℓ(¬ϕ) > 1 and ℓ(ϕ) + ℓ(¬ϕ) < 1 are both satisfiable in impossible-worlds structures:
the former requires that there be an impossible possible world that gets positive probability
where both ϕ and ¬ϕ are true, while the latter requires an impossible possible world with
positive probability where neither is true. As a consequence, it is not hard to show that
both K¬(ℓ(ϕ) = ℓ(ψ)) and K(¬(ℓ(ϕ)+ℓ(¬ϕ) = 1)) are satisfiable in such impossible-worlds
structures.4 In fact, the only constraint on probability in probabilistic impossible-worlds
structures is that it must be between 0 and 1. This constraint is expressed by the following
axiom Bound :

ℓ(ϕ) ≥ 0 ∧ ℓ(ϕ) ≤ 1. (Bound)

We can characterize properties of knowledge and likelihood in probabilistic impossible-
worlds structures axiomatically. Let AXB

imp = {Prop,MP , Ineq ,Bound ,KL,WVer}. We

can think of AXB
imp as being the core of probabilistic reasoning in impossible-worlds struc-

tures.
Let AXB

Ver denote the axiom system consisting of {Prop,MP , Ineq ,Bound ,Ver ,KL}.
Let KCP denote the following extension of KC :

(Kϕ1 ∧ . . . ∧Kϕn) ⇒ (ψ1 ∨ . . . ∨ ψm)

if AXPVer ⊢ ϕ1 ∧ . . . ∧ ϕn ⇒ (ψ1 ∨ . . . ∨ ψm)

and ψj is either a likelihood formula or of the form Kψ′, for j = 1, . . . ,m.

(KCP )

Here again, DCP is a special case ofKCP . Let AXBKC = {Prop,MP ,Bound ,KCP ,WVer ,KL}
obtained by replacing KC in AXKC by KCP and adding Bound , WVer and KL.

Theorem 4.2:

(a) AXBimp is a sound and complete axiomatization of LK,QU with respect to KD45− prob-
abilistic impossible-worlds structures.

(b) AXBKC is a sound and complete axiomatization of LK,QU with respect to KD45 prob-
abilistic impossible-worlds structures.

4We remark that Cozic [2005], who considers the logical omniscience problem in the context of prob-
abilistic reasoning, makes somewhat similar points. Although he does not formalize things quite the way
we do, he observes that, in his setting, impossible-worlds structures seem more expressive than awareness
structures.
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(c) AXBVer is a sound and complete axiomatization of LK,QU with respect to S5 probabilis-
tic impossible-worlds structures with probabilities.

Proof. We first prove soundness. The argument is similar to the argument for soundness in
Theorem 4.1. That KL and WVer are sound in probabilistic impossible-worlds structures
follows from the same argument as in Theorem 4.1. To show that Bound is sound, note
that for any probabilistic impossible-worlds structure M , [[ϕ]]M ∩W ′ ⊆ W ′, so that 0 ≤
µ([[ϕ]]M ) ≤ 1. Because this is independent of the actual world, (M,w) |= ℓ(ϕ) ≥ 0∧ℓ(ϕ) ≤ 1
holds.

We show soundness of KCP with respect to KD45 probabilistic impossible-worlds struc-
tures. For suppose that M = (W,W ′, π, C, π) is a KD45 probabilistic impossible-worlds
structure, w ∈W , AXVer ⊢ (ϕ1∧. . .∧ϕn) ⇒ (ψ1∨. . .∨ψm), where each ψj either a likelihood
formula or of the form Kψ′, and (M,w) |= Kϕ1∧ . . .∧Kϕn. Thus, (M,w′′) |= ϕ1∧ . . .∧ϕn
for all w′′ ∈ W ′. But since each world in W ∩W ′ is a model of AXP

Ver , if w
′ ∈ W ∩W ′,

we must have (M,w′) |= ψ1 ∨ . . . ∨ ψm. Moreover, since W ∩W ′ 6= ∅, there must be some
world w′ ∈W ∩W ′. It follows that, for some j ∈ {1, . . . ,m}, (M,w′) |= ψj . There are two
cases. If ψj is a likelihood formula, then its truth does not depend on the world, so that if
ψj is true at some world, then ψj is true at every world. In particular, (M,w) |= ψj, and
it follows that (M,w) |= ψ1 ∨ . . . ∨ψm, as desired. If ψj is a formula of the form Kψ′, then
(M,w′′) |= ψ′ for all w′′ ∈ W ′, so (M,w) |= Kψ′, that is, (M,w) |= ψj . It follows that
(M,w) |= ψ1 ∨ . . . ∨ ψm, as desired.

Finally, as in the proof of Theorem 4.1, the soundness of Ver in S5 probabilistic
impossible-worlds structures follows by induction on the structure of ϕ in Kϕ.

For completeness, we prove part (a). Given a formula ϕ consistent with AXimp , let F be a
maximal AXimp-consistent subset of SubP (ϕ) that includes ϕ. Consider the basic likelihood
formulas in F . ¿From these, we can get a system of linear inequalities by replacing each
term ℓ(ψ) by a variable xψ. We add an inequality 0 ≤ xψ ≤ 1 for each formula ψ ∈ SubP (ϕ).
Using the arguments of FHM, we can show that this set of inequalities must be satisfiable
(otherwise F would not be AXimp consistent.) Take a solution. Without loss of generality,
we have subformulas listed so that xψ1

≤ xψ2
≤ . . . ≤ xψn

. Let n∗ be the least m such
that xψm

= 1; if xψn
< 1, then let n∗ = n + 1. Consider a probabilistic impossible-worlds

structure ({w}, {w1, . . . , wn+1, w}, π, C, µ), where we define π, C and µ as follows:

• π(w)(p) = true iff p ∈ F ;

• µ(w1) = xψ1
, µ(wj) = xψj

− xψj−1
for j = 2, . . . , n, and µ(wn+1) = 1− µ(wn);

• C(wj) = {ψj , . . . , ψn} for j = 1, . . . , n∗

• C(wj) = C(wn∗) if j = n∗ + 1, . . . , n+ 1.

We leave it to the reader to show that (M,w) |= ϕ. The proof for parts (b) and (c) is
similar in spirit and left to the reader.

Observe that Theorem 4.2 is true even though probabilities are standard in impossible
worlds: the probabilities of worlds still sum to 1. It is just the truth assignment to formulas
that behaves in a nonstandard way in impossible worlds. Intuitively, while the awareness
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approach is modeling certain consequences of resource-boundedness in the context of knowl-
edge, it does not do so for probability. On the other hand, the impossible-worlds approach
seems to extend more naturally to accommodate the consequences of resource-boundedness
in probabilistic reasoning; see Section 5 for more discussion of this issue.

Corollary 4.3: The satisfiability problem for the language LK,QU with respect to KD45
probabilistic awareness structures (resp., S5 probabilistic awareness structures, KD45− prob-
abilistic impossible-worlds structures, KD45 probabilistic impossible worlds structures, S5
probabilistic impossible-worlds structures) is NP-complete.

Proof. Again, NP-hardness follows immediately from the observation that LK,QU con-
tains propositional logic. The fact that the satisfiability problem with respect to each
of these classes of structures is in NP follows from the constructions of Theorems 4.1
and 4.2, which show that if a formula ϕ is satisfiable with respect to KD45 probabilis-
tic awareness structures (resp., S5 probabilistic awareness structures, KD45− probabilistic
impossible-worlds structures, KD45 probabilistic impossible worlds structures, S5 proba-
bilistic impossible-worlds structures), then it is consistent with respect to AXP

DC (resp.,
AXPVer , AXB

imp , AXB
KC , AXB

Ver ) which in turn implies that it is satisfiable in a KD45
probabilistic awareness structure (resp., S5 probabilistic awareness structure, KD45− prob-
abilistic impossible-worlds structure, KD45 probabilistic impossible worlds structure, S5
probabilistic impossible-worlds structure)M = (W,W ′, . . .) with a small number of worlds—
polynomial in the length of ϕ in each case. Just like in the proof of Corollary 3.6, without loss
of generality, we can assume that, in the case of probabilistic awareness structures, at each
world w ∈W , A(w) is a subset of Sub(ϕ), the set of subformulas of ϕ, and π(w)(p) = true

only if p is a subformula of ϕ; similarly, in the case of probabilistic impossible-worlds struc-
tures, we can assume that for each impossible world w′, C(w′) is a subset of the subformulas
of ϕ. Finally, using the arguments of FHM, we can argue without loss of generality that
the probability distributions µ are described in size polynomial in the length of ϕ. (The
probability distributions in all structures can be taken to assign small—polynomial-size—
rational probabilities to every world, where the size of a rational number is the sum of the
sizes of the numerator and denominator when they are relatively prime.) Thus, we can
guess a satisfying structure for ϕ and verify that it satisfies ϕ in time polynomial in the
length of ϕ.

5 Pragmatic Issues

Even in settings where the four approaches are equi-expressive, they model lack of logical
omniscience quite differently. We thus have to deal with different issues when attempting
to use one of them in practice. For example, if we are using a syntactic structure to
represent a given situation, we need to explain where the function C is coming from; with
an awareness structure, we must explain where the awareness function is coming from; with
an algorithmic knowledge structure, we must explain where the algorithm is coming from;
and with an impossible-worlds structure, we must explain what the impossible worlds are.

There seem to be three quite distinct intuitions underlying the lack of logical omniscience
As we now discuss, these intuitions can guide the choice of approach, and match closely
the solutions described above. We discuss, for each intuition, the extent to which each
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of the approaches to dealing with logical omniscience can capture that intuition. While
the discussion in this section is somewhat informal, we believe that these observations will
prove important when actually trying to decide how to model lack of logical omniscience in
practice.

5.1 Lack of Awareness

The first intuition is lack of awareness of some primitive notions: for example, when trying
to consider possible outcomes of an attack on Iraq, the worlds can be taken to represent
the outcomes. An agent simply may be unable to contemplate some of the outcomes of
an attack, so cannot consider them possible, let alone know that they will happen or not
happen. This can be modeled reasonably well using an awareness structure where the
awareness function is generated by primitive propositions. We assume that the agent is
unaware of certain primitive propositions, and is unaware of exactly those formulas that
contain a primitive proposition of which the agent is unaware. This intuition is quite
prevalent in the economics community, and all the standard approaches to modeling lack
of logical omniscience in the economics literature [Modica and Rustichini 1994; Modica and
Rustichini 1999; Dekel, Lipman, and Rustichini 1998; Heifetz, Meier, and Schipper 2003]
can essentially be understood in terms of awareness structures where awareness is generated
by primitive propositions [Halpern 2001; Halpern and Rêgo 2005].

If awareness is generated by primitive propositions, constructing an awareness structure
corresponding to a particular situation is no more (or less!) complicated that constructing
a Kripke structure to capture knowledge without awareness. Determining the awareness
sets for notions of awareness that are not generated by primitive propositions may be more
complicated. It is also worth stressing that an awareness structure must be understood as
the modeler’s view of the situation. For example, if awareness is generated by primitive
propositions and agent 1 is not aware of a primitive proposition p, then agent 1 cannot
contemplate a world where p is true (or false); in the model from agent 1’s point of view,
there is no proposition p.

How do the other approaches fare in modeling lack of awareness? To construct a syn-
tactic structure, we need to know all sentences that an agent knows before constructing the
model. This may or may not be reasonable. But it does not help one discover properties
of knowledge in a given situation. As observed in [Fagin, Halpern, Moses, and Vardi 1995],
the syntactic approach is really only a representation of knowledge. Algorithmic knowledge
can deal with lack of awareness reasonably well, provided that there is an algorithm Aa

for determining what the agent is aware of and an algorithm Ak for determining whether
a formula is true in every world in W ′, the set of worlds that the agent considers possible.
If so, given a query ϕ, the algorithmic approach would simply invoke Aa to check whether
the agent is aware of ϕ; if so, then the agent invokes Ak. For example, if awareness is
generated by primitive propositions, then Aa is the algorithm that, given query ϕ, checks
whether all the primitive propositions in ϕ are ones the agent is aware of; and we can take
Ak to be the algorithm that does model checking to see if ϕ is true in every world of W ′.
(This can be done in time polynomial in W ′; see [Fagin, Halpern, Moses, and Vardi 1995].)
In impossible-worlds structures, we can interpret lack of awareness of ϕ as meaning that
neither ϕ nor ¬ϕ is true at all worlds the agent considers possible. Thus, if there is any
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nontrivial lack of awareness, then all the worlds that the agent considers possible will be
impossible worlds. However, these impossible worlds have a great deal of structure: we can
require that for all the formulas ϕ that the agent is aware of, exactly one of ϕ and ¬ϕ is true
at each world the agent considers possible. As we observed earlier, an awareness structure
must be viewed as the modeler’s view of the situation. Arguably, the impossible-worlds
structure better captures the agent’s view.

5.2 Lack of Computational Ability

The second intuition is computational: an agent simply might not have the resources to
compute the required answer. But then the question is how to model this lack of compu-
tational ability. There are two cases of interest, depending on whether we have an explicit
algorithm in mind. If we have an explicit algorithm, then it is relatively straightforward.
For example, Konolige [1986] uses a syntactic approach and gives an explicit characteri-
zation of C by taking it to be the set of formulas that can be derived from a fixed initial
set of formulas by using a sound but possibly incomplete set of inference rules. Note that
Konolige’s approach makes syntactic knowledge an instance of algorithmic knowledge. (See
also Pucella [2006] for more details on knowledge algorithms given by inference rules.)

Algorithmic knowledge can be viewed as a generalization of Konolige’s approach in
this setting, since it allows for the possibility that the algorithm used by the agent to
compute what he knows may not be easily expressible as a set of inference rules over
formulas. For example, Berman, Garay, and Perry [1989] implicitly use a particular form
of algorithmic knowledge in their analysis of Byzantine agreement (this is the problem of
getting all nonfaulty processes in a system to coordinate, despite the presence of failures).
Roughly speaking, they allow agents to perform limited tests based on the information
they have; agents know only what follows from these limited tests. But these tests are
not characterized axiomatically. As shown by Halpern and Pucella [2002], algorithmic
knowledge is also a natural way to capture adversaries in security protocols.

Example 5.1: Security protocols are generally analyzed in the presence of an adversary
that has certain capabilities for decoding the messages he intercepts. There are of course
restrictions on the capabilities of a reasonable adversary. For instance, the adversary may
not explicitly know that he has a given message if that message is encrypted using a key that
the adversary does not know. To capture these restrictions, Dolev and Yao [1983] gave a
now-standard description of the capabilities of adversaries. Roughly speaking, a Dolev-Yao
adversary can decompose messages, or decipher them if he knows the right keys, but cannot
otherwise “crack” encrypted messages. The adversary can also construct new messages by
concatenating known messages, or encrypting them with a known encryption key.

Algorithmic knowledge is a natural way to capture the knowledge of a Dolev-Yao ad-
versary [Halpern and Pucella 2002]. We can use a knowledge algorithm A

DY to compute
whether the adversary can extract a message m from a set H of messages that he has
intercepted, where the extraction relation H ⊢DY m is defined by following inference rules:

m ∈ H

H ⊢DY m

H ⊢DY {m}k H ⊢DY k

H ⊢DY m

H ⊢DY m1 ·m2

H ⊢DY m1

H ⊢DY m1 ·m2

H ⊢DY m2
,
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where m1 ·m2 is the concatenation of messages m1 and m2, and {m}k is the encryption of
message m with key k.

The knowledge algorithm A
DY simply implements a search for the derivation of a message

m from the messages that the adversary has received and the initial set of keys, using
the inference rules above. More precisely, we assume the language has formulas has(m),
interpreted as “the agent possesses message m”. When queried for a formula has(m),
the knowledge algorithm A

DY simply checks if H ⊢DY m, where H is the set of messages
intercepted by the adversary. Thus, the formula K(has(m)), which is true if and only if
A
DY says “Yes” to query has(m), that is, if and only if H ⊢DY m, says that the adversary

can extract m from the messages he has intercepted.

However, even when our intuition is computational, at times the details of the algorithm
do not matter (and, indeed, may not be known to the modeler). In this case, awareness
may be more useful than algorithmic knowledge.

Example 5.2: Suppose that Alice is trying to reason about whether or not an eavesdrop-
per Eve has managed to decrypt a certain message. The intuition behind Eve’s inability
to decrypt is computational, but Alice does not know which algorithm Eve is using. An
algorithmic knowledge structure is typically appropriate if there are only a few algorithms
that Eve might be using, and her ability to decrypt depends on the algorithm.5 On the
other hand, Alice might have no idea of what Eve’s algorithm is, and might not care. All
that matters to her analysis is whether Eve has managed to decrypt. In this case, using a
syntactic structure or an awareness structure seems more appropriate. Suppose that Alice
wants to model her uncertainty regarding whether Eva has decrypted the message. She
could then use an awareness structure with some possible worlds where Eve is aware of the
message, and others where she is not, with the appropriate probability on each set. Alice
can then reason about the likelihood that Eve has decrypted the message without worrying
about how she decrypted it.

What about the impossible-worlds approach? It cannot directly represent an algorithm,
of course. However, if there is algorithm A that characterizes an agent’s computational
process, then we can simply takeW ′ = {w′} and define C(w′) = {ϕ | A(ϕ) = “Yes”}. Indeed,
we can give a general computational interpretation of the impossible-worlds approach. The
worlds w such that C(w) are precisely those worlds where the algorithm answers “Yes” when
asked about ϕ. If neither ϕ nor ¬ϕ is in C(w), that just means that the algorithm was not
able to determine whether ϕ was true or false. If the algorithm answers “Yes” to both ϕ
and ¬ϕ, then clearly the algorithm is not sound, but it may nevertheless describe how a
resource-bounded agent works.

This intuition also suggests how we can model the lack of computational ability illus-
trated by Example 5.2 using impossible worlds. If cont(m) = ϕ is the statement that the
content of the message m is ϕ, then in a world where Alice cannot decrypt ϕ, neither
cont(m) = ϕ and ¬(cont(m) = ϕ) would be true.

5What is required here is an algorithmic knowledge structure with two agents. There will then be different
algorithms for Eve associated with different states. We omit here the straightforward details of how this can
be done; see [Halpern, Moses, and Vardi 1994].
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5.3 Imperfect Understanding of the Model

Sometimes an agent’s lack of logical omniscience is best thought of as stemming from
“mistakes” in constructing the model (which perhaps are due to lack of computational
ability).

Example 5.3: Suppose that Alice does not know whether a number n is prime. Al-
though her ignorance regarding n’s primality can be viewed as computationally based—
given enough time and energy, she could in principle figure out whether n is prime—she
is not using a particular algorithm to compute her knowledge (at least, not one that can
be easily described). Nor can her state of mind be modeled in a natural way using an
awareness structure or a syntactic structure. Intuitively, there should at least two worlds
she considers possible, one where n is prime, and one where n is not. However, n is either
prime or it is not. If n is actually prime, then there cannot be a possible world where n is
not prime; similarly, if n is composite, there cannot be a possible world where n is prime.
This problem can be modeled naturally using impossible worlds. Now there is no problem
having a world where n is prime (which is an impossible world if n is actually composite)
and a world where n is composite (which is an impossible world if n is actually prime).
In this structure, it is also seems reasonable to assume that Alice knows that she does not
know that n is prime (so that the formula ¬KPrimen is true even in the impossible worlds).

It is instructive to compare this with the awareness approach. Suppose that n is indeed
prime and an external modeler knows this. Then he can describe Alice’s state of mind with
one world, where n is prime, but Alice is not aware that n is prime. Thus, ¬KPrimen holds
at this one world. But note that this is not because Alice considers it possible that n is not
prime; rather, it is because Alice cannot compute whether n is prime. If Alice is aware of
the formula ¬KPrimen at this one world, then K¬KPrimen also holds. Again, we should
interpret this as saying that Alice knows that she cannot compute whether n is prime.

The impossible-worlds approach seems like a natural one in Example 5.3 and many
other settings. As we saw, awareness in this situation does not quite capture what is going
on here. Algorithmic knowledge fares somewhat better, but it would require us to have a
specific algorithm in mind; in Example 5.3, this would force us to interpret “knows that a
number is prime” as “knows that a number is prime as tested by a particular factorization
algorithm”.

The impossible-worlds approach can sometimes be difficult to apply, however, because
it is not always clear what impossible worlds to take. While there has been a great deal of
discussion (particularly in the philosophy literature) concerning the “metaphysical status”
of impossible worlds (cf. [Stalnaker 1996]), the pragmatics of generating impossible worlds
has received comparatively little attention. Hintikka [1975] argues that Rantala’s [1975]
urn models are suitable candidates for impossible worlds. In decision theory, Lipman [1999]
uses impossible-worlds structures to represent the preferences of an agent who may not
be able to distinguish logically equivalent outcomes; the impossible worlds are determined
by the preference order. None of these approaches address the problem of generating the
impossible worlds even in a simple example such as Example 5.3, especially if the worlds
have some structure.

We view impossible worlds as describing the agent’s subjective view of a situation. The
modeler may know that these impossible worlds are truly impossible, but the agent does
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not. In many cases, the intuitive reason that the agent does not realize that the impossible
worlds are in fact impossible is that the agent does not look carefully at the worlds. Consider
Example 5.3. Let Primen, for various choices of n, be a primitive proposition saying that
the number n is prime. Suppose that the worlds are models of arithmetic, which include
as domain elements the natural numbers with multiplication defined on them. If Primen
is interpreted as being true in a world when there do not exist numbers n1 and n2 in that
world such that n1 × n2 = n, then how does the agent conceive of the impossible worlds?
If the agent were to look carefully at a world where Primen holds, he might realize that
there are in fact two numbers n1 and n2 such that n1 × n2 = n. But if n is not prime,
how do we capture the fact that the agent “mistakenly” constructed a world where there
are numbers n1 and n2 such that n1×n2 = n if we also assume that the agent understands
basic multiplication?

We now sketch a new approach to constructing an impossible-worlds structure that
seems appropriate for such examples. The approach is motivated by the observation that
the set of worlds in a Kripke structure is explicitly specified, as is the truth assignment on
these worlds. Introspectively, this is not the way in which we model situations. Instead,
the set of possible worlds is described implicitly, as is the interpretation π, as the set of
worlds satisfying some condition.6 This set of worlds may well include some impossible
worlds. The impossible-worlds structure corresponding to a situation, therefore, is made up
of all worlds satisfying the implicit description, perhaps refined so that “clearly impossible”
worlds are not considered. What makes a world clearly impossible should be determined by
a simple test; for example, such a simple test might determine that 3 is prime, but would
not be able to determine that 224036583 − 1 is prime.

We can formalize this construction as follows. An implicit structure is a tuple I =
(S, T, C), where S is a set of possible worlds, T is a filter on worlds (a test on worlds
that returns either true or false), and C associates with every world in S a set (possibly
inconsistent) of propositional formulas. Test T returns true for every world in S that the
agent considers possible. An implicit structure I = (S, T, C) induces an impossible-worlds
structure MI = (W,W ′, π, C) given by:

W = {w ∈ S | C(w) is consistent}

W ′ = {w ∈ S | T (w) = true}

π(w) = C(w)|Φ for w ∈W

C = C|(W ′
−W ).

We can refine the induced impossible-worlds structure by alotting more resources to test T .
Intuitively, as an agent performs more introspection, she can recognize more worlds as being
impossible. (Manne [2005] investigates a related approach, using a temporal structure at
each world to capture the evolution of knowledge as the agent introspects over time.)

Consider the primality example again. The agent is likely to care about the primality of
only a few numbers, say n1, . . . , nk. Let Φ = {Primen1

, . . . ,Primenk
}. The agent’s inability

to compute whether n1, . . . , nk are prime is described implicitly by having worlds where any
combination of them is prime. The details of how multiplication works in a world is not

6In multiagent settings, where the worlds that the agent considers possible are defined by an accessibility
relation, we expect the accessibility relation to be described implicitly as well.
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specified in the implicit description. Thus, the implicit structure I = (S, T, C) corresponding
to this description will have S consisting of 2k worlds, where each world is a standard model
of arithmetic together with a truth assignment to the primitive propositions in Φ. The set
of formulas C(w) consists of all propositional formulas true under the truth assignment at w.
The agent realizes that all but one of these worlds is impossible, but cannot compute which
one is the possible world. Thus, we take T (w) = true for all worlds w. Of course, after
doing some computation, the agent may realize that, say, n1 is prime and n2 is composite.
The agent would then refine the model by taking T to consider possible only worlds in
which n1 is prime and n2 is composite.

The use of an implicit description as a recipe for constructing possible (and impossible)
worlds is quite general, as the following example illustrates.

Example 5.4: Suppose that we have a database of implications: rules of the form C1 ⇒
C2, where C1 and C2 are conjunctions of literals—primitive propositions and their negation.
Suppose that the vocabulary of the conclusions of these rules is disjoint from the vocabulary
of the antecedents. This is a slight simplification of, for example, digital rights management
policies, where the conclusion typically has the form Permitted(a,b) or ¬Permitted(a,b)
for some agent a and action b, and Permitted is not allowed to appear in the antecedent
of rules [Halpern and Weissman 2003]. Rather than explicitly constructing the worlds
compatible with the rules, a user might construct a naive implicit description of them.
More specifically, suppose that we have a finite set of agents, say a1, . . . , an, and a finite
set of actions, say b1, . . . , bm. Consider the implicit structure I = (S, T, C), where each
world w in S is a truth assignment to the atomic formulas that appear in the antecedents
of rules, augmented with all the literals in the conclusions of rules whose antecedent is
true in w; furthermore, take T (w) = true for all w ∈ S, and C(w) to be all propositional
formulas true under the truth assignment at world w. Thus, for example, if a rule says
Student(a) ∧ Female(a) ⇒ Permitted(a,Play-sports), then in a world where Student(a)
and Female(a) are true, then so is Permitted(a,Play -sports). Similarly, if we have a rule
that says Faculty(a) ∧ Female(a) ⇒ ¬Permitted(a,Play -sports), then in a world where
Faculty(a) and Female(a) are true, ¬Permitted(a,Play-sports) as well. Of course, in a
world Faculty(a), Student(a), and Female(a) are all true, both Permitted(a,Play -sports)
and ¬Permitted(a,Play-sports) are true; this is an impossible world. This type of implicit
description (and hence, impossible-worlds structure) should also be useful for characterizing
large databases, when it is not possible to list all the tables explicitly.

6 Conclusion

Many solutions have been proposed to the logical omniscience problem, differing as to the
intuitions underlying the lack of logical omniscience. There has been comparatively little
work on comparing approaches. We have attempted to do so here, focussing on two aspects,
expressiveness and pragmatics, for four popular approaches.

In comparing the expressive power of the approaches, we started with the well-known
observation that the approaches are equi-expressive in the propositional case. However,
this observation is true only if we allow the agent not to consider any world possible. If we
require that at least one world be possible, then we get a difference in expressive power.
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This is particularly relevant when we have probabilities, because there has to be at least
one world over which to assign probability. Indeed, when considering logical omniscience
in the presence of probability, there can be quite significant differences in expressive power
between the approaches, particularly awareness and impossible worlds.

Considering the pragmatics of logical omniscience, we identified some guiding principles
for choosing an approach to model a situation, based on the source of the lack of logical
omniscience in that situation. As we show, coming up with an appropriate structure can
be nontrivial. We illustrate a general approach to deriving an impossible-worlds structure
based on an implicit description of the situation, which seems to be appropriate for a number
of situations of interest. Our discussion suggests that the impossible-worlds approach may
be particularly appropriate for representing an agent’s subjective view of the world.
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