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Abstract

We develop a new automated reasoning technique for the situation calculus
that can handle a class of queries containing universal quanti�cation over
situation terms. Although such queries arise naturally in many important
reasoning tasks, they are di�cult to automate in the situation calculus due
to the presence of a second-order induction axiom. We show how to reduce
queries about property persistence, a common type of universally-quanti�ed
query, to an equivalent form that does not quantify over situations and so is
amenable to existing reasoning techniques. Our algorithm replaces induction
with a meta-level �xpoint calculation; crucially, this calculation uses only
�rst-order reasoning with a limited set of axioms. The result is a powerful new
tool for verifying sophisticated domain properties in the situation calculus.

Keywords: Situation Calculus, Automated Reasoning, Property
Persistence

1. Introduction

The situation calculus is one of the most popular and in�uential AI for-
malisms for reasoning about action and change, having found application in
a wide variety of both theoretical and practical works [5, 6, 9, 26, 27, 30]. A
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major contributor to the success of the formalism is that it combines a pow-
erful modelling language built on �rst-order logic with easily implementable
techniques for e�ective automated reasoning.

A key challenge when working with the situation calculus is managing
this balance between expressivity and e�ectiveness. An induction axiom
is used to de�ne the structure of situation terms, so answering arbitrary
queries requires reasoning in second-order logic. While certain special cases
are known to be decidable [31], such reasoning is prohibitively expensive in
general [24].

If queries are restricted to certain syntactic forms, it is possible to obtain
much more e�ective reasoning procedures � for example, queries restricted
to existential quanti�cation over situations can be answered using only �rst-
order logic [23], while queries containing only ground situation terms permit
special-purpose techniques such as regression [26].

However, there are many important reasoning tasks that require universal
quanti�cation over situations, for which the situation calculus currently o�ers
no e�ective reasoning tools. One simple example is the problem of goal
impossibility � establishing that all possible situations fail to satisfy a goal.
In this paper we study a subset of universally-quanti�ed queries which we
refer to as property persistence queries : under a particular situation calculus
theory D, and given some formula φ and situation σ, determine whether φ
will hold in all situations in the future of σ:

D |= ∀s : σ v s → φ[s]

The need for second-order logic has traditionally limited automated reasoning
about such queries. We introduce a new approach to property persistence
that is similar in spirit to the standard regression operator, by de�ning a
meta-level operator PD such that φ persists at σ if and only if PD(φ) holds
at σ. We term the resulting formula the persistence condition of φ and
show how to calculate it as a �xpoint of applications of an operator based
on regression; crucially, this calculation requires only �rst-order logic and a
limited set of axioms. The persistence condition is also guaranteed to be in
a form amenable to existing automated reasoning techniques.

Importantly, our results do not require restrictions on the domain theory
D � they are generally applicable to the full �rst-order situation calculus,
and are based purely on standard �rst-order reasoning techniques.

The result is a powerful new technique for exploring sophisticated domain
properties in the situation calculus. It allows some second-order aspects of
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the theory to be �factored out� and handled using a special-purpose algo-
rithm. The technique is always sound, and we show that it is complete for
important standard variants of the situation calculus. Perhaps most impor-
tantly, it builds upon and integrates well with standard techniques for e�ec-
tive automated reasoning, so our technique is directly applicable to existing
theories and systems based on the situation calculus.

A preliminary version of this paper has previously appeared as [15]; this
revised edition includes extended and additional proofs, a more comprehen-
sive discussion of the termination properties of our algorithm, and a detailed
example of how the persistence condition can be used to reason about goal
impossibility � a deceptively simple task which is nonetheless beyond the
reach of existing reasoning techniques.

The paper now proceeds with a brief review of the situation calculus,
before formally de�ning the persistence condition and establishing its e�ec-
tiveness as a reasoning tool. Readers familiar with the situation calculus
are encouraged to review the background material in Sections 2 and 4, as
we make several small modi�cations to the standard notation that greatly
simplify the development of our approach: the unique names axioms Duna
are incorporated into a general background theory Dbg; the Poss �uent is
subsumed by a general class of action description predicates de�ned in Dad;
we parameterise the �future situations� predicate s @ s′ to assert that all
intermediate actions satisfy a given predicate using s <α s

′; and we use the
single-step variant of the regression operator, with corresponding de�nitions
of regressable formulae.

2. The Situation Calculus

The situation calculus is a powerful formalism for describing and rea-
soning about dynamic worlds. It was �rst introduced by McCarthy and
Hayes [22] and has since been signi�cantly expanded and formalised [23, 26].
We use the particular variant due to Reiter et. al. at the University of
Toronto, sometimes called the �Toronto school� or �situations-as-histories�
version. The formalisation below is based on the standard de�nitions from
[16, 23, 25], with some simple modi�cations.

The language Lsitcalc of the situation calculus is a many-sorted language
of second-order logic with equality, containing the following disjoint sorts:

• Action terms denote individual instantaneous events that can cause
the state of the world to change;
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• Situation terms are histories of the actions that have occurred in the
world, with the initial situation represented by S0 and successive situ-
ations built using the function do : Action× Situation→ Situation;

• Object terms represent any other object in the domain.

Fluents are predicates representing properties of the world that may
change between situations, and so take a situation term as their �nal argu-
ment. Predicates and functions that do not take a situation term are called
rigid. We use the term primitive �uent to describe �uents that are directly
a�ected by actions, rather than being de�ned in terms of other �uents. No
functions other than S0 and do produce values of sort Situation. For the
sake of clarity we will not consider functional �uents in this paper; this is a
common simplifying assumption in the situation calculus literature and does
not result in a loss of generality.
Lsitcalc contains the standard alphabet of logical connectives, constants

> and ⊥, countably in�nitely many variables of each sort, countably in-
�nitely many predicates of each arity, etc; for a complete de�nition, consult
the foundational paper by Pirri and Reiter [23]. We follow standard naming
conventions for the situation calculus: upper-case roman names indicate con-
stants; lower-case roman names indicate variables; greek characters indicate
meta-variables or formula templates. All axioms universally close over their
free variables at outermost scope. The notation t̄ indicates a vector of terms
of context-appropriate arity and type. The connectives ∧, ¬, ∃ are taken as
primitive, with ∨, →, ≡, ∀ de�ned in the usual manner.

Complex properties of the state of the world are represented using uniform
formulae. These are basically logical combinations of �uents referring to a
common situation term.

De�nition 1 (Uniform Formulae). Let σ be a �xed situation term, Ri an
arbitrary rigid predicate, Fi an arbitrary primitive �uent predicate, τi an
arbitrary term that is not of sort Situation, and xi an arbitrary variable
that is not of sort Situation. Then the formulae uniform in σ are the
smallest set of syntactically-valid formulae satisfying:

φ ::= Fi(τ̄i, σ) |Ri(τ̄i) | τi = τj |φi ∧ φj | ¬φ | ∃xi : φ

We will call a formula uniform if it is uniform in some situation. The
important aspect of this de�nition is that the formula refers to no situation
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other than σ, which appears as the �nal argument of all �uents in the formula.
In particular, uniform formulae cannot quantify over situations or compare
situation terms, and cannot contain non-primitive �uents.

The meta-variable φ is used throughout to refer to an arbitrary uniform
formula. The notation φ[s′] represents a uniform formula with the particular
situation s′ inserted into all its �uents, replacing whatever situation term was
previously there. Note that this is simply a syntactic shorthand designed to
keep the presentation clean and readable � it is not an operation from the
logic itself.

The dynamics of a particular domain are captured by a set of sentences
called a basic action theory. Queries about the behaviour of the world are
posed as logical entailment queries relative to this theory.

De�nition 2 (Basic Action Theory). A basic action theory, denoted D, is
a set of situation calculus sentences (of the speci�c syntactic form outlined
below) describing a particular dynamic world. It consists of the following
disjoint sets: the foundational axioms of the situation calculus (Σ); action
description axioms de�ning various aspects of action performance, such as
preconditions (Dad); successor state axioms describing how primitive �uents
change between situations (Dssa); axioms describing the value of primitive
�uents in the initial situation (DS0); and axioms describing the static back-
ground facts of the domain (Dbg):

D = Σ ∪ Dad ∪ Dssa ∪ DS0 ∪ Dbg
These axioms must satisfy some simple consistency criteria in order to

constitute a valid domain description [23]. This is a straightforward modi�-
cation of the standard de�nition of a basic action theory, intended to simplify
the details of our forthcoming development.

The axiom set DS0 is a collection of sentences uniform in S0 that describe
the initial state of the world, while the set Dbg contains all the situation-
independent facts about the domain. Standard notation includes situation-
independent facts in DS0 , but our upcoming de�nitions require that they be
separate. Dbg includes the standard unique names axioms for actions [23].

The axiom set Dssa contains one successor state axiom for each primitive
�uent in the domain, providing a monotonic solution to the frame problem
for that �uent. They have the following form, where Φ is uniform in s:

F (x̄, do(a, s)) ≡ ΦF (x̄, a, s)
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The axiom set Dad de�nes �uents that describe various aspects of the
performance of an action, which we call action description predicates. For
each such predicate ADP (x̄, a, s) the set Dad contains a single axiom of the
following form, where ΠADP is uniform in s:

ADP (x̄, a, s) ≡ ΠADP (x̄, a, s)

The canonical example of an action description predicate is the precon-
dition predicate Poss(a, s), which indicates whether it is possible to perform
an action in a given situation. In principle there can be any number of
predicates or functions de�ned in a similar way � a common example is the
function SR used to axiomatise sensing actions in [29]. We will henceforth
use the meta-predicate α to denote an arbitrary action description predicate.

Note that this is a departure from the standard notion, where a sepa-
rate axiom speci�es the preconditions for each function of sort Action [23].
The single-axiom approach used here embodies a domain closure assumption
on the Action sort, and is necessary when reasoning about formulae that
universally quantify over actions [28, 34].

We will sometimes write the de�nition of an action description predicate
in terms of other previously-de�ned action description predicates. This is
purely a notational convenience; the de�nitions in Dad must use primitive
�uents only.

The foundational axioms Σ ensure that situations form a branching-time
account of the world state. There is a distinguished situation term S0 called
the initial situation, and situations in general form a tree structure with S0 at
the root and do(a, s) constructing the situation that results from performing
action a in situation s. We abbreviate the performance of several successive
actions by writing:

do([a1 . . . an], s)
def

= do(an, do(. . . , do(a1, s)))

The relation s @ s′ indicates that s′ is in the future of s:

¬(s @ S0)

s @ do(a, s′) ≡ s v s′

Here s v s′ is the standard abbreviation for s @ s′ ∨ s = s′. This no-
tation for �in the future of� can be extended to consider only those futures
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in which all actions satisfy a particular action description predicate. We in-
clude a relation <α for each action description predicate α, with the following
de�nitions:

¬ (s <α S0)

s <α do(a, s
′) ≡ s ≤α s′ ∧ α(a, s′)

For example, by stating that s <Poss s
′ we assert that not only is s′ in

the future of s, but that all actions performed between s and s′ were actually
possible; this is equivalent to the < operator of Pirri and Reiter [23]. Note
that we suppress the action and situation arguments of the action description
predicate in order to simplify the presentation.

Finally, a second-order induction axiom is used to assert that all situations
must be constructed by performing a �nite sequence of actions:

∀P : [P (S0) ∧ ∀s, a : (P (s)→ P (do(a, s)))] → ∀s : P (s)

This axiom is the only second-order sentence in a basic action theory, and
is vital to the proper semantics of statements that universally quantify over
situation terms [24].

3. Property Persistence Queries

With this notation in hand, let us now formally de�ne the kinds of query
that are of interest in this paper. Given some uniform formula φ and situation
σ, a property persistence query asks whether φ will hold in all situations in
the future of σ:

D |= ∀s : σ v s → φ[s]

More generally, one may wish to limit the futures under consideration
to those brought about by actions satisfying a certain predicate α, which
is easily accomplished using the ≤α relation. We thus have the following
de�nition of a property persistence query:

De�nition 3 (Property Persistence Query). Let φ be a uniform formula,
α an action description predicate, and σ a situation term. Then a property
persistence query is a query of the form:

D |= ∀s : σ ≤α s→ φ[s]
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If the query contains free variables, we treat them as universally quanti�ed
at outermost scope.

In words, a persistence query states that �φ holds in σ, and assuming
all subsequent actions satisfy α, φ will continue to hold�. For succinctness
we will henceforth describe this as �φ persists under α�. Such queries are
involved in many useful reasoning tasks; the following are a small selection:

Goal Impossibility:

Given a goal G, establish that there is no legal situation in which that goal
is achieved:

D |= ∀s : S0 ≤Poss s→ ¬G(s)

Goal Futility:

Given a goal G and situation σ, establish that the goal cannot be achieved
in any legal future of σ:

D |= ∀s : σ ≤Poss s→ ¬G(s)

Note how this di�ers from goal impossibility: while the goal may have ini-
tially been achievable, subsequent actions have rendered the goal unachiev-
able. Detecting and avoiding such situations could be a very important task.

Checking State Constraints:

Given a state constraint SC, show that the constraint holds in every legal
situation:

D |= ∀s : S0 ≤Poss s→ SC(s)

This can be seen as a variant of goal impossibility, by showing that the con-
straint can never be violated.

Need for Cooperation:

Given an agent agt, goal G and situation σ, establish that no sequence of
actions performed by that agent only can achieve the goal. Suppose we de�ne
MyAction to identify the agent's own actions:

MyAction(a, s)
def

= actor(a) = agt

Then the appropriate query is:

D |= ∀s : σ ≤MyAction s→ ¬G(s)
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If this is the case, the agent will need to seek cooperation from another agent
in order to achieve its goal.

Knowledge with Hidden Actions:

Consider an agent reasoning about its own knowledge in a multi-agent do-
main, where the other agents can perform "hidden" actions that it is unable
to observe. To reason correctly in such asynchronous domains, the agent
must take into account arbitrarily-long sequences of hidden actions [14, 32].

For example, suppose an agent can only observe actions if they occur in
the same room as it and the lights are on:

Hidden(a, s)
def

= InSameRoom(actor(a), agt, s) ∧ LightsOn(s)

Intuitively, to establish that it knows φ the agent must establish that φ
cannot become false through a sequence of hidden actions:

D |= ∀s : σ ≤Hidden s→ φ[s]

Here σ ≤Hidden s denotes that a sequence of possible, but hidden, actions
was performed by other agents between σ and s.

The �Gold Thief� Domain

As a more detailed example, which we will revisit in Section 7, consider
a domain in which a thief may try to steal some gold from a safe. There is a
light in the room, and a security camera that will detect the thief's actions
as long as the light is on. The safe can be open or closed, but the gold can
only be stolen if the safe is open. It is possible for the thief to crack the safe
and force it open, but only if the light is on.

The actions in this domain are takeGold, crackSafe and toggleLight,
the primitive �uents are SafeOpen, LightOn and Stolen, and the action
description predicates include the standard Poss(a, s) and a custom predicate
Undet(a, s) indicating that action a would not be detected by the security
camera. The complete axioms can be found in Appendix B.

As the owners of the gold, we would like to ensure that the thief cannot
steal it. Unfortunately this is not possible, as nothing prevents him from
simply cracking the safe and taking the gold. We can, however, ensure that
the thief cannot steal the gold undetected. Formally, we want to establish
that �no sequence of undetected actions results in the gold being stolen�:

D |= ∀s : S0 ≤Undet s → ¬Stolen(s) (1)
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Intuitively, this will be the case as long as the gold is not already stolen,
and either the light is on (so the thief's actions will be detected) or the safe
is closed (so the thief must switch on the light to crack it):

Dbg ∪ DS0 |= ¬Stolen(S0) ∧ [¬SafeOpen(S0) ∨ LightOn(S0)] (2)

A manual proof that (1) i� (2) is straightforward, but it is beyond the
reach of the standard automated reasoning tools of the situation calculus.
The di�culty, as we shall explore in the next section, stems from the use of
a second-order induction axiom to de�ne the set of all situations.

4. E�ective Reasoning

An important feature of the situation calculus is the existence of e�ec-
tive reasoning procedures for certain types of query. In the general case,
answering a query about a basic action theory D is a theorem-proving task
in second-order logic (denoted SOL) due to the induction axiom:

D |=SOL ψ

This is clearly problematic for e�ective automated reasoning. Fortunately,
restricting the syntactic form of queries can allow us to discard some axioms
from D and make automated reasoning easier.

A core result of Pirri and Reiter [23] is that if a query performs only
existential quanti�cation over situations, then it can be answered without
the induction axiom (denoted I) and thus using only �rst-order logic (FOL):

D |=SOL ∃s : ψ(s)

iff

D − {I} |=FOL ∃s : ψ(s)

While this is a substantial improvement over requiring a second-order
theorem prover, it is still far from an e�ective technique. E�ective reasoning
requires that the set of axioms be reduced as much as possible.

In their work on state constraints, Lin and Reiter [19] show how to reduce
the task of verifying a state constraint to a reasoning task we call static
domain reasoning, where only the background axioms need to be considered:

Dbg |=FOL ∀s : φ[s]
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Since the axioms in Dbg do not mention situation terms, the leading quan-
ti�cation in such queries has no e�ect � φ will hold for all s if and only if
it holds for some s. This is an important result because it is usually not
valid to drop the induction axiom for queries that universally quantify over
situations. Their work has shown that this can be circumvented in some
cases.

Simpler still are queries uniform in the initial situation, which can be
answered using only �rst-order logic and a limited set of axioms:

D |=SOL φ[S0]

iff

DS0 ∪ Dbg |=FOL φ[S0]

We call such reasoning initial situation reasoning. Since the axioms DS0∪
Dbg often satisfy the closed-world assumption, provers such as Prolog can be
employed to handle this type of query quite e�ectively.

While few useful queries happen to precisely match these restricted forms,
it is possible to answer quite broad classes of query by transforming them
into such a form. This insight is at the heart of the principle tool for e�ective
reasoning in the situation calculus: regression.

4.1. Regression

The regression meta-operator RD is a syntactic manipulation that en-
codes the preconditions and e�ects of actions into the query itself, meaning
fewer axioms are needed for the �nal reasoning task [23, 26]. The idea is
to reduce a query about some future situation to a query about the initial
situation only, which is much easier to answer.

There are two styles of regression operator commonly de�ned in the lit-
erature: the single-pass operator as de�ned in [23] which reduces to S0 in
a single application, and the single-step operator as de�ned in [29] which
operates one action at a time. We use the single-step variant as it is the
more powerful of the two; the single-pass operator can only be applied to
situations rooted at S0, while the single-step operator can handle formulae
containing situation variables.

Regression is only de�ned for formulae that are regressable:
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De�nition 4 (Regressable Formulae). Let σi be an arbitrary situation term,
xi an arbitrary variable not of sort Situation, τi an arbitrary term not
of sort Situation, ai an arbitrary term of sort Action, Ri an arbitrary
rigid predicate, Fi an arbitrary primitive �uent predicate, and αi an arbitrary
action description predicate. Then the regressable formulae are the smallest
set of syntactically-valid formulae satisfying:

ϕ ::= Fi(τ̄i, σi) |αi(τ̄i, ai, σi) |Ri(τ̄i) | τi = τj | ¬ϕ |ϕi ∧ ϕj | ∃xi : ϕ

Regressable formulae are more general than uniform formulae. In particu-
lar, they can contain action description predicates and may mention di�erent
situation terms. They cannot, however, quantify over situation terms or com-
pare situations using the @ predicate. Note also that our de�nition is more
general than that of [23], where the single-pass regression operator is used.

The regression operator is de�ned using a series of regression rules such
as those shown below, mirroring the structure of regressable formulae:

De�nition 5 (Regression Operator). Let Ri be an arbitrary rigid predi-
cate, αi be an arbitrary action description predicate with axiom αi(ν̄, a, s) ≡
Πα(ν̄, a, s) in Dad, Fi be an arbitrary primitive �uent with axiom Fi(x̄, do(a, s)) ≡
ΦFi

(x̄, a, s) in Dssa, τi be an arbitrary term not of sort Situation, si be an
arbitrary variable of sort Situation, and ai be an arbitrary term of sort
Action. Then the regression of φ, denoted RD(φ), is de�ned according to
the following structural rules:

RD(ϕi ∧ ϕj)
def

= RD(ϕi) ∧RD(ϕj)

RD(∃xi : ϕ)
def

= ∃xi : RD(ϕ)

RD(¬ϕi)
def

= ¬RD(ϕi)

RD(αi(τ̄i, ai, σi))
def

= RD(Πα(τ̄i, ai, σi))

RD(Fi(τ̄i, do(ai, σi)))
def

= ΦFi
(τ̄i, ai, σi)

RD(Fi(τ̄i, si))
def

= Fi(τ̄i, si)

RD(Fi(τ̄i, S0))
def

= Fi(τ̄i, S0)

RD(τi = τj)
def

= τi = τj

RD(Ri(τ̄i))
def

= Ri(τ̄i)

The key point here is that each application of RD replaces action de-
scription predicates with the RHS of their de�nitions from Dad and primitive
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�uents with the RHS of their successor state axioms from Dssa, �unwinding�
a single action from each do(a, σ) situation term in the query. If the situation
term is not constructed using do, it is left unchanged.

Let us brie�y state some important properties of the regression operator.
First, and most importantly, it preserves equivalence of formulae:

Proposition 1. For ϕ a regressable formula, D |= ϕ ≡ RD(ϕ)

Proof. By Pirri and Reiter [23, Theorem 2]

Any formula uniform in do(a, s) is regressable, and the resulting formula
will always be uniform in s:

Proposition 2. For φ uniform in do(a, s), RD(φ) is uniform in s

Proof. By induction on the structure of regressable formulae.

Let R∗D denote repeated applications of RD until the formula remains
unchanged. Such applications can transform a query about some future
situation into a query about the initial situation only:

Proposition 3. For φ uniform in do([a1 . . . an], S0), R∗D(φ) is uniform in S0

Proof. By Pirri and Reiter [23, Theorem 3, part 1]

This last property is key to e�ective reasoning in the situation calculus,
as it allows one to answer the projection problem. To determine whether
φ holds in a given future situation, it su�ces to determine whether R∗D(φ)
holds in the initial situation:

Proposition 4. For φ uniform in do([a1 . . . an], S0):

D |= φ iff DS0 ∪ Dbg |= R∗D(φ)

Proof. By Pirri and Reiter [23, Theorem 3, part 2]

The regressed form is usually easier to answer, as it requires only the
initial state axioms and background theory. The axioms Dad and Dssa are
essentially �compiled into the query� by the R∗D operator. While an e�ciency
gain is not guaranteed, regression has proven a very e�ective technique in
practice [17, 23], particularly when combined with techniques to limit the
resulting increase in query size [33].
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Unfortunately, this powerful technique cannot be applied to formulae that
are not regressable. Its operation depends crucially on knowing how many
actions there are in each situation term, so that each action can be �unwound�
from the query in turn. Queries that universally quantify over situations,
such as the property persistence queries of interest in this paper, fall squarely
outside the reach of standard regression techniques.

4.2. Inductive Reasoning

While there is a rich and diverse literature base for the situation calculus,
there appears to have been little work on queries that universally quantify
over situation terms. Reiter [24] has shown why the induction axiom cannot
in general be eliminated when proving such statements, demonstrating the
use of the axiom in manual proofs but o�ering no automated procedure.

Other work on universally-quanti�ed queries focuses on highly specialised
applications, such as verifying state constraints [1, 19] or studying properties
of ConGolog programs [2, 4, 12]. While these works have produced useful
results, they are typically intended as stand-alone techniques rather than
general reasoning tools for the situation calculus.

Lin and Reiter [19] have shown that the induction axiom can be �com-
piled away� when verifying a state constraint, by means of the following
equivalence2:

D −DS0 |= φ[S0]→ (∀s : S0 ≤Poss s→ φ[s])

iff

Dbg |= ∀s, a : φ[s] ∧RD(Poss(a, s)) → RD(φ[do(a, s)])

Veri�cation of a state constraint can thus be reduced to the compara-
tively straightforward task of static domain reasoning. Veri�cation of state
constraints was also approached by Bertossi et al. [1], who develop an auto-
matic constraint veri�cation system using an induction theorem prover.

However, there are many issues that are not addressed by these highly
specialised works. What if we are interested in the future of some arbitrary
situation σ, rather than only S0? What if we restrict future actions according
to an arbitrary action description predicate? Can we integrate a method for
handling universally-quanti�ed queries with existing regression techniques?

2We have modi�ed the original equations for consistency with our modi�ed notation.
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Our treatment of property persistence can provide a concrete basis for these
considerations, and is hence signi�cantly more general than this existing
work.

Formulating various safety, liveness and starvation properties of Con-
Golog programs also requires universal quanti�cation over situations. De Gi-
acomo et al. [4] show how to re-cast these properties as �xpoint queries
in second-order logic, and a preliminary model-checker capable of verifying
them is described in [12]. Claÿen and Lakemeyer [2] have developed a logic
of ConGolog programs based on an iterative �xpoint computation similar
to the one we propose in this paper. Their technique is based on a modal
variant of the situation calculus known as ES and is designed for quite spe-
ci�c applications; by contrast, our approach aims to be a general-purpose
reasoning tool for the classical situation calculus.

If one is willing to restrict attention to propositional domains, it is possi-
ble to use techniques from the propositional mu-calculus to answer a broad
range of inductive queries [11]. In a similar vein, Ternovska [31] has proven
decidability for a variant of the situation calculus with monadic �uents. Our
work di�ers by focusing on a narrower class of queries, by constructing �x-
points at the meta-level rather than in the language, and by its applicability
to the full �rst-order situation calculus.

Finally, let us introduce an important property of situations �rst formally
identi�ed by Savelli [28]: that universal quanti�cation over situation terms
is equivalent to a kind of in�nite conjunction over the levels of the tree of
situations:

D |= ∀s : ψ(s)

iff

D |=
⋃
n∈N

{∀a1 . . . an : ψ(do([a1 . . . an], S0))}

This is a direct consequence of the induction axiom for situations, which
restricts situations to be constructed by performing some countable number
of actions in the initial situation.

5. The Persistence Condition

To enable the use of persistence queries in practical systems, we clearly
need a more e�ective reasoning technique than open-ended second-order the-
orem proving. Our approach is inspired by the success of Reiter's regression
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technique: use a meta-level operator to transform the query into one that
is easier to answer. Speci�cally, our technique transforms a property per-
sistence query at σ into the evaluation of a uniform formula at σ � a much
simpler query which can be approached using existing techniques.

Formally, we seek a method for transforming a uniform formula φ and
action description predicate α into a uniform formula PD(φ, α) that is true
at precisely the situations in which φ persists under α. We call such a formula
the persistence condition of φ under α.

De�nition 6 (Persistence Condition). The persistence condition of φ under
α, denoted PD(φ, α), is a uniform formula such that:

D −DS0 |= ∀s : (PD(φ, α)[s] ≡ ∀s′ : s ≤α s′ → φ[s′])

In other words, PD(φ, α) holds at s i� φ persists under α at s.

De�ning PD to be independent of the initial world state allows it to be
calculated regardless of what (if anything) is known about the actual state
of the world � after all, a situated agent may not know all the details of DS0 ,
and we still want it to be able to use this technique.

Provided that such a formula PD(φ, α) is given, we can use standard
regression to reduce reasoning about situation-invariant properties to a �rst-
order reasoning task as follows:

D |= ∀s : σ ≤α s→ φ[s]

iff

D |= PD(φ, α)[σ]

iff

DS0 ∪ Dbg |= R∗D(PD(φ, α)[σ])

Note that this generalises the work of Lin and Reiter [19] on state con-
straints, where queries are restricted to the form ∀s : S0 ≤Poss s→ φ[s].

De�nition 6 alone clearly does not make the task of answering a persis-
tence query any easier � it gives no indication of how the persistence condition
might be calculated in practice, or even whether such a formula actually ex-
ists for a given φ and α. In order to establish these results, we �rst need to
de�ne the weaker notion of a formula persisting to depth n in a situation.
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De�nition 7 (Persistence to Depth 1). A uniform formula φ persists to depth
1 under α in situation s when the formula P1

D(φ, α)[s] holds, as de�ned by:

P1
D(φ, α)[s]

def

= φ[s] ∧ ∀a : RD(α[a, s])→ RD(φ[do(a, s)])

Since α is an action description predicate and φ is a uniform formula,
the expressions RD(α[a, s]) and RD(φ[do(a, s)]) are always de�ned and the
resulting formula is always uniform in s. Note that P1

D is a literal encoding
of the requirement that �φ holds in s and in all its direct successors.

Successive applications of P1
D can then assert persistence to greater depths:

De�nition 8 (Persistence to Depth n). For any n ≥ 0, a uniform formula
φ persists to depth n under α in situation s when the formula PnD(φ, α)[s]
holds, as de�ned by:

P0
D(φ, α)

def

= φ

PnD(φ, α)
def

= P1
D(Pn−1

D (φ, α), α)

The following theorem con�rms that PnD operates according to this intu-
ition � for any sequence of actions of length i ≤ n, if each action satis�es α
when it is executed, then φ will hold after performing those actions.

Theorem 1. For any n ∈ N, PnD(φ, α) holds in σ i� φ holds in σ and in all
successors of σ reached by performing at most n actions satisfying α:

D |= PnD(φ, α)[σ] ≡∧
i≤n

∀a1 . . . ai :

(∧
j≤i

α[aj, do([a1 . . . aj−1], σ)] → φ[do([a1 . . . ai], σ)]

)

Proof Sketch. By induction on the natural numbers. For n = 0 we have
φ[σ] ≡ φ[σ] by de�nition. For the inductive case, we expand the de�nition
of PnD(φ, α)[σ] to get the following for the LHS:

Pn−1
D (φ, α)[σ] ∧ ∀a : RD(α[a, σ])→ RD(Pn−1

D (φ, α)[do(a, σ)])

Substituting for Pn−1
D using the inductive hypothesis gives us a conjunc-

tion ranging over i ≤ n − 1, with universally quanti�ed variables a1 . . . ai,
and we must establish the i = n case. Pushing this conjunction inside the
scope of the ∀a quanti�er, we can rename a ⇒ a1, a1 ⇒ a2 etc to get the
required expression. For a detailed proof see Appendix A.
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The PnD operator thus allows us to express the persistence of a formula
to any given depth using a simple syntactic translation based on regression.
Intuitively, one would expect PD(φ, α) to be some sort of �xpoint of P1

D(φ, α),
since PD(φ, α) must imply persistence up to any depth. Such a �xpoint could
then be calculated by iterative application of P1

D. The remainder of this
section is devoted to verifying this intuition.

We begin with two straightforward generalisations of results from the
situation calculus literature, adapting them to our ≤α notation:

Proposition 5. For any action description predicate α, the foundational
axioms of the situation calculus entail the following induction principle:

∀W, s : W (s) ∧ [∀a, s′ : α[a, s′] ∧ s ≤α s′ ∧W (s′)→ W (do(a, s′))]

→ ∀s′ : s ≤α s′ → W (s′)

Proof. A trivial adaptation of Theorem 3.2 in [24].

Proposition 6. For any basic action theory D, uniform formula φ and action
description predicate α:

D −DS0 |= ∀s : φ[s]→ (∀s′ : s ≤α s′ → φ[s′])

iff

Dbg |= ∀s, a : φ[s] ∧RD(α[a, s])→ RD(φ[do(a, s)])

Proof. A straightforward generalisation of the model-construction proof of
Lemma 5.3 in [19], utilising Proposition 5. The details of this proof are
reproduced in Appendix A.

Proposition 6 will be key in our algorithm for calculating the persistence
condition. It allows one to establish the result �if φ holds in s, then φ per-
sists in s� by using static domain reasoning, a comparatively straightforward
reasoning task.

We next formalise some basic relationships between our hypothetical PD
operator and PnD:

Lemma 1. Given a basic action theory D, uniform formula φ and action
description predicate α, then for any n:

D −DS0 |= ∀s : (∀s′ : s ≤α s′ → φ[s′]) ≡ (∀s′ : s ≤α s′ → PnD(φ, α)[s′])

That is, φ persists under α i� PnD[φ, α] persists under α.
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Proof. Since PnD[φ, α] implies φ by de�nition, the if direction is trivial. For
the only-if direction we proceed by induction on n.

For the base case of P1
D, letM be a model of D and µ an assignment to

the free variables in φ. Suppose that φ persists at s but P1
D(φ, α) does not:

M, µ |= ∀s′ : s ≤α s′ → φ[s′] (3)

M, µ 6|= ∀s′ : s ≤α s′ → PnD(φ, α)[s′] (4)

For (4) to hold, there must be some situation element from M that is in
the future of µ(s) but at which P1

D(φ, α) is false. Let µ assign this situation
element to the fresh variable ṡ, so that:

M, µ |= s ≤α ṡ ∧ ¬P1
D(φ, α)[ṡ]

Expanding the de�nition of P1
D we have:

M, µ |= s ≤α ṡ ∧ ¬ (φ[ṡ] ∧ ∀a : α[a, ṡ]→ φ[do(a, ṡ)]) (5)

But by our assumption that (3) holds, we must have:

M, µ |= φ[ṡ]

M, µ |= ∀a : α[a, ṡ]→ φ[do(a, ṡ)]

It is thus impossible for (5) to hold, and we have a contradiction. Since
our choice of M and µ was arbitrary, the result will hold for any s and we
have the lemma as required.

For the inductive case, assume that Pn−1
D (φ, α) persists but PnD(φ, α) does

not. By de�nition we have PnD(φ, α) = P1
D(Pn−1

D (φ, α), φ), and we repeat the
base case proof using φ′ = Pn−1

D (φ, α) in place of φ to obtain a contradiction.

Lemma 2. Given a basic action theory D, uniform formula φ and action
description predicate α, then for any n:

D −DS0 |= ∀s : (PD(φ, α)[s]→ PnD(φ, α)[s])

Proof. PD(φ, α) implies the persistence of φ by de�nition. If φ persists at s,
then by Lemma 1 we have that PnD(φ, α) persists at s . Since the persistence
of PnD(φ, α) at s implies that PnD(φ, α) holds at s by de�nition, we have the
lemma as desired.
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We are now equipped to prove the major theorem of this paper: that if
PnD(φ, α) implies Pn+1

D (φ, α), then PnD(φ, α) is equivalent to the persistence
condition for φ under α.

Theorem 2. Given a basic action theory D, uniform formula φ and action
description predicate α, then for any n:

Dbg |= ∀s : PnD(φ, α)[s]→ Pn+1
D (φ, α)[s] (6)

iff

D −Ds0 |= ∀s : PnD(φ, α)[s] ≡ PD(φ, α)[s] (7)

In other words, if we can calculate a �xpoint of applications of P1
D(φ, α)[s]

then that �xpoint is the persistence condition for φ under α.

Proof. For the if direction, we begin by expanding equation (6) using the
de�nition of P1

D to get the equivalent form:

Dbg |= ∀s : PnD(φ, α)[s]→ P1
D(PnD(φ, α), α)[s]

Dbg |= ∀s : PnD(φ, α)[s]→(
PnD(φ, α)[s] ∧ ∀a : RD(α[a, s])→ RD(P1

D(φ, α)[do(a, s)])
)

Dbg |= ∀s, a : PnD(φ, α)[s] ∧ ∀a : RD(α[a, s])→ RD(P1
D(φα)[do(a, s)])

By Proposition 6, equation (6) thus lets us conclude that PnD(φ, α) persists
under α. By Lemma 1 this is equivalent to the persistence of φ under α,
which is equivalent to PD(φ, α) by de�nition, giving:

D −Ds0 |= ∀s : PnD(φ, α)[s]→ PD(φ, α)[s]

By Lemma 2 this is an equivalence, yielding equation (7) as required.
The only if direction is a straightforward reversal of this reasoning pro-

cess: PD(φ, α) implies the persistence of φ, which implies the persistence of
PnD(φ, α), which yields equation (6) by Proposition 6.

Since Dbg |= Pn+1
D (φ, α)→ PnD(φ, α) by de�nition, equation (6) identi�es

PnD(φ, α) as a �xpoint of the P1
D operator, as our initial intuition suggested.

We can therefore apply some standard results from �xpoint theory to the
calculation of PD(φ, α), which we will do in the next section.

20



To conclude this section, we establish what is essentially the "dual" of the
theorem above � that is there is any uniform formula satisfying the de�nition
of PD(φ, α) then it is the �xpoint of applications of P1

D
3.

Theorem 3. Given a basic action theory D, uniform formula φ and action
description predicate α, suppose that ψ is a regressable formula with s the
only zero-arity term of sort situation and:

D −DS0 |= ∀s : ψ(s) ≡ ∀s′ : s ≤α s′ → φ[s′]

ψ(s) thus identi�es precisely those situations in which φ persists under α.
Then for any situation term σ:

D |= R∗D(ψ)[σ]

iff

D |=
⋃
n∈N

{PnD(φ, α)[σ]}

In other words, R∗D(ψ) is a uniform formula representing the �xpoint of ap-
plications of P1

D(φ, α)[s]

Proof Sketch. The restricted form of ψ means that it is "about" only the
situation s and its successors, so we can apply regression to transform it into
a formula uniform in s. The theorem is then a straightforward adaptation
of Lemma 6 in [28], using Savelli's technique of splitting the quanti�cation
over situation terms into an in�nite conjunction. For a detailed proof see
Appendix A.

6. Calculating PD

Since we can easily calculate PnD(φ, α) for any n, we have a straightforward
algorithm for determining PD(φ, α): search for an n such that

Dbg |= ∀s :
(
PnD(φ, α)[s]→ Pn+1

D (φ, α)[s]
)

Since we expect PnD(φ, α) to be simpler than Pn+1
D (φ, α), we should look for

the smallest such n. Algorithm 1 presents an iterative procedure for doing
just that. Note that the calculation of P1

D(φ, α) is a straightforward syntactic
transformation, so we do not present an algorithm for it.

3Previous versions of this work [13, 14], incorrectly claimed that such a formula would
always exist. Our thanks to an anonymous reviewer for helping to clarify this point.
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Algorithm 1 Calculate PD(φ, α)

pn⇐ φ
pn1⇐ P1

D(pn, α)
while Dbg 6|= ∀s : pn[s]→ pn1[s] do
pn⇐ pn1

pn1⇐ P1
D[pn, α]

end while

return pn

6.1. Soundness

If Algorithm 1 terminates, it terminates returning a value of pn for which
equation (6) holds. By Theorem 2 this value of pn is equivalent to the persis-
tence condition for φ under α. The algorithm therefore correctly calculates
the persistence condition.

In particular, note that equation (6) holds when PnD(φ, α) is unsatis�able
for any situation, as it appears in the antecedent of an implication. The
algorithm thus correctly returns an unsatis�able condition (equivalent to ⊥)
when φ can never persist under α.

6.2. Completeness

There are two aspects to the completeness of our technique: whether the
necessary �xpoint exists at all, and whether the algorithm for calculating it
will terminate in a �nite number of iterations.

6.2.1. Existence of the Persistence Condition

By Theorem 3 we know that the persistence condition is always the �x-
point of applications of P1

D. In other words, if P1
D has no �nitely-expressible

�xpoint for a given φ and α, then a uniform formula satisfying the de�nition
of PD(φ, α) does not exist.

Unfortunately, it is relatively easy to construct a �uent for which a �rst-
order persistence condition does not exist. Consider a domain with a single
object sort modelled after the standard �rst-order axioms for the natural
numbers, a single �uent F (x, s) and a single action A that makes F (x, s)
false whenever F (suc(x), s) is false:

F (x, do(A, s)) ≡ F (suc(x), s)
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Let us attempt to calculate the persistence condition of F (0, s) with the
action description predicate α set to true. The sequence of iterations pro-
duced by Algorithm 1 would be:

P1
D(F (0, s)) ≡ F (0, s) ∧ F (suc(0), s)

P2
D(F (0, s)) ≡ F (0, s) ∧ F (suc(0), s) ∧ F (suc(suc(0)), s)

...

PnD(F (0, s)) ≡
i=n∧
i=0

F (suci(0), s)

It is straightforward to manually demonstrate that F (0, s) will persist if
and only if F holds for all objects built by successive applications of suc to 0.
Such a condition can only be expressed using a transitive closure, and hence
there is no �rst-order formula that is equivalent to the persistence condition
of F (0, s).

Of course, if Dbg provides an axiomatisation of the standard "greater
than" predicate x < y then we can �nitely identify these objects, and the
persistence condition can be expressed as:

PD(F (0, s)) ≡ F (0, s) ∧ ∀x : 0 < x→ F (x, s)

However, calculating such a condition would still be beyond the reach of Al-
gorithm 1; since it cannot be constructed by �nitely many applications of
P1
D, the algorithm would fail to terminate.

Nevertheless, Theorem 3 does provide an important completeness result �
it demonstrates that if there exists any technique to replace reasoning about
a persistence query at σ with a regression-based reasoning scheme at σ, then
it is equivalent (up to termination of the algorithm) to our approach.

In fact, we suspect that a stronger result than Theorem 3 holds: that
if a persistence query at σ can be replaced by any �rst-order formula that
does not universally quantify over situation terms, then that query has a
well-de�ned persistence condition.
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Conjecture 1. Given a basic action theory D, uniform formula φ and action
description predicate α, suppose that ψ(s) is a sentence of Lsitcalc whose
prenex normal form contains only existential quanti�ers over situations, with
s the only free variable of sort situation, such that:

D −DS0 |= ∀s : ψ(s) ≡ ∀s′ : s ≤α s′ → φ[s′]

Thus ψ(s) identi�es precisely those situations in which φ persists under α.
Then there is a uniform formula PD(φ, α) such that:

D |= ∀s : ψ(s) ≡ PD(φ, α)[s]

In other words: if the domain D permits some technique for transform-
ing a persistence query into a query that doesn't universally quantify over
situations, then D is also amenable to the technique presented in this paper.

The proof from Theorem 3 cannot be applied to this conjecture because
we have no way to reduce this more general ψ(s) to a uniform formula. As
part of our ongoing research, we aim to either con�rm this intuition or to
�nd a counter-example � either result would shed valuable light on the study
of universally-quanti�ed queries in the situation calculus.

6.2.2. Termination

As shown in the previous section, even if the persistence condition PD(φ, α)
is known to exist there is no guarantee that Algorithm 1 can calculate it in
a �nite amount of time. The algorithm may in fact fail to terminate for two
distinct reasons: the loop condition may never be satis�ed, or the �rst-order
logical inference in the loop condition may be undecidable.

The later case indicates that the background theory Dbg is undecidable.
While this is a concern, it a�ects more than just our algorithm � any system
implemented around such an action theory will be incomplete. With respect
to this source of incompleteness, our algorithm is no more incomplete than
any larger reasoning system it would form a part of. We will concern ourselves
only with the former case.

To ensure the completeness of our approach, we must restrict the domain
theory and/or the form of queries being posed so that PD(φ, α) is not only
guaranteed to exist, but is guaranteed to be calculable within a �nite number
of iterations. Some standard results from �xpoint theory can be applied
towards this task:
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De�nition 9. Let L(Dbg) be the Lindenbaum-Tarski algebra of the back-
ground theory for formulae uniform in s. It is thus a boolean lattice where:

• elements are sets of uniform formulae grouped by equivalence w.r.t.
Dbg,

• meet and join are ∧ and ∨ respectively,

• logical implication w.r.t. Dbg forms a partial ordering relation, and

• top and bottom are the equivalence classes of > and ⊥ respectively.

Theorem 4. For any �xed value of α, P1
D(φ, α)[s] is a monotone decreasing

function over L(Dbg).

Proof. The domain and range of P1
D are uniform formulae and so correspond

to the elements of L(Dbg). By the de�nition of P1
D it is always the case that

Dbg |= P1
D(φ, α) → φ. Since→ is the partial ordering relation of L(Dbg), P1

D
is a monotone decreasing function as required.

Corollary 1. If L(Dbg) is a complete lattice, then given a uniform formula φ
and action description predicate α, the persistence condition PD(φ, α) always
exists and is unique up to equivalence under Dbg.

Proof. A standard result from �xpoint theory. Since P1
D is a monotone de-

creasing function over a complete lattice, the constructive proof of Tarski's
�xpoint theorem [3] means it has a unique greatest �xpoint less than the
equivalence class of φ. This �xpoint can be found by trans�nite iteration of
applications of P1

D and is equivalent to PD(φ, α) by Theorem 2.

Corollary 2. If L(Dbg) is a well-founded lattice, then given a uniform for-
mula φ and action description predicate α, the persistence condition PD(φ, α)
always exists and can be calculated by �nitely many applications of P1

D.

Proof. A standard result from �xpoint theory. A well-founded lattice L(Dbg)
as no in�nite descending chains of elements, so the trans�nite iteration used
by [3] to �nd the �xpoint of P1

D in Corollary 1 must terminate after �nitely
many iterations.
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6.3. Guaranteeing Completeness

The most obvious restriction that can be applied to guarantee complete-
ness is to ensure that the action and object sorts are �nite. In such theories
the lattice L(Dbg) is �nite, and any �nite lattice is both complete and well-
founded. These theories also have the advantage that the static domain
reasoning performed by Algorithm 1 can be done using propositional logic,
meaning it is decidable and so providing a strong termination guarantee.

There are notable advantages to maintaining the expressive power of �rst-
order logic even when the domain can be propositionalised - for example, the
use of quanti�ers can produce exponentially-shorter formulae and hence lead
to shorter proofs.

An alternate approach is to restrict the form of the successor state axioms
and/or the queries being posed so that applications of P1

D operate on a subset
of L(Dbg) which meets the requirements set out in corollaries 1 and 2.

For example, suppose we restrict successor state axioms and action de-
scription predicates to the following forms, where ȳi ⊆ x̄ and Φ

+/−
F,i and Πα,i

mention no terms other than x̄ and s:

F (x̄, do(a, s)) ≡
n∨
i=1

a = ai(ȳi) ∧ Φ+
F,i(x̄, s) ∨ F (x̄, s) ∧ ¬

n∨
i=1

a = ai(ȳi) ∧ Φ−F,i

α(x̄, a, s) ≡
n∨
i=1

a = ai(ȳi) ∧ Πα,i(x̄, s)

Such domains have a �nite number of actions, each of which is only ca-
pable of changing �uents about objects it is given as direct arguments. For
example, the action ai(A) can change the �uent F (A, s) but not F (B, s).

Now, suppose we have a quanti�er free uniform formula φ. When calcu-
lating P1

D(φ, α) it is possible to simplify away the action terms introduced by
the successor state axioms, so that P1

D(φ, α) is also a quanti�er-free uniform
formula mentioning only the terms found in φ. The range of P1

D applied to
φ is thus a �nite subset of L(Dbg), which ensures a terminating calculation
of PD(φ, α). A detailed proof appears in Appendix A (Theorem 5).

This restriction is similar to the local-e�ect theories of [21, 35], with
the additional requirement that the right-hand side of the axiom contain no
quanti�ers. Whether local-e�ect theories can guarantee termination without
additional restrictions would be an interesting avenue for further research.
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As an example, the classic "holding" predicate can be expressed in a form
that meets this restriction:

Holding(obj, do(a, s)) ≡ a = pickup(obj) ∨Holding(obj, s) ∧ a 6= drop(obj)

Poss(pickup(obj), s) ≡ ¬Holding(obj, s)

Poss(drop(obj), s) ≡ Holding(obj, s)

However, if there are multiple agents acting in the domain then the possi-
bility predicate for pickup would no longer meet this restriction, as it contains
a quanti�er on the right-hand side:

Poss(pickup(agt, obj), s) ≡ ¬∃agt′ : Holding(agt′, obj, s)

Clearly this is a strong restriction on the structure of the theory, as the
successor state axioms are not able to contain any quanti�ers. It does demon-
strate, however, that certain syntactic restrictions on D are able to guarantee
terminating calculation of PD. It seems there should be a more general �syn-
tactic well-foundedness� restriction that can be applied to these axioms, but
we have not successfully formulated one at this stage.

In a similar vein, suppose that the theory of action is context free [20].
In such theories successor state axioms have the following form:

F (x̄, do(a, s)) ≡ Φ+
F (x̄, a) ∨

(
F (x̄, s) ∧ ¬Φ−F (x̄, a)

)
The e�ects of an action are thus independent of the situation in which

it is performed. Lin and Levesque [18, lemma 6.2] have show that context-
free theories with a �nite number of parameterless actions have a �nite state
space, which is su�cient to ensure termination of our algorithm.

Intuitively, if there are at most N distinct states in the domain then any
situation more than N actions into the future has the same state as some
situation less than N actions into the future. Algorithm 1 will therefore ter-
minate after at most N iterations. A detailed proof is available in Appendix
A (Theorem 6).

From a slightly di�erent perspective, suppose that φ can never persist
under α, so that PD(φ, α) ≡ ⊥. Further suppose that D has the compact-
ness property as in standard �rst-order logic. Then the �quantum levels� of
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Savelli [28] guarantee that there is a �xed, �nite number of actions within
which ¬φ can always be achieved. In this case Algorithm 1 will determine
PD(φ, α) ≡ ⊥ within �nitely many iterations.

It would also be interesting to determine whether known variants of the
situation calculus in which the projection problem is decidable (such as [10])
are able to guarantee termination of the �xpoint construction, or whether
more sophisticated �xpoint algorithms can be applied instead of simple it-
erative approximation. Investigating such algorithms would be a promising
avenue for future research.

The important point here is not that we can guarantee termination in
general, but that we have precisely characterised the inductive reasoning
necessary to answer property persistence queries, and shown how it can be
replaced by the evaluation of a uniform formula at the situation in question.

6.4. E�ectiveness

Our algorithm replaces a single reasoning task based on the full action
theory D with a series of reasoning tasks based on the static background
theory Dbg. Is this a worthwhile trade-o� in practice? The following points
weigh strongly in favour of our approach.

First and foremost, we avoid the need for the second-order induction ax-
iom. All the reasoning tasks can be performed using standard �rst-order
reasoning, for which there are high-quality automated provers. Second, the
calculation of PD performs only static reasoning, which as discussed in Sec-
tion 2 is a comparatively straightforward task which can be made decidable
under certain conditions. Third, PD(φ, α)[σ] is in a form amenable to regres-
sion, a standard tool for e�ective reasoning in the situation calculus. Fourth,
the persistence condition for a given φ and α can be cached and re-used
for a series of related queries about di�erent situations, a signi�cant gain in
amortised e�ciency. Finally, in realistic domains we expect many properties
to fail to persist beyond a few situations into the future, meaning that our
algorithm will require few iterations in a large number of cases.

Of course, we also inherit the potential disadvantage of the regression
operator: the length of PD(φ, α) may be much larger than the length of φ.
Since there is no bound on the number of iterations required for Algorithm 1
to terminate, the length of PD(φ, α) is actually unbounded in the general case.
As with regression, our experience has been that this is rarely a problem in
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practice, and is more than compensated for by the reduced complexity of the
resulting reasoning task.

6.5. Related Algorithms

As noted in Section 2, our use of �xpoints in this paper has much in
common with the study of properties of ConGolog programs [2, 4]. In par-
ticular, our algorithm has deep similarities to the CheckEU and CheckEG
algorithms used by Claÿen and Lakemeyer [2]. Like our work, they seek a �x-
point using iterative application of a meta-level function based on regression.
Indeed, Algorithm 1 could be re-cast as a special case of their approach, but
without the need to maintain a complex graph structure.

Claÿen and Lakemeyer also note that their approach is not able to guar-
antee completeness in the general case, and they identify as future work the
discovery of general classes of theory for which their technique is complete.
Given the underlying similarities, we are con�dent that such advances in
reasoning about ConGolog programs will advance our ability to answer per-
sistence queries, and vice-versa.

We also note that work on state invariants in other planning formalisms
(e.g. [7, 8]) uses ideas broadly similar to our approach � an iterative algorithm
that explores longer and longer sequences of actions until a stable state is
reached. In these formalisms, the domain typically has a �niteness restriction
that guarantees eventual termination of the algorithm.

7. Examples

To demonstrate the applicability of our technique, consider again the ex-
ample persistence queries given in Section 3. The persistence condition is
readily applicable to each example, and the transformed queries can then be
answered using standard regression.

Goal Impossibility:

Given a goal G, establish that there is no legal situation in which that goal
is satis�ed:

D |= PD(¬G,Poss)[S0]

The persistence condition of ¬G with respect to action legality allows goal
impossibility to be checked easily.
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Goal Futility:

Given a goal G and situation σ, establish that the goal cannot be satis�ed
in any legal future situation from σ:

D |= PD(¬G,Poss)[σ]

Precisely the same formula is required for checking goal impossibility and
goal futility. This highlights the advantage of re-using the persistence condi-
tion at multiple situations. Our approach makes it feasible for an agent to
check for goal futility each time it considers performing an action, and avoid
situations that would make its goals unachievable.

Checking State Constraints:

Given a state constraint SC, show that the constraint holds in every legal
situation:

D |= PD(SC, Poss)[S0]

However, since we want a state constraint to always persist, it must satisfy
the following equivalence:

Dbg |= φ ≡ PD(φ, Poss)

If this equivalence does not hold then PD(φ, Poss) indicates the addi-
tional conditions that are necessary to ensure that φ persists, which may be
useful for adjusting the action theory to enforce the constraint. This par-
ticular application has strong parallels to the approach to state constraints
developed by Lin and Reiter [19].

Need for Cooperation:

Given an agent agt, goal G and situation σ, establish that no sequence of
actions performed by that agent only can achieve the goal:

D |= PD(¬G,MyAction)[σ]

Knowledge with Hidden Actions:

In recent work we have developed a regression rule for knowledge that uses
the persistence condition to account for arbitrarily-long sequences of hidden
actions [14]. While the details of this formulation are outside the scope of
the current paper, the general form of the regression rule is:

RD(Knows(φ, do(a, s)))
def

= Knows(RD(PD(φ,Hidden)[do(a, s)]), s)
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The key point of this de�nition is that the agent can only know φ if it
knows that φ will persist after any sequence of hidden actions.

This highlights an important bene�t of our approach � it integrates well
with existing reasoning techniques. If one is willing to assume that PD(φ, α)
will always exist, it can be used to �factor out� the inductive reasoning and
produce a regression rule for formulae that universally quantify over situa-
tions.

The �Gold Thief� Domain

As a detailed example of our technique in action, consider again the �gold
thief� domain as described in Section 3 and axiomatised in Appendix B. We
want to establish that:

D |= ∀s : S0 ≤Undet s → ¬Stolen(s)

By the de�nition of the persistence condition, this is equivalent to:

D |= PD(¬Stolen, Undet)[σ]

To answer this query we will employ Algorithm 1, calculating PnD for
successively larger values of n until the series converges to a �xpoint. Full
details of this calculation can be found in Appendix C; we present only the
major results below. The case of n = 0 is trivial:

P0
D(¬Stolen, Undet)[s] = ¬Stolen(s)

The n = 1 case is given by de�nition 7 as:

P1
D(. . . )[s] = ¬Stolen(s) ∧ ∀a : RD(Undet(a, s))→ RD(¬Stolen(do(a, s)))

Expanding the ∀a quanti�er over each of the three actions in this domain
we obtain:

P1
D(. . . )[s] = ¬Stolen(s)

∧ RD(Undet(takeGold, s))→ RD(¬Stolen(do(takeGold, s)))

∧RD(Undet(crackSafe, s))→ RD(¬Stolen(do(crackSafe, s)))

∧RD(Undet(toggleLight, s))→ RD(¬Stolen(do(toggleLight, s)))
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Applying regression and simplifying produces the �nal result:

P1
D(. . . )[s] = ¬Stolen(s) ∧ [¬SafeOpen(s) ∨ LightOn(s)]

Intuitively, this indicates that the gold cannot be stolen by a single unde-
tected action if the safe is not open (since it would �rst have to be cracked)
or the light is on (since the action would be detected). Since this is clearly
not entailed by the P0

D case, we must continue to the n = 2 case. Again
applying de�nition 7 and expanding out each individual action, we get:

P2
D(. . . )[s] = ¬Stolen(s) ∧ [¬SafeOpen(s) ∨ LightOn(s)]

∧ RD(Undet(takeGold, s))→ RD(¬Stolen(do(takeGold, s))

∧ [¬SafeOpen(do(takeGold, s)) ∨ LightOn(do(takeGold, s))])

∧ RD(Undet(crackSafe, s))→ RD(¬Stolen(do(crackSafe, s))

∧ [¬SafeOpen(do(crackSafe, s)) ∨ LightOn(do(crackSafe, s))])

∧ RD(Undet(toggleLight, s))→ RD(¬Stolen(do(toggleLight, s))

∧ [¬SafeOpen(do(toggleLight(s)) ∨ LightOn(do(toggleLight, s))])

Performing the regression and simplifying down, we eventually obtain:

P2
D(. . . )[s] = ¬Stolen(s) ∧ [¬SafeOpen(s) ∨ LightOn(s)]

We have clearly satis�ed the termination condition of Algorithm 1, since
P1
D → P2

D , and have thus successfully calculated the persistence condition:

PD(¬Stolen, Undet) = ¬Stolen ∧ [¬SafeOpen ∨ LightOn]

Checking whether the gold is safe is now a simple matter of reasoning
about the initial situation:

D |= ¬Stolen(S0) ∧ [¬SafeOpen(S0) ∨ LightOn(S0)]

With PD(¬Stolen, Undet) in hand, we can also perform more sophisti-
cated reasoning about the safety of the gold � for example, we can check
whether a proposed action would jeopardise the safety of the gold and refuse
to perform the action if so.
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8. Conclusions

In this paper we have developed an algorithm that transforms prop-
erty persistence queries, a quite general and useful class of situation cal-
culus query, into a form that is amenable to standard techniques for e�ective
reasoning in the situation calculus. The algorithm replaces a second-order
induction axiom with a meta-level �xpoint calculation based on iterative ap-
plication of the standard regression operator. It is shown to be sound, and
complete in several interesting cases.

Our approach generalises previous work on universally-quanti�ed queries
in several important ways. It can consider sequences of actions satisfying a
range of conditions, not just the standard ordering over action possibility,
enabling us to treat problems such as need for cooperation and knowledge
with hidden actions. It can establish that properties persist in the future
of an arbitrary situation, not necessarily the initial situation, enabling us to
answer the question of goal futility. The results of calculating the persistence
condition can be cached, allowing for example the goal futility question to
be e�ciently posed on a large number of situations once the persistence
condition has been calculated.

Perhaps most importantly for the wider situation calculus community, we
have factored out the inductive reasoning required to answer these queries.
Work on increasing the e�ectiveness of this inductive reasoning, and on guar-
anteeing a terminating calculation in stronger classes of action theory, can
proceed independently from the development of formalisms that utilise persis-
tence queries. This opens the possibility of wider application of the property
persistence approach � subsequent applications can use the PD operator as
a kind of �black box� for dealing with persistence queries, for example to
formulate regression rules as in our own work on knowledge [14].

This paper has thus signi�cantly increased the scope of queries that can be
posed within automated reasoning systems built upon the situation calculus.
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Appendix A. Detailed Proofs

Theorem 1. For any n ∈ N, PnD(φ, α) holds in σ i� φ holds in σ and in all
successors of σ reached by performing at most n actions satisfying α:

D |= PnD(φ, α)[σ] ≡∧
i≤n

∀a1 . . . ai :

(∧
j≤i

α[aj, do([a1 . . . aj−1], σ)] → φ[do([a1 . . . ai], σ)]

)

Proof. By induction on the natural numbers. For n = 0 we have φ[σ] ≡ φ[σ]
by de�nition. For the inductive case, we expand the de�nition of PnD(φ, α)[σ]
to get the following for the LHS:

Pn−1
D (φ, α)[σ] ∧ ∀a : RD(α[a, σ])→ RD(Pn−1

D (φ, α)[do(a, σ)])

By the inductive hypothesis we can equate Pn−1
D (φ, α)[σ] in this LHS with

all but the i = n clause from the RHS conjunction, and we suppress them
on both sides. If we also drop the regression operators we are left with the
following to establish:

D |= ∀a : α[a, σ]→ Pn−1
D (φ, α)[do(a, σ)] ≡

∀a1 . . . an :

(∧
j≤n

α[aj, do([a1 . . . aj−1], σ)] → φ[do([a1 . . . an], σ)]

)

We can again use the inductive hypothesis on Pn−1
D in the LHS of this

equivalence. If we then distribute the α[a, σ] implication over the outermost
conjunction and collect quanti�ers, we obtain the following for the LHS:∧

i≤n−1

∀a, a1 . . . ai :(
α[a, σ] ∧

∧
j≤i

α[aj, do([a, a1 . . . aj−1], σ)]→ φ[do([a, a1 . . . ai], σ)]

)

Renaming a ⇒ a1, a1 ⇒ a2, . . . ,ai ⇒ ai+1, we see that each of the
i < n − 1 clauses on the LHS is equivalent to one of the i < n clauses
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that have been suppressed on the RHS. The remaining i = n − 1 clause is
equivalent to the required RHS:

∀a1 . . . an :

(∧
j≤n

α[aj, do([a1 . . . aj−1], σ)] → φ[do([a1 . . . an], σ)]

)

We therefore have the desired equivalence.

Lemma 3. For any basic action theory D, uniform formula φ and action
description predicate α:

if

Σ ∪ Dbg ∪ Dssa ∪ Dad ∪ {φ[S0]} |= ∀s : S0 ≤α s→ φ[s]

then

Dbg |= ∀s, a : φ[s] ∧RD(α[a, s])→ RD(φ[do(a, s)])

Proof. This is a straightforward generalisation of the proof of Lemma 5.3 in
[19] using our modi�ed notation. We repeat the details of the proof below
for convenience. Begin by assuming the antecedent:

Σ ∪ Dbg ∪ Dssa ∪ Dad ∪ {φ[S0]} |= ∀s : S0 ≤α s→ φ[s] (A.1)

Let M be a model of Dbg. Suppose µs and µa are variable assignments for
situation and action variables respectively, such that:

M, µs, µa |= φ[s] ∧RD(α[a, s])

We will show thatM, µs, µa |= RD(φ[do(a, s)]). Following the construction
in [23], we construct a modelM′ with the following properties:

1. M′ andM share the same domains for sorts Action and Object

2. M′ interprets every rigid predicate and function the same as M

3. M′ |= Σ ∪ Dssa ∪ Dad
4. For every variable assignment for object variables µo, and for every

�uent F (x̄, s),M′, µo |= F (x̄, S0) i�M, µs, µo |= F (x̄, s)

SinceM, µs, µa |= RD(α[a, s]) andM′ |= Dad we have:

M′, µa |= α[a, S0]
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SinceM, µs, µa |= φ[s], property (4) ofM′ ensures that:

M′, µa |= φ[S0]

By our assumption (A.1),M′, µa |= φ[do(a, S0)]. SinceM′ satis�es Dssa
the regression operator can be employed to yield:

M′, µa |= RD(φ[do(a, S0)])

Finally, property (4) ofM′ gives us:

M′, µa |= RD(φ[do(a, S0)]) iff M, µs, µa |= RD(φ[do(a, s)])

Since we have the LHS of this equivalence by construction, we can con-
clude the RHS. This su�ces to establish the lemma.

Proposition 6. For any basic action theory D, uniform formula φ and ac-
tion description predicate α:

D −DS0 |= ∀s : φ[s]→ (∀s′ : s ≤α s′ → φ[s′])

iff

Dbg |= ∀s, a : φ[s] ∧RD(α[a, s])→ RD(φ[do(a, s)])

Proof. The if direction is straightforward using the induction axiom from
Proposition 5. For the only-if direction, we can take the S0 case of the LHS
to obtain:

D −DS0 |= φ[S0]→ (∀s : S0 ≤α s→ φ[s])

Lifting φ[S0] into the axioms, this precisely matches the form of Lemma
3 and we have the theorem as desired.

Theorem 3. Given a basic action theory D, uniform formula φ and action
description predicate α, suppose that ψ is a regressable formula with s the
only zero-arity term of sort situation and:

D −DS0 |= ∀s : ψ(s) ≡ ∀s′ : s ≤α s′ → φ[s′]

ψ(s) thus identi�es precisely those situations in which φ persists under α.
Then for any situation term σ:

D |= R∗D(ψ)[σ]

iff

D |=
⋃
n∈N

{PnD(φ, α)[σ]}
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In other words, R∗D(ψ) is a uniform formula representing the �xpoint of ap-
plications of P1

D(φ, α)[s]

Proof. The restrictions on ψ mean it is a regressable formula containing only
situations of the form s and do([a1 . . . ai], s). R∗D(ψ) can therefore unwind
these action terms and produce an equivalent formula uniform in s.

LetM be a model of D −DS0 and µ an assignment to the free variables
in φ. Adopting the technique used by Savelli in [28, lemma 6], we can split
the quanti�cation over s′ into a kind of in�nite conjunction over the levels of
the tree of situations:

M, µ |= ∀s′ : s ≤α s′ → φ[s′]

iff

M, µ |=
⋃
n∈N

{
∀a1 . . . an :

n∧
i=1

α(ai, do([a1 . . . ai−1], s))→ φ[do([a1 . . . an], s)]

}
(A.2)

Note that each element of the set (A.2) is a statement about all situations
n actions into the future of s. Moreover, each element can be regressed to
give a formula uniform in s.

Now take the �nite subset of (A.2) for n up to any natural number m.
Clearly such a subset can be written as a �nite conjunction:

M, µ |=
⋃
n≤m

{
∀a1 . . . an :

n∧
i=1

α(ai, do([a1 . . . ai−1], s))→ φ[do([a1 . . . an], s)]

}
iff

M, µ |=
∧
n≤m

∀a1 . . . an :
n∧
i=1

α(ai, do([a1 . . . ai−1], s))→ φ[do([a1 . . . an], s)]

(A.3)

Equation (A.3) precisely matches the form of the RHS of the equivalence
in Theorem 1, so we can substitute to LHS to give:

M, µ |=
⋃
n≤m

{
∀a1 . . . an :

n∧
i=1

α(ai, do([a1 . . . ai−1], s))→ φ[do([a1 . . . an], s)]

}
iff

M, µ |= PmD (φ, α)[s]
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By de�nition PmD (φ, α) implies PnD(φ, α) for any n < m, so we have:

M, µ |=
⋃
n≤m

{
∀a1 . . . an :

n∧
i=1

α(ai, do([a1 . . . ai−1], s))→ φ[do([a1 . . . an], s)]

}
iff

M, µ |=
⋃
n≤m

{PnD(φ, α)[s]}

Noting that this construction works for any M, µ and m ∈ N gives the
theorem as required.

Theorem 5. Let D be such that all successor state axioms and action de-
scription predicates take the following restricted forms, where ȳi ⊆ x̄ and
Φ

+/−
F,i and Πα,i mention no terms other than x̄ and s:

F (x̄, do(a, s)) ≡
n∨
i=1

a = ai(ȳi) ∧ Φ+
F,i(x̄, s) ∨ F (x̄, s) ∧ ¬

n∨
i=1

a = ai(ȳi) ∧ Φ−F,i

α(x̄, a, s) ≡
n∨
i=1

a = ai(ȳi) ∧ Πα,ix̄, s)

Then for a quanti�er-free uniform formula φ and any α, the persistence con-
dition PD(φ, α) exists and can be calculated in �nitely many iterations.

Proof. We will treat only the case where φ = F (x̄, s); the general case follows
by induction on the structure of φ. Calculating P1

D(F (x̄, s), α) gives:

P1
D(F (x̄, s), α) = F (x̄, s) ∧ ∀a :

(
n∨
i=1

a = ai(ȳi) ∧ Πα,i(x̄, s)

)
→(

n∨
j=1

a = aj(ȳj) ∧ Φ+
F,i(x̄, s) ∨ F (x̄, s) ∧ ¬

n∨
j=1

a = aj(ȳj) ∧ Φ−F,i

)

If we take the i-disjunction outside the implication, it becomes a conjunc-
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tion over action types:

P1
D(F (x̄, s), α) = F (x̄, s) ∧ ∀a :

n∧
i=1

(
a = ai(ȳi) ∧ Πα,i(x̄, s)→

n∨
i=1

a = ai(ȳi) ∧ Φ+
F,i(x̄, s) ∨ F (x̄, s) ∧ ¬

n∨
i=1

a = ai(ȳi) ∧ Φ−F,i

)

This allows us to remove the quanti�cation over a and eliminate the
explicit references to ai to produce:

P1
D(F (x̄, s)α) = F (x̄, s) ∧

n∧
i=1

(
Πα,i(x̄, s)→ Φ+

F,i(x̄, s) ∨ F (x̄, s) ∧ ¬Φ−F,i

)

Let terms(φ) denote the set of all terms mentioned in φ:

terms(F (τ̄ , σ))
def

= τ̄ ∪ {σ}
terms(τi = τj)

def

= (τi, τj)

terms(φi ∧ φj)
def

= terms(φi) ∪ terms(φj)

terms(¬φ)
def

= terms(φ)

Recall that Φ
+/−
F,i and Πα,i mention no terms other than x̄ and s, so:

terms(F (x̄, s)) = terms(P1
D(F (x̄, s), α))

And by induction, we have that for any n:

terms(F (x̄, s)) = terms(PnD(F (x̄, s), α))

Since terms(F (x̄, s)) is �nite, it follows that applications of P1
D to F (x̄, s)

can only generate �nitely many non-equivalent formulae. P1
D thus operates

over a �nite subset of L(Dbg), which su�ces to ensure the terminating cal-
culation of PD(F (x̄, s), α).
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Theorem 6. Let D be a context-free domain with �nitely many parameterless
actions, then for any φ and α the persistence condition PD(φ, α) exists and
can be calculated in �nitely many iterations.

Proof. Following the notation used in [18], say that two situations have the
same state if they satisfy precisely the same �uents:

SameState(s, s′)
def

=
n∧
i=1

(∀x̄i : Fi(x̄i, s) ≡ Fi(x̄i, s
′))

Observe that such situations also satisfy the same uniform formulae:

D |= SameState(s, s′)→ (φ[s] ≡ φ[s′])

Let ||do(ξ, S0)|| be the set of all situations that have the same state as
do(ξ, S0) for a given sequence of actions ξ. By [18, Lemma 6.1] there are at
most N distinct sets ||do(ξ, S0)|| for some natural number N .

We show that Algorithm 1 terminates after at most N iterations. Sup-
pose otherwise, i.e. suppose that there is a model M of D and a variable
assignment µ such that:

M, µ |= PND (φ, α)[s] (A.4)

M, µ |= ¬PN+1
D (φ, α)[s]

Then there must exist a sequence of actions [A1 . . . AN+1] such that:

M, µ |= ¬φ[do([A1 . . . AN+1, s)] (A.5)

We will show that such a sequence cannot exist. First, assume that
||do([A1 . . . Ai], s)|| is distinct for each i ≤ N . Since there are at most N
such distinct states in the domain, ||do([A1 . . . AN+1)|| must be the same as
||do([A1 . . . Ai], s)|| for some i. By (A.4) we have that φ[do([A1 . . . Ai], s)] for
any i ≤ N , and so (A.5) cannot hold.

Alternately, assume that there is some i < j ≤ N such that:

M, µ |= SameState(do([A1 . . . Ai], s), do([A1 . . . Aj], s))

Then we can remove the redundant actions between i and j to get:

M, µ |= SameState(do([A1 . . . Ai, Aj+1 . . . AN+1], s), do([A1 . . . AN+1], s))

By (A.4) we know that φ holds at do([A1 . . . Ai, Aj+1 . . . AN+1), so (A.5)
cannot hold and we have the desired contradiction.

There can therefore be no such model M, and persistence to depth N
su�ces to establish persistence to any depth.

40



Appendix B. Axioms for the �Gold Thief� Domain

This section gives the axioms used for the �gold thief� example domain
in Sections 3 and 7. In this domain a thief may try to steal some gold from
a safe. There is a light in the room, and a security camera that will detect
the thief's actions as long as the light is on. The safe can be open or closed,
but the gold can only be stolen if the safe is open. It is possible for the thief
to crack the safe and force it open, but only if the light is on.

The actions in this domain are takeGold, crackSafe and toggleLight,
the primitive �uents are SafeOpen, LightOn and Stolen, and the action
description predicates include the standard Poss(a, s) and a custom predicate
Undet(a, s) indicating that action a would not be detected by the security
camera.

The successor state axioms Dssa consist of the following sentences:

Stolen(do(a, s)) ≡ a = takeGold ∨ Stolen(s)

SafeOpen(do(a, s)) ≡ a = crackSafe ∨ SafeOpen(s)

LightOn(do(a, s)) ≡ a = toggleLight ∧ ¬LightOn(s)

∨LightOn(s) ∧ a 6= toggleLight

The action description predicates in Dad are de�ned by the following:

Poss(a, s) ≡ a = toggleLight ∨ a = takeGold ∧ SafeOpen(s)

∨a = crackSafe ∧ LightOn(s)

Undet(a, s) ≡ Poss(a, s) ∧ a 6= toggleLight ∧ ¬LightOn(s)

The background theory Dbg contains only the standard unique names
assumptions for actions, and the initial situation axioms DS0 are not speci�ed
since they are not used in the discussion.

Appendix C. Complete Calculation for the �Gold Thief� domain

This section presents complete details of the calculation of PD for the
�gold thief� example as outlined in Section 7. We need to calculate:

PD(¬Stolen, Undet)[σ]
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To calculate this persistence condition we follow Algorithm 1, calculating
PnD for successively larger values of n until the series converges to a �xpoint.
The case of n = 0 is trivial:

P0
D(¬Stolen, Undet)[s] = ¬Stolen(s)

The n = 1 case is given by de�nition 7 as:

P1
D(. . . )[s] = ¬Stolen(s) ∧ ∀a : RD(Undet(a, s))→ RD(¬Stolen(do(a, s)))

Some straightforward simpli�cations can be applied at this stage. First,
since there are �nitely many actions in this domain, the ∀a quanti�cation
can be replaced with a �nite conjunction:

P1
D(. . . )[s] = ¬Stolen(s)

∧ RD(Undet(takeGold, s))→ RD(¬Stolen(do(takeGold, s)))

∧RD(Undet(crackSafe, s))→ RD(¬Stolen(do(crackSafe, s)))

∧RD(Undet(toggleLight, s))→ RD(¬Stolen(do(toggleLight, s)))

From the domain axioms we know that crackSafe and toggleLight do
not a�ect whether the gold has been stolen, while takeGold will always make
Stolen true. Performing the regression of ¬Stolen we thus obtain the follow-
ing result:

P1
D(. . . )[s] = ¬Stolen(s) ∧ RD(Undet(takeGold, s))→ ¬>

∧RD(Undet(crackSafe, s))→ ¬Stolen(s)

∧RD(Undet(toggleCam, s))→ ¬Stolen(s)

Since the conjunction already contains ¬Stolen(s) unconditionally, we
can simplify away the �nal three cases. We obtain:

P1
D(. . . )[s] = ¬Stolen(s) ∧ ¬RD(Undet(takeGold, s))

Performing the remaining regression, we obtain the �nal result for P1
D:

P1
D(. . . )[s] = ¬Stolen(s) ∧ [¬SafeOpen(s) ∨ LightOn(s)]

Since this is clearly not entailed by the P0
D case, we must continue to the

n = 2 case. Again applying de�nition 7 and expanding out each individual
action, we get:
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P2
D(. . . )[s] = ¬Stolen(s) ∧ [¬SafeOpen(s) ∨ LightOn(s)]

∧ RD(Undet(takeGold, s))→ RD(¬Stolen(do(takeGold, s))

∧ [¬SafeOpen(do(takeGold, s)) ∨ LightOn(do(takeGold, s))])

∧ RD(Undet(crackSafe, s))→ RD(¬Stolen(do(crackSafe, s))

∧ [¬SafeOpen(do(crackSafe, s)) ∨ LightOn(do(crackSafe, s))])

∧ RD(Undet(toggleLight, s))→ RD(¬Stolen(do(toggleLight, s))

∧ [¬SafeOpen(do(toggleLight(s)) ∨ LightOn(do(toggleLight, s))])

Applying similar simpli�cations to the P1
D case, we can obtain:

P2
D(. . . )[s] = ¬Stolen(s) ∧ [¬SafeOpen(s) ∨ LightOn(s)]

∧ RD(Undet(takeGold, s))→ ¬> ∧ [¬SafeOpen(s) ∨ LightOn(s)]

∧ RD(Undet(crackSafe, s))→ ¬Stolen(s) ∧ [¬> ∨ LightOn(s)]

∧RD(Undet(toggleLight, s))→ ¬Stolen(s)∧[¬SafeOpen(s)∨¬LightOn(s)]

Further simplifying:

P2
D(. . . )[s] = ¬Stolen(s) ∧ [¬SafeOpen(s) ∨ LightOn(s)]

∧ ¬RD(Undet(takeGold, s))

∧ [¬RD(Undet(toggleLight, s)) ∨ ¬SafeOpen(s) ∨ ¬LightOn(s)]

Now performing the second regression:

P2
D(. . . )[s] = ¬Stolen(s) ∧ [¬SafeOpen(s) ∨ LightOn(s)]

∧ [¬SafeOpen(s) ∨ LightOn(s)]

∧ [¬⊥ ∨ ¬SafeOpen(s) ∨ ¬LightOn(s)]

Further simpli�cation gives:

P2
D(. . . )[s] = ¬Stolen(s) ∧ [¬SafeOpen(s) ∨ LightOn(s)]

We have clearly satis�ed the termination condition of Algorithm 1, since
P1
D → P2

D . We have thus successfully calculated the persistence condition:

PD(¬Stolen, Undet) = ¬Stolen ∧ [¬SafeOpen ∨ LightOn]
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