
Title Computational techniques for a simple theory of conditional
preferences

Authors Wilson, Nic

Publication date 2011-05

Original Citation WILSON, N. 2011. Computational techniques for a simple theory
of conditional preferences. Artificial Intelligence, 175 (7-8),
1053-1091. doi: http://dx.doi.org/10.1016/j.artint.2010.11.018

Type of publication Article (peer-reviewed)

Link to publisher's
version

http://www.sciencedirect.com/science/article/pii/
S0004370210002079 - 10.1016/j.artint.2010.11.018

Rights Copyright © 2011, Elsevier. NOTICE: this is the author’s version of
a work that was accepted for publication in Artificial Intelligence.
Changes resulting from the publishing process, such as
peer review, editing, corrections, structural formatting, and
other quality control mechanisms may not be reflected in this
document. Changes may have been made to this work since it was
submitted for publication. A definitive version was subsequently
published in Artificial Intelligence [Volume 175, Issues 7–
8, May 2011, Pages 1053–1091] http://dx.doi.org/10.1016/
j.artint.2010.11.018

Download date 2024-05-10 22:42:00

Item downloaded
from

https://hdl.handle.net/10468/1082

https://hdl.handle.net/10468/1082

Computational Techniques for a Simple Theory

of Conditional Preferences

Nic Wilson
Cork Constraint Computation Centre

Department of Computer Science
University College Cork

Cork, Ireland
n.wilson@4c.ucc.ie

Telephone: +353 21 4205954
Fax: +353 21 4205369

Abstract

A simple logic of conditional preferences is defined, with a language
that allows the compact representation of certain kinds of conditional
preference statements, a semantics and a proof theory. CP-nets and TCP-
nets can be mapped into this logic, and the semantics and proof theory
generalise those of CP-nets and TCP-nets. The system can also express
preferences of a lexicographic kind. The paper derives various sufficient
conditions for a set of conditional preferences to be consistent, along with
algorithmic techniques for checking such conditions and hence confirming
consistency. These techniques can also be used for totally ordering out-
comes in a way that is consistent with the set of preferences, and they
are further developed to give an approach to the problem of constrained
optimisation for conditional preferences.

Keywords: conditional preferences, comparative preferences, ceteris paribus
preferences, CP-nets, TCP-nets, constrained optimisation, lexicographic prefer-
ences.

1

1 Introduction

The formalism CP-nets (Boutilier, Brafman, Hoos, & Poole, 1999; Boutilier,
Brafman, Domshlak, Hoos, & Poole, 2004a) is designed for compactly express-
ing conditional comparative preferences in multivariate problems. A CP-net
involves statements of the form: u : x > x′, where x, x′ are values of a variable
X and u is an assignment to a set of variables U (called the parents of X). The
interpretation is that, given u, x is (strictly) preferred to x′, all else being equal
(ceteris paribus); that is, for all assignments s to the other variables S, sux is
preferred to sux′, where e.g., sux is the outcome (complete assignment) α such
that α(X) = x, α(U) = u and α(S) = s. The statement therefore compactly
represents exponentially many preferences between outcomes. This is a condi-
tional preference, since the preference between values of X is conditional on the
values of other variables U . It represents comparative preferences, in that the
preference statements relate directly to the ordering between outcomes; this is
in contrast to many theories of preference which assign some form of grade to
outcomes, and outcomes are compared by comparing their grades. Compara-
tive preference statements can be easier to reliably elicit: often it is easier to
judge that one alternative is preferred to another than it is to allocate particular
grades of preference to the alternatives.

Another key feature of CP-nets and related languages is the ceteris paribus
aspect of the interpretation. If someone tells us they’d prefer a green car to a
white car, they wouldn’t usually mean that they’d prefer any green car to any
white car; a ceteris paribus interpretation, that any green car is preferred to a
car which is similar except being white, seems much more natural. However,
this will tend to lead to quite weak inferences, and a user will sometimes want
to express much stronger statements such as those of the form: x is preferred
to x′ irrespective of the values of other variables, where the variable X is the
most important variable, and, for example, x′ represents a value that should be
avoided if at all possible.

This paper develops a formalism along similar lines to CP-nets, but where a
richer language of preference statements can be expressed: stronger conditional
preference statements as well as the usual CP-nets ceteris paribus statements;
The language consists of statements of the form u : x > x′ [W] (where W
is a subset of S), which represents that for all assignments w,w′ to W and
assignments t to S −W , tuxw is preferred to tux′w′. So, given u and any t,
x is preferred to x′ irrespective of the values of W . CP-nets ceteris paribus
statements are represented by such statements with W = ∅, and the strong
conditional preference statement in the previous paragraph corresponds to > :
x > x′ [V − {X}], where V is the set of all variables. As in CP-nets, and
their extension TCP-nets (Brafman & Domshlak, 2002; Brafman, Domshlak,
& Shimony, 2006), this is a compact representation: each statement typically
corresponds to many preferences between outcomes.

The next section introduces the new formalism, which can be viewed as a
simple logic of conditional preferences. A cp-theory Γ has an associated pref-
erence relation >Γ on outcomes; Γ can be considered to be a compact repre-

2

sentation of >Γ. A semantics is given and also a complete proof theory, based
on ‘swapping sequences’, which is a natural generalisation of flipping sequences
in CP-nets and TCP-nets. Section 3 examines the relative expressivity of the
language as compared with CP-nets. It shows how CP-net orderings (Section
3.1) and TCP-net orderings (Section 3.2) can be represented within the lan-
guage; however, this stronger kind of preference statement, which can be used,
for example, to construct a lexicographic order on outcomes, is not expressible
within the languages of CP-nets or TCP-nets (see Sections 3.3 and 3.4). Sec-
tion 3.5 illustrates that the ceteris paribus statements of CP-nets tend to be
rather weak, by showing how hard it is for a CP-net to generate a total order
on outcomes.

Sections 4, 5, 6 and 7, are all concerned with the inter-related topics of
determining consistency of a cp-theory, totally ordering sets of outcomes, and
constrained optimisation. Most of the work on CP-nets and TCP-nets has as-
sumed a very strong acyclicity property on the variables (though see (Domshlak
& Brafman, 2002; Domshlak, 2002)); here we generally make much weaker as-
sumptions, which is desirable since natural sets of conditional preference state-
ments can easily fail to be acyclic in this sense. A necessary condition for
consistency is derived, “local consistency” (Section 4.1), and some sufficient
conditions; determining whether these conditions hold is much less hard than
determining consistency.

A cp-theory is consistent if and only if there exists a strict total order on
outcomes that satisfies it. We focus on a particular kind of strict total order:
one generated by a complete search tree (or “cs-tree”, see Section 4.2), as used
in backtracking search for solutions of a constraint satisfaction problem; the
associated strict total order is the order in which outcomes are visited by such
a search tree. We derive various sufficient conditions for a cs-tree to satisfy
a cp-theory. If we can show that there exists a cs-tree satisfying a cp-theory
Γ, then we have proved that Γ is consistent. Furthermore, we can use such
a satisfying cs-tree for totally ordering sets of outcomes, and in a constrained
optimisation algorithm (Section 4.4), making use of an upper approximation of
the preference relation, i.e., a relation on outcomes that extends the preference
relation.

For the fully acyclic case, i.e., when the graph formed by dependencies and
importance is acyclic, defining a satisfying cs-tree is straightforward, as shown in
Section 5; this implies that Γ is consistent if and only if it is locally consistent,
with the latter condition often being very easy to check. For more general
cases, the situation is more complicated, and in Sections 6 and 7 we derive more
complex methods for constructing satisfying cs-trees. Section 6 considers weaker
forms of acyclicity for cp-theories, that we call strong conditional acyclicity
(Section 6.1) and cuc-acyclicity (Section 6.2), and which are sufficient conditions
for a cp-theory to be consistent. A polynomial upper approximation is derived
for cuc-acyclic cp-theories.

Proving consistency of a cp-theory by explicitly giving a cs-tree that satisfies
the cp-theory will typically not be feasible, since the cs-tree is an exponentially
large object. However, cs-trees can be defined in a compact way based on

3

implicit representations of the variable and value orderings; defining the value
ordering is easy, given that the cp-theory is locally consistent. Section 7 defines
a compact computational structure and associated techniques for defining the
variable orderings of a cs-tree satisfying the cp-theory; this can be used for
confirming consistency, ordering outcomes and constrained optimisation.

Section 8 discusses related work, Section 9 concludes, and the appendix
contains most of the proofs.

2 A logic of conditional preferences

In this section, a simple logic of conditional preferences is defined, with a lan-
guage, semantics and a kind of proof theory. As we will see in Sections 3.1
and 3.2, CP-nets and TCP-nets can be expressed within this language. The
logic has a somewhat restrictive language, but the restrictions entail some nice
properties, generalising properties of CP-nets.

After giving some basic definitions of ordering relations in Section 2.1, we
define cp-theories and their associated preference relations in Section 2.2. A
semantics (Section 2.3) and a proof theory (Section 2.4) are defined, with a
completeness result (Theorem 1).

2.1 Ordering relations

In this section we give some basic definitions and properties of ordering relations
that will be used throughout the paper.

A binary relation � on a set Ω is defined to be a subset of Ω×Ω; the notations
“(a, b) ∈ �” and “a � b” are used interchangeably. Since binary relations are
sets, we can talk about the intersection and union of them, and containment of
one by another. So, in particular, if � and �′ are (binary) relations on Ω then
� ⊆ �′ holds if and only if a � b implies a �′ b. We may also say in this case
that �′ contains �, or �′ extends �.

Let � be a binary relation on a set Ω. � is said to be reflexive if a � a
for all a ∈ Ω. It is said to be irreflexive if for all a ∈ Ω it is not the case that
a � a. Relation � is said to be transitive if for all a, b, c ∈ Ω, if a � b and b � c
both hold then a � c holds. For any relation �, there exists a unique (set-wise)
minimal transitive relation R containing � (which is equal to the intersection of
all transitive relations on Ω containing �). R is known as the transitive closure
of �.

Irreflexive relation � is said to be acyclic if its transitive closure is irreflexive,
i.e., if there exists no cycle a � a′ � a′′ � · · · � a. Relation � is said to be
a strict partial order if it is transitive and irreflexive. A strict partial order is
therefore acyclic. A strict total order � is a strict partial order such that for all
different a, b ∈ Ω either a � b holds or b � a holds.

We summarise some well-known properties of ordering relations (e.g., part
(ii) generalised to infinite sets is Szpilrajn’s Extension Theorem (Marczewski,
1930)).

4

Lemma 1 Let � be a binary relation on finite set Ω. Then the following prop-
erties hold.

(i) Suppose that � is a strict partial order on Ω, and that α, β ∈ Ω are such
that it is not the case that α � β. Then � ∪ {(β, α)} is acyclic.

(ii) If � is a strict partial order then it can be extended to a strict total order,
that is, there exists some strict total order �′ on Ω with � ⊆ �′ (i.e.,
α � β ⇒ α �′ β).

(iii) If � is irreflexive and acyclic then it can be extended to a strict total order
on Ω.

(iv) Suppose that � is irreflexive. Then � is acyclic if and only if its transi-
tive closure is irreflexive if and only if there exists a strict total ordering
extending it.

(v) If � is a strict partial order then � is equal to the intersection of all strict
total orders extending it.

2.2 cp-theories and their associated preference relations

In this section we define a formalism for compactly expressing comparative
preferences. Before defining cp-theories, we first introduce our notation for
outcomes and assignments.

Variables, tuples and outcomes. Let V be a set of variables; for each
X ∈ V let Domain(X) be the set of possible values of X. For subset of variables
U ⊆ V , we use the notation U =

∏
X∈U Domain(X) to represent the set of

possible assignments to U . Formally, U is the set of functions on U which, for
each X ∈ U , assign a value of X to variable X.1

The assignment to the empty set of variables is written >. A complete
tuple/assignment or outcome is an element of V , i.e., an assignment to all the
variables. Let a ∈ A be an assignment to variables A, and let u ∈ U be an
assignment to variables U ⊆ A ⊆ V . We may write a |= u to mean that a
projected to U gives u, which can also be written as a(U) = u. We then also
say that a extends u.

2.2.1 cp-theories

For set of variables V , the language LV (abbreviated to L) consists of all state-
ments of the form u : x > x′ [W], where u is an assignment to a set of variables
U ⊆ V (i.e., u ∈ U), x, x′ ∈ X are different assignments to some variable X /∈ U
(and so x and x′ correspond to different values of X) and W is some subset

1For variable X ∈ V , the elements of X, which can be written in the form X = a for some
value a of X, are in one-to-one correspondence with Domain(X). We will usually slightly
abuse notation, and refer to an element of X as a value of X, and refer to X as the domain
of X.

5

of V − U − {X}. If ϕ is the statement u : x > x′ [W], we may write uϕ = u,
Uϕ = U , xϕ = x, x′ϕ = x′, Wϕ = W and Tϕ = V − ({X} ∪ U ∪W).

Subsets of L are called conditional preference theories or cp-theories (on V).
For ϕ = u : x > x′ [W], let ϕ∗ be the set of pairs of outcomes {(tuxw, tux′w′) :
t ∈ Tϕ, w, w′ ∈ W}. Such pairs (α, β) ∈ ϕ∗ are intended to represent a prefer-
ence for α over β, and ϕ is intended as a compact representation of the preference
information ϕ∗. Informally, ϕ represents that, given u and any t, x is preferred
to x′, irrespective of the assignments to W . For conditional preference theory
Γ ⊆ L, define Γ∗ =

⋃
ϕ∈Γ ϕ

∗, so Γ∗ represents a set of preferences. We assume
here that preferences are transitive, so it is then natural to define order >Γ, in-
duced on V by Γ, to be the transitive closure of Γ∗. In Section 3 it is shown that
CP-nets can be represented in terms of statements u : x > x′ [W] with W = ∅,
and TCP-nets with statements with W containing at most one variable.

Conditional preference theories allow locally partially ordered preferences:
we do not need to assume that we can elicit a total order on the values of
a variable given each assignment to its parents. This kind of representation
of conditional preferences is very flexible as regards elicitation: we can reason
with an arbitrary subset Γ of the language L, so we can accept any conditional
preference statements (of the appropriate form) that the agent is happy to give
us. More statements can be added later, and, because the logic is monotonic
(i.e., Γ ⊆ ∆ implies >Γ ⊆ >∆), all of our previous deductions from Γ will still
hold, in particular whether one outcome is preferred to another.

2.2.2 Example A

I’m planning a holiday. I can either go next week (n) or later in the year (n).
I’ve decided to go either to Oxford (o) or to Manchester (o), and I can either
take the plane (p) or drive and take a car ferry (p). So, there are three variables,
X1, X2 and X3, where X1 = {n ,n }, X2 = {o ,o } and X3 = {p ,p }. Firstly, I’d
prefer to go next week irrespective of the choices of the other variables, as I could
do with a break soon. This can be represented by statement ϕ1 which equals
> : n > n [{X2, X3}]. This represents a set ϕ∗1 of pairs of outcomes (nw1,nw2),
where w1 and w2 are both arbitrary assignments to the set of variables {X2, X3};
e.g., setting w1 = o p and w2 = o p gives the pair (n o p ,n o p) indicating the
preference of n o p over n o p . ϕ1 is a compact way of representing the 16 pairs
in ϕ∗1. Secondly, all else being equal (ceteris paribus), I’d prefer to go to Oxford
rather than Manchester. We represent this by the statement ϕ2, which equals
> : o > o [∅]. This is an unconditional ceteris paribus statement. It represents
set ϕ∗2 of pairs of outcomes (x1ox3, x1ox3) meaning outcome x1ox3 is preferred
to x1ox3, where x1 is either value of X1 and x3 is either value of X3.

My preferences on variable X3 are conditional. I’d prefer to fly rather than
drive unless I go later in the year to Manchester, when the weather will be
warmer and a car would be useful for touring around. This can be represented
by conditional preference statements ϕ3, ϕ4 and ϕ5 defined as follows. ϕ3 is n :
p > p [∅], and ϕ4 is o : p > p [∅]. ϕ5 is n o : p > p [∅], representing ϕ∗5 which
consists of the single preference of n o p over n o p , i.e., ϕ∗5 = {(n o p ,n o p)}.

6

Let Γ = {ϕ1, . . . , ϕ5}. The statement ϕ1 cannot be represented in a CP-net
on V = {X1, X2, X3}. The others all can as they involve empty W . The induced
partial ordering >Γ on outcomes can be shown to be the transitive closure of:
n o p >Γ {n o p ,n o p } >Γ n o p >Γ n o p >Γ n o p >Γ n o p >Γ n o p , so
that >Γ is almost a total order, with only the pair of outcomes n o p and n o p
not being ordered (see Figure 1).

nop

pno pon

pon

3,4 2

2 3

opn

pon pon

pon

4 2

2 5

1

Figure 1: The ordering of outcomes in Example A. For i = 2, . . . , 5, an edge from
outcome α to outcome β is labelled with i if and only if preference statement
ϕi entails that α is preferred to β i.e., iff (α, β) ∈ ϕ∗i . All four outcomes in the
left-hand oval dominate, using ϕ1, all the other four outcomes. All the edges
together form Γ∗, and >Γ is the transitive closure of this set Γ∗ of orderings.

2.2.3 Graphs H(Γ) and G(Γ) on V , and fully acyclic cp-theories

Directed graphs notation. In the paper we will define several kinds of di-
rected graph on the set of variables, and we introduce the following notation.
For S, T ⊆ V , define S → T to be the set of edges {(X,Y) : X ∈ S, Y ∈ T}.
In addition, if S or T is a singleton set, then we may omit the set brackets,
abbreviating, e.g., S → {X} to S → X.

Let Γ be a cp-theory over set of variables V . We define a pair of binary
relations on V , which are considered as directed graphs.

The dependency graph H(Γ) consists of edges Uϕ → Xϕ for all ϕ in Γ. In
other words, H(Γ) consists of all pairs of the form (Y,Xϕ), where ϕ ∈ Γ and
Y ∈ Uϕ. H(Γ) contains edge (Y,X) if and only if there is some conditional
preference statement ϕ ∈ Γ that makes the preferences for X conditional on
Y . H(Γ) thus encodes dependency information. Given fixed Γ, and variable
X ∈ V , we will sometimes write UX to mean the parents of variable X with
respect to H(Γ), i.e., the set of variables Y with (Y,X) ∈ H(Γ). UX is the set
of variables that the preference for X can depend on.

Define G(Γ) to contain Uϕ → Xϕ and Xϕ → Wϕ for all ϕ ∈ Γ, i.e.,
G(Γ) =

⋃
ϕ∈Γ(Uϕ → Xϕ) ∪

⋃
ϕ∈Γ(Xϕ → Wϕ). G(Γ) is H(Γ) with extra edges

(X,Z) when there is some preference statement ϕ ∈ Γ representing a preference

7

for values of X irrespective of the value of Z, which implies that X is more
important than Z in that context. G(Γ) thus represents both the dependency
and the relative importance information.

We say that cp-theory Γ is fully acyclic if G(Γ) is acyclic. Fully acyclic
cp-theories will be studied further in Section 5.

In the example it happens to be the case that both H(Γ) and G(Γ) are
acyclic, and so Γ is fully acyclic: H(Γ) = {(X1, X3), (X2, X3)} and G(Γ) equals
the total order on variables, {(X1, X2), (X1, X3), (X2, X3)}. However, more
generally, this need not be so. Suppose that some cp-theory Γ contains the
following statements: “If I go later in the year to Oxford, then I’d prefer to
drive than fly”, and “If I fly next week then I’d prefer to go to Manchester than
Oxford”; H(Γ) then contains both (X2, X3) and (X3, X2). There is nothing
unreasonable or inconsistent about this (in particular, because the preferences
are in disjoint contexts, the first regarding later in the year, the second regarding
travelling next week).

2.3 Semantic entailment for cp-theories

In this section, we define a semantics and the notion of consistency for cp-
theories. We define models for L to be strict total orders on V , i.e., irreflexive
transitive binary relations > on V such that for all α and β in V , with α 6= β,
either α > β or β > α. For strict total order >, and conditional preference
statement ϕ ∈ L, we say that > satisfies ϕ (> |= ϕ) if > ⊇ ϕ∗. Therefore, if ϕ
is the statement u : x > x′ [W] then > satisfies ϕ if and only if for all t ∈ T and
w,w′ ∈W , tuxw > tux′w′.

For cp-theory Γ ⊆ L we say that > satisfies Γ (> |= Γ) if > satisfies every
element of Γ, which is if and only if > ⊇ Γ∗. We also then say that > is a model
of Γ.

Definition 1 (semantic entailment) For Γ ⊆ L and ϕ ∈ L, we define the
semantic entailment relation by Γ |= ϕ if and only if > |= ϕ for all > such that
> |= Γ. For α, β ∈ V we also say that Γ |= (α, β) if α > β holds for all models
> of Γ.

Definition 2 (consistency of a cp-theory) We say that cp-theory Γ is con-
sistent if it has a model, i.e., if there exists a strict total order > with > |=
Γ.

For Example A, consider the model > defined as the transitive closure of
n o p > n o p > n o p > n o p > n o p > n o p > n o p > n o p . Total
order > satisfies ϕ1 = > : n > n [{X2, X3}] because any outcome extending n
is preferred to any outcome extending n , i.e., α > β for any outcomes α and
β with α(X1) = n and β(X1) = n . It can be checked that > satisfies each
statement in Γ, and so satisfies Γ, i.e., > extends Γ∗. This shows that Γ is
consistent. Γ has one other model, which differs from > only in how it orders
outcomes n o p and n o p . Hence we have, for example, Γ |= (n o p ,n o p), but

8

it is not the case that Γ |= (n o p ,n o p), since there exists a model > of Γ with
n o p > n o p , and nor do we have Γ |= (n o p ,n o p).

The construction of semantic entailment relation |= ensures that it is mono-
tonic; in particular, if Γ ⊆ ∆ ⊆ L and Γ |= (α, β) then ∆ |= (α, β). The
following lemma sums up some basic properties of semantic entailment.

Lemma 2 Let Γ ⊆ L be a cp-theory over variables V .

(i) Let > be a strict total order on V . Then > satisfies Γ if and only if >
extends >Γ, i.e., > |= Γ ⇐⇒ > ⊇ >Γ.

(ii) The following four statements are equivalent: (a) Γ is consistent; (b) Γ∗

is acyclic; (c) >Γ is irreflexive; (d) >Γ is a strict partial order.

(iii) If Γ is consistent then >Γ is equal to the intersection of all strict total
orders satisfying Γ, i.e., >Γ equals

⋂
>|=Γ >.

(iv) If Γ is consistent then Γ |= (α, β) if and only if α >Γ β.

(v) If Γ is consistent then Γ |= ϕ if and only if >Γ ⊇ ϕ∗.

2.4 Proof theory

We describe a proof theory for cp-theories, based on swapping sequences (which
generalise flipping sequences for CP-nets (Boutilier et al., 2004a)), and give a
completeness result, relating the proof theory with the semantics.

Definition 3 (swapping sequences) Let α, β ∈ V be two outcomes. We say
that there is a worsening swap from α to β for cp-theory Γ if (α, β) ∈ Γ∗, i.e.,
iff there exists ϕ = (u : x > x′ [W]) ∈ Γ such that α |= u, β |= u, α(X) = x,
β(X) = x′, and α(Tϕ) = β(Tϕ). We say that there is a worsening swapping
sequence from α to β (for Γ) if there exists a sequence α = α1, . . . , αl = β such
that for each k = 1, . . . , l − 1, there is a worsening swap from αk to αk+1, i.e.,
(αk, αk+1) ∈ Γ∗.

For instance, in Example A, there is a worsening swap (and hence a worsen-
ing swapping sequence) from n o p to n o p , since (n o p ,n o p) ∈ ϕ∗1. There is
also a worsening swapping sequence from n o p to n o p , since there is a wors-
ening swap from n o p to n o p (using ϕ2), and a worsening swap from n o p
to n o p (using ϕ5).

Clearly, if there is a worsening swapping sequence from α to β then (α, β)
is in the transitive closure >Γ of Γ∗. Conversely, if (α′, β′) is in the transitive
closure of Γ∗ then there exists a sequence α′ = α1, . . . , αl = β′ with for each
k = 1, . . . , l−1, (αk, αk+1) ∈ Γ∗. We therefore have, using Lemma 2(ii) and (iv),
the following result which is a soundness and completeness result for worsening
swapping sequences.

9

Theorem 1 (Soundness and completeness for swapping sequences) 2

Let Γ be a conditional preference theory on V and let α, β ∈ V be outcomes.
Then

(i) α >Γ β if and only if there exists a worsening swapping sequence for Γ
from α to β;

(ii) Γ is consistent if and only if the associated preference relation >Γ is ir-
reflexive (which is if and only if Γ∗ is acyclic);

(iii) if Γ is consistent then Γ |= (α, β) ⇐⇒ α >Γ β, which is if and only if
there exists a worsening swapping sequence for Γ from α to β.

3 Expressiveness, CP-nets, TCP-nets and lexi-
cographic orders

This section considers issues regarding the expressiveness of cp-theories, CP-
nets and TCP-nets. It is shown in Section 3.1 how to map a CP-net to a
cp-theory with the same associated preference relation; Section 3.2 does the
same for TCP-nets. Lexicographic orders are considered in Section 3.3, where
it is shown how they can be represented easily using a cp-theory, but not by
CP-nets or TCP-nets. Lexicographic orders can be viewed as being composed
of a set of a particular kind of strong preference statement where the choice of
values of a variable dominate the assignments to a set of other (less important)
variables. Some results are presented in Section 3.4 which show that, these
statements are not at all natural for CP-nets or TCP-nets. In Section 3.5 we
show how hard it is to generate a total order on outcomes with purely ceteris
paribus preferences; we show that for any number n there is essentially a unique
acyclic CP-net on n Boolean variables whose associated preference relation is a
total order.

3.1 Expressing CP-nets in the language

In this section we show how CP-nets can be expressed as conditional preference
theories, using statements u : x > x′ [W] with W = ∅. It is shown in Section 3.3
and Section 3.4 that the language is a good deal more expressive than CP-nets.

A CP-net over V is defined (see (Boutilier et al., 1999) and especially Defi-
nitions 1, 2 and 3 of (Boutilier et al., 2004a)) to be a pair N = (H,CT) where
H is a (binary) relation on V (which is conventionally thought of as a directed
graph) and CT is a function which assigns a conditional preference table to each

2An alternative to using strict total orders as models is to use total pre-orders (reflexive,
transitive and complete binary relations), see Section 3 of (Brafman & Dimopoulos, 2004). We
can define total pre-order < to satisfy Γ if < ⊇ Γ∗. Every Γ then has a model, in particular
every Γ is satisfied by the total pre-order with α < β for all outcomes α and β. We can
define relation |=′ as follows: Γ |=′ (α, β) if and only if α < β holds for all total pre-orders <
satisfying Γ. This leads to a fuller completeness result: Γ |=′ (α, β) if and only if α >Γ β: see
Theorem 1 of (Wilson, 2006), and also Theorem 1 of (Brafman & Dimopoulos, 2004).

10

variable X ∈ V . The conditional preference table CT(X) is defined to be a
function which assigns to each3 u ∈ PaH(X) a strict total order4 �Xu on X.

Let > be a strict total order on V . Let X be a variable and let u ∈ PaH(X)
be an assignment to the parents of X. Let T = V − PaH(X)− {X}. > is said
to satisfy �Xu if tux > tux′ holds for all t ∈ T and for all x, x′ ∈ X such that
x �Xu x′. We say that > satisfies CP-net N = (H,CT) if for all X ∈ V , and
all u ∈ PaH(X), > satisfies �Xu (where �Xu = CT(X)(u)). CP-net N is said
to be satisfiable if there exists some > which satisfies N . There is a simple
sufficient condition for satisfiability of a CP-net N : that its associated relation
H is acyclic. We say that N is acyclic if its associated relation H is acyclic.

For CP-net N define relation �N on V as follows. For α, β ∈ V , α �N β
if and only if α > β for all total orders > satisfying N . Therefore, �N is the
intersection of all > satisfying N .

Representing a CP-net N as a cp-theory

For variable X ∈ V and assignment u ∈ PaH(X) to the parent variables, let
ΓX,uN ⊆ L be the set of statements {(u : x > x′ [∅]) : x, x′ ∈ X,x �Xu x′}. Let
conditional preference theory ΓN be the union of sets ΓX,uN over all X ∈ V
and u ∈ PaH(X). Note that the construction of ΓN is linear in the size of the
conditional preference table. (If the domain of variable X is large, one might
represent total order �Xu by a sub-relation whose transitive closure is �Xu ; the
sub-relation could then also be used in the definition of ΓX,uN .) Now, for strict
total order >, we have > |= ΓX,uN if and only if > satisfies �Xu . So, > |= ΓN
if and only if > satisfies N . Therefore, ΓN is consistent if and only if N is
satisfiable. We have:

Proposition 1 Let N be a CP-net, and ΓN ⊆ L (as defined above) be its
associated conditional preference theory. Then N is satisfiable if and only if ΓN
is consistent. If N is satisfiable, then >ΓN

= �N .

Proof: The first part has already been shown. Now, suppose that N is satisfiable,
and so ΓN is satisfiable. �N is the intersection of all > satisfying N , that is,
the intersection of all > satisfying ΓN , which, by Lemma 2(iii), equals >ΓN

. 2

This shows that a CP-net can be represented within the language L, with
the same associated preference order on outcomes.

3.2 Expressing TCP-nets within the language

In this section we show how TCP-nets—a generalisation of CP-nets—can be
represented using cp-theories. A TCP-net (Brafman et al., 2006; Brafman &
Domshlak, 2002) on set of variables V can be considered as consisting of a

3PaH(X), the parents of X with respect to H, is the set of all Y such that (Y,X) ∈ H.
4If we relax this assumption by allowing �Xu to be a non-empty strict partial order then

the results all still hold.

11

directed graph H on V , a conditional preference table, a set of i-arcs, and a set
of ci-statements. For X ∈ V , let UX be PaH(X), the set of parents of X in H,
i.e., the set of variables Y such that (Y,X) ∈ H. A conditional preference table
assigns to each X ∈ V and assignment u ∈ UX a strict partial order �Xu on X,
i.e., it partially orders the values of X. An i-arc is an ordered pair of different
variables X and Y , which we write as X → Y . It is intended to represent that
X is a much more important variable than Y . A ci-statement consists of an
ordered pair of variables X and Y and an assignment s to some set of variables
SX,Y ⊆ V −{X,Y }; such a statement is written here as X →s Y . It is intended
to represent that given s, X is much more important than Y . (It is assumed
that Y /∈ UX and X /∈ UY .)

A strict partial order > on outcomes is said to satisfy the conditional prefer-
ence table if for each X ∈ V and u ∈ UX it satisfies the associated ordering �Xu ;
strict partial order > satisfies �Xu if [x �Xu x′ implies for all t ∈ T tux > tux′],
where T = V − {X} − UX .

Given a TCP-net N , strict partial order > is said to satisfy an i-arc X → Y
if rxy > rx′y′ holds for all x, x′ such that x �Xr(UX) x

′, and for all y, y′ ∈ Y , and
for all assignments r to V − {X,Y }.

Given a TCP-net N , strict partial order > satisfies ci-statement X →s Y if
rsxy > rsx′y′ holds for all assignments r to V − SX,Y − {X,Y }, all x, x′ such
that x �Xu x′ and all y, y′ ∈ Y where u is rs restricted to UX .

Strict partial order > on outcomes is said to satisfy a TCP-net if it satisfies
the conditional preference table, every i-arc and every ci-statement.

Define the TCP-net order on outcomes as follows: for TCP-net N , define
>N on V by: for α, β ∈ V , α >N β if and only if α > β for all strict partial
orders > satisfying N .

Therefore, >N is the intersection of all strict partial orders satisfying N .
Lemma 1(v) then implies that >N is the intersection of elements of J , where J
is the set of strict total orders that extend some partial order satisfying N . The
definitions immediately imply that if strict partial order > satisfies a TCP-net
then any strict total order extending > also satisfies the TCP-net. Hence, J
equals the set of strict total orders satisfying N , and so, >N is equal to the
intersection of all strict total orders satisfying N . Therefore, α >N β if and
only if α > β for all strict total orders > satisfying N .

Representing TCP-nets orderings using cp-theories.

Let N be a TCP-net as defined above. We will define a cp-theory ΓN that
generates the same order on outcomes.

Define Γcp ⊆ L to be the set of statements u : x > x′[∅] over all X ∈ V ,
u ∈ UX , and x, x′ ∈ V such that x �Xu x′ (where �Xu is part of the conditional
preference table of N).

For i-arc X → Y of N define ΓX→Y ⊆ L to be the set of statements u : x >
x′ [Y] such that u ∈ UX and x and x′ are such that x �Xu x′. Let Γi be the
union of the ΓX→Y over all i-arcs X → Y of N .

12

For ci-statement X →s Y define ΓX→sY to be the set of statements qs : x >
x′ [Y] for all assignments q to UX −SX,Y and all x, x′ such that x �Xu x′, where
u is qs restricted to UX . Let Γci be the union of ΓX→sY over all ci-statements
X →s Y of N .

Finally, define the cp-theory ΓN to be Γcp∪Γi∪Γci. These definitions easily
lead to the following result.

Proposition 2 TCP-net N is satisfiable if and only if ΓN is consistent. If N
is satisfiable, then >N = >ΓN

.

This means that cp-theories are more general than TCP-nets, in the sense
that any TCP-net can be efficiently converted into a cp-theory which has the
same preference relation on outcomes. The TCP-net order >N only differs from
the corresponding cp-theory order >ΓN

when N is not satisfiable; but in that
case, the TCP-net order becomes trivial: >N is the complete relation V × V .

As shown above, TCP-nets represent conditional preference statements ϕ
with |Wϕ| = 0 or 1; they cannot directly represent statements with larger Wϕ

(and in many situations, one variable will be more important than each of a
large set of variables, so Wϕ can be large). It is not immediately obvious how
much difference this makes: how much is lost by approximating a statement
ϕ = (u : x > x′ [W]) by a set ∆ of statements u : x > x′ [{Y }] over all variables
Y in W? One can get a good idea of the answer to this by comparing the
sizes of ϕ∗ and ∆∗, which represent the direct consequences of the conditional
preference statements. For example, with all binary (two-valued) variables, it
can be shown that |∆∗|/|ϕ∗| = (k + 1)2−k, where k = |W |, so the TCP-style
approximation to a statement u : x > x′ [W] will tend to be a very poor one
unless W is small.

Example B: This is a variation of the holiday example (Example A) in Section
2.2. To make the relationship between the values and variables clearer we use
x1 instead of n for travelling next week, and x2 instead of o for Oxford, and
x3 instead of p for travelling by plane. As well as the decision regarding when,
where and how I travel, I also have to decide whether to take my expensive
camera x4, or my cheaper one x4. This last choice is much less important than
the others. So, there are four variables, X1, X2, X3 and X4, where X1 =
{x1, x1}, X2 = {x2, x2}, X3 = {x3, x3} and X4 = {x4, x4}.

Firstly, I’d prefer to go next week irrespective of the choices of the other
variables. This is represented by the following preference statement: > : x1 >
x1 [{X2, X3, X4}]. This implies that outcome α is preferred to β whenever
α(X1) = x1 and β(X1) = x1, irrespective of what the other values of α and β
are. It represents a strong kind of preference, but one that is natural in many
contexts. As we shall see, this cannot be represented in a CP-net or TCP-net.

If I go next week I definitely want to fly, as I can’t face the long drive, which
is represented by the preference statement x1 : x3 > x3 [{X2, X4}]. Also, I’d
prefer to go to Oxford in that case: x1 : x2 > x2 [{X4}]. So, if I go next week,
the choice of how I travel (X3) is more important than the choice of where I go

13

(X2). Later in the year my preference for Oxford is irrespective of how I travel:
x1 : x2 > x2 [{X3, X4}]. If I go later, I’d also prefer to drive than to fly (whether
I go to Oxford or Manchester), x1 : x3 > x3 [{X4}], as it would then be useful
having a car with me. If I fly I’d prefer to take my cheap camera, whereas if I
drive I’d rather take the better one: x3 : x4 > x4 [∅] and x3 : x4 > x4 [∅].

Let Γ be this set of preference statements. Unlike in Example A, G(Γ) is
not acyclic, as it contains pairs (X2, X3) and (X3, X2). Let α = x1x2x3x4

and β = x1x2x3x4, and let ϕ be the first preference statement, > : x1 >
x1 [{X2, X3, X4}]. Then (α, β) ∈ ϕ∗ since α(X1) = x1 and β(X1) = x1. So,
there is a worsening swap from α to β, and therefore α >Γ β. It can be seen
that α and β are consecutive in the order >Γ, with no outcome γ such that
α >Γ γ >Γ β.

Since α and β differ on three variables, it can be seen that there exists no
TCP-net N on V with >N equalling >Γ (see Lemma 3 below). Because >Γ

happens in this case to be a total order this further implies that there exists
no satisfiable TCP-net N which satisfies these preferences, i.e, with >N ⊇ Γ∗.
This illustrates the fact that a statement such as ϕ is strictly stronger than a
CP-net statement > : x1 > x1 along with three i-arcs X1 → X2, X1 → X3 and
X1 → X4; with the latter, the outcomes x1x2x3x4 and x1x2x3x4 would not be
ordered by the TCP-net.

3.3 Representing lexicographic orders

We will show how to represent a lexicographic order with a cp-theory. For set
of variables V , a lexicographic order on V involves an ordering X1, . . . , Xn of
the variables V , and for each Xi a total order >i on the set of values Xi of Xi.
Define relation >lex as follows. For α, β ∈ V , α >lex β if and only if α 6= β and
α(Xi) >i β(Xi), where Xi is the first variable (i.e., with minimal i) such that
α(Xi) 6= β(Xi). The lexicographic order >lex is easily seen to be a strict total
order on V .

The following proposition shows that lexicographic orders can be represented
by conditional preference theories, i.e., for any lexicographic order >lex, there
exists cp-theory Γ such that its associated order >Γ equals >lex.

Proposition 3 For each variable Xi, let Γi be the set of all statements of the
form > : x > x′ [{Xi+1, . . . , Xn}], where x, x′ ∈ Xi are such that x >i x′. Let
Γ = Γ1 ∪ · · · ∪ Γn. Then the associated order >Γ equals >lex.

The following lemma is useful for revealing limits to the expressivity of CP-
nets and TCP-nets. We say that α covers β with respect to a transitive relation
� on V if α � β and there does not exist γ ∈ V with α � γ � β.

Lemma 3

(i) Let Γ be a conditional preference theory. Suppose α covers β with respect
to >Γ. Then there is a worsening swap from α to β.

14

(ii) Let N be a CP-net. Suppose α covers β with respect to �N . Then α and
β differ on precisely one variable. In other words, there exists X ∈ V with
α(X) 6= β(X) and for all X ′ ∈ V − {X}, α(X ′) = β(X ′).

(iii) Let M be a TCP-net, with associated relation �M Suppose α covers β
with respect to �M . Then α and β differ either on one variable or on two
variables.

All three parts follow easily from the appropriate completeness theorems
for swapping/flipping sequences: Theorem 1, Section 2.4, for (i); Theorem 8
(the CP-nets completeness result for flipping sequences) of (Boutilier et al.,
2004a) for (ii); and for (iii), the TCP-nets completeness result: see Theorem 6
of (Brafman et al., 2006).

In Example A (Section 2.2.2), there are a pair of outcomes, n o p and n o p ,
which are consecutive in the preference order>Γ that differ on all three variables.
Lemma 3 then implies that the preferences in this example cannot be represented
by a CP-net or TCP-net, i.e., there’s no CP-net or TCP-net N on V with >N
equal to >Γ.

A consequence of Lemma 3 is that, except in some trivial cases, if N is a
CP-net or a TCP-net, then �N is never a lexicographic order. This is because
lexicographic orders on n variables include consecutive elements that differ on all
n variables (assuming the domain of each variable has more than one element).
To illustrate this, consider the case of Boolean variables and the order on com-
plete tuples being just the usual order of binary numbers. Then (1, 0, 0, . . . , 0)
and (0, 1, 1, . . . , 1) are consecutive in the order, but they differ on all the vari-
ables. Therefore, by the lemma, the order cannot be generated by a CP-net if
n > 1 and the order cannot be generated by a TCP-net if n > 2. This leads to
the following result (which also appears in Section 3.2 of (Freuder, Heffernan,
Wallace, & Wilson, 2010)).

Proposition 4 Let >lex be a lexicographic order (as defined above) on V , where
the domain of each variables contains more than one element, i.e., for all X ∈ V ,
|X| > 1. Then (a) if |V | > 1, there exists no CP-net N on V with �N = >lex;
(b) if |V | > 2, there exists no TCP-net M on V with �M = >lex.

3.4 Representing stronger conditional preferences

In this section we show how a strong kind of preference statement, of the sort
that holds for a lexicographic order, can be represented with a cp-theory.

Lexicographic orders are a very special type of order, but the kind of state-
ments they represent can be natural. Let � be a strict partial order (i.e., a
transitive irreflexive relation) on V . Let X ∈ V and W ⊆ V − {X} and let
T = V −{X}−W , so that {X}, W and T partition V . Let >X be a non-empty
partial order on X, the set of assignments to variable X. We say that X (uncon-
ditionally) dominates W with respect to (�, >X) if the following condition holds:
for α, β ∈ V , α � β holds whenever α and β are such that: α(X) >X β(X) and

15

α(T) = β(T). In other words, α is preferred to β if α and β agree on T and α
is better than β on X.

In particular, if X dominates W = V − {X} with respect to (�, >X), then
a sufficient condition for α � β is α(X) >X β(X). This is a stronger form of
preference statement than ceteris paribus statements. It represents a situation
where the value of variable X is much more important than the values of any
other variable; we prefer any outcome that does better on variable X.

This kind of condition is naturally represented within the language L. Let
Θ be the set of preferences statements {(> : x > x′ [W]) : x >X x′}. Then,
if cp-theory Γ contains Θ, X dominates W with respect to (>Γ, >X). Such
statements can be used to represent a lexicographic order, as shown above in
Proposition 3. In contrast, this type of variable dominance is not at all natural
for CP-nets and TCP-nets, as the following results indicate. It is, however, easy
to construct a consistent cp-theory Γ that satisfies the hypotheses of the two
propositions (e.g., Γ = Θ for the representation Θ above, or extensions of Θ, in
particular, representing a lexicographic order).

Proposition 5 Consider any consistent CP-net N on V = {X1, . . . , Xn} (n ≥
2) such that X2 has no parents and |X2| > 1. Then for no (non-empty) >1 on
X1 is it the case that X1 dominates {X2, . . . , Xn} with respect to (�N , >1).

In Example A, X1 dominates {X2, X3} with respect to (>Γ, >1), where
n >1 n ; also X2 has no parents. The proposition then implies (without looking
at the level of outcomes) that there’s no CP-net N on V with �N = >Γ . It
also implies that the same would hold if we were to change the preferences on
X3 in any way.

There is a similar result for TCP-nets:

Proposition 6 Consider any consistent TCP-net M on V = {X1, . . . , Xn}
(n ≥ 3) with total local orderings and such that X2 has no parents and X3 has
no parents, |X2|, |X3| > 1. Then for no total order >1 on X1 is it the case that
X1 dominates {X2, . . . , Xn} with respect to (�M , >1).

3.5 Generating precisely a total order on outcomes

We finish Section 3 with an expressibility result illustrating how unusual it is for
a CP-net to generate a total order of outcomes. It shows that once one removes
the obvious symmetries concerned with variable and value ordering, there is a
unique acyclic CP-net on a set V of Boolean variables that generates a total
order of outcomes.

This contrasts with the situation for conditional preference theories, where
there are doubly exponential number5of total orders > on V whose maximum

5It follows from Proposition 17 below in Section 5.2 that we can instead count the number
of total orders equalling �p(Γ) for some cp-theory Γ satisfying these properties, since if >Γ is
a total order then �p(Γ) equals >Γ, and if �p(Γ) is a total order then >Γ equals �p(Γ). For
�p(Γ) to be a total order we just need that the transitive closure of G(Γ) is a total order and

16

element is (1, 1, . . . , 1) and which are equal to some >Γ, for cp-theory Γ such
that G(Γ) is consistent with the variable ordering X1, . . . , Xn.

Theorem 2 For any given value of n ≥ 1, there is a unique CP-net N on
Boolean variables V = {X1, . . . , Xn} satisfying the following properties:

(i) the CP-net order �N is a strict total order of outcomes with maximum
element (1, . . . , 1); and

(ii) the variable ordering X1, X2, . . . , Xn is consistent with the relation H on
V associated with N , i.e., (Xj , Xi) ∈ H implies j < i.

We will show, furthermore, thatH is maximally large: H = {(Xj , Xi) : j < i}
so that the parents set Pa(Xi) of Xi is {X1, . . . , Xi−1}. The conditional prefer-
ence tables (when written out explicitly) are therefore of exponential size. They
can be expressed compactly as follows: for each i = 1, . . . , n, and assignment
u to Pa(Xi), 1 �Xi

u 0 holds if and only if u (viewed as a sequence of Boolean
values) contains an even number of zeros.

We derive three auxiliary results to help prove this theorem. The first two
prove that there is at most one ordering > on outcomes equalling �N for some
CP-net satisfying conditions (i) and (ii) in Theorem 2. The third result gives
an explicit construction of such a CP-net.

First we consider the case of n = 3, to illustrate the ideas behind the results.

Example 1 Suppose that we’d like to construct an acyclic CP-net N on Boolean
variables X1, X2 and X3 such that �N is a total order. We can relabel the val-
ues so that (1, 1, 1) is the optimal outcome. Since N is acyclic, we can choose
some variable, which we relabel to being X3, which has no children. We can
generate a CP-net N ′ on variables X1 and X2 by deleting from N the condi-
tional preferences of X3. It can be seen that �N being a total order implies that
�N ′ is a total order (by deleting flips involving X3 from flipping sequences for
N). Without loss of generality, let us assume that X1 has no parents. Then we
can see that N ′ must be the CP-net with preferences 1 �X1

> 0, and 1 �X2
X1=1 0,

and 0 �X2
X1=0 1.

Now, if outcomes for N , α and β, agree on X1 and X2 and differ on X3

then they must be consecutive in the total order. Otherwise, removing the flips
changing X3 in a flipping sequence between α and β gives a flipping sequence
in N ′ from α({X1, X2}) to β({X1, X2}) = α({X1, X2}), and hence a cycle,
contradicting consistency of N ′. Let α1, α2, . . . , α8 be the ordering of outcomes,
so α1 = (1, 1, 1). The previous remark implies that (1, 1, 1) and (1, 1, 0) are
consecutive, so α2 = (1, 1, 0). Now, α3 and α2 are consecutive, so there exists
a worsening flip from α2 to α3, so they differ on precisely one variable. This
means that α2(X3) = α3(X3) = 0. If we change the value of X3 in α3 to 1
then, by the earlier remark, we obtain an outcome consecutive with α3, which

all the local orderings �Xα are total orderings. Xn can have parents {X1, . . . , Xn−1}, and so

there are a doubly exponential number (22n−1−1) of valid non-equivalent choices for the set
of local orderings for Xn.

17

must be α4. Hence, α4(X3) = 1. Continuing this argument, the values of X3 in
α1, α2, . . . , α8 are 1, 0, 0, 1, 1, 0, 0, 1. Therefore, the ordering on outcomes is
(1, 1, 1), (1, 1, 0), (1, 0, 0), (1, 0, 1), (0, 0, 1), (0, 0, 0), (0, 1, 0), (0, 1, 1).

This kind of reasoning is generalised and formalised in Lemma 4 and its
proof.

Lemma 4 Let N be an acyclic CP-nets on Boolean variables V such that �N
is a strict total order on V . Let Z be a variable with no children, i.e., the
conditional preferences of no variable are conditional on Z. List the elements
V in decreasing order with respect to �N as α1, α2, . . . , αK , where K = 2|V |.
Let N ′ be the CP-net on variables V − {Z} formed by deleting the conditional
preferences of Z. Then the following hold.

(a) �N ′ is a strict total order on V − {Z}.

(b) If α, β ∈ V differ on V −{Z} then α �N β if and only if α(V −{Z}) �N ′
β(V − {Z}).

(c) If outcomes α and β differ on Z but agree on all other variables, then α
and β are consecutive in �N . Hence, for all j = 1, 2, . . . , K2 , outcomes
α2j−1 and α2j agree on V − {Z}.

(d) Suppose that α1(Z) = 1. Then the value of Z in the sequence α1, α2, . . . , αK
follows the pattern: 1, 0, 0, 1, 1, 0, 0, 1,. . ., so that for l ∈ {1, 2, 3, 4}, and
j = 0, 1, . . . , K4 − 1, we have α4j+l(Z) = 1 if l = 1, 4, and α4j+l(Z) = 0 if
l = 2, 3.

Proposition 7 shows that there is at most one CP-net ordering satisfying the
conditions of Theorem 2. Proposition 8 defines such a CP-net, showing that
there exists exactly one. Theorem 2 can then be proved using these two results.

Proposition 7 Let n be any natural number, and let V = {X1, . . . , Xn} be
a set of Boolean variables. There is at most one strict total order > on V
with > equalling �N for some CP-net N on V satisfying the pair of conditions
(i) the CP-net order �N is a strict total order of outcomes with maximum
element (1, . . . , 1); (ii) the variable ordering X1, X2, . . . , Xn is consistent with
the relation H on V associated with N , i.e., (Xj , Xi) ∈ H implies j < i.

Sketch of proof: The proof is by induction on n. Suppose that there are
CP-nets, N1 and N2, on variables V = {X1, . . . , Xn} satisfying the conditions
of the proposition. Eliminating variable Xn gives CP-nets N ′1 and N ′2 on vari-
ables {X1, . . . , Xn−1}. Lemma 4(b), (c) and (d) show that �N ′1 determines the
total ordering �N1 , by extending �N ′1 with the following sequence of values for
variable Xn: 1, 0, 0, 1, 1, 0, 0, 1,. . .. Similarly, for �N2 . By Lemma 4(a), �N ′1
and �N ′2 are both strict total orders, so, by induction, are equal, and hence �N1

and �N2 are equal. 2

18

Continuing Example 1, write assignment u to variablesX1 andX2 as a pair of
the Boolean values; for example, the assignment X1 = 1, X2 = 0 is abbreviated
to (1, 0). It can be seen that if we use the following conditional preference table
for X3 then we arrive at the total ordering of outcomes: 1 �X3

(1,1) 0, 0 �X3
(1,0) 1,

1 �X3
(0,0) 0, and 0 �X3

(0,1) 1. This argument can be generalised to show that for
any n, there exists a CP-net on n Boolean variables which totally orders the
outcomes. In fact it can be seen that 1 �Xi

u 0 if and only if the tuple u contains
an even number of zeros:

Proposition 8 Let V be a set of variables, which we label as {X1, . . . , Xn}.
Define a CP-net N as follows:

(a) the graph H is defined to be (Xj , Xi) : 1 ≤ j < i ≤ n, so that the set Ui
of parents of variable Xi is equal to Vi−1 = {X1, . . . , Xi−1};

(b) for i = 1, . . . , n and u ∈ Ui, the relation �Xi
u is defined by 1 �Xi

u 0 if and
only if the tuple u contains an even number of zeros, i.e., there is an even
number of variables Xj in Ui with u(Xj) = 0. So, 0 �Xi

u 1 if and only if
the tuple u contains an odd number of zeros.

Then �N is a strict total order on V with maximum element (1, . . . , 1).

Proof of Theorem 2: Let n be a natural number. Proposition 8 shows that
there exists at least one CP-net N0 satisfying the conditions (i) and (ii) of the
theorem. Suppose that N is any CP-net on V satisfying conditions (i) and (ii).
Proposition 7 implies that �N equals �N0 . For each variable Xi, the set of
parents of Xi in N must be the same as the set of parents of Xi in N0, i.e.,
{X1, . . . , Xi−1}. This is because we can’t have more parents of Xi in N than
in N0 without contradicting (ii), and in N0, the preference over Xi genuinely
depends on each of these variables, so if we omit any Xj from Vi−1 we can’t
get an equivalent conditional preference table. (1 �Xi

u 0 holds if and only if the
tuple u contains an even number of zeros, so if we were to omit any variable
from u, we can’t generate equivalent preferences.) Given the choice of parents,
the relation �N determines all the local relations �Xi

u , since we have x �Xi
u x′

⇐⇒ tux �N tux′, where t is any assignment to variables V − (U ∪{Xi}). This
shows that N is actually equal to N0. 2

4 Determining consistency, totally ordering out-
comes and constrained optimisation

Section 4, as well as Section 5, 6 and 7, are concerned with the three inter-
related topics of determining consistency of a cp-theory, totally ordering sets of
outcomes, and constrained optimisation; these are described below.

19

Determining consistency of a cp-theory Γ. Γ is consistent if and only
if there exists some strict total order > extending the preference relation >Γ,
which, by Theorem 1, is if and only if >Γ is acyclic. We focus on a particular
kind of strict total order: one generated by a complete search tree (or “cs-
tree”), as used in backtracking search for solutions of a constraint satisfaction
problem (CSP); the associated strict total order is the order in which outcomes
are visited by such a search tree. For the fully acyclic case, when G(Γ) is acyclic
(see Section 2.2.3), testing consistency is relatively easy (see Section 5.1). More
generally, the problem of determining consistency of a cp-theory is extremely
hard, indeed PSPACE-complete: see (Goldsmith, Lang, Truszczyński, & Wilson,
2008), Theorem 3. We give a necessary (see Section 4.1) and some sufficient
conditions (see Section 6) for consistency, that have much lower complexity (see
Proposition 11 in Section 4.1 and Proposition 24 in Section 6.5).

Totally ordering sets of outcomes. It will often be the case that not all
complete assignments are available. Suppose that we have a set Ω ⊆ V of
possible outcomes which the user needs to choose between, and we have elicited
their preferences as a cp-theory Γ. We wish to display the outcomes in some
order, showing them the best ones first. A basic requirement is that if α is
preferred to β then α appears before β, since the user is more interested in
outcome α than outcome β. Thus, we are concerned with the following task:
given cp-theory Γ and subset Ω of outcomes, construct a total order on Ω which
extends >Γ restricted to Ω.

The set Ω of available outcomes might be very large; in particular it might be
expressed implicitly as the set of solutions of a constraint satisfaction problem.
Then we won’t be able to display all of them, but just, say, some number K
of them. This gives rise to the following related problem: Given a number K,
generate outcomes α1, . . . , αK ∈ Ω such that for all j = 1, . . . ,K, if β >Γ αj for
some β ∈ Ω then β = αi for some i < j, i.e., if an element of Ω is preferred to
αj then it occurs before αj in the generated list of outcomes. cs-trees can be
used for these total ordering tasks (see Sections 4.4, 5.1, and 6.4).

Optimisation. Given cp-theory Γ, we say that outcome α is optimal if there
exists no outcome β that dominates it, i.e., is such that β >Γ α. It can easily
be seen that outcome α is optimal if and only if it is a solution of a particular
constraint satisfaction problem. This implies that checking whether an outcome
is optimal or not can be performed very efficiently, and finding an optimal
outcome can be solved using CSP technology. Let Ω be a set of outcomes. We
say that outcome α ∈ Ω is optimal in Ω if there exists no outcome β ∈ Ω such
that β >Γ α. If Ω is represented as the set of solutions of a CSP then we refer
to such a task as constrained optimisation.

Given cp-theory Γ, we define an upper approximation� to be a strict partial
order containing the preference relation >Γ, and we say that it is a polynomial
upper approximation if α � β can be determined in polynomial time for any
outcomes α and β (see Section 4.4). Specific polynomial upper approximations

20

are defined in Sections 5.2, 6.3 and 7.6. We show how a polynomial upper ap-
proximation can be useful for finding a set of optimal outcomes of a constrained
optimisation problem: by using a search tree to generate solutions in an order
consistent with >Γ, and using an upper approximation� to eliminate outcomes
which could be non-optimal in Ω. They can also be used to totally order a small
set Ω of outcomes: for each α, β ∈ Ω, we determine if α� β holds, thus deter-
mining � restricted to Ω, and choose a total order on Ω compatible with this
(see Section 4.5).

This section (Section 4) describes the basic mathematical notions and ap-
proaches: we define a necessary condition for consistency, called local consis-
tency; we define cs-trees (complete search trees)—which can be used for show-
ing consistency of a cp-theory—and give some basic properties of them; we
consider the problem of constrained optimisation and describe our general ap-
proach, based on cs-trees and upper approximations. Section 5 below considers
the problems of determining consistency, and ordering outcomes for the fully
acyclic case, and shows how a polynomial upper approximation can be defined.
In Sections 6 and 7 approaches for these tasks are derived for more general
cp-theories.

Section 4.1 defines the “local consistency” property; a cp-theory is not locally
consistent if and only if there exists some outcome α and some variable X such
that there exists a worsening swapping (flipping) sequence from α to itself that
just changes variable X. Local consistency is thus a necessary condition for a
cp-theory to be consistent, which can often be determined efficiently.

Section 4.2 defines cs-trees and their associated strict total orders, and Sec-
tion 4.3 gives a precise characterisation for when a cs-tree order satisfies a cp-
theory. The cs-tree is a kind of lexicographic order where both the value and
the variable orderings are conditional on the values of more important variables.
Search trees have previously been used in the context of CP-nets and TCP-nets,
in particular, in (Boutilier, Brafman, Domshlak, Hoos, & Poole, 2004b) and
(Brafman et al., 2006). Section 4.4 considers the problem of totally ordering a
set of outcomes according to the preference ordering >Γ, which can be solved
if one can construct a compact representation of a satisfying cs-tree (see Sec-
tions 5.1, 6.4 and 7 below for such constructions) or, if the set is small, using
an upper approximation of >Γ, i.e., a strict partial order containing >Γ (see
Sections 5.2, 6.3 and 7.6, below for definitions of polynomial upper approxima-
tions in different situations). Section 4.5 considers the problems of optimisation
and constrained optimisation, showing that one can use a cs-tree and an upper
approximation to generate some of the optimal solutions of a set of constraints.

4.1 Local consistency

In this section we consider a necessary condition for consistency, called local
consistency. In certain cases, it’s clear that a cp-theory Γ is not consistent, by
just looking at local conditions: if there’s a sequence of worsening swaps from
some outcome α to itself, which just changes the values of a single variable X.

21

If this does not hold, then we say that Γ is locally consistent. As well as defining
local consistency, the definition below introduces the local ordering �Xa induced
by the cp-theory on the domain of variable X given assignment a.

Definition 4 (local consistency and local ordering �Xa) Fix conditional pref-
erence theory Γ on V , and consider some variable X ∈ V , set of variables A ⊆ V
and assignment a ∈ A to A. Say that ordered pair (x, x′) of values of X is val-
idated by a if there exists some statement (u : x > x′ [W]) ∈ Γ such that a
extends u (i.e., u is a projection of a). Define the local ordering �Xa (Γ) (ab-
breviated to �Xa) on X to be the transitive closure of the set of all pairs (x, x′)
validated by a. We say that Γ is locally consistent if �Xα is irreflexive for all
variables X and outcomes α.

If Γ is not locally consistent then there exists outcome α, variable X and a
sequence x1, . . . , xk of values of X with associated statements in Γ, (ui : xi >
xi+1 [Wi]), such that α |= ui, and α(X) = x1 = xk. This gives a worsening
swapping sequence from α to α (only involving changing variable X), thus
implying that Γ is not consistent, by Theorem 1. Therefore, local consistency
is a necessary condition for consistency:

Proposition 9 If cp-theory Γ is consistent then it is locally consistent.

The set of statements Γ in Example A in Section 2.2.2 (and also Example
B in Section 3.2) is easily seen to be locally consistent. However, if ϕ5 were
changed to ϕ′5 equalling o : p > p [∅] then Γ would no longer be locally
consistent as ϕ′5 and ϕ3 = (n : p > p [∅]) would give conflicting preferences for
X3 under the conditions n o . Let α = n o p . Then �X3

α is not irreflexive since
p �X3

α p (since (p ,p) is validated by α using ϕ′5), and p �X3
α p using ϕ3, so

p �X3
α p . Γ would no longer be consistent as >Γ is no longer irreflexive: we

have n o p >Γ n o p >Γ n o p so α >Γ α.
Local ordering �Xa is monotonic with respect to a, i.e., if partial tuple b

extends a then �Xb extends �Xa , i.e., if x �Xa x′ holds then x �Xb x′ holds.
Clearly, relation �Xa can be generated in polynomial time for a given tuple a

and variable X, by selecting all ϕ in Γ with Xϕ = X and such that a(Uϕ) = uϕ,
recording the associated pairs (xϕ, x′ϕ), and computing the transitive closure of
this set of pairs of values of X.

Unsurprisingly, the converse of Proposition 9 does not hold:

Example 2 Let V = {X1, X2} with X1 = {x1, x1}, and X2 = {x2, x2}. Let
Γ be the pair of statements > : x1 > x1 [{X2}] and > : x2 > x2 [{X1}], which
is easily seen to be locally consistent (since there is no statement preferring
x1 over x1, nor x2 over x2). However, we have x1x2 >Γ x1x2 because of the
first statement, and x1x2 >Γ x1x2 because of the second statement, so x1x2 >Γ

x1x2 and Γ is therefore inconsistent. For another example, see Example 1 of
(Goldsmith et al., 2008).

The following lemma, which is important in Section 6.1, follows easily from
the definitions (since (x, x′) is validated by α(A) if and only if (x, x′) is validated

22

by α). It states that the local ordering �Xα is unchanged if one eliminates
irrelevant variables from α.

Lemma 5 Let α be an outcome, let X ∈ V be a variable, and let A be a set of
variables satisfying the following property: for all ϕ ∈ Γ such that Xϕ = X, if
α |= uϕ then A ⊇ Uϕ. It follows that �Xα = �Xα(A).

For X ∈ V , recall that UX = PaH(Γ)(X) is the set of parents of X with
respect toH(Γ) (see Section 2.2.3). Hence, Y ∈ UX if and only if there exists ϕ ∈
Γ with Xϕ = X and Uϕ 3 Y , so that UX =

⋃
ϕ∈Γ,Xϕ=X Uϕ. Lemma 5 implies

the following result, which shows that local consistency can be determined using
just the local orderings based on the set of parents of each variable.

Proposition 10 Γ is locally consistent if and only if for all X ∈ V and u ∈ UX ,
�Xu is irreflexive.

Proof: Suppose that Γ is locally consistent, and consider any X ∈ V and u ∈ UX .
Choose any α extending u, so we have �Xα ⊇ �Xu . Local consistency implies that
�Xα is irreflexive and hence �Xu is irreflexive.

Conversely, suppose that for all X ∈ V and u ∈ UX , �Xu is irreflexive.
Consider any variable X and outcome α. Then �Xα is irreflexive since, by Lemma
5, it equals �Xu , where u = α(UX). 2

Proposition 10 shows that local consistency can be checked efficiently if all
the parents sets UX are small: for each X and for each u ∈ UX , we compute �Xu ,
by taking the transitive closure of all the pairs (x, x′) of values of X validated
by u. Hence, if the sizes of the parents sets and the sizes of the domains are
bounded by a constant, then determining local consistency is polynomial.

Example 3 Consider the set Γ = {ϕ1, ϕ2, ϕ3, ϕ4, ϕ5} of preference statements
on variables {X1, X2, X3}, which are those of Example B with variable X4

deleted. ϕ1 equals > : x1 > x1 [{X2, X3}]. ϕ2 = x1 : x3 > x3 [{X2}]; ϕ3

equals x1 : x2 > x2 [∅]. ϕ4 = x1 : x2 > x2 [{X3}], and ϕ5 = x1 : x3 > x3 [∅].
It is clear, for any outcome α, that �X1

α is irreflexive, since there is no
preference statement ϕ in Γ that involves a preference for x1 over x1, i.e. which
is such that xϕ = x1 and x′ϕ = x1. Similarly, for X2. Regarding X3, we have
x3 �X3

α x3 if and only if α(X1) = x1, and x3 �X3
α x3 if and only if α(X1) = x1,

and so, for no outcome α do we have both preferences, which proves that for all
outcomes α, �X3

α is irreflexive, and hence Γ is locally consistent.
An alternative way of proving local consistency is to use Proposition 10. For

X3 this involves considering the two possible assignments to the set {X1} of
parents of X3. We have �X3

x1
= {(x3, x3)}, and �X3

x1
= {(x3, x3)}.

In general, determining local consistency is coNP-complete:

Proposition 11 The problem of deciding whether a cp-theory Γ is locally con-
sistent is coNP-complete.

23

However, often checking local consistency will be easy; in particular, as dis-
cussed above, when the sets UX are small (where UX is the set of variables that
variable X depends on), as in intended applications of CP-nets and TCP-nets,
one can efficiently construct each local ordering �Xu explicitly, thus determin-
ing whether local consistency holds or not, using Proposition 10. (For CP-nets
and TCP-nets, it is assumed that these local orderings �Xu have already been
computed, or directly elicited; they are also assumed to be strict partial or-
ders, so local consistency is guaranteed.) To give another example, when all the
variables are binary (i.e., two-valued), local consistency can be determined in
time proportional to |Γ|2|V |, (assuming that the domain sizes of variables are
bounded by a constant).

4.2 cs-trees

In this section we describe complete search trees (cs-trees), and their associated
total orderings over outcomes. In Sections 4.3, 5, 6, and 7 we will show how
under certain conditions a search tree ordering will satisfy a cp-theory, which
leads to methods for proving consistency of a cp-theory.

A cs-tree (or “complete search tree”) is a rooted directed tree with its |V |
leaves corresponding to outcomes (see Figure 2). Associated with each non-leaf
node r is a variable Yr, which is instantiated with a different value in each of
the node’s |Yr| children, and also an ordering �r of the values of Yr. So, a
directed edge in the tree corresponds to an instantiation of one of the variables.
Paths in the tree from the root down to a leaf node correspond to sequential
instantiations of all the variables V .

Definition 5 (cs-tree (“complete search tree”)) A cs-tree over variables
V is defined to be a rooted directed tree, where nodes and edges have associated
labels as defined below.

Each directed edge e from node r to node r′ is associated with a variable Ye
and a value ye of Ye (corresponding to the assignment Ye = ye). We say that r′

is a child of r.
Each node r has the following associated labels:

(a) a set of variables Ar ⊆ V (the assigned variables, i.e., the variables as-
signed above that node in the cs-tree);

(b) an assignment ar to variables Ar (corresponding to the assignments made
above that node).

If a node has no children then we say that it is a leaf node; otherwise we say
that the node is a body node. A node is a leaf node if and only if its associated
set of variables Ar is equal to the whole set of variables V . If r is a body node
then we also associate the following two labels with it.

(c) a variable Yr ∈ V −Ar (the next variable to be instantiated);

(d) an ordering �r on the domain Yr of Yr (the “value ordering” at that node).

24

For leaf node r we define the associated leaf tuple to be 〈Ar, ar〉. For body
node r we define the associated body tuple to be 〈Ar, ar, Yr,�r〉.

The (unique) root node we write as r∗, and define Ar∗ to be the empty set,
and hence we have ar∗ equals >, the assignment to the empty set.

Body node r with associated variable Yr has |Yr| children, so has |Yr| edges
coming from it. Each such edge e has associated variable Ye = Yr and a different
associated value yr. If e goes from node r to r′ then Ar′ = Ar ∪ {Yr}, and ar′

is the tuple formed by extending ar with the assignment Ye = ye.

321 xxx

111, xxX

333, xxX

1x

222 , xxX

222 , xxX
222 , xxX 333, xxX 333, xxX

3x 2x

321 xxx321 xxx321 xxx 321 xxx 321 xxx 321 xxx

2x 2x
3x 3x

321 xxx

3x

3x

2x

3x2x
2x

Figure 2: A cs-tree σ over binary variables {X1, X2, X3}. For each body node
r we include its associated variable Yr and the ordering �r. The associated
ordering >σ on outcomes is given by the ordering of leaf nodes (at the bottom),
starting from the left, i.e., x1x2x3 >σ x1x2x3 >σ x1x2x3 >σ · · · >σ x1x2x3.

Example 4 We define a search tree σ over binary-valued variables V = {X1, X2, X3}.
This is illustrated in Figure 2. The root node is at the top, and the eight leaf
nodes are at the bottom. In the figure, we show, for each node r, the associ-
ated variable Yr, and, for body nodes, the local ordering �r on the values of Yr
(omitting the components Ar and ar).

The root node has associated tuple 〈∅,>, X1, (x1, x1)〉, so that X1 is the
variable which is assigned at the root node, with ordering x1 � x1. Below it,
following the edge associated with the assignment X1 = x1, is the node with tuple
〈{X1}, x1, X3, (x3, x3)〉. The first component is the set of variables assigned
above that node, i.e., {X1}.

The bottom left node is the leaf node 〈{X1, X2, X3}, x1x2x3〉. The first com-
ponent of this node is the set of variables assigned in the path from the root to

25

that node, which is always equal to V for a leaf node. The second component
is the assignment to V along that path. Notice that the variable orderings vary
within the cs-tree. For example, the leftmost path in the tree has associated
variable ordering X1, X3, X2, whereas the rightmost path has variable ordering
X1, X2, X3. Also the local (value) orderings of a variable can be different in
different nodes. For example, one node has ordering x3 � x3, whilst two nodes
have ordering x3 � x3.

We have the following properties of cs-trees:

Lemma 6 Let σ be a cs-tree over variables V .

• For each node r, ar is the set of assignments Ye = ye made in edges e on
the path from the root to r.

• For each outcome α there exists exactly one leaf node r with ar = α, so we
can associate leaf nodes with outcomes. The set of leaf nodes is therefore
in one-to-one correspondence with the set V of outcomes.

Definition 6 (path to outcome) Let σ be a cs-tree over variables V , and let
α be an element of V . The path (in σ) to α is defined to be the sequence of
nodes along the directed path from the root node to the leaf node corresponding
to α.

The set of nodes in the path to α thus consists of all nodes r such that α
extends ar. Write the path to α as r0, r1, . . . , rn, where r0 = r∗, the root node.
Then for each i = 1, . . . , n, we have Ari = {Yr0 , . . . , Yri−1}, the set of variables
instantiated in nodes between ri and the root node. We also have ari

= α(Ari
).

The path to α has an associated ordering of variables, namely, Yr0 , . . . , Yrn−1 .
A cs-tree σ thus associates an ordering of V with any outcome α.

Definition 7 (cs-tree node divides outcomes) Let σ be a cs-tree over vari-
ables V , and let α and β be elements of V . We say that node r divides α and
β if r is the last node in the path to α which is also in the path to β.

Clearly, for any pair of different outcomes α and β, there exists a unique
node in σ which divides α and β. We associate a strict total order >σ with
cs-tree σ as follows:

Definition 8 (cs-tree order on outcomes) Let σ be a cs-tree over variables
V , and let α and β be elements of V . Define α >σ β if and only if α 6= β and
α(Yr) �r β(Yr), where r is the node that divides α and β.

In other words, we compare two outcomes by considering the lowest (deepest)
node r that is above both of them, and use the ordering �r to compare them. If,
as in Figure 2, we draw the cs-tree σ with the directed edges pointing downwards
from the root, and the edges from a node r in the order �r, with the best being
leftmost, then α >σ β if and only if leaf node 〈V, α〉 appears to the left of 〈V, β〉.

26

Similarly, suppose, in a depth-first search, we instantiate at each node r the
best value according to �r first, and on backtracking, the values in the order
�r; then α is reached before β if and only if α >σ β. This means that it is very
easy to generate the first K elements in the cs-tree order.

Example 5 Consider the cs-tree σ in Figure 2. To determine how σ orders
outcomes x1x2x3 and x1x2x3, we start from the root, and follow corresponding
edges until we find the node that divides them. The root does not divide them
because they agree on its associated variable X1, each taking value x1. So, we
then consider the node at the end of the x1 edge. This has associated variable
X3. Since the two outcomes differ on X3, this is the node that divides them.
Since the value ordering at this node prefers x3 to x3 we have x1x2x3 >σ x1x2x3.

The ordering >σ on outcomes is given by the ordering of leaf nodes. >σ is
thus the transitive closure of the following preference comparisons: x1x2x3 >σ
x1x2x3 >σ x1x2x3 >σ x1x2x3 >σ x1x2x3 >σ x1x2x3 >σ x1x2x3 >σ x1x2x3.

Compact representations of cs-trees. To construct a cs-tree, for each node
(starting at the root node) we have to choose an associated variable Y and a
total ordering � on its domain Y . (Similarly, when using a complete search
for finding a solution of a constraint satisfaction problem, at each node of the
explored search tree, we have to choose a variable to instantiate next, and a value
ordering over the domain of that variable.) This determines the components
Ar and ar for each child r of this node, and we choose associated variable
Yr ∈ V − Ar and total ordering �r on Yr. Applying this iteratively from the
root to the leaf nodes generates a cs-tree.

A cs-tree σ is an exponentially large object, so we will often not be able to
generate it explicitly. However, to define a cs-tree implicitly, all we have to do is
to define a function g that takes as input appropriate tuples a ∈ A and returns
a pair (Y,�) where Y ∈ V − A and � is a total ordering on Y . The domain
Dg of the function could be the set of all possible tuples a, but need not be: it
is sufficient that it contain the assignment > to the empty set, and satisfy the
condition that if Dg contains a and g(a) = (Y,�) then Dg contains tuple ay
for every assignment y to Y . Such a function g therefore specifies a compact
representation of a search tree σg (given that g is specified in a compact way).
For any search tree, there exists g such that σ equals σg.

Given that any value of the function g can be computed efficiently, we can
efficiently perform important operations with σg (without constructing σg ex-
plicitly). In particular, for any two outcomes α and β, we can determine if
α >σg

β: we generate the nodes in the path to α until we find the node that
divides α and β. In addition, given any number K, we can efficiently generate
the best K outcomes according to >σg

, by generating the nodes in σg in a depth
first search manner, as explained below, until K outcomes have been generated.

Using a cs-tree σ for backtracking search. As alluded to above, cs-trees
are essentially the same as search trees used for solving CSPs, and they can
be used to control the depth-first search for solutions. Any node of the search

27

tree corresponds to a node r of the cs-tree σ. Ar is the set of variables already
assigned, and ar is their assignment. We start the search at the root node.
At each node r, we instantiate variable Yr next. Relation �r gives the value
ordering: we instantiate first the best value according to �r. On backtracking
to this search node, we remove the previously tried value of Yr from the domain
of Yr, and instantiate Yr with the best remaining value according to �r. If the
domain of Yr is now empty, we backtrack to the parent node of r. When we
reach a leaf node r, i.e., when all the variables are instantiated, we record the
associated outcome ar, and backtrack to its parent node.

Given a set C of constraints6on variables V we can use this backtracking
search method in the usual way to generate solutions of C, i.e., outcomes sat-
isfying all the constraints in C. Standard CSP techniques such as maintaining
arc consistency can be used to reduce the search. The solutions of C will be
generated in decreasing order of >σ.

4.3 cs-trees satisfying cp-theories

In this section, sufficient conditions are given for a cs-tree ordering to satisfy a
cp-theory. These conditions will be used in Sections 5, 6 and 7 to give sufficient
conditions for a cp-theory to be consistent.

A cs-tree σ is said to satisfy a cp-theory Γ if its associated total order >σ
extends the preference relation >Γ (see Definition 9, below). A cp-theory is
conditionally acyclic if there exists some cs-tree satisfying it. This immedi-
ately implies (Proposition 12) that conditional acyclicity implies consistency
(although the converse does not hold: see Example 6). Proposition 13 gives a
pair of necessary and sufficient conditions for a cs-tree to satisfy a cp-theory,
the first based on the variable orderings in paths in the cs-tree (or, equivalently,
on the variable Yr that can be chosen for a node r given the current assignment
a); the second condition is on the value ordering that is chosen for a node r
in the cs-tree. Proposition 14 then gives a stronger pair of sufficient conditions
(which corresponds to “strong satisfaction”, developed in Section 6.1); the first
condition, on the variable orderings, is that for any preference statement ϕ ∈ Γ,
set of variables Uϕ must appear before Xϕ which must appear before variables
Wϕ, on the path from the root node of the cs-tree to any outcome α which ex-
tends uϕ. This condition enables a simpler form for the second, local ordering
condition, namely, that the total ordering �r for node r in the cs-tree extends
the appropriate local ordering, which is a strict partial order, given that the
cp-theory is locally consistent (this implies that the second condition is easy to
satisfy, since a partial order can always be extended to a total order).

Definition 9 Let Γ be a cp-theory. We say that cs-tree σ satisfies Γ if the
associated total order >σ satisfies Γ, i.e., if >σ ⊇ >Γ (by Lemma 2(i)).

6A constraint c on variables V is a relation on Sc for some Sc ⊆ V , so is interpreted as a
subset of Sc. An outcome α ∈ V satisfies a constraint c if α(Sc) ∈ c. Outcome α is said to be
a solution of set of constraints C on V if it satisfies each constraint in C.

28

We say that Γ is conditionally acyclic7 if there exists a cs-tree satisfying Γ.

If a cp-theory Γ is conditionally acyclic then there exists a cs-tree σ with >σ
satisfying Γ, implying that Γ is consistent:

Proposition 12 Let Γ be a cp-theory. If Γ is conditionally acyclic then it is
consistent.

The following example shows that the converse does not hold: there exist
consistent cp-theories that are not conditionally acyclic.

Example 6 Let cp-theory Γ on variables {X1, X2} consist of the four pref-
erence statements x1 : x2 > x2 [∅]; x2 : x1 > x1 [∅]; x1 : x2 > x2 [∅], and
x2 : x1 > x1 [∅]. These statements imply that x1x2 and x1x2 are both preferred
to x1x2 and x1x2. Γ is consistent, but is not conditionally acyclic. To prove
a contradiction, assume that there exists a cs-tree σ which satisfies Γ. Suppose
that X1 is the variable associated with the root node r∗ (i.e., the top, or, most
important variable for σ). Then the node value ordering � is either x1 � x1,
or x1 � x1. If the former, then x1x2 >σ x1x2; if the latter then x1x2 >σ x1x2.
Both of these are incompatible with Γ, so X1 cannot be the top variable. Simi-
larly, X2 cannot be the top variable, so there exists no cs-tree satisfying Γ.

The following result gives equivalent conditions for a search tree to satisfy a
cp-theory. Condition (1) states that a variable precedes less important variables
on relevant paths of the cs-tree, and condition (2) states that the node value
ordering must be compatible with the preference statements in the cp-theory.
More precisely, consider some statement u : x > x′ [W] in the cp-theory Γ, where
x and x′ are values of variable X. (1) requires that on paths to outcomes that
extend u, X appears before each element of W . (2) requires that for any node
r whose context ar is compatible with u and where X is chosen, x is preferred
to x′ in the node value ordering.

Proposition 13 Let Γ be a cp-theory, and let σ be a cs-tree. The following
pair of conditions is sufficient for σ to satisfy Γ. If the domain of each variable
has at least two elements then the pair of conditions is also necessary for σ to
satisfy Γ.

(1) For any ϕ ∈ Γ and any outcome α such that α |= uϕ: on the path from
the root to α, Xϕ appears before each element of Wϕ;

(2) for any body node r and any ϕ ∈ Γ such that Xϕ = Yr and for any uϕ
compatible with ar, we have xϕ �r x′ϕ.

7Our terminology differs here from that used for TCP-nets (and also the terminology used
in (Wilson, 2004a)); conditional acyclicity for TCP-nets (Brafman et al., 2006) corresponds
with our property “context-uniform conditional acyclicity” (see Section 6.2), which is a very
much stronger condition, assuming, in particular, that H(Γ) is acyclic.

29

(The condition that the domain of each variable has at least two elements is
not restrictive, since any variable with a singleton domain can be eliminated.)

One interesting aspect of the above result is that it shows that it is not
necessary for parents of a variable to precede the variable in the paths in a cs-
tree, i.e., we can have, for ϕ ∈ Γ, elements of Uϕ further from the root (i.e., less
important) than Xϕ. However, in this paper we are mainly concerned with cs-
trees where parents precede children (at least in relevant contexts). For this case
we have the following version of Proposition 13, which will be used in Section
6. It again consists of a condition on the variable orderings, and a condition on
the node value orderings. Condition (1′) is a stronger form of (1) of Proposition
13, requiring that, for any statement u : x > x′ [W] in Γ, on paths where U
is instantiated as u, it is instantiated before X which is instantiated before W .
Given (1′), condition (2) of Proposition 13 can be expressed as (2′).

Proposition 14 Let Γ be a cp-theory, and let σ be a cs-tree. Then σ satisfies
Γ if the following pair of conditions hold:

(1′) For any ϕ ∈ Γ and any outcome α such that α |= uϕ: on the path from
the root to α, each element of Uϕ appears before Xϕ, which appears before
each element of Wϕ;

(2′) for any body node r = 〈A, a, Y,�〉, relation � extends the local ordering
�Ya (see Definition 4).

Example 7 Consider again the cp-theory Γ from Example 3, and the cs-tree σ
from Example 4 and Figure 2. In particular, consider the preference statement
ϕ = x1 : x3 > x3 [{X2}] in Γ, and any outcome α such that α |= x1, i.e.,
α(X1) = x1. In the path to such an outcome, the variables appear in the order
X1, X3, X2, and so Uϕ = {X1} appears before Xϕ = X3 which appears before
Wϕ = {X2}. Thus, condition (1′) of Proposition 14 is satisfied, for this ϕ, and
it can be easily confirmed also for other ϕ ∈ Γ. To illustrate condition (2′),
consider the node associated with assignment x1, which has value ordering �
given by x3 � x3, and so � is equal to �X3

x1
(see Example 3). Condition (2′) can

be confirmed for all other nodes also, so by Proposition 14, cs-tree σ satisfies Γ.

4.4 Total ordering tasks and upper approximations of the
preference relation

Suppose that we have a set Ω of possible outcomes which the user needs to
choose between, and we have elicited their preferences as a cp-theory Γ. We
wish to display the outcomes in some order >, showing them the best ones first.
A basic requirement is that for α, β ∈ Ω, if α is preferred to β then α appears
before β, i.e., if α >Γ β then α > β, since they are more likely to be interested
in outcome α than outcome β. Thus, we are concerned with the following task:
given cp-theory Γ and subset Ω of outcomes, construct a strict total order > on
Ω which extends >Γ restricted to Ω.

30

However, if Ω is very large, in particular if it is expressed implicitly as the
set of solutions of a constraint satisfaction problem, then we won’t be able to
display all of them, but just, say, K of them. This gives rise to the following
related problem: Given K, generate outcomes α1, . . . , αK ∈ Ω such that for all
j = 1, . . . ,K, if β >Γ αj for some β ∈ Ω then β = αi for some i < j.

These ordering tasks can be solved if we can define a cs-tree satisfying Γ,
since as shown in Section 4.2, we can then efficiently compare outcomes, and
generate outcomes in the cs-tree order. Another approach is to use an upper
approximation of the preference relation, as defined below.

Definition 10 (upper approximation) Binary relation � on V is said to
be an upper approximation of the preference relation >Γ if � is a strict partial
order extending >Γ. We say that � is a polynomial upper approximation if
for any outcomes α and β, whether or not α � β holds can be determined in
polynomial time.

Note that an upper approximation of >Γ exists if and only if >Γ is irreflexive,
i.e., if and only if (by Theorem 1) Γ is consistent.

The result below, which follows easily from the definitions, describes a gen-
eral way of generating upper approximations, which will be used below in sec-
tions 5.2, 6.3 and 7.6, for proving that certain relations are polynomial upper
approximations. It states that the intersection of a non-empty set of cs-tree
orderings satisfying a cp-theory is an upper approximation.

Proposition 15 Let R be some non-empty set of cs-trees satisfying cp-theory
Γ. Define relation �R to be the intersection of >σ over σ in R, so that,
for outcomes α and β, α �R β if and only if α >σ β holds for all σ ∈ R.
Then relation �R is an upper approximation of >Γ, i.e., a strict partial order
containing >Γ.

Proof: Each relation >σ is transitive, and intersections of transitive relations
are also transitive, so �R is transitive; it is also irreflexive since any >σ is
irreflexive, and so �R is a strict partial order. For each σ ∈ R, >σ ⊇ >Γ,
which implies that their intersection, �R, contains >Γ. 2

For Ω consisting of just a few outcomes, a polynomial upper approximation
� can be used to order Ω in a way that is compatible with >Γ: for each α, β ∈ Ω
we test if α� β; this generates a strict partial order over Ω, i.e., the restriction
of � to Ω × Ω. (This procedure can be speeded up if we can efficiently find a
�-undominated element in Ω, i.e., an element α ∈ Ω such that for all β ∈ Ω it
is not the case that β � α, since we can find such an element and then remove
it from Ω and iterate.)

For larger Ω, or Ω defined implicitly as the set of solutions of a constraint
satisfaction problem on V , our approach is to use an implicit representation of
a cs-tree σ satisfying Γ: see Section 5.1, Section 6.4, and Section 7. This can
also be used to generate the top K elements according to σ.

31

4.5 Constrained optimisation using polynomial upper ap-
proximation

This section first considers the task of finding optimal outcomes for a cp-theory
Γ, i.e., outcomes that are not dominated by any outcome according to the
preference relation >Γ. It then considers the much harder problem of finding
optimal solutions to a set of constraints, and shows how an upper approximation
can be used to help find some optimal solutions.

Definition 11 Given cp-theory Γ, we say that outcome α is (>Γ-)optimal if
there exists no outcome β such that β >Γ α. Let Ω be a set of outcomes. We
say that outcome α ∈ Ω is (>Γ-)optimal in Ω if there exists no outcome β ∈ Ω
such that β >Γ α. If C is a set of constraints on V we say that α is an (>Γ-
)optimal solution of C if α is >Γ-optimal in the set of solutions of C.

The optimal outcomes with respect to cp-theory Γ are precisely the solutions
of a particular constraint satisfaction problem (CSP) CΓ on V (cf. (Brafman
& Dimopoulos, 2004) and Theorem 2 of (Domshlak, Prestwich, Rossi, Venable,
& Walsh, 2006)). The point is that if outcome α does not satisfy some cϕ then
it’s not optimal since there’s an improving swap just changing the value of Xϕ

from x′ϕ to xϕ.

Proposition 16 Let Γ be a cp-theory. Define CΓ to be the set of constraints
{cϕ : ϕ ∈ Γ}, where constraint cϕ on variables Uϕ ∪ {Xϕ} is (Uϕ = uϕ) ⇒
(Xϕ 6= x′ϕ). Then outcome α ∈ V is >Γ-optimal if and only if α is a solution
of CΓ.

Furthermore, as observed in (Wilson, 2004b), if H(Γ) is acyclic and (e.g.,)
if Γ is locally consistent, then it’s very easy to find >Γ-optimal outcomes; by
instantiating the variables in an order compatible with H(Γ), one can reach a
(any) solution (without having to backtrack).

The situation is much trickier when we have a set of constraints C on V , and
we wish to find optimal solutions of C. If one is only interested in finding some
outcomes which are optimal, then one can try to solve the CSP with constraints
CΓ ∪ C. Any solution of this CSP will be an >Γ-optimal solution of C since it
is >Γ-optimal in V . However, CΓ ∪ C may very well have no solutions, so we
need some more general methods.

Finding all optimal solutions: Suppose one can find a cs-tree σ satisfying
Γ. This can be used to generate the solutions of C in the order >σ, by using the
natural backtracking algorithm associated with σ (see Section 4.2). The first
solution, α, that it generates will be >Γ-optimal since β >Γ α implies β >σ α
(and so β cannot be a solution of C). At each point in the search we have a
set Ω∗ of >Γ-optimal solutions already found. When we find the next solution
α we need to determine if there exists any β ∈ Ω∗ with β >Γ α. If not, then α
is a >Γ-optimal solution and we add it to Ω∗ (since α is not dominated by any
solution γ found later, because α >σ γ, and so γ 6>σ α and hence γ 6>Γ α.)

32

This algorithm, which is based on the approach used for CP-nets in (Boutilier
et al., 2004b), is complete, with the final Ω∗ being the set of all >Γ-optimal
solutions, and at each point the set Ω∗ contains only >Γ-optimal solutions. The
problem with this algorithm (and the similar algorithms in (Boutilier et al.,
2004b; Brafman et al., 2006)) is that determining if β >Γ α (or not) will often
be infeasible (Boutilier et al., 2004a; Domshlak & Brafman, 2002; Goldsmith
et al., 2008) unless the problem is small, since it involves searching for swapping
sequences, which generalise flipping sequences.

Finding some optimal solutions: However, suppose now we apply exactly
the same form of algorithm, but replacing tests of the form β >Γ α by β � α,
where � is an upper approximation of >Γ. The generated outcomes will be
precisely the �-optimal solutions of C. However, from the definition of an
upper approximation it immediately follows that if α is �-optimal then it is
>Γ-optimal. This algorithm will therefore generate some (but not usually all)
the >Γ-optimal solutions; if the tests β � α can be performed efficiently then
generating >Γ-optimal solutions in this way should be quite feasible.

There will often be a very large number of optimal solutions, and we may well
only wish to report a small fraction of them; it is not necessarily important that
the upper approximation is a close approximation, just that � is sufficiently
far from being a total order that there are still liable to be a good number of
solutions which are �-optimal.

5 Consistency, and polynomial upper bound of
preference relation: the fully acyclic case

In this section we consider fully acyclic cp-theories Γ, that is, those such that
G(Γ) is acyclic. Recall from Section 2.2.3 that G(Γ) contains sets of edges
Uϕ → Xϕ and Xϕ → Wϕ for all ϕ ∈ Γ; Γ is thus fully acyclic if and only if
the set of variables V can be labelled as {Z1, Z2, . . . , Zn} in such a way that
for all ϕ ∈ Γ, if Zi ∈ Uϕ then i < j where Zj = Xϕ, and if Zk ∈ Wϕ then
k > j. It is shown in Section 5.1 how to construct a satisfying cs-tree for Γ if it
is locally consistent. This implies (Theorem 3) that when G(Γ) is acyclic, Γ is
consistent if and only if it is locally consistent. In Section 5.2 we define an upper
approximation for the preference relation>Γ, which, as shown in Section 4.4, can
be used for totally ordering sets of outcomes, and for constrained optimisation.

5.1 Generating a cs-tree satisfying fully acyclic Γ

Suppose that Γ is a locally consistent and fully acyclic cp-theory. Therefore,
there exists a total order on the set of variables V that extends G(Γ). Let us
enumerate V as Z1, Z2, . . . , Zn in a way which is compatible with G(Γ), i.e.,
such that (Zi, Zj) ∈ G(Γ) implies i < j. We can iteratively define the nodes of
a cs-tree from the root to the leaves as follows, instantiating the variables in the

33

order Z1, Z2, . . . , Zn. For each node r, we have Ar = {Z1, . . . , Zk−1} for some
k. We define Yr to be Zk, and choose �r to be some strict total order extending
�Zk
ar

, which is possible since �Zk
ar

is acyclic, by local consistency. Let us call this
cs-tree σ[Γ]. Proposition 14 of Section 4.3 immediately implies that this cs-tree
satisfies Γ:

Lemma 7 Let Γ be a locally consistent and fully acyclic cp-theory. Then the
cs-tree σ[Γ] satisfies Γ.

Lemma 7 implies that a locally consistent fully acyclic cp-theory Γ is consis-
tent, since �σ[Γ] satisfies Γ. As observed earlier, local consistency is a necessary
condition for consistency (Proposition 9, Section 4.1). We therefore have that
local consistency and consistency are equivalent for fully acyclic cp-theories:

Theorem 3 Let Γ be a fully acyclic cp-theory. Then Γ is consistent if and only
if Γ is locally consistent.

5.2 An upper approximation for fully acyclic Γ

There is a simple way of defining a polynomial upper approximation (see Defi-
nition 10 in Section 4.4) for a fully acyclic cp-theory. It is a kind of generalised
lexicographic order, and is strongly related to the ‘ordering queries’ and the
relation� used in the proof of Theorem 6 in (Boutilier et al., 2004a). Two out-
comes are compared by comparing, using the appropriate local ordering, their
value on each of the most important variables on which they differ, where im-
portance is defined (here) according to relation G(Γ). The section finishes with
a result, Proposition 17, which shows that this polynomial upper approximation
for Γ is equal to the preference relation associated with a strengthened form of
Γ.

Definition 12 Let Γ be a locally consistent and fully acyclic cp-theory. Define
relation �p(Γ) on outcomes as follows. Let α and β be outcomes in V . Define
∆(α, β) to be the set of variables on which α and β differ, that is, the set
{Y ∈ V : α(Y) 6= β(Y)}. If α 6= β, define Θ(α, β) to be the set of G◦-maximal
elements of ∆(α, β), where G◦ is the transitive closure of G(Γ), i.e., variables
Y ∈ ∆(α, β) such that there exists no Z ∈ ∆(α, β) such that (Z, Y) ∈ G◦. In
other words, Θ(α, β) is the set of variables Y on which α and β differ such that
every ancestor of Y agrees on α and β. For α, β ∈ V , we define α �p(Γ) β if
and only if α 6= β and α(Y) �Yα β(Y) for all Y ∈ Θ(α, β).

For given outcomes α and β, determining if α �p(Γ) β can clearly be done
in polynomial time. This ordering is similar to a lexicographic ordering. It
views G(Γ) as expressing relative importance of variables: if (Y, Z) ∈ G(Γ) then
variable Y is considered as more important than Z. The idea is that Θ(α, β) is
the set of most important variables where α and β differ. α is preferred to β if
α is better than β on each of these variables. A standard lexicographic order
compares two outcomes α and β by considering the most important variable X

34

on which α and β differ, and preferring α to β if α(X) is preferred to β(X).
This order differs in that (i) there can be more than one best variable on which
α and β differ, because G◦ is only a partial order; and (ii) the local preference
of α(X) over β(X) can be partial, and conditional on more important variables.

With Γ as in Example A (Section 2.2.2), consider outcomes n o p and n o p .
We have ∆(n o p ,n o p) = {X2, X3}, and Θ(n o p ,n o p) = {X2}, because
variable X2 is more important than X3 according to G(Γ). Also, o �X2

nop o
holds because of ϕ2, and so, n o p �p(Γ) n o p . In fact, the relation �p(Γ)

is in this case a total order, which extends >Γ with the additional preference
n o p �p(Γ) n o p .

The following lemma shows that relation �p(Γ) is equal to the intersection
of a particular set of cs-tree orderings, where the ordering of variables in the
cs-trees involved is always compatible with G(Γ).

Lemma 8 Let Γ be a locally consistent and fully acyclic cp-theory. Let S be
the set of cs-trees σ satisfying the two conditions:

(a) for any pair (Y, Z) ∈ G(Γ) and any outcome α, variable Y appears before
Z on the path to α (i.e., for any ϕ ∈ Γ, variables Uϕ appear before variable
Xϕ, which appears before variables Wϕ on any path to any outcome);

(b) for any body node r in σ, �r ⊇ �Yr
u , where u = ar(UYr), and UYr is the

set of the parents of Yr in H(Γ) (see Section 2.2.3). (Note that UYr ⊆ Ar
by (a).)

For outcomes α and β, α �p(Γ) β if and only if for all cs-trees σ in S, we have
α >σ β. In other words, �p(Γ) = �S , using the notation of Proposition 15,
Section 4.4.

This lemma and Proposition 15 (Section 4.4) immediately imply the fol-
lowing result, showing that �p(Γ) is a polynomial upper approximation of the
preference relation. (This result can also be proved more directly.)

Theorem 4 Let Γ be a locally consistent and fully acyclic cp-theory. Then
�p(Γ) is a strict partial order containing >Γ, so is an upper approximation of
the preference relation >Γ.

As shown by Theorem 4, �p(Γ) extends >Γ. In fact, it turns out that if one
strengthens the preference statements in Γ, by expanding the sets Wϕ, to form
a cp-theory Γ, we obtain equality between the relations: �p(Γ) = �p(Γ) = >Γ.
This result is used in the footnote in Section 3.5.

Proposition 17 Let Γ ⊆ L be a cp-theory. For ϕ = (u : x > x′ [W]) ∈ Γ let ϕ
be (u : x > x′ [W ′]) where W ′ is the set of descendants of X in G(Γ) (i.e., the
set of variables Y such that (X,Y) is in the transitive closure of G(Γ)). Define
Γ = {ϕ : ϕ ∈ Γ}. If Γ is locally consistent and fully acyclic then �p(Γ) = �p(Γ)

= >Γ ⊇ >Γ.

35

6 Consistency and polynomial upper bound of
preference relation: more general case

This section considers the problems of determining consistency, and generating
a polynomial upper approximation for more general kinds of cp-theories than
the fully acyclic ones considered in Section 5.

We first consider two conditions on cp-theories that are sufficient conditions
for the cp-theory to be consistent. They are weaker forms of acyclicity, though
stronger than conditional acyclicity: strong conditional acyclicity in Section
6.1, and context-uniform conditional acyclicity (cuc-acyclicity) in Section 6.2.
(The latter is very similar to the notion of “conditional acyclicity” in (Brafman
et al., 2006).) An important aspect of these conditions is that the complexity of
determining them is only coNP-complete (see Proposition 24), which is much less
than the complexity (PSPACE-complete) of determining consistency for general
cp-theories. For cuc-acyclic cp-theories we define a way of generating an upper
approximation in Section 6.3. Section 6.4 shows how to generate a total order
satisfying the cp-theory. Theorem 6 in Section 6.5 summarises the results on
the strength of different forms of consistency, specifically, that the following are
progressively weaker conditions on a cp-theory: being locally consistent and
fully acyclic, cuc-acyclicity, strong conditional acyclicity, conditional acyclicity,
consistency, local consistency. Section 6.5 also discusses how to use the results
to confirm that a cp-theory is consistent.

6.1 Strong conditional acyclicity and strong satisfaction

We consider a condition, called strong satisfaction, which is sufficient for a cs-
tree to satisfy a cp-theory (see Definition 13 below). This is expressed as a pair
of conditions on each node r of the cs-tree. The first condition is on the choice
of the new variable Y to be branched on, given the assignment a to variables
made above that node: if this condition is satisfied, we say that Y is strongly
a-undominated. The second condition is that the node value ordering extends
the appropriate local ordering. Proposition 18 gives an equivalent definition for
a cs-tree to strongly satisfy a cp-theory, which leads to Proposition 19, which
states that strong satisfaction implies satisfaction. The definition of strong
satisfaction suggests the definition of a stronger form of conditional acyclicity,
Definition 14, that the cp-theory is locally consistent, and that given any as-
signment a to any proper subset of the set of variables, there exists a strongly
a-undominated variable. This easily implies that if a cp-theory is strongly con-
ditionally acyclic then one can iteratively construct, starting with the root node,
a cs-tree strongly satisfying Γ, hence implying the consistency of Γ (see Proposi-
tion 21). In addition, a result, Proposition 20, is given that is useful for helping
prove that a particular cp-theory is strongly conditionally acyclic.

We are interested in cs-trees whose associated orders satisfy cp-theory Γ.
For this we need to make sure that for any path and any relevant ϕ ∈ Γ, Xϕ

appears before all the variables in Wϕ, as Xϕ is a more important variable

36

(see Proposition 13, in Section 4.3). Furthermore, we require here that the
conditioning variables Uϕ to all appear before Xϕ, so that we know the values
of relevant parents of Xϕ before we can decide which values of Xϕ are preferred
(cf. Proposition 14).

Definition 13 Let Γ be a cp-theory over variables V . Let A be a subset of V ,
and let a ∈ A be an assignment to the variables A.

• We say that Y ∈ V −A is strongly a-undominated (with respect to Γ) if for
all ϕ ∈ Γ such that uϕ is compatible with a, (i) if Xϕ = Y then Uϕ ⊆ A;
(ii) if Wϕ 3 Y then Uϕ ∪ {Xϕ} ⊆ A.

• A body tuple 〈A, a, Y,�〉 is said to strongly satisfy Γ if (I) Y is strongly
a-undominated and (II) the ordering � on Y extends �Ya (i.e., if y �Ya y′

then y � y′).

• A body node is said to strongly satisfy Γ if its associated body tuple strongly
satisfies Γ;

• A cs-tree is said to strongly satisfy Γ if each body node in the cs-tree
strongly satisfies Γ.

The following result is an immediately consequence of the first part of the
previous definition, since any uϕ is compatible with >, the assignment to the
empty set of variables.

Lemma 9 Let Γ be a cp-theory over variables V , and let Y be a variable in
V . Then variable Y is strongly >-undominated if and only if for all ϕ ∈ Γ, (a)
Y /∈Wϕ, and (b) if Xϕ = Y then Uϕ = ∅.

In other words, Y is strongly >-undominated if and only if Y is never less
important than any other variable, and any preferences regarding the values of
Y are unconditional. This is also if and only if Y is undominated with respect
to G(Γ) (see Section 2.2.3), i.e., there does not exist Z ∈ V with (Z, Y) ∈ G(Γ).

If a cs-tree strongly satisfies Γ, the conditions ensure that if ϕ ∈ Γ and
outcome α is such that α |= uϕ then on the path from the root to the leaf
node 〈V, α〉, variables Uϕ appear before Xϕ which appears before variables Wϕ;
this leads to the following result expressing an equivalent form for a cs-tree to
strongly satisfy a cp-theory.

Proposition 18 Let Γ be a cp-theory, and let σ be a cs-tree. Then σ strongly
satisfies Γ if and only if the following pair of conditions hold:

(1) For any ϕ ∈ Γ and any outcome α such that α |= uϕ: on the path from
the root to α, each element of Uϕ appears before Xϕ, which appears before
each element of Wϕ;

(2) for any body node r of σ with associated tuple 〈A, a, Y,�〉, relation �
extends the local ordering �Ya .

37

Proposition 18, and Proposition 14 from Section 4.3, immediately imply the
following result.

Proposition 19 If a cs-tree σ strongly satisfies cp-theory Γ, then it satisfies Γ,
i.e., its associated order >σ satisfies Γ.

Here we define a stronger form of conditional acyclicity of a cp-theory (as
shown by Proposition 21 below).

Definition 14 (strongly conditionally acyclic cp-theory) We say that Γ
is strongly conditionally acyclic if it is locally consistent and for all proper
subsets A of V , and all a ∈ A, there exists a strongly a-undominated variable
(see Definition 13).

Below we derive a result, Proposition 20, that can make it easier to prove
strong conditional acyclicity, and hence consistency. First we show, in Lemma
10, how being strongly a-undominated is the same as being undominated with
respect to a particular relation, Fa on V − A. Let A ⊆ V be a set of variables,
and let a ∈ A be an assignment to A. Define relation Fa on V (using the
notation of Section 2.2.3) to consist of all edges Uϕ → Xϕ and Uϕ ∪ {Xϕ} →
Wϕ for all ϕ ∈ Γ such that uϕ is compatible with a, i.e., Fa is the union of
(Uϕ → Xϕ) ∪ (Uϕ ∪ {Xϕ} → Wϕ) over all ϕ ∈ Γ such that uϕ is compatible
with a. (Thus, (Y, Z) ∈ Fa if and only if there exists some ϕ ∈ Γ such that uϕ
is compatible with a and either Y ∈ Uϕ and Z = Xϕ or Y ∈ Uϕ ∪ {Xϕ} and
Z ∈Wϕ.)

Lemma 10 Let A ⊆ V , and let a ∈ A, and let Y be a variable in V − A.
Then Y is strongly a-undominated if and only if Y is not Fa-dominated by any
element of V −A, i.e., there does not exist Z ∈ V −A with (Z, Y) ∈ Fa.

Proposition 20 Let A,B ⊆ V be a sets of variables with A ⊆ B, and let a ∈ A
be an assignment to A, and suppose that b ∈ B extends a. Then

(i) Fb ⊆ Fa, i.e., if (Y,Z) ∈ Fb then (Y, Z) ∈ Fa;

(ii) if Y ∈ V −B is strongly a-undominated then Y is strongly b-undominated;

(iii) if Fa restricted to V−A is acyclic then there exists a strongly b-undominated
variable in V −B.

Example 8 Consider again the cp-theory Γ from Example 3 in Section 4.1,
consisting of the following preference statements: ϕ1 = > : x1 > x1 [{X2, X3}],
ϕ2 = x1 : x3 > x3 [{X2}]; ϕ3 = x1 : x2 > x2 [∅]. ϕ4 = x1 : x2 > x2 [{X3}],
and ϕ5 = x1 : x3 > x3 [∅]. By Lemma 9, X1 is strongly >-undominated, so,
by Proposition 20(ii), X1 is strongly b-undominated for any assignment b to set
of variables B such that B 63 X1. Fx1 restricted to {X2, X3} consists just of
the edge X3 → X2 (because of ϕ2) and is hence acyclic. Then, by Proposition
20(iii), there exists a strongly b-undominated variable for any b extending x1.

38

Similarly, Fx1 restricted to {X2, X3} is acyclic, so by Proposition 20(iii), there
exists a strongly b-undominated variable for any b extending x1. This implies
that, for any assignment b to a proper subset of V , there exists a strongly b-
undominated variable, and hence Γ is strongly conditionally acyclic. A similar
argument works for Example B in Section 3.2.

This example illustrates that strong conditional acyclicity, and hence con-
sistency, of a cp-theory Γ can sometimes be easily shown, if Γ is close to being
acyclic.

The following result follows easily from the definitions.

Lemma 11 Let Γ be a strongly conditionally acyclic cp-theory. Given any
proper subset A of V and a ∈ V , there exists Y and total order � on Y such
that 〈A, a, Y,�〉 is a body tuple strongly satisfying Γ.

Proof: Since Γ is strongly conditionally acyclic, there exists a strongly a-undominated
variable, Y . Choose any outcome α extending a, and pick some strict total or-
der � extending �Yα . (This is possible since, by local consistency, �Yα is a strict
partial order.) Then � extends �Ya , so 〈A, a, Y,�〉 strongly satisfies Γ. 2

This means that it is easy to construct a cs-tree satisfying a strongly con-
ditionally acyclic Γ: we start by picking a root node strongly satisfying Γ, and
we proceed inductively, choosing children strongly satisfying Γ for each node al-
ready chosen. Lemma 11 ensures that the cs-tree generated will strongly satisfy
Γ, and hence satisfies Γ, by Proposition 19. This implies the following result:

Proposition 21 Suppose Γ is a strongly conditionally acyclic cp-theory. Then
Γ is conditionally acyclic and hence consistent.

The example below shows that the converse fails.

Example 9 Let V = {X1, X2}. Let Γ be the pair of statements x1 : x2 > x2 [∅]
and x2 : x1 > x1 [∅]. Γ∗ is just equal to {(x1x2, x1x2), (x1x2, x1x2)}, and so
is acyclic (with >Γ equal to Γ∗) and hence, by Theorem 1(ii), Γ is consistent.
Furthermore, Γ is conditionally acyclic: we can define a cs-tree σ satisfying Γ as
follows. σ includes two other body nodes apart from the root node. The root node
is equal to 〈∅,>, X1, x1 > x1〉. The first body node is 〈{X1}, x1, X2, x2 > x2〉,
the second is 〈{X1}, x1, X2, x2 > x2〉. The associated ordering >σ on outcomes
is the transitive closure of: x1x2 >σ x1x2 >σ x1x2 >σ x1x2, so, >σ contains
Γ∗.

However, Γ is not strongly conditionally acyclic. By Lemma 9, X1 is not
strongly >-undominated, because of the preference statement x2 : x1 > x1 [∅].
Similarly, X2 is not strongly >-undominated, so there exists no strongly >-
undominated variable.

39

6.2 Context-uniform conditional acyclicity

We consider here cuc-acyclicity, a yet stronger form of conditional acyclicity of
cp-theories, which requires, in particular, that the dependency graph H(Γ) is
acyclic (see Section 2.2.3). It is closely connected with the notion of conditional
acyclicity for TCP-nets (Brafman et al., 2006). A major motivation for consid-
ering cuc-acyclicity is that it allows a polynomial upper approximation of the
preference relation >Γ to be defined (see Section 6.3 below), which, as shown
above in Section 4.4 and Section 4.5, can be used for ordering tasks and for
constrained optimisation.

Definition 15 (cuc-acyclic cp-theory) Let Γ be a cp-theory. Let a ∈ A be
an assignment to a set of variables A. Define directed graph Ja(Γ) on the set of
variables V , using the notation from Section 2.2.3, to consist of the set Uϕ →
{Xϕ} ∪Wϕ of edges for all ϕ ∈ Γ, and also the set Xϕ → Wϕ of edges for all
ϕ ∈ Γ such that Uϕ ⊆ A and a extends uϕ. (In other words, (Y,Z) ∈ Ja(Γ)
if and only if there exists some ϕ ∈ Γ such that either (i) Y ∈ Uϕ and Z ∈
{Xϕ} ∪ Wϕ or (ii) a extends uϕ, and Y = Xϕ and Z ∈ Wϕ.) Define order
�a(Γ) on V (abbreviated to �a) to be the transitive closure of Ja(Γ).

We say that cp-theory Γ is context-uniformly conditionally acyclic (abbrevi-
ated to cuc-acyclic) if it is locally consistent and for each outcome α ∈ V , Jα(Γ)
is acyclic, i.e., �α is irreflexive.

The reason for the terminology “context-uniform” is that the relations Uϕ →
{Xϕ} ∪Wϕ involving the context sets Uϕ are required to hold for any ϕ ∈ Γ, in
contrast with the relations in Section 6.1 (see e.g., the definition of Fa) which
require a condition on ϕ. In particular, cuc-acyclicity of Γ requires that the
dependency graph H(Γ) is acyclic.

This property is very similar to the notion of “conditional acyclicity” for
TCP-nets: see Definitions 8 and 9 in (Brafman et al., 2006); (the property
we call “conditional acyclicity” is a much weaker condition). The methods in
Section 5 of (Brafman et al., 2006) could therefore be used for checking whether
certain kinds of cp-theories are cuc-acyclic.

Note that if Γ is context-uniformly conditionally acyclic then for any A ⊆ V
and a ∈ A, Ja is acyclic, since Ja ⊆ Jα for any α extending a (i.e., such that
α(A) = a).

cuc-acyclicity is a still stronger condition than being strongly conditionally
acyclic:

Proposition 22 If cp-theory Γ is context-uniformly conditionally acyclic then
it is strongly conditionally acyclic, and hence conditionally acyclic and consis-
tent.

Example 10 Consider again the cp-theory Γ from Example 8 (Section 6.1) and
Example 3 (Section 4.1). For any α extending x1, �α is consistent with (in fact
is equal to) the ordering X1, X3, X2 (partly because of the preference statement
ϕ2 which equals x1 : x3 > x3 [{X2}]). For any α extending x1, �α is equal to

40

the ordering X1, X2, X3. Thus, for any α, �α is irreflexive, so Γ is cuc-acyclic.
Similarly, for Example B (Section 3.2), for α extending x1, �α equals the the
ordering X1, X3, X2, X4, and for α extending x1, �α equals the the ordering
X1, X2, X3, X4, and so Γ is cuc-acyclic for Example B as well.

As the following example illustrates, context-uniform conditional acyclicity
is a strictly stronger condition than strong conditional acyclicity.

Example 11 Let cp-theory Γ consist of the following statements: > : x1 >
x1 [∅], x1x3 : x2 > x2 [∅], and x1x2 : x3 > x3 [∅]. H(Γ) is not acyclic, since X2

is a parent of X3, and vice versa. This implies that, for any outcome α, Jα(Γ)
is not acyclic; hence, Γ is not cuc-acyclic. On the other hand, Γ is strongly
conditionally acyclic. Consider any assignment a ∈ A, where A is a proper
subset of V . To show strong conditional acyclicity we need to show that there
exists some Y ∈ V −A which is strongly a-undominated. If A does not contain
X1, then X1 is strongly a-undominated. If a equals x1, or x1x3 or x1x3 then X2

is strongly a-undominated. If a equals x1, or x1x2 or x1x2 then X3 is strongly
a-undominated. This covers all cases.

6.3 Generating a polynomial upper approximation of the
preference relation

In this section, we develop an approach for generating an upper approximation
for the preference relation >Γ. As explained in Sections 4.4 and 4.5, this can
be used for constrained optimisation and ordering queries. This particular up-
per approximation, although not requiring full acyclicity, still requires a strong
condition on the cp-theory, that it be cuc-acyclic (see Definition 15, Section
6.2).

We define a relation �Γ on outcomes associated with a cuc-acyclic Γ. This
is a modified form of Definition 12 in Section 5.2, which is for the fully acyclic
case. We will show (Theorem 5) that �Γ is an upper approximation of the
preference relation >Γ.

To compare two outcomes with relation�Γ, we first consider the set ∆(α, β)
of variables on which they differ. Among this set we eliminate any of the vari-
ables which are dominated by any other with respect to relation �α (see Def-
inition 15), to obtain the set of variables Θ′(α, β). Then α �Γ β is defined to
hold if and only if for all X ∈ Θ′(α, β), α(X) is better than β(X) according to
the local ordering �Xα (see Definition 4).

Let A be a subset of V , and let a ∈ A be an assignment to the variables A,
and let B be a subset of V . We say that Y ∈ B is �a-undominated in B if Y
is undominated in B with respect to �a, i.e., there does not exist Z ∈ B with
Z �a Y .

Definition 16 (upper approximation �Γ) Consider fixed cuc-acyclic Γ. For
α, β ∈ V , let ∆(α, β) be the set of variables where α and β differ, i.e., {X ∈
V : α(X) 6= β(X)}. Let Θ′(α, β) be the �α-undominated variables in ∆(α, β)

41

(note that the definition of cuc-acyclicity ensures that Θ′(α, β) is non-empty
given that α 6= β). The binary relation �Γ on outcomes is defined by: α�Γ β
if and only if for all X ∈ Θ′(α, β), α(X) �Xα β(X).

We will prove the following result in the next section.

Theorem 5 Let Γ be a cuc-acyclic cp-theory. Then �Γ is a strict partial order
containing >Γ and so is an upper approximation for the preference relation >Γ.

Example 12 Continuing Example 10, let α be the outcome x1x2x3, and let
β be the outcome x1x2x3. The two outcomes differ on variables X2 and X3

so ∆(α, β) = {X2, X3}. �α is the ordering X1, X2, X3 (see Example 10) so
Θ′(α, β) = {X2}. We have α(X2) �X2

α β(X2), i.e., x2 �X2
α x2, because of the

preference statement ϕ4 = x1 : x2 > x2 [{X3}]. Hence, α�Γ β.

Dominance testing with�Γ, i.e., determining if α�Γ β or not, can be done
in polynomial time (and is often very easy), and so �Γ is a polynomial upper
approximation. If Γ is fully acyclic then �Γ can be compared with relation
�p(Γ) defined in Definition 12 in Section 6.3. Let α and β be outcomes. We
have Jα(Γ) ⊆ G(Γ), and so �α ⊆ G◦. Hence, Θ′(α, β) ⊇ Θ(α, β). Therefore,
α �Γ β implies α �p(Γ) β, so that �Γ is a closer approximation of >Γ than
�p(Γ).

Proving Theorem 5

The way we shall prove Theorem 5 is to show, using Lemma 14 and Lemma
15 below, that �Γ is the intersection of total orders >σ over a particular set
of cs-trees, those which cu-satisfy Γ (see Definition 17 below). This property
ensures that the cs-tree satisfies Γ. The theorem then follows using Proposition
15 of Section 4.4. (A more direct proof is also possible.)

Definition 17 (cu-satisfaction) Let Γ ⊆ L be cuc-acyclic. A body node with
associated tuple 〈A, a, Y,�〉 is said to context-uniformly satisfy Γ (abbreviated
to cu-satisfy Γ) if (i) Y is �a-undominated in V −A (i.e., there does not exist
Z ∈ V − A with Z �a Y), and (ii) the total ordering � on Y extends �Ya (i.e.,
if y �Ya y′ then y � y′). A cs-tree is said to cu-satisfy Γ if each body node in
the cs-tree cu-satisfies Γ.

If Y is �a-undominated in V − A then it can be seen that Y is strongly
a-undominated in V − A (see Definition 13), which immediately implies the
following result, using Proposition 19, Section 6.1.

Lemma 12 If a cs-tree cu-satisfies Γ then it strongly satisfies Γ, and hence
satisfies Γ.

If Γ is cuc-acyclic (see Definition 15), then for any A ⊆ V and a ∈ A, we can
define a body node cu-satisfying Γ by choosing any Y which is �a-undominated
in V − A (�a is acyclic, since �α is acyclic for any α |= a, ensuring we can

42

pick such a Y) and choosing any total order � on Y extending �Ya (which is
possible since �Ya is a partial order by local consistency). This means that we
can generate a cs-tree cu-satisfying Γ by choosing a root node and iteratively
generating children of nodes already created. This proves the following lemma:

Lemma 13 If Γ is cuc-acyclic then there exists a cs-tree cu-satisfying Γ.

The following result shows that �Γ is contained in >σ for any cs-tree σ
cu-satisfying Γ.

Lemma 14 Let Γ be a cuc-acyclic cp-theory, and let σ be any cs-tree that cu-
satisfies Γ. Then >σ contains �Γ.

The next lemma supplies the final piece we need to prove Theorem 5.

Lemma 15 Let Γ be a cuc-acyclic cp-theory, and suppose outcomes α, β ∈ V
are such that it is not the case that α �Γ β. Then there exists a cs-tree σ
cu-satisfying Γ such that it is not the case that α >σ β.

Putting the parts together, we have the following result, which immediately
entails Theorem 5.

Proposition 23 Let Γ be a cuc-acyclic cp-theory. Then �Γ is the intersection
of >σ over all cs-trees σ cu-satisfying Γ. Furthermore, �Γ is a strict partial
order containing >Γ and so is an upper approximation for the preference relation
>Γ.

Proof: By Lemma 14 and Lemma 15, α �Γ β if and only if α >σ β for all
cs-trees σ cu-satisfying Γ. This implies that �Γ is the intersection of >σ over
all cs-trees σ cu-satisfying Γ. If σ cu-satisfies Γ then it satisfies Γ, by Lemma
12. Proposition 15 (Section 4.4) then implies that �Γ is a strict partial order
containing >Γ. 2

6.4 Generating a total order satisfying cp-theory Γ

The procedure described above—after Lemma 11 in Section 6.1—for generating
a cs-tree from strongly conditionally acyclic Γ, could usually, depending on the
choices made, generate many different cs-trees satisfying Γ. It can be useful
to have a way of pinning down which choice is made, and thus a way of defin-
ing (implicitly) a particular total order that satisfies Γ. We assume a listing
X1, . . . , Xn of V , and for each i, a total ordering x1

i , . . . , x
mi
i (where mi = |Xi|)

of the values of Xi. We use these to define a particular cs-tree σ(Γ) which
satisfies Γ. This is constructed from the root down. Whenever we have a set
of choices of a-undominated variable at node r we choose Yr to be Xi with
minimal i (among the choices). Similarly we define �r by generating the values
of Xi from the best to the worst, at each point choosing a �Xi

a -maximal value

43

amongst the remaining values, where ties are broken by choosing value xji with
largest j.

Suppose we want to be able to generate outcomes in an order compatible
with the preferences Γ (i.e., compatible with >Γ). If Γ is conditionally acyclic
then >σ(Γ) is such an order. This order was defined implicitly: we do not have
to explicitly construct cs-tree σ(Γ) to use it. In particular, we can generate in
polynomial time the best K outcomes according to >σ(Γ), by generating just
the first K leaf nodes of cs-tree σ(Γ). Also, given any two different outcomes
α and β, we can efficiently determine which is better according to this order
>σ(Γ), by constructing just the nodes that are above both leaf node 〈V, α〉 and
leaf node 〈V, β〉.

6.5 Summary and discussion on forms of consistency

The following result sums up the relationships between the different conditions
of cp-theories that we have explored.

Theorem 6 Let Γ be a cp-theory. Recall that Γ is

— consistent if there exists a strict total order satisfying Γ (Definition 2,
Section 2.3);

— locally consistent if �Xα is irreflexive for all variables X and outcomes α
(Definition 4, Section 4.1);

— fully acyclic if G(Γ) is acyclic (see Section 2.2.3);

— conditionally acyclic if there exists a cs-tree satisfying Γ (Definition 9,
Section 4.3);

— strongly conditionally acyclic if it is locally consistent and for all A ⊆ V
and a ∈ A, there exists a strongly a-undominated variable (Definition 14,
Section 6.1);

— context-uniformly conditionally acyclic (cuc-acyclic) if it is locally consis-
tent and for each outcome α ∈ V , Jα(Γ) is acyclic (Definition 15, Section
6.2).

Then, Γ is locally consistent and fully acyclic

⇒ Γ is context-uniformly conditionally acyclic

⇒ Γ is strongly conditionally acyclic

⇒ Γ is conditionally acyclic

⇒ Γ is consistent

⇒ Γ is locally consistent.

Moreover, none of the implications are equivalences.

44

Proof: If Γ is fully acyclic, i.e., G(Γ) is acyclic, then Jα(Γ) is acyclic for any
outcome α, since Jα(Γ) ⊆ G(Γ). This shows that if Γ is locally consistent and
G(Γ) is acyclic then Γ is context-uniformly conditionally acyclic. The other
implications are from Propositions 22, 21, 12 and 9, respectively.

The last part follows from Example 10 (where the cp-theory Γ is context-
uniformly conditionally acyclic but not fully acyclic), Example 11, Example 9,
Example 6, and Example 2, respectively. 2

Determining if Γ is strongly conditionally acyclic is a coNP-complete prob-
lem, as is determining if Γ is context-uniformly conditionally acyclic. It is
straight-forward to see that these problems are in coNP. coNP-hardness can be
shown using a reduction from 3-SAT, with a similar construction to that used
in the proof of Theorem 2 of (Brafman et al., 2006), and for coNP-hardness of
local consistency (Proposition 11).

Proposition 24 The problem of determining if cp-theory Γ is strongly con-
ditionally acyclic is coNP-complete, as is the problem of determining if Γ is
cuc-acyclic.

Determining consistency of a cp-theory is PSPACE-complete (Goldsmith,
Lang, Truszczyński, & Wilson, 2005; Goldsmith et al., 2008) We thus have
both a necessary condition for consistency (local consistency) and a sufficient
condition (strong conditional acyclicity) of much lower complexity.

One might adapt the methods of Section 5 of (Brafman et al., 2006) to
check the context-uniformly conditionally acyclicity–and hence to show the
consistency—of certain forms of cp-theory Γ. It may also often be easy to
confirm consistency of a cp-theory Γ in a somewhat ad hoc manner, assuming
that Γ is locally consistent (which will often be easy to confirm). We can define
a simple set of rules that determine which variable gets picked at each point, in
generating a cs-tree σ satisfying Γ. For example, suppose V = {X1, . . . , X8};
consider the following rules for the variable ordering, where e.g., X1 < X2 means
that X1 must always be picked earlier than X2:

• X1 < X2 < {X3, X4, X5} < X6 < {X7, X8};

• if x1 then X3 < X4 < X5;

• if x′1x2 then X5 < X4 < X3; else X5 < X3 < X4;

• if x4x
′
6 then X7 < X8, else X8 < X7.

Given tuple a ∈ A, these rules determine a minimal variable in V −A, say Ya; for
example, if a is the assignment x′1x

′
2 then Ya = X5; we can also define the value

ordering � at any node in a simple way. This defines a compact representation
function g with associated cs-tree σg (see Section 4.2). It is straight-forward
to check if σg strongly satisfies Γ (that is, if Ya is always a-undominated). If
so, then this proves that Γ is conditionally acyclic and hence consistent; we can
also use σg to totally order a set of outcomes.

45

In the next section a more formal way is developed of compactly representing
the variable orderings for a search tree, and hence determining consistency, and
enabling one to totally order outcomes in a way that is compatible with a cp-
theory.

7 Variable Ordering Networks as Compact Rep-
resentations of Satisfying cs-trees

It was shown in Section 4 how complete search trees can be used for the im-
portant tasks of confirming consistency of a cp-theory Γ, and totally ordering a
set of outcomes. In particular, if Γ happens to be strongly conditionally acyclic
then it is easy to define a cs-tree that (strongly) satisfies Γ (see Section 6.4).
However, confirming the consistency of Γ by constructing a cs-tree explicitly will
usually not be feasible since the number of nodes is of the order of the number
of outcomes |V |. Here we describe an often much more compact representation
of certain cs-trees satisfying Γ. The idea is to turn the cs-tree into a directed
acyclic graph (a decision diagram) by merging nodes where we can take the
same decisions regarding variables orderings from that point.

The key to generating a cs-tree strongly satisfying cp-theory Γ is choosing
an ar-undominated variable Yr for each body node r, where ar is the tuple
of assignments made to instantiated variables (see Definition 13, Section 6.1);
if there is such a variable for each body node, then we have shown that Γ is
consistent, assuming local consistency. (Given local consistency (4, Section 4.1),
choosing the node value ordering �r is never a problem, since we just choose
any strict total order extending the local ordering �Ya , which is a strict partial
order by local consistency.) Consider two nodes q and r with associated tuples a
and a′, where a and a′ are both assignments to some set of variables A. Suppose
that a and a′ are equivalent in the following sense: for any assignment b to any
subset B of the remaining variables V −A, variable Y is ab-undominated if and
only if Y is a′b-undominated. This means that we can make the same choices
of a-undominated variables in nodes below q, as for nodes below r, or, more
neatly, we can merge nodes q and r. We will define a graphical structure that
enables us to assert such equivalences.

In Section 7.1 we define a variable ordering network, which is a compact
representation of the variable orderings in the different branches of a cs-tree.
In Section 7.2, variable ordering triples are defined, which are restrictions on
variable orderings in a cs-tree or variable ordering network. In Section 7.3,
sufficient conditions are defined for a variable ordering network to satisfy a
set of variable ordering triples, and in Section 7.4, we show how to generate
a set of variable ordering triples [Γ] from a cp-theory Γ in such a way that a
compatible variable ordering network will, given local consistency, generate a
cs-tree satisfying Γ. Thus, if we can construct such a variable ordering network,
we have proved consistency of locally consistent Γ, and we can use the implicitly
defined cs-tree to efficiently answer total ordering queries. Section 7.5 gives a

46

method of constructing a variable ordering network from [Γ]. Section 7.6 shows
how one can easily also generate an upper approximation of the preference
relation from a variable ordering network.

7.1 Variable ordering networks

This section describes variable ordering networks, which are intended as compact
representations of the variable orderings in a cs-tree which (strongly) satisfies a
given cp-theory. Let σ be a cs-tree and let α be an outcome. Write Oσ(α) for
the ordering of variables on the path to α. The idea is to develop a compact
representation for this variable ordering function Oσ. A variable ordering net-
work is very similar to a cs-tree; however, we are only interested in representing
the variable orderings, so we do not include any value ordering information; we
use a directed acyclic graph as a potentially much more compact representation
than a tree.

Variable ordering networks (VONs) are defined first (Definition 18), and a
VON is defined (Definition 19) to be compatible with a cs-tree if they induce
the same variable ordering for any outcome. Proposition 25 shows that vari-
able ordering networks and cs-trees represent the same set of variable ordering
functions.

Definition 18 (Variable ordering network (VON)) A variable ordering net-
work over variables V is defined to be a directed acyclic graph with two distin-
guished nodes, a root node r∗ and a sink node r∗, where nodes and edges have
associated labels as defined below.

Each directed edge e from node r to node r′ is associated with a variable Ye
and a value ye of Ye (corresponding to the assignment Ye = ye). We say that r′

is a child of r, and that r is a parent of r′.
Every node except the root node has a parent, and every node except the sink

node has a child.
Each node r has the following associated labels:

(a) a set of variables Ar ⊆ V ;

(b) an assignment ar to variables Ar (corresponding to the assignments in one
of the paths to that node);

(c) with the exception of the sink node: a variable Yr ∈ V − Ar (the next
variable to be instantiated).

For node r which is not the sink node we define its associated tuple to be
〈Ar, ar, Yr〉. It has |Yr| children, so has |Yr| edges coming from it. Each such
edge e has associated variable Ye = Yr and a different associated value ye.

If e goes from node r to r′ then Ar′ = Ar ∪ {Yr}.
For any node r′ which is not equal to the root, there exists some parent

node r of r′ such that ar′ is equal to the tuple formed by extending ar with the
assignment Ye = ye, where e is the edge from node r to r′.

47

For root node r∗, we define Ar∗ to be the empty set, and hence we have ar∗
equals >, the assignment to the empty set.

The sink node r∗ has associated tuple 〈Ar∗ , α〉, where α is some outcome and
Ar∗ = V .

1T,, X

311 ,},{ XxX

1x

3x 2x

4x

211 ,},{ XxX

23131 ,},,{ XxxXX

4321, xxxxV

1x

3x

3x

2x

2x

4x

32121 ,},,{ XxxXX

4321321 ,},,,{ XxxxXXX

2x 3x

Figure 3: A variable ordering network τ . The root node is at the top, and the
sink node is at the bottom. The set of paths from the root to the sink are in
one-to-one correspondence with the set of outcomes.

Example 13 Figure 7.1 illustrates a variable ordering network over the vari-
ables V = {X1, X2, X3, X4} in Example B in Section 3.2. The top node is the
root node r∗ with associated tuple 〈∅,>, X1〉. The bottom node is the sink node
r∗ with associated pair 〈V, x1x2x3x4〉. Note that, in contrast with cs-trees, some
nodes have more than one parent.

Let τ be a variable ordering network. For each outcome α, we can define a
path from the root node to the sink node by following at each node r the edge
corresponding to assignment Yr = α(Yr). In particular, each outcome generates
an ordering of the variables V . Conversely, each (directed) path from the root
node to the sink node corresponds to an outcome. The set of paths from the
root node to the sink node are in one-to-one correspondence with the set of
outcomes.

48

Let τ be a variable ordering network over variables V . Let α be any outcome.
A variable ordering network τ generates a total ordering Oτ (α) of the variables
V , by following the assignments to variables made in α. For instance, if τ
is the variable ordering network in Figure 7.1, then Oτ (x1x2x3x4) equals the
ordering X1, X3, X2, X4 (following the left-hand edges from the root node),
and Oτ (x1x2x3x4) equals X1, X2, X3, X4.

A variable ordering network can be viewed as a representation for the vari-
able orderings used in a cs-tree.

Definition 19 cs-tree σ and VON τ are said to be compatible if for all outcomes
α, the ordering of variables in τ associated with α is the same as the ordering of
variables in the path to α in cs-tree σ. In order words, if and only if Oτ = Oσ.

The following result implies that variable ordering networks and cs-trees
represent the same set of variable ordering functions.

Proposition 25 Let σ be a cs-tree. There exists a variable ordering network
compatible with σ. Conversely, if τ is a variable ordering network then there
exists some cs-tree compatible with τ .

7.2 Variable ordering triples

A variable ordering triple 〈u, Y, Z〉 is intended as a restriction on the orderings
in a cs-tree: it means that variable Y should appear before variable Z on the
path from the root to any outcome α which extends assignment u. (Variable
ordering triples are similar to ci-statements in TCP-nets—see Section 3.2.) A
set of variable ordering triples is used to represent the conditions on variable
orderings required for a cs-tree to strongly satisfy a cp-theory—see Section 7.4
below.

Definition 20 A variable ordering triple 〈u, Y, Z〉 is an ordered triple where Y
and Z are variables and u is an assignment to a set of variables.

Given a set of variable ordering triples T and a partial tuple a ∈ A (for some
A ⊆ V), we define Ta to be the set of variable ordering triples which are still
relevant given a: we consider only triples 〈u, Y, Z〉 in T with u compatible with
a, and we restrict such triples to V −A.

Definition 21 Let T be a set of variable ordering triples, let a ∈ A be an
assignment to a subset of V . Define Ta to be the set of all triples 〈u′, Y, Z〉
such that there exists triple 〈u, Y, Z〉 in T with Y,Z ∈ V − A, tuple u ∈ U is
compatible with a, and u(U −A) = u′.

The first lemma is used to prove Lemma 17, which is a modularity property
that we use in Section 7.3.

49

Lemma 16 Let A and B be disjoint subsets of V , and let a ∈ A and b ∈ B.
Let t be an assignment to some set of variables T ⊆ V − (A∪B), and let Y and
Z be variables in V − (A∪B). Let T be a set of variable ordering triples. Then
〈t, Z, Y 〉 ∈ Tab if and only if there exists assignment u to some set of variables
U ⊆ V −A such that (i) U −B = T , u(T) = t, and u is compatible with b, and
(ii) 〈u, Z, Y 〉 is in Ta.

Lemma 17 Let T be a set of variable ordering triples. Let A and B be disjoint
subsets of V , and let a, a′ ∈ A and b ∈ B. If Ta = Ta′ then Tab = Ta′b.

Proof: This follows immediately from the previous lemma. 2

7.3 Sufficient conditions for a variable ordering network
to satisfy a set of ordering triples

In this section, a sufficient condition (see Definition 23 and Proposition 26) is
given for a VON to satisfy the variable orderings conditions stipulated by a set
of triples. A result, Proposition 27, is also included which will imply a limit on
the size of the VONs required to satisfy a cp-theory.

A variable ordering network respects a variable ordering triple if the associ-
ated restriction on variable orderings is respected.

Definition 22 A VON τ respects a variable ordering triple 〈u, Y, Z〉 if Y ap-
pears before Z in Oτ (α) for all outcomes α extending u.

We define a condition which is sufficient (see Proposition 26) for a variable
ordering network to respect a set of variable ordering triples; this condition can
be enforced more easily.

Definition 23 Let us say that VON τ is strongly compatible with set of variable
ordering triples T if the following pair of properties holds:

(i) for any node r of τ , if 〈u, Y, Yr〉 is in T and u is compatible with ar then
Y ∈ Ar.

(ii) Merging: suppose that r is a child of node r′, with the edge between them
labelled with the assignment Yr′ = y. Extend assignment ar′ with assign-
ment Yr′ = y to form assignment a to variables Ar. We have Ta = Tar

.

The following lemma is proved using Lemma 17, and is used to prove Propo-
sition 26, showing that a variable ordering network τ being strongly compatible
with a set of ordering triples T implies that τ respects T .

Lemma 18 Suppose that τ is strongly compatible with set of triples T and
let r be any node of τ . Consider any path from the root to r with associated
assignment a. Then Ta = Tar

.

50

Proposition 26 If variable ordering network τ is strongly compatible with set
of ordering triples T then τ respects T .

We finish this section with a result which limits the size of the variable
ordering networks that we will need to use for a cp-theory Γ (see Section 7.5).

For set T of ordering triples, define QT (A) to consist of all variables X ∈ A
such that there exists some 〈u, Y, Z〉 in T with Y, Z ∈ V − A and U 3 X,
where u is an assignment to variables U . QT (A) can be considered as the set
of variables in A which are relevant for determining variable orderings outside
of A.

Proposition 27 Let T be a set of variable ordering triples on variables V , and
let A be a subset of V . Suppose that a and a′ agree on QT (A). Then Ta = Ta′ .

7.4 cp-theories and sets of variable ordering triples

For a cp-theory Γ, we generate a set of variable ordering triples [Γ] corresponding
to Γ. We will show (Theorem 7) that if Γ is locally consistent and we can
construct a variable ordering network which respects [Γ] then Γ is consistent.
This therefore gives an approach for showing consistency of cp-theories. A
method for constructing [Γ] is given below in Section 7.5.

The idea is that we want to enforce the following property on a variable
ordering network: for any ϕ ∈ Γ, and for any outcome α extending uϕ, variables
Uϕ appear before Xϕ, and Xϕ appears before variables Wϕ on the path to α (cf
Proposition 18(1), Section 6.1). [Γ] encodes this ordering information.

Definition 24 Define [Γ] to be the set of all triples 〈u, Y, Z〉 such that there
exists ϕ ∈ Γ with uϕ = u and either (i) Y ∈ Uϕ and Z ∈ {Xϕ} ∪Wϕ or (ii)
Y = Xϕ and Z ∈Wϕ.

Example 14 Consider Γ in Example B in Section 3.2 (or see Example 15 be-
low). Because Γ contains the statement ϕ = x1 : x2 > x2 [{X4}], (and x1 ∈ X1,
and x2, x2 ∈ X2), [Γ] contains, among others, the triples 〈x1, X1, X2〉, and
〈x1, X1, X4〉 (using case (i) of Definition 24), and also 〈x1, X2, X4〉 (using case
(ii) of Definition 24). This ties in with the fact that if σ is any cs-tree which
strongly satisfies Γ then, because of ϕ, X1 must come before X2 which must
come before X4 on the path to any outcome α which extends x1 (see Proposition
18(1)).

Lemma 19 shows that [Γ] determines which variables are strongly a-undominated.
This is used in the proof of Lemma 20, which gives a sufficient condition using
[Γ] for a cs-tree to strongly satisfy cp-theory Γ, and which is used in the proof
of Theorem 7.

Lemma 19 For a ∈ A and Y ∈ V − A, Y is strongly a-undominated (with
respect to Γ) if and only if there does not exist 〈u, Z, Y 〉 in [Γ] with Z ∈ V −A
and u compatible with a. This is also if and only if there does not exist any
triple of the form 〈u′, Z, Y 〉 in [Γ]a.

51

Lemma 20 Let Γ be locally consistent cp-theory, suppose that τ is a variable
ordering network which respects [Γ], and let σ be any cs-tree compatible with τ .
Suppose also that for all body nodes r = 〈A, a, Y,�〉 in σ, the associated strict
total ordering � extends local ordering �Ya (see Definition 4). Then σ strongly
satisfies Γ.

Theorem 7 Let Γ be a cp-theory over variables V , and suppose there exists a
variable ordering network τ which respects [Γ]. If Γ is locally consistent then
it is conditionally acyclic. Therefore, Γ is consistent if and only if it is locally
consistent.

Proof: By Proposition 25 (Section 7.1) there exists some cs-tree σ compatible
with τ . Let r = 〈A, a, Y,�〉 be any body node of σ. Local consistency of Γ
implies that the local ordering �Ya is a strict partial order. Redefine � to be
any strict total ordering extending �Ya . By Lemma 20, cs-tree σ now strongly
satisfies Γ, showing that Γ is conditionally acyclic and hence consistent, by
Proposition 12 (Section 4.3). The last part follows because local consistency is
a necessary condition for consistency (Proposition 9, Section 4.1). 2

Theorem 7, which is a kind of counterpart of Theorem 3 (Section 5.1), shows
that if we can construct a variable ordering network which respects [Γ] for locally
consistent cp-theory Γ, then we have proved that Γ is consistent. In Section 7.5
we show one way of attempting to construct a variable ordering network which
is strongly compatible with [Γ] and hence respects [Γ], by Proposition 26.

7.5 Generating a variable ordering network which respects
[Γ]

In this section, we describe a method for constructing a variable ordering net-
work τ(Γ) that respects [Γ], and hence, if it succeeds, will prove that Γ is
consistent if Γ is locally consistent (see Theorem 7).

Label V as {X1, . . . , Xn}. To construct τ(Γ) we first construct the (single)
root node; then we iteratively construct the children of a node already con-
structed. As for cs-trees, for each node r we generate |Yr| directed edges from
r, each associated with some value of variable Yr. Let a be ar extended with
assignment y to Yr, and let A = Ar ∪ {Yr}. We check if there is any node
q already constructed with Aq = A and [Γ]aq

= [Γ]a (this corresponds to the
merging condition of Definition 23(ii)). If there is such a node q then we add a
directed edge from r to q with associated value y of Yr.

Suppose that there is no such node. If there is no strongly a-undominated
variable in V −A then we say that the construction of τ(Γ) fails, and we proceed
no further; else we create a new node 〈A, a,Xi〉 (or the leaf node 〈A, a〉 if A = V)
with Xi chosen with minimal i among the a-undominated variables in V −A.

If the construction for τ(Γ) does not fail, then we say that τ(Γ) exists.

Example 15 The algorithm will be applied for Γ in Example B in Section 3.2,
which consists of the following preference statements: > : x1 > x1 [{X2, X3, X4}];

52

x1 : x3 > x3 [{X2, X4}]; x1 : x2 > x2 [{X4}]; x1 : x2 > x2 [{X3, X4}]; x1 : x3 >
x3 [{X4}]; x3 : x4 > x4 [∅]; and x3 : x4 > x4 [∅]. We first generate the root node.
To do this we need to choose a strongly >-undominated variable. The only choice
for this is X1, since the preference statement > : x1 > x1 [{X2, X3, X4}] means
that X2, X3 and X4 are not strongly >-undominated, by Lemma 9. Thus, the
root node is 〈∅,>, X1〉.

We then create edges corresponding to choices x1 and x1 for X1. Following
the x1 edge, we need to choose an x1-undominated variable among {X2, X3, X4}.
The only one is X3, because the preference statement x1 : x3 > x3 [{X2, X4}]
means that X2 and X4 are not x1-undominated (given x1, X3 needs to come
before X2 and X4). Thus, we create a node r with tuple 〈{X1}, x1, X3〉.

Following the edge from r associated with the choice x3 for X3 leads to the
node q with tuple 〈{X1, X3}, x1x3, X2〉, since X2 is the only x1x3-undominated
variable among {X2, X4}, because of the preference statement x1 : x2 > x2 [{X4}].
Following the edge from r associated with the choice x3 for X3, let a be ar ex-
tended with assignment x3 to Yr (= X3), and let A = Ar∪{Yr}, so that a = x1x3

and A = {X1, X3}; we find that A = Aq and [Γ]a = [Γ]aq
, which consists of the

single triple 〈>, X2, X4〉. This means that the x3-edge from node r leads also to
node q. (This relates to the merging condition in Definition 23.)

Continuing this process (and using the value ordering z before z, for z
equalling each of x1, x2, x3 and x4) we generate the variable ordering network
in Figure 7.1.

Proposition 27 (Section 7.3) limits the possible size of the generated variable
ordering network τ(Γ). Q[Γ](A) consists of all variables X ∈ A such that there
exists some ϕ ∈ Γ such that Uϕ 3 X and either (i) Uϕ 6⊆ A and {Xϕ}∪Wϕ 6⊆ A
or (ii) Xϕ /∈ A and Wϕ 6⊆ A. For any given set of variables A the number of
nodes r with Ar = A is at most exponential in |Q[Γ](A)| (rather than exponential
in |A|).

The following result shows that if Γ is strongly conditionally acyclic then
the construction given above is bound to succeed.

Proposition 28 If Γ is a strongly conditionally acyclic cp-theory then τ(Γ)
exists.

Proof: The definition of strongly conditionally acyclic cp-theory ensures that for
any a ∈ A there exists an a-undominated variable in V − A. This implies that
the construction does not fail at any point. 2

Proposition 29 below shows that if we find that τ(Γ) exists for locally consis-
tent Γ then we have proved the consistency of Γ. Furthermore, Proposition 28
shows that if Γ happens to be strongly conditionally acyclic cp-theory, then the
construction given above is bound to succeed, and hence will correctly determine
(by Theorem 7) that Γ is consistent.

Proposition 29 Let Γ be a cp-theory, and suppose that τ(Γ) exists. Then τ(Γ)
respects [Γ]. Also, Γ is consistent if and only if it is locally consistent.

53

Proof: The construction of τ(Γ) ensures that it is strongly compatible with [Γ]:
Lemma 19 ensures that condition (i) of Definition 23 holds, and condition (ii)
clearly holds. Hence, by Proposition 26, τ(Γ) respects [Γ]. By Theorem 7
(Section 7.4), Γ is consistent if and only if it is locally consistent. 2

The variable ordering network τ(Γ) for Example B (in Section 3.2) has only
seven nodes (see Example 15 and Figure 7.1) as opposed to the 31 nodes in
the corresponding cs-tree σ(Γ). More generally, one would expect when there
are only a few variations in importance orderings, that the variable ordering
network would be compact. Also the number of variable orderings associated
with a variable ordering network can be exponential in the number of nodes, as
the network ‘factorises’ the variable orderings, so even if we need many different
orderings in different paths in a cs-tree, the variable ordering network may still
be small, thus enabling consistency to be efficiently checked.

7.6 Generating an upper approximation from a variable
ordering network

From locally consistent cp-theory Γ and variable ordering network τ which re-
spects [Γ] we can generate in a simple way a polynomial upper approximation
for the preference relation >Γ, which can be used for ordering and optimisation
tasks as shown in Section 4.

Define irreflexive relation �Γ
τ as follows. Consider two different outcomes α

and β. Follow the assignment of α along the edges in τ from the root until a
node r is reached such that α and β differ on Yr, so that α(Ar) = β(Ar) and
α(Yr) 6= β(Yr). As for cs-trees, we call this node, the node that divides α and β.
Define α�Γ

τ β to hold if and only if α(Yr) �Yr
ar
β(Yr) holds (see Definition 4).

Theorem 8 below shows that �Γ
τ is indeed an upper approximation for >Γ.

Note that if the local orderings �Ya are all total orders then �Γ
τ is a strict

total order, so would then not be useful for generating more than one optimal
solution of a constrained optimisation problem. �Γ

τ will tend to be a cruder
approximation of >Γ than the other two upper approximations defined in the
paper (in Sections 5.2 and 6.3). To prove Theorem 8 we use a similar technique
as we used for proving Theorems 4 and 5, by showing that�Γ

τ is the intersection
of a set of cs-tree orders.

Lemma 21 Let Γ be locally consistent cp-theory, and let τ be a variable or-
dering network which respects [Γ]. Let Q be the set of cs-trees σ which are
compatible with τ and such that for all body nodes r = 〈A, a, Y,�〉 in σ, the
associated strict total ordering � extends local ordering �Ya . Then α �Γ

τ β if
and only if α >σ β for all σ ∈ Q.

This implies that �Γ
τ is an upper approximation of the preference relation

>Γ:

Theorem 8 Let Γ be a locally consistent cp-theory, and let τ be a variable
ordering network that respects [Γ]. Then �Γ

τ is a strict partial order, and �Γ
τ

54

contains >Γ, i.e., α �Γ
τ β holds for any outcomes α and β such that α >Γ β.

Hence, �Γ
τ is an upper approximation of the preference relation >Γ.

Proof: Lemma 21 implies that �Γ
τ is the intersection of relations >σ over cs-

trees σ in Q. By Lemma 20, each such σ strongly satisfies Γ, so σ satisfies Γ,
by Proposition 19, Section 6.1. Proposition 15 (Section 4.4) then implies that
�Γ
τ is a strict partial order containing >Γ. 2

8 Related Work

The work described here—which is based on and develops the papers (Wilson,
2004b, 2004a)—builds very much on the fundamental work on CP-nets, as de-
scribed especially in (Boutilier et al., 1999) and (Boutilier et al., 2004a), as well
as on other work by the authors of these papers, such as (Domshlak & Braf-
man, 2002; Brafman & Domshlak, 2002; Domshlak, 2002; Boutilier et al., 2004b;
Brafman & Dimopoulos, 2004; Brafman, Domshlak, & Shimony, 2004; Brafman
et al., 2006); indeed one of the main initial motivations of the current work was
to show how CP-nets approaches could be generalised to a richer language.

Although most work has focused on acyclic CP-nets, this is a strong re-
striction, limiting their potential applicability. For analysis and discussion of
non-acyclic CP-nets see Chapter 6 of (Domshlak, 2002), Section 4 of (Domsh-
lak & Brafman, 2002), (Brafman & Dimopoulos, 2004) (Section 4), (Goldsmith
et al., 2005) and (Xia, Conitzer, & Lang, 2008). One of the motivations for the
work in this paper on determining consistency of a cp-theory is the hardness
complexity results for this task for CP-nets: see (Domshlak, 2002; Domshlak &
Brafman, 2002; Goldsmith et al., 2005, 2008).

Logic-based formalisms for comparative preferences, that also emphasise the
importance of ceteris paribus interpretations, include (von Wright, 1963, 1972;
Hansson, 1996, 2001a, 2001b; van Benthem, Girard, & Roy, 2009) from the
Philosophy literature, as well as (Doyle & Wellman, 1994; McGeachie & Doyle,
2002, 2004; Lang, 2002, 2004; Bienvenu, Lang, & Wilson, 2010) in the AI liter-
ature. The preference statements in this paper are of the form u : x > x′ [W],
focusing on the values x and x′ of a single (not-necessarily Boolean) variable X,
conditional on a partial assignment u, and irrespective of variables W , where the
other variables are treated in a ceteris paribus manner. Other logic-based for-
malisms allow preferences between arbitrary propositional formulae, and vary
on the interpretation of ceteris paribus. Formalisms defined in (Lang, 2004)
(Definition 4) and (van Benthem et al., 2009; Bienvenu et al., 2010) also allow
irrespective statements, with the latter formalisms being especially expressive.

One of the main tasks that this paper is concerned with is totally ordering the
outcomes in a way that is compatible with the cp-theory’s preference ordering.
The work here is most closely related to that on ordering queries in (Boutilier
et al., 2004a), and the use of search trees in (Boutilier et al., 2004a, 2004b;
Brafman et al., 2006) for CP-nets and TCP-nets. However, another kind of

55

approach to this problem is to construct a value function or utility function on
the set of outcomes (i.e., a function that assigns a number to each outcome)
whose ordering is compatible with the preference relation. Work of this kind
for acyclic CP-nets includes UCP-nets (Boutilier, Bacchus, & Brafman, 2001),
soft constraints methods (Domshlak, Rossi, Venable, & Walsh, 2003; Domshlak
et al., 2006), and (Brafman & Domshlak, 2008). An advantage of the search
tree approaches over value function approaches is that it’s easier to generate
outcomes in decreasing preference order.

The upper approximation for the case of fully acyclic cp-theories (see Section
5.2) generalises the relation � defined for ordering queries in (Boutilier et al.,
2004a) for acyclic CP-nets, and this kind of approximation has also been con-
sidered in (Kaci & Prade, 2007). Another upper approximation, for cp-theories,
is defined in (Wilson, 2006), and is generalised to more expressive preference
languages in (Wilson, 2009).

9 Summary and Discussion

This paper has defined a formalism, cp-theories, that is a simple logic of com-
parative preferences, and basic formal properties are shown (Section 2). The
relationship with CP-nets and TCP-nets has been analysed, regarding what
can and cannot be expressed (Section 3). It is shown that cp-theories are, in
a particular precise sense, more general than CP-nets and TCP-nets, and that
they can represent natural statements that cannot be expressed by CP-nets
and TCP-nets, such as those used in a lexicographic order. A result is also
included showing that, for each n, there is essentially a unique acyclic CP-net
on n Boolean variables that totally orders the outcomes.

Much of the paper (Sections 4, 5, 6 and 7) is dedicated to the related prob-
lems of determining consistency of a cp-theory, and totally ordering a set of
outcomes in a way that is compatible with the cp-theory preference relation.
The latter is a key basic task that can be used, in particular, for choosing the
outcomes that are displayed first to the user. The approaches developed cover
non-acyclic as well as acyclic cases of cp-theories, which means that the meth-
ods can be applied to non-acyclic CP-nets and TCP-nets; this is important
since non-acyclic sets of preference statements can easily arise—there’s nothing
irrational about them.

Inconsistency indicates incoherence within the input preference statements,
which could, for example, be because of the elicited statements not reflecting
the user’s preferences; hence the importance of being able to check consistency.
However, determining consistency of a cp-theory (or a CP-net) is an extremely
hard problem, so it is desirable to find incomplete methods that can some-
times prove consistency or prove inconsistency. A simple necessary condition
for consistency is defined, called local consistency (Section 4.1); testing local
consistency will often be easy (in particular if the parents set UX of each vari-
able X is small); inconsistency can thus sometimes be proved by showing local
inconsistency. If the cp-theory is fully acyclic then consistency holds if and only

56

if local consistency holds (Section 5). In Section 6, sufficient conditions are
derived for consistency which have much lower complexity, specifically, strong
conditional acyclicity (Section 6.1) and cuc-acyclicity (Section 6.2).

The approaches for confirming consistency and for ordering tasks are based
on complete search trees (cs-trees), similar to those used for depth-first search
for a solution of a constraint satisfaction problem. A sufficient condition for
consistency of a cp-theory Γ is that there is a cs-tree satisfying Γ. If one is
looking to show that there exists a cs-tree satisfying locally consistent Γ, it is
sufficient to satisfy certain constraints that Γ imposes on the variable orderings
that appear in branches of the cs-tree (see e.g., Proposition 18, Section 6.1).

Explicitly constructing a cs-tree will not be possible, unless the number of
variables is small, since its size is linear in the number of outcomes. Different
compact representations of a satisfying cs-tree are derived, for expressing the
variable orderings of a search tree. Of particular note is the variable ordering
network, defined in Section 7, which uses a decision diagram representation for
the variable orderings. These compact representations of a cs-tree thus can allow
consistency of a cp-theory to be determined, and ordering tasks to be performed
in an efficient way.

Unconstrained optimisation reduces (just like for the case of CP-nets) to
solving a constraint satisfaction problem. Polynomial upper approximations of
the preference relation have been derived (in Sections 5.2, 6.3 and 7.6), and we
show how they can be useful for generating, in a relatively efficient way, a set
of optimal solutions of a constraint satisfaction problem (see Section 4.5).

There are many directions in which this work might usefully be extended
and developed; we list some of these.

• The language of conditional preferences only allows preferences of a single
variable (conditional on other variables); some natural preference state-
ments involve preferences over more than one variable, so it would be
desirable to consider more general languages, in particular, on the lines of
the languages considered in (Lang, 2004; McGeachie & Doyle, 2004) and
(Wilson, 2009), and to see to what extent the methods of this paper can
be extended.

• The idea of a cs-tree can be extended to include partially completed search
trees. An upper approximation can be defined from this that is a closer
approximation of the preference relation >Γ than ones defined in this pa-
per (Wilson, 2006); this might be used, in conjunction with the cs-tree
methods developed here, for constrained optimisation. In addition, prop-
agation methods for improving the efficiency of constrained optimisation
might be developed, in order to prune subtrees of the search tree which
only contain outcomes that are dominated—with respect to the appropri-
ate upper approximation—by a solution we’ve already found.

• The compact representation of variable orderings developed in Section 7
could be made yet more compact if weaker conditions for merging (see
Section 7.5) are used when generating the variable ordering network.

57

• This paper hasn’t addressed the important (but very hard (Boutilier et al.,
2004a; Domshlak & Brafman, 2002; Goldsmith et al., 2008)) problem of
dominance testing; approaches in Section 5 of (Boutilier et al., 2004a)
and Proposition 8 of (Wilson, 2004b) can be developed for more general
cp-theories.

Acknowledgements

This material is based upon works supported by the Science Foundation Ireland
under Grant No. 05/IN/I886 and Grant No. 08/PI/I1912. Thanks also for the
referees for their constructive comments which helped improve the paper.

Appendix: Proofs

Proof of Lemma 1 (i): If there exists a cycle in � ∪ {(β, α)} then, since �
is acyclic, β, α must appear in the cycle. We thus have a sequence α � · · · � β
and so α � β by transitivity, which contradicts the hypothesis.

(ii): If strict partial order � is not already a (strict) total order, there
exists some pair α, β of different elements such that neither α � β nor β �
α. Arbitrarily choose such a pair. Let �′ be the transitive closure of � ∪
{(β, α)}. By (i), �′ is a strict partial order strictly containing �. Iterating this
we eventually generate a strict total order containing �. (iii) follows from (ii)
by first taking the transitive closure to generate a strict partial order. (iv) easily
follows from (iii).

(v) Clearly, � is a subset of the intersection of all strict total orders contain-
ing it. To prove the converse, it is sufficient to show that if it is not the case that
α � β then (α, β) is not in the intersection of all strict total orders extending
�, i.e., there exists some strict total order > extending � with α 6> β. So,
suppose that it is not the case that α � β. If α = β then the implication follows
immediately, so let us assume that α 6= β. By (i), � ∪ {(β, α)} is irreflexive
and acyclic, so by (iii), there exists strict total order > extending � ∪ {(β, α)},
so β > α, and hence α 6> β, as required.

Proof of Lemma 2 (i) We have that > |= Γ if and only if > ⊇ Γ∗, which,
since > is transitive, is if and only if > contains >Γ, the transitive closure of Γ∗.

(ii) Γ is consistent if and only if there exists some strict total order > ex-
tending Γ∗, which, by Lemma 1(iv) is if and only if Γ∗ is acyclic. Γ∗ is acyclic
if and only if its transitive closure >Γ is irreflexive, and hence is a strict partial
order.

(iii) If Γ is consistent then, by (ii), >Γ is a strict partial order, and so, by
Lemma 1(v), is equal to the intersection of all strict total orders extending it,
i.e., by (i), the intersection of all strict total orders satisfying Γ.

(iv) Suppose that Γ is consistent. Γ |= (α, β) if and only if α > β holds for
all strict total orders > satisfying Γ, which is if and only if the intersection of

58

all strict orders satisfying Γ contains the pair (α, β), which, by (iii), is if and
only if α >Γ β.

(v) Suppose that Γ is consistent. Γ |= ϕ holds if and only if > extends ϕ∗

for all strict total orders > satisfying Γ, which is if and only if the intersection
of all strict total orders satisfying Γ is a superset of ϕ∗, which, by (iii), is if and
only if >Γ ⊇ ϕ∗.

Proof of Proposition 2 Let > be an arbitrary strict total order on the set
V of outcomes.

• Let X ∈ V , u ∈ UX , and x, x′ ∈ V be such that x �Xu x′. > satisfies the
cp-theory statement u : x > x′[∅] if and only if for all t ∈ T tux > tux′,
where T = V −{X}−UX , which is if and only if > satisfies �Xu . Therefore,
> satisfies the conditional preference table if and only if > satisfies the
cp-theory Γcp.

• > satisfies ΓX→Y if and only if for all u ∈ UX and x and x′ such that
x �Xu x′ holds, we have > satisfies u : x > x′ [Y], i.e., for all y, y′ ∈ Y and
for all assignments r to V − {X,Y } extending u, rxy > rx′y′. This is if
and only if > satisfies i-arc X → Y . Hence, > satisfies all the i-arcs of N
if and only if > satisfies Γi.

• > satisfies ΓX→sY if and only if > satisfies qs : x > x′ [Y] for all assign-
ments q to UX − SX,Y and all x, x′ such that x �Xu x′ holds, where u is
qs restricted to UX . This holds if and only if rsxy > rsx′y′ holds for all
y, y′ ∈ Y , for all assignments r to V − SX,Y − {X,Y }, for all x, x′ such
that x �Xu x′, where u is rs restricted to UX . This is if and only if >
satisfies the ci-statement X →s Y . Hence, > satisfies all the ci-statements
in N if and only if > satisfies Γci.

Putting these together, > satisfies the TCP-netN if and only if > satisfies the
cp-theory ΓN . Therefore, N is satisfiable if and only if ΓN is consistent.

Furthermore, if N is satisfiable (and so ΓN is consistent), >N is the inter-
section of all strict total orders satisfying N , i.e., the intersection of all strict
total orders satisfying ΓN , which equals >ΓN

by Lemma 2(iii).

Proof of Proposition 3 We’ll show that >Γ equals >lex by showing that Γ∗

equals >lex. Because >lex is transitive we then have >Γ, the transitive closure
of Γ∗ is equal to >lex.

To show Γ∗ ⊆ >lex: suppose (α, β) ∈ Γ∗. Then for some i, (α, β) ∈ (Γi)∗,
so there exists statement > : x > x′ [{Xi+1, . . . , Xn}] in Γi with α(Xi) = x,
β(Xi) = x′ and for all j < i, α(Xj) = β(Xj). We have α(Xi) >i β(Xi) so
α >lex β as required.

To prove the converse, suppose α >lex β. Then for some i ∈ {1, . . . ,m} we
have α(Xi) >i β(Xi) and for all j < i, α(Xj) = β(Xj). But then (α, β) ∈ ϕ∗
where ϕ is the statement > : x > x′ [{Xi+1, . . . , Xn}], with x = α(Xi) and
x′ = β(Xi). Since ϕ ∈ Γ, we have (α, β) ∈ Γ∗.

59

Proof of Lemma 3 All three parts follow easily from the appropriate com-
pleteness theorems for swapping/flipping sequences. However, to make the pre-
sentation more self-contained, we instead use Propositions 1 and 2 in Section
3.1 and Section 3.2 for (ii) and (iii), respectively.

The first part follows immediately from Theorem 1: α >Γ β implies that
there exists a worsening swapping sequence from α to β; but since α covers β,
there can be no element in the sequence between α and β, so there is a worsening
swap from α to β.

(ii) If a CP-net N is unsatisfiable then �N degenerates to V × V , which
implies that no outcome covers any other outcome. (The same applies to TCP-
nets.) Suppose α covers β with respect to �N . CP-net N is then satisfiable, so
�N equals >ΓN

by Proposition 1. Part (i) implies that there exists a worsening
swap from α to β for ΓN . Let u : x > x′ [W] be the relevant element of ΓN used
for this swap. The form of ΓN implies that W = ∅, and so α and β differ on X
and agree on all other variables.

The proof of (iii) is almost the same as that for (ii). Let N be a TCP-net,
and suppose that α covers β with respect to �N . N is then satisfiable, so �N
equals >ΓN

, by Proposition 2. Part (i) implies that there is a worsening swap
from α to β for ΓN . Let u : x > x′ [W] be the relevant element of ΓN used for
this swap. The form of ΓN implies that W is empty or a singleton, so α and β
differ on at least one variable (X) and at most two variables.

Proof of Proposition 5 Suppose to the contrary that there exists order >1

on X1 such that X1 dominates {X2, . . . , Xn} with respect to (�N , >1). Write
>2 for the total order on X2 given in the specification of the CP-net; (it is
unconditional, as X2 has an empty set of parents).

Because >1 is non-empty we can choose α, β ∈ V such that α(X1) >1

β(X1) and β(X2) >2 α(X2). Because α(X1) >1 β(X1) we have α � β, by
the dominance of X1. Therefore, there exists a sequence α = α1, . . . , αk = β of
outcomes such that, for i = 1, . . . , k−1, there is a worsening flip from αi to αi+1.
For each i we must either have αi(X2) = αi+1(X2) or αi(X2) >2 αi+1(X2). This
implies that either α1(X2) = αk(X2) or α1(X2) >2 αk(X2); but neither of these
are possible as αk(X2) = β(X2) >2 α(X2) = α1(X2).

Proof of Proposition 6 Let x1 be the >1-maximal element in X1. Let α
be a �M -minimal element in A = {α : α(X1) = x1} (this exists because �M is
acyclic), and let β be a�M -maximal element inB = V−A = {β : x1 >1 β(X1)}.
Since α(X1) >1 β(X1), by the dominance of X1 we have α � β. Furthermore,
if γ 6= α, β then either γ ∈ A and so it is not the case that α � γ, or γ ∈ B
and it is not the case that γ � β. This shows that there does not exist γ with
α � γ � β, proving that α covers β with respect to �M . By Lemma 3(iii),
it must then be the case that α and β differ on at most two variables; we will
obtain the required contradiction by showing that α and β differ on at least
three variables.

60

We have α(X1) 6= β(X1). Suppose α(X2) = β(X2); call this element x2, and
let x′2 be any other element of X2. Since X2 has no parents, we either (a) have
some CP statement > : x2 > x′2; or (b) have some CP statement > : x′2 > x2.
If (a) there is a worsening flip from α to some element α′ ∈ A, and so α � α′,
contradicting the definition of α. If (b) we can perform an improving flip on β
to produce β′ ∈ B with β′ � β, contradicting the definition of β. Therefore,
α(X2) 6= β(X2).

We can use exactly the same argument to show that α(X3) 6= β(X3), so α
and β differ on at least three variables, which is the contradiction required.

Proof of Lemma 4 (a) �N ′ is transitive by its construction. We just need
to show that it is irreflexive and complete (i.e., for all outcomes α and β, either
α = β or α �N ′ β or β �N ′ α).

Suppose that δ �N ′ δ for some δ ∈ V − {Z}. Then there exists a worsening
flipping sequence from δ to δ in N ′. Let δ0 be δ extended with the assignment
Z = 0. Applying the same flips yields a worsening flipping sequence for N from
δ0 to δ0, showing that δ0 �N δ0, contradicting the assumption that �N is a
strict total order.

Consider any two different elements δ and ε of V − {Z}. Extend each of
these to an element of V by assigning Z = 0, leading to outcomes δ0 and
ε0, respectively. Since �N is a strict total order, we either have δ0 �N ε0 or
ε0 �N δ0. Without loss of generality, assume that δ0 �N ε0. There exists
a worsening flipping sequence for N from δ0 to ε0. Removing any flips of Z
generates a worsening flipping sequence for N ′ from δ to ε, proving δ �N ′ ε and
hence completeness.

(b) First suppose that α �N β, so that there exists a worsening flipping
sequence for N from α to β. By ignoring flips of Z we can generate a worsening
flipping sequence for N ′ from α(V − {Z}) to β(V − {Z}), showing that α(V −
{Z}) �N ′ β(V − {Z}). The converse then follows immediately from the fact
that �N and �N ′ are strict total orders: for if α �N β does not hold then
β �N α holds, implying β(V −{Z}) �N ′ α(V −{Z}) and hence α(V −{Z}) �N ′
β(V − {Z}) does not hold.

(c) Suppose that α and β differ on Z and agree on all other variables, but
that α and β are not consecutive with respect to �N . Since �N is a total
order, there exists γ ∈ V , different from α and β, with either α �N γ �N β
or β �N γ �N α. Without loss of generality, assume α �N γ �N β. Since Z
has only two values, γ must differ with α and β on V − {Z}. There exists a
worsening flipping sequence for N from α to β passing through γ. By ignoring
flips of Z we can generate a worsening flipping sequence for N ′ from α(V −{Z})
to β(V − {Z}) = α(V − {Z}), which contradicts the irreflexivity of �N ′ shown
in (a).

If outcomes δ and γ differ on Z but agree on all other variables, write δ = γ
and γ = δ (recall that Z has only two values). The first part implies that α1

and α1 are consecutive, so α2 = α1. Similarly, α3 and α3 are consecutive, so
α3 equals α2 or α4. But α3 = α2 would imply α3 = α1 (since Z has only

61

two values), so we must have α3 = α4. Continuing this shows that for all
j = 1, 2, . . . , K2 , α2j = α2j−1. and so α2j−1 and α2j agree on V − {Z}.

(d) Suppose that α1(Z) = 1. Since Z takes two values, for each element α of
V , there exists exactly one other element of V which agrees with α on V −{Z}.
By part (c), α1 and α2 agree on V −{Z} and so differ on Z (otherwise they would
be the same outcome). Similarly, for all j = 1, 2, . . . ,K/2, outcomes α2j−1 and
α2j agree on V − {Z} and so differ on Z. α2 and α3 differ on V − {Z}; they
are consecutive so there exists a worsening flip from α2 to α3; thus, they differ
on exactly one variable, and hence agree on Z. Similarly, for all j = 1, 2, . . .,
outcomes α2j and α2j+1 agree on Z. We thus have the sequence of values of Z
being 1, 0, 0, 1, 1, 0, 0, 1, 1, and so on.

Proof of Proposition 7 We show this by induction on n. This is clearly
true for n = 1, since there is only one strict total order satisfying property (i).
Suppose it is true for n = k. We will show that it holds also for n = k+1, hence
implying that it is true for all natural numbers n. Suppose that >1 and >2 are
both strict total orders on V corresponding to CP-nets N1 and N2, respectively,
satisfying properties (i) and (ii). Let N ′1 and N ′2 be the associated CP-nets on
{X1, . . . , Xk} defined in Lemma 4. By Lemma 4(a), �N ′1 and �N ′2 are both
strict total orders, so, by induction, are equal.

Lemma 4(b), (c) and (d) then imply that �N1 and �N2 are equal: by Lemma
4(b), if α, β ∈ V differ on V −{Z} then α �N1 β if and only if α(V −{Z}) �N ′1
β(V − {Z}) if and only if α(V − {Z}) �N ′2 β(V − {Z}) if and only if α �N2 β.
If different outcomes α, β ∈ V agree on V − {Z} then by Lemma 4(c) they
are consecutive in the orderings �N1 and �N2 . Lemma 4(b) and the fact that
�N ′1 and �N ′2 are equal implies that the ordering of {α, β} relative to the other
outcomes is the same in �N1 and �N2 . Lemma 4(d) then implies that both �N1

and �N2 order α and β the same way, i.e., α �N1 β ⇐⇒ α �N2 β. Therefore,
>1 equals >2, completing the inductive step.

Proof of Proposition 8 This CP-net N can be restricted to a CP-net Ni
on Vi for 1 ≤ i ≤ n, where Nn = N . We shall prove by induction that �Ni

is a
strict total order on Vi with maximum element (1, . . . , 1) for each i = 1, . . . , n,
proving that �N (i.e., �Nn

) is a strict total order.
The base case: i = 1. Then 1 �X1

> 0 since > contains an even number of
zeros, as it contains no zeros. Hence, 1 �Ni 0 and it is not the case that 0 �Ni 1,
so �Ni

is a strict total order.
Suppose, by induction, that �Ni−1 is a strict total order with maximum

element (1, . . . , 1); we need to show that �Ni
is a strict total order with max-

imum element (1, . . . , 1). Consider any v, v′ ∈ Vi with v 6= v′. We will prove
that either v �Ni

v′ or v′ �Ni
v. This implies that there is at most one model

satisfying Ni. Acyclicity implies that Ni has at least one model (see Theorem
1 of (Boutilier et al., 2004a)), so has exactly one model, which is then equal to
�Ni

. This implies that �Ni
is a strict total order; Lemma 4(b),(c),(d) and the

inductive hypothesis can then be used to show that the maximum element is

62

(1, . . . , 1), completing the inductive step.
Case (i) v(Vi−1) = v′(Vi−1) which equals u, say. Then v and v′ differ on

only one variable, Xi, and v(Xi) = 1 and v′(Xi) = 0 or vice versa. We either
have 1 �Xi

u 0 or 0 �Xi
u 1, which implies that either u1 �Ni

u0 or u0 �Ni
u1, so

either v �Ni
v′ or v′ �Ni

v.
Case (ii) v(Vi−1) 6= v′(Vi−1). Let u = v(Vi−1) and u′ = v′(Vi−1). By the

inductive hypothesis we have either u �Ni−1 u
′ or vice versa. Assume without

loss of generality that u �Ni−1 u
′. Let u′′ be minimal, with respect to �Ni−1 ,

such that u′′ �Ni−1 u
′, and define v′′ to be u′′ extended with the assignment

v(Xi) to Xi. We shall show that (a) v′′ �Ni
v′ and (b) either v = v′′ or v �Ni

v′′.
Putting these together will imply by transitivity that v �Ni v

′, as required.
To show (a): since u′′ covers u′, by Lemma 3 (Section 3.3), there exists

a worsening flip from u′′ to u′. We can also apply this worsening flip to get
u′′1 �Ni

u′1 and u′′0 �Ni
u′0. If 1 �Xi

u′′ 0 then u′′ must contain an even number
of zeros, and so u′ contains an odd number of zeros, since they differ on precisely
one variable, and so 0 �Xi

u′ 1. This implies that u′′1 �Ni
u′′0 �Ni

u′0 �Ni
u′1,

which implies that v′′ �Ni
v′, as required. A similar argument applies if 0 �Xi

u′′ 1.
To show (b): If v 6= v′′ then u 6= u′′ so u �Ni−1 u

′′, since u′′ covers u′ and
u �Ni−1 u

′, using the fact that �Ni−1 is a strict total order. So, there exists
a worsening sequence of flips from u to u′′. The same sequence of flips can be
used from v to v′′, showing that v �Ni

v′′.

Proof of Proposition 11 The problem is in coNP since if Γ is not locally
consistent we can non-deterministically choose α and X such that �Xα (which
can be computed in polynomial time) is not irreflexive, i.e., there exists x ∈ X
with x �Xα x.

To show coNP-hardness we can use a reduction from 3-SAT. Consider an
instance of 3-SAT with m clauses involving propositional variables V ′. For
k = 1, . . . ,m, let ck be the kth clause, which we write as lk1 ∨ lk2 ∨ lk3 . We generate
a cp-theory Γ as follows: let V be V ′ ∪ {Z} where Z has domain {z0, . . . , zm}.
Let Γk consist of the three statements lkj : zk−1 > zk [∅], for j = 1, 2, 3, and let
Γ be Γ1 ∪ · · · ∪ Γm ∪ {> : zk > z0 [∅]}. Then Γ is not locally consistent if and
only if there exists an assignment u to V ′ with �Zu not irreflexive, which is if
and only if for each k there exists j with u satisfying lkj , which is if and only if
u satisfies the 3-SAT instance.

Proof of Proposition 13 Sufficiency of (1) and (2): We need to show that
>σ ⊇ ϕ∗ for all ϕ ∈ Γ. Consider any (α, β) ∈ ϕ∗. α and β are different outcomes,
so there exists some node r of σ that divides them. α |= uϕ so, by (1), on the
path to α, Xϕ appears before all of Wϕ. This implies that Yr = Xϕ, since α
and β only differ on {Xϕ} ∪Wϕ, and certainly differ on Xϕ. Since α |= uϕ, ar,
tuples uϕ and ar are compatible so, by (2), xϕ �r x′ϕ, i.e., α(Xϕ) �r β(Xϕ)
(since (α, β) ∈ ϕ∗), which shows that α >σ β, i.e., (α, β) ∈ >σ. Since (α, β) is
an arbitrary element of ϕ∗, and ϕ is an arbitrary element of Γ, we have that >σ
⊇ ϕ∗ for all ϕ ∈ Γ.

63

Conversely, we need to prove the necessity of (1) and (2). Necessity of (1):
Suppose that ϕ ∈ Γ and α |= uϕ, but that there exists some Y ∈ Wϕ which
appears before Xϕ on the path to α. Let r be the node with Yr = Y . Since Y
has at least two values, we can choose values y, y′ of Y with y �r y′. Define
outcomes α′ and β as follows: α′(Xϕ) = xϕ, β(Xϕ) = x′ϕ, α′(Y) = y′, β(Y) = y,
and for all other variables Z 6= Xϕ, Y define α′(Z) = β(Z) = α(Z). Then r
divides α′ and β, so α′ 6>σ β, since α′(Yr) 6�r β(Yr). However, (α′, β) ∈ ϕ∗,
since α |= uϕ and hence α′, β |= uϕ (using the fact that Uϕ is disjoint from
{Xϕ} ∪Wϕ, and so α′ and β agree with α on Uϕ). Therefore, >σ 6⊇ ϕ∗, and so
it is not the case that >σ satisfies Γ, proving the necessity of (1).

Necessity of (2): Suppose that σ satisfies Γ, and that for node r, and ϕ ∈
Γ, we have Xϕ = Yr and uϕ is compatible with ar. Choose any outcome
α which extends uϕ and ar, and satisfies α(Xϕ) = xϕ (this is possible since
Xϕ /∈ Uϕ ∪ Ar). Define outcome β to satisfy β(Xϕ) = x′ϕ, and to agree with α
on all other outcomes. (α, β) ∈ ϕ∗ ⊆ Γ∗, so α >Γ β, and hence, α >σ β. Node
r divides α and β, so we have xϕ = α(Y) �r β(Y) = x′ϕ, by definition of >σ,
and hence, xϕ �r x′ϕ, as required.

Proof of Proposition 14 Let σ be any cs-tree satisfying (1′) and (2′). Using
Proposition 13, it is sufficient to show that σ satisfies (1) and (2) of Proposition
13. (1) follows immediately from (1′). Regarding (2), let r = 〈A, a, Y,�〉 be
any node, and ϕ be any element of Γ such that Xϕ = Y and uϕ are compatible
with a. Since uϕ is compatible with a, there exists some outcome, say, α, which
extends both of them, and so r is on the path to α. By (1′), Uϕ appears before
Xϕ, so Uϕ ⊆ A. Since uϕ is compatible with a, we have that a extends uϕ.
By definition (see Definition 4), xϕ �

Xϕ
uϕ x′ϕ, so xϕ �Ya x′ϕ, and hence by (2′),

xϕ � x′ϕ, proving (2).

Proof of Proposition 16 Suppose that α is not optimal, so that there exists
some outcome β with β >Γ α. Since >Γ is the transitive closure of Γ∗ there
exists outcome γ with (γ, α) ∈ Γ∗, so for some ϕ ∈ Γ, (γ, α) ∈ ϕ∗. We have
α(Xϕ) = x′ϕ and α(Uϕ) = uϕ, so α is not a solution of CΓ since it does not
satisfy cϕ.

Conversely, suppose that outcome α is not a solution of CΓ. Then there
exists some ϕ ∈ Γ such that α does not satisfy cϕ, and so α(Xϕ) = x′ϕ and
α(Uϕ) = uϕ. Define outcome γ to be equal to α on all variables except Xϕ,
and define γ(Xϕ) = xϕ. We have (γ, α) ∈ ϕ∗ so γ >Γ α, showing that α is not
optimal.

Proof of Lemma 8 First, suppose that α �p(Γ) β, and consider any σ ∈ S.
Let r = 〈A, a, Y,�〉 be the node that divides α and β, so that α(A) = β(A) = a.
Condition (a) implies that UY ⊆ A. α(Y) 6= β(Y), so Y ∈ ∆(α, β).

Suppose that Y /∈ Θ(α, β). Then there exists Z ∈ ∆(α, β) which is an
ancestor of Y with respect to G(Γ). Condition (a) above implies that Z would

64

appear before Y on the path to α, so that Z ∈ A; α and β agree on A and hence
Z (since r divides α and β) which is contradiction since Z ∈ ∆(α, β).

We have proved that Y ∈ Θ(α, β). Since α �p(Γ) β we have α(Y) �Yα β(Y).
Let u = α(UY), which equals a(UY), because UY ⊆ A and α extends a. Thus,
using Lemma 5, α(Y) �Yu β(Y), which implies that α(Y) �r β(Y) by condition
(b), and hence α >σ β, as required.

Conversely, suppose that it is not the case that α �p(Γ) β; we will show that
there exists some σ ∈ S with α 6>σ β. This follows immediately if α = β, so let
us assume that α 6= β.

Since α 6�p(Γ) β, there exists Y ∈ Θ(α, β) such that α(Y) 6�Yα β(Y). We can
create a cs-tree σ satisfying the following properties:-

(i) σ uses a fixed variable ordering compatible with G(Γ) in all paths from
the root to outcomes, where Y is only preceded in this ordering by its
ancestors in G(Γ);

(ii) let r′ be the node that divides α and β; by (i), Y is only preceded in
the variable ordering by variables not in Θ(α, β), and so not in ∆(α, β),
hence α and β agree on variables before Y ; this implies that Yr′ = Y ;
we choose �r′ to be some strict total order extending �Yα and such that
α(Y) 6�r′ β(Y);

(iii) for all other nodes r in σ, set �r to be some strict total order extending
�Yr
u , where u = ar(UYr), and UYr is the parents of Yr in H(Γ).

Then σ satisfies conditions (a) and (b), so is in S. We also have α 6>σ β.

Proof of Proposition 17 For any ϕ, (ϕ)∗ ⊇ ϕ∗, so (Γ)∗ ⊇ Γ∗, and hence,
taking the transitive closure of both sides, >Γ ⊇ >Γ. Also, H(Γ) = H(Γ) so Γ
is locally consistent if and only if Γ is locally consistent, as they both give rise
to the same local orderings �Xα on X. The transitive closure G◦(Γ) of G(Γ) is
equal to the transitive closure G◦(Γ) of G(Γ) so, for U ⊆ V , maxG◦(Γ)(U) =
maxG◦(Γ)(U). These observations imply that �p(Γ) equals �p(Γ). By Theorem
4 (applied to Γ), �p(Γ) ⊇ >Γ. It just remains to show that �p(Γ) ⊆ >Γ.

Suppose α �p(Γ) β, so α 6= β. Abbreviate G(Γ) to G, abbreviate H(Γ) to
H, and Θ(α, β) to Θ. Write Θ as {X1, . . . , Xk}. Since ∆(α, β) 6= ∅ and G is
acyclic, Θ 6= ∅.

Define β0 = α, and for i = 1, . . . , k define βi inductively as follows:
βi(Xi) = β(Xi), and βi(Z) = β(Z) for all Z that are descendants of Xi in

G, (i.e., such that (Xi, Z) is in the transitive closure of G). For all other Y ∈ V ,
let βi(Y) = βi−1(Y). We have βk = β, since every element of ∆(α, β) is equal
to, or is a descendant of, some Xi in Θ.

For each Xi ∈ Θ, PaH(Xi) ∩ ∆(α, β) = ∅, else Xi would be a descendant
of a variable in ∆(α, β), contradicting the definition of Θ. So, α(PaH(Xi)) =
β(PaH(Xi)). We therefore have, for all j = 0, . . . , k, α(PaH(Xi)) = βj(PaH(Xi)).
This implies �Xi

α equals �Xi

βj
for all i and j. By definition of �p(Γ) we have for

65

each Xi ∈ Θ, α(Xi) �Xi
α β(Xi). So, for all j, α(Xi) �Xi

βj
β(Xi), and hence,

βi−1(Xi) �Xi

βi−1
βi(Xi), since βi−1(Xi) = α(Xi), because Xi is not a descendant

of any of X1, . . . , Xi−1. This implies βi−1 >Γ βi, since we can apply a sequence
of worsening swaps for Γ which start with βi−1, change with the last swap the
value of Xi to βi(Xi), and with (e.g.,) the last swap also changing the values
of all descendants of Xi to their values in βi. Since >Γ is transitive, we have
β0 >Γ βk, i.e., α >Γ β. Thus, �p(Γ) ⊆ >Γ, as required.

Proof of Proposition 18 First let us assume that conditions (1) and (2)
hold. We need to show that σ strongly satisfies Γ, i.e., for any body node r of
σ, with associated tuple 〈A, a, Y,�〉, that (I) Y is strongly a-undominated, and
(II) the ordering � on Y extends �Ya . (II) follows immediately from (2).

To prove (I), we need to show that for all ϕ ∈ Γ such that uϕ is compatible
with a, (i) if Xϕ = Y then Uϕ ⊆ A; (ii) if Wϕ 3 Y then Uϕ ∪ {Xϕ} ⊆ A. Since
uϕ is compatible with a, there exists an outcome α that extends both. r is on
the path to α, so, by (1), if Xϕ = Y then Uϕ appears before Y , i.e., Uϕ ⊆ A,
proving (i). Similarly, if Wϕ 3 Y , then Uϕ and Xϕ appear before Y on the path
to α, so Uϕ ∪ {Xϕ} ⊆ A, proving (ii).

Conversely, suppose that σ strongly satisfies Γ. We need to show that con-
ditions (1) and (2) hold. For any body node r of σ with associated tuple
〈A, a, Y,�〉, r strongly satisfies Γ, so � extends �Ya , proving (2).

To prove (1), consider any ϕ ∈ Γ and any outcome α such that α |= uϕ.
Consider first the node r on the path to α with Yr = Xϕ. Then, Yr is strongly
ar-undominated, so Uϕ ⊆ Ar, and hence, Uϕ appears before Xϕ on the path
to α. Now consider any node r on the path to α with Yr ∈ Wϕ. Since Yr is
strongly ar-undominated, we have Uϕ ∪ {Xϕ} ⊆ Ar showing that Xϕ appears
before each element of Wϕ on the path to α, completing the proof of (1).

Proof of Lemma 10 ⇒: Suppose that Y is Fa-dominated by some element
Z of V − A. Then there exists ϕ ∈ Γ such that uϕ is compatible with a and
either (i) Y = Xϕ and Z ∈ Uϕ, or (ii) Y ∈ Wϕ and Z ∈ Uϕ ∪ {Xϕ}. In either
case, Y is not strongly a-undominated.
⇐: Suppose that Y is not Fa-dominated by any element of V −A. Consider

any ϕ ∈ Γ such that uϕ is compatible with a. (i) If Xϕ = Y then Uϕ∩(V −A) =
∅, and so Uϕ ⊆ A. (ii) If Y ∈ Wϕ then ({Xϕ} ∪ Uϕ) ∩ (V − A) = ∅ and so
{Xϕ} ∪ Uϕ ⊆ A. This proves that Y is strongly a-undominated.

Proof of Proposition 20 (i): Fb ⊆ Fa follows immediately from the fact
that, for any ϕ ∈ Γ, if b is compatible with uϕ then a is compatible with uϕ.

(ii) Suppose Y ∈ V −B is strongly a-undominated. By Lemma 10, Y is not
Fa-dominated by any element of V − A, so, using the fact that Fb ⊆ Fa, Y is
not Fb-dominated by any element of V −A, so in particular is not Fb-dominated
by any element of V −B. By Lemma 10, Y is strongly b-undominated.

(iii) Suppose that Fa restricted to V − A is acyclic, and consider any b
extending a. Fb is a subrelation of Fa, so Fb restricted to V −A is acyclic, and

66

hence Fb restricted to V −B ⊆ V −A is acyclic, so there exists some Y ∈ V −B
which is Fb-undominated in V −B. By Lemma 10, Y is strongly b-undominated.

Proof of Proposition 22 By Definition 14, we have to show that for all
A ⊆ V and a ∈ A, there exists a strongly a-undominated variable (see Definition
13). Let α be any outcome extending a. Then �α is irreflexive, since Γ is cuc-
acyclic. This implies that �a is irreflexive (since Y �a Z implies Y �α Z).
So, �a is acyclic. This implies that there exists some Y ∈ V − A which is
�a-undominated in V − A. If ϕ ∈ Γ is such that a is compatible with uϕ,
and Y ∈ {Xϕ} ∪ Wϕ then for all Z ∈ Uϕ, Z �a Y (by definition of �a) so
Uϕ ⊆ A (else Y wouldn’t be �a-undominated in V −A), which implies also that
a extends uϕ. If Wϕ 3 Y , then Xϕ �a Y and so Xϕ ∈ A, proving that Y is
a-undominated.

We will use the following basic technical lemma to prove Lemma 14.

Lemma 22 Let A be a subset of V , and let a ∈ A be an assignment to the
variables A, let α ∈ V be an outcome such that α |= a. Y is undominated in
V −A with respect to �a if and only if Y is undominated in V −A with respect
to �α. Furthermore, if Y is undominated in V −A with respect to �a, then the
relations �Ya and �Yα (see Definition 4) are equal.

Proof: If Y is undominated in V − A with respect to �α then clearly Y is
undominated in V − A with respect to �a, since the relation �α extends �a.
Conversely, suppose that Y is undominated in V −A with respect to �a and, to
prove a contradiction suppose that Y is not undominated in V −A with respect
to �α, so that Z�α Y for some Z ∈ V −A. Then there exists ϕ ∈ Γ with either
(i) Uϕ 3 Z and Y ∈ {Xϕ} ∪Wϕ or (ii) Xϕ = Z and Wϕ 3 Y and α |= uϕ. We
have Uϕ ⊆ A since Y is undominated in V −A with respect to �a. Since Z 6∈ A,
we have Uϕ 63 Z so case (i) cannot hold. Consider case (ii). We have α |= uϕ
and so a |= uϕ, since Uϕ ⊆ A and α |= a. This implies by Definition 15 that
Z �a Y which is a contradiction of Z being in V −A, as Y is �a-undominated
in V −A.

For the last part, �Yα clearly contains �Ya . We also have that all the parents
of Y are in A: UY ⊆ A, since any element of UY dominates Y with respect to
�a (or �α). This implies that �Ya and �Yα are equal, since if Y = Xϕ for some
ϕ ∈ Γ with α |= uϕ, then a |= uϕ.

Proof of Lemma 12 We first prove that if Y is �a-undominated in V − A
then Y is strongly a-undominated in V −A. Suppose that Y is �a-undominated
and consider any ϕ ∈ Γ such that uϕ is compatible with a. (i) If Xϕ = Y then
Uϕ∩(V −A) = ∅, so Uϕ ⊆ A. Also, (ii) ifWϕ 3 Y then (Uϕ∪{Xϕ})∩(V −A) = ∅,
so Uϕ ∪ {Xϕ} ⊆ A. This proves that Y is strongly a-undominated in V −A.

If a cs-tree σ cu-satisfies Γ then each body node of it cu-satisfies Γ. This
implies, using the result above, that each body node strongly satisfies Γ (see
Definitions 17 and 13), implying that σ strongly satisfies Γ, and hence, by
Proposition 19, σ satisfies Γ.

67

Proof of Lemma 14 Suppose α �Γ β and let σ be a cs-tree cu-satisfying
Γ. Let r = 〈A, a, Y,�〉 be the node that divides α and β. In order to prove the
required condition α >σ β we need to show that α(Y) � β(Y). Now, α and β
differ on Y so Y ∈ ∆(α, β). Y is �a-undominated in V − A, so by Lemma 22
is undominated in V −A with respect to �α, and hence we have Y ∈ Θ′(α, β).
Since α �Γ β we have α(Y) �Yα β(Y), which implies that α(Y) �Ya β(Y) by
Lemma 22. This implies, by the definition of a body node cu-satisfying Γ, that
α(Y) � β(Y) as required.

Proof of Lemma 15 If α = β then the result follows from Lemma 13, since
>σ is irreflexive for any cs-tree σ.

Now, suppose that α 6= β. This implies ∆(α, β) 6= ∅, and Θ′(α, β) 6= ∅.
Since it is not the case that α �Γ β there must exist some Y ∈ Θ′(α, β) such
that it is not the case that α(Y) �Yα β(Y). Since, Y ∈ Θ′(α, β), we also have
α(Y) 6= β(Y). List the variables in an order compatible with �α such that Y
appears as early as possible, i.e., so that there’s no order compatible with �α

in which Y appears earlier. We will construct a cs-tree σ in which the variables
on the path from the root to α appear in that order. Thus, at any node r on
the path to α, Yr will be �α-undominated in V − Ar, since any dominating
variables come earlier, as the ordering is compatible with �α.

For the node r′ on the path to α with Yr′ = Y , we define relation �r′ to
be any total order on Y extending �Yα and such that α(Y) 6�r′ β(Y); this is
possible, by Lemma 1(i), because �Yα is a partial order such that α(Y) 6�Yα β(Y).
For the other nodes r in the path to α we define the relation �r to be any total
order extending �Yr

ar
.

We generate the rest of the cs-tree iteratively so that each body node r cu-
satisfies Γ (by choosing any variable Yr which is �ar -undominated in V − Ar
and choosing any total order � on Yr extending �Yr

ar
). This generates a cs-tree

σ which cu-satisfies Γ.
The condition that Y appears as early as possible in the variable ordering

ensures that Ar′ consists only of variables Z with Z �α Y . (If not, let Z be the
latest variable appearing in the list before Y not satisfying Z�αY . Then moving
Z to just after Y gives an ordering of the variables which is still compatible with
�α, but where Y comes earlier, which contradicts the definition of the variable
ordering.) Y ∈ Θ′(α, β) then implies Ar′∩∆(α, β) = ∅, i.e., α and β agree on all
variables in Ar′ . Then the node r′ divides α and β. We also have α(Y) 6�r′ β(Y)
which implies it is not the case that α >σ β.

Proof of Proposition 24 If Γ is not strongly conditionally conditionally
acyclic then either it is not locally consistent, or there exists a proper subset A
of V , and an assignment a ∈ A such that there exists no strongly a-undominated
variable. Thus, to determine that Γ is not strongly conditionally acyclic we can
either non-deterministically choose α and X such that �Xα (which can be com-
puted in polynomial time) is not irreflexive (proving that Γ is not locally con-
sistent), or non-deterministically choose A and a ∈ A such that there exists no

68

strongly a-undominated variable (and for each variable Y ∈ V −A we can check
in polynomial time that Y is not a-undominated). This proves membership in
coNP.

The proof of membership for cuc-acyclicity is similar, using the fact that for
given cp-theory Γ and outcome α, computing the relation Jα(Γ)—and hence
determining that it is not acyclic—can be done in polynomial time.

To show coNP-hardness we use a reduction from 3-SAT. Consider an instance
of 3-SAT with m clauses involving propositional variables V ′. For k = 1, . . . ,m,
let ck be the kth clause, which we write as lk1 ∨ lk2 ∨ lk3 . We generate a cp-theory
Γ as follows: let V be V ′ ∪ {Z0, Z1, . . . , Zm} where, for k = 0, . . . ,m, Zk has
domain {zk, z′k}. Let Γk consist of the three statements lkj : zk−1 > z′k−1 [{Zk}],
for j = 1, 2, 3, and let Γ be Γ1 ∪ · · · ∪ Γm ∪ {> : zm > z′m [Z0]}. Now, the
3-SAT instance has a satisfying assignment u if and only if there exists no u-
undominated variable in V −V ′, which implies that Γ is not strongly conditional
acyclic.

Conversely, if Γ is not strongly conditional acyclic, then, for some proper
subset A of V and tuple a ∈ A, there exists no a-undominated variable in V −A
(since Γ is clearly locally consistent). This can only happen if A contains V ′ and
for each k there exists j with a satisfying lkj , which is if and only if a satisfies
the 3-SAT instance.

Hence the 3-SAT instance is satisfiable if and only if Γ is not strongly con-
ditionally acyclic. The same construction applies also for cuc-acyclicity.

Proof of Proposition 25 Let σ be a cs-tree; we will define a VON τ com-
patible with σ. For each body node r of σ with associated tuple 〈A, a, Y,�〉 we
define a node r of τ with associated tuple 〈A, a, Y 〉. We create a sink node r∗
with ar∗ equal to some arbitrary outcome. For each edge from node r to node
r′ in σ we create and edge from r to node r′ in τ , where r′ is defined to be the
sink node if r′ is a leaf node of σ. Clearly, τ is compatible with σ. (Naturally,
there will often be much more compact variable ordering networks compatible
with σ than τ .)

Conversely, suppose that τ is a variable ordering network. We construct a
cs-tree σ compatible with τ inductively, starting from the root. To generate
a body node r we need to define the associated tuple 〈A, a, Y,�〉. Assume,
inductively, that A and a have already been defined (for the root node they are,
by definition, equal to ∅ and >, respectively). a generates a path in τ from the
root node to some node r. We let Y equal Yr, and we choose � to be some
arbitrary strict total order on Y . We create |Y | child nodes of r, so r has |Y |
edges coming from it. Each such edge e has associated variable Ye = Y and a
different associated value ye. If e goes from node r to r′ then Ar′ = Ar ∪ {Y },
and ar′ is the tuple formed by extending a with the assignment Ye = ye. This
inductively defines the whole of σ. Clearly, σ is compatible with τ .

Proof of Lemma 16 By definition, 〈t, Z, Y 〉 is in Tab if and only if there exists
assignment s to some set of variables S with s compatible with ab, S−(A∪B) =

69

T , s(T) = t and 〈s, Z, Y 〉 ∈ T .
Given such an assignment s, define U = S − A and u = s(U). Then (i)

U − B = T and u(T) = s(T) = t and u is compatible with b, since s is
compatible with b; also we have (ii) 〈u, Z, Y 〉 is in Ta, since s is compatible with
a.

Conversely, suppose there exists assignment u to some set of variables U ⊆
V − A such that (i) U − B = T , u(T) = t, and u compatible with b and (ii)
〈u, Z, Y 〉 is in Ta. Hence, there exists assignment s (to some set of variables S)
which is compatible with a, is such that S−A = U and s(U) = u, and 〈s, Z, Y 〉
∈ T . We have S − (A ∪ B) = (S − A) − B = U − B = T . Also, T ⊆ U , so
s(T) = u(T), which equals t. Since A and B are disjoint, S∩B = (S−A)∩B =
U ∩ B. Tuple s is compatible with b since s(S ∩ B) = s(U ∩ B) = u(U ∩ B) =
b(U ∩B) = b(S ∩B), as u is compatible with b. Therefore, s is compatible with
ab since it is also compatible with a. This proves that 〈t, Z, Y 〉 is in Tab.

Proof of Lemma 18 This will be proved by induction on the cardinality of
|Ar|. Suppose that it is true for all nodes r′ with |Ar′ | < k. Consider node r with
|Ar| = k, and consider any path from the root to r with associated assignment
a. Let r′ be the parent of r along that path, and let a′ be a(Ar′), and let Y = y
be the assignment along the edge between r′ and r. By induction we have
Ta′ = Tar′ . Using Lemma 17 and extending both a′ and ar′ by the assignment
Y = y we obtain Ta = Ta′′ where a′′ is ar′ extended with the assignment Y = y.
We also have by condition (ii) of Definition 23 that Ta′′ = Tar

. Hence, Ta = Tar

as required.

Proof of Proposition 26 Proof: Consider some element 〈u, Y, Z〉 in T ,
where u is an assignment to some set of variables U . Consider any outcome α
extending u. We need to show that Y appears before Z in Oτ (α). We proceed
using Proof by Contradiction.

Suppose that Z appears before Y in Oτ (α). Consider node r in τ with
Yr = Z in the path associated with α. Since Z = Yr /∈ Ar we also have Y /∈ Ar,
since Z appears before Y in the path associated with α, by definition of Oτ (α).
Let a = α(Ar). By Lemma 18 we have Ta = Tar

. Now, u is compatible with a,
since α extends both u and a. Let u′ = u(U − Ar). Since Y, Z /∈ Ar, we have
〈u′, Y, Z〉 ∈ Ta, and so 〈u′, Y, Z〉 ∈ Tar

, i.e., 〈u′, Y, Yr〉 ∈ Tar
, and hence there

exists 〈u′′, Y, Yr〉 ∈ T with u′′ compatible with ar (and u′′ extending u′). By
condition (i) of Definition 23, Y ∈ Ar which contradicts Y /∈ Ar, completing
the Proof by Contradiction.

Proof of Proposition 27 Suppose that a and a′ agree on QT (A). Consider
any 〈u′, Y, Z〉 in Ta. Then, by Definition 21, there exists some triple 〈u, Y, Z〉 in
T such that Y,Z ∈ V −A, tuple u ∈ U is compatible with a, and u(U−A) = u′.
Now, U ∩A ⊆ QT (A), so a and a′ agree on U ∩A, which implies that u is also
compatible with a′. Hence, 〈u′, Y, Z〉 in Ta′ , by Definition 21. We’ve shown that

70

Ta ⊆ Ta′ . Swapping the roles of a and a′ in the above argument shows that
Ta′ ⊆ Ta, so Ta = Ta′ , as required.

Proof of Lemma 19 Y is not strongly a-undominated if and only if there
exists Z ∈ V − A and ϕ ∈ Γ with uϕ compatible with a such that either (a)
Z ∈ Uϕ and Y ∈ Xϕ ∪Wϕ or (b) Z = Xϕ and Y ∈ Wϕ. This is if and only
if there exists Z ∈ V − A and ϕ ∈ Γ with uϕ compatible with a such that
〈uϕ, Z, Y 〉 ∈ [Γ]. This is if and only if there exists Z ∈ V −A and u compatible
with a such that 〈u, Z, Y 〉 ∈ [Γ], which is if and only if there exists an element
of the form 〈u′, Z, Y 〉 in [Γ]a.

Proof of Lemma 20 Let r be a body node in σ with associated tuple
〈A, a, Y,�〉. Suppose that there exists some triple 〈u, Z, Y 〉 in [Γ] with Z ∈ V −A
and u compatible with a. Then, for any α extending both u and a, Z must
appear before Y on the path to α in τ (since τ respects [Γ], see Definition 22),
and hence on the path to α in σ (since σ is compatible with τ), which contradicts
the fact that Z ∈ V −A.

Therefore, there exists no triple 〈u, Z, Y 〉 in [Γ] with Z ∈ V − A and u
compatible with a. By Lemma 19, Y is strongly a-undominated. Therefore, by
Definition 13 (Section 6.1), r strongly satisfies Γ, and hence σ strongly satisfies
Γ, since r is an arbitrary body node of σ.

Proof of Lemma 21 Note that local consistency of Γ ensures that Q is
non-empty, using the proof of Theorem 7. First suppose that α �Γ

τ β, and let
r′ = 〈A, a, Y 〉 be the node in τ that divides α and β. Consider any σ ∈ Q, and
let r be the node in σ which divides α and β. Because σ is compatible with
τ , and so the variable ordering is the same on the path to α in τ and σ, we
must have Ar = A and Yr = Y . Since α �Γ

τ β we have α(Y) �Ya β(Y), and so
α(Yr) �r β(Yr), and hence α >σ β.

Conversely, suppose that it is not the case that α �Γ
τ β, and it will be

shown that there exists some σ ∈ Q with α 6>σ β. If α = β then the implication
holds because of irreflexivity of all >σ, so we can assume that α 6= β. Let
r′ = 〈A, a, Y 〉 be the node in τ that divides α and β. Then α(Y) 6�Ya β(Y).
By local consistency, �Ya is acyclic, so there exists a total order � on Y that
extends �Ya and is such that α(Y) 6� β(Y). Consider any cs-tree σ ∈ Q. Let r
be the node in σ which divides α and β. Because σ is compatible with τ , we
must have Ar = A and Yr = Y . Change σ by changing �r to �. σ is still in Q,
and we have α(Y) 6�r β(Y) which implies that α 6>σ β, as required.

References

Bienvenu, M., Lang, J., & Wilson, N. (2010). From preference logics to prefer-
ence languages, and back. In Proceedings of KR 2008.

71

Boutilier, C., Bacchus, F., & Brafman, R. (2001). UCP-networks: A directed
graphical representation of conditional utilities. In Proceedings of UAI
2001, pp. 56–64.

Boutilier, C., Brafman, R., Hoos, H., & Poole, D. (1999). Reasoning with condi-
tional ceteris paribus preference statements. In Proceedings of UAI 1999,
pp. 71–80.

Boutilier, C., Brafman, R. I., Domshlak, C., Hoos, H., & Poole, D. (2004a).
CP-nets: A tool for reasoning with conditional ceteris paribus preference
statements. Journal of Artificial Intelligence Research, 21, 135–191.

Boutilier, C., Brafman, R. I., Domshlak, C., Hoos, H., & Poole, D. (2004b).
Preference-based constrained optimization with CP-nets. Computational
Intelligence, 20 (2), 137–157.

Brafman, R., & Domshlak, C. (2002). Introducing variable importance trade-offs
into CP-nets. In Proceedings of UAI 2002, pp. 69–76.

Brafman, R., & Domshlak, C. (2008). Graphically structured value-function
compilation. Artificial Intelligence, 172, 325–349.

Brafman, R., Domshlak, C., & Shimony, E. (2006). On graphical modeling of
preference and importance. Journal of Artificial Intelligence Research, 25,
389–424.

Brafman, R. I., & Dimopoulos, Y. (2004). Extended semantics and optimization
algorithms for CP-networks. Computational Intelligence, 20 (2), 218–245.

Brafman, R. I., Domshlak, C., & Shimony, S. E. (2004). Qualitative decision
making in adaptive presentation of structured information. ACM Trans.
Inf. Syst., 22 (4), 503–539.

Domshlak, C. (2002). Modeling and reasoning about preferences with CP-nets.
Ph.D. thesis, Ben-Gurion University of the Negev.

Domshlak, C., & Brafman, R. I. (2002). CP-nets—reasoning and consistency
testing. In Proceedings of KR 2002, pp. 121–132.

Domshlak, C., Prestwich, S., Rossi, F., Venable, K. B., & Walsh, T. (2006).
Hard and soft constraints for reasoning about qualitative conditional pref-
erences. Journal of Heuristics, 12 (4–5), 263–285.

Domshlak, C., Rossi, F., Venable, K., & Walsh, T. (2003). Reasoning about soft
constraints and conditional preferences: complexity results and approxi-
mation techniques. In Proceedings of IJCAI 2003, pp. 215–220.

Doyle, J., & Wellman, M. P. (1994). Representing preferences as ceteris paribus
comparatives. In Working Notes of the AAAI Symposium on Decision-
Theoretic Planning.

Freuder, E., Heffernan, R., Wallace, R., & Wilson, N. (2010). Lexicographically-
ordered constraint satisfaction problems. Constraints, 171 (1), 3–25.

Goldsmith, J., Lang, J., Truszczyński, M., & Wilson, N. (2005). The computa-
tional complexity of dominance and consistency in CP-nets. In Proceedings
of IJCAI 2005, pp. 144 –149.

72

Goldsmith, J., Lang, J., Truszczyński, M., & Wilson, N. (2008). The compu-
tational complexity of dominance and consistency in CP-nets. Journal of
Artificial Intelligence Research, 33, 403–432.

Hansson, S. O. (1996). What is ceteris paribus preference?. Journal of Philo-
sophical Logic, 425, 307–332.

Hansson, S. O. (2001a). Preference logic. In Gabbay, D., & Guenthner, F.
(Eds.), Handbook of Philosophical Logic, pp. 319–393. Kluwer.

Hansson, S. O. (2001b). The structure of values and norms. Cambridge Uni-
versity Press.

Kaci, S., & Prade, H. (2007). Relaxing ceteris paribus preferences with partially
ordered priorities. In Proceedings of ECSQARU 2007, pp. 660–671.

Lang, J. (2002). From preference representation to combinatorial vote. In
Proceedings of KR 2002, pp. 277–288.

Lang, J. (2004). Logical preference representation and combinatorial vote. Ann.
Mathematics and Artificial Intelligence, 42 (1), 37–71.

Marczewski, E. (1930). Sur l’extension de l’ordre partiel. Fundamenta Mathe-
maticae, 16, 386–389.

McGeachie, M., & Doyle, J. (2002). Efficient utility functions for ceteris paribus
preferences. In Proceedings of AAAI 2002, pp. 279–284.

McGeachie, M., & Doyle, J. (2004). Utility functions for ceteris paribus prefer-
ences. Computational Intelligence, 20 (2), 158–217.

van Benthem, J., Girard, P., & Roy, O. (2009). Everything else being equal: A
modal logic for ceteris paribus preferences. Journal of Philosophical Logic,
38 (1), 83–125.

von Wright, G. H. (1963). The logic of preference. Edinburgh University Press.

von Wright, G. H. (1972). The logic of preference reconsidered. Theory and
Decision, 3, 140–169.

Wilson, N. (2004a). Consistency and constrained optimisation for conditional
preferences. In Proceedings of ECAI 2004, pp. 888–892.

Wilson, N. (2004b). Extending CP-nets with stronger conditional preference
statements. In Proceedings of AAAI 2004, pp. 735–741.

Wilson, N. (2006). An efficient upper approximation for conditional preference.
In Proceedings of ECAI 2006, pp. 472–476.

Wilson, N. (2009). Efficient inference for expressive comparative preference
languages. In Proceedings of IJCAI 2009, pp. 961–966.

Xia, L., Conitzer, V., & Lang, J. (2008). Voting on multiattribute domains
with cyclic preferential dependencies. In Proceedings of AAAI 2008, pp.
202–207.

73

