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Abstract

The field of data mining has become accustomed to specifying constraints on patterns of inter-
est. A large number of systems and techniques has been developed for solving such constraint-based
mining problems, especially for mining itemsets. The approach taken in the field of data mining
contrasts with the constraint programming principles developed within the artificial intelligence
community. While most data mining research focuses on algorithmic issues and aims at developing
highly optimized and scalable implementations that are tailored towards specific tasks, constraint
programming employs a more declarative approach. The emphasis lies on developing high-level
modeling languages and general solvers that specify what the problem is, rather than outlining
how a solution should be computed, yet are powerful enough to be used across a wide variety of
applications and application domains.

This paper contributes a declarative constraint programming approach to data mining. More
specifically, we show that it is possible to employ off-the-shelf constraint programming techniques
for modeling and solving a wide variety of constraint-based itemset mining tasks, such as fre-
quent, closed, discriminative, and cost-based itemset mining. In particular, we develop a basic
constraint programming model for specifying frequent itemsets and show that this model can eas-
ily be extended to realize the other settings. This contrasts with typical procedural data mining
systems where the underlying procedures need to be modified in order to accommodate new types
of constraint, or novel combinations thereof. Even though the performance of state-of-the-art
data mining systems outperforms that of the constraint programming approach on some standard
tasks, we also show that there exist problems where the constraint programming approach leads
to significant performance improvements over state-of-the-art methods in data mining and as well
as to new insights into the underlying data mining problems. Many such insights can be obtained
by relating the underlying search algorithms of data mining and constraint programming systems
to one another. We discuss a number of interesting new research questions and challenges raised
by the declarative constraint programming approach to data mining.

Keywords: Data Mining, Itemset Mining, Constraint Programming
2010 MSC: 68T20 Problem solving

1. Introduction

Itemset mining is probably the best studied problem in the data mining literature. Originally
applied in a supermarket setting, it involved finding frequent itemsets, that is, sets of items that
are frequently bought together in transactions of customers [1]. The introduction of a wide variety
of other constraints and a range of algorithms for solving these constraint-based itemset mining
problems [33, 31, 41, 42, 10, 30, 50, 8] has enabled the application of itemset mining to numerous
other problems, ranging from web mining to bioinformatics [30]; for instance, whereas early itemset
mining algorithms focused on finding itemsets in unsupervised, sparse data, nowadays closed
itemset mining algorithms enable the application of itemset mining on dense data [40, 43], while
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discriminative itemset mining algorithms allow for their application on supervised data [35, 12].
This progress has resulted in many effective and scalable itemset mining systems and algorithms,
usually optimized to specific tasks and constraints. This procedural and algorithmic focus can
make it non-trivial to extend such systems to accommodate new constraints or combinations
thereof. The need to allow user-specified combinations of constraints is recognized in the data
mining community, as witnessed by the development of a theoretical framework based on (anti-
ymonotonicity [33, 41, 10] and systems such as ConQueSt [8], MusicDFS [50] and Molfea [17].
These systems support a predefined number of (anti-)monotonicity based constraints, making
them well suited for a number of typical data mining tasks.

These approaches contrast with those of constraint programming. Constraint programming
is a general declarative methodology for solving constraint satisfaction problems, meaning that
constraint programs specify what the problem is, rather than outline how the solution should
be computed; it does not focus on a particular application. Constraint programming systems
provide declarative modeling languages in which many types of constraints can be expressed and
combined; they often support a much wider range of constraints than more specialized systems
such as satisfiability (SAT) and integer linear programming (ILP) solvers [9]. To realize this,
the model is separated as much as possible from the solver. In the past two decades, constraint
programming has developed expressive high-level modeling languages as well as solvers that are
powerful enough to be used across a wide variety of applications and domains such as scheduling
and planning [45].

The question that arises in this context is whether these constraint programming principles
can also be applied to itemset mining. As compared to the more traditional constraint-based
mining approach, this approach would specify data mining models using general and declarative
constraint satisfaction primitives, instead of specialized primitives; this should make it easy to
incorporate new constraints and combinations thereof as — in principle — only the model needs
to be extended to specify the problem and general purpose solvers can be used for computing
solutions.

The contribution of this article is that we answer the above question positively by showing that
the general, off-the-shelf constraint programming methodology can indeed be applied to the specific
problems of constraint-based itemset mining?. We show how a wide variety of itemset mining
problems (such as frequent, closed and cost-based) can be modeled in a constraint programming
language and that general purpose out-of-the-box constraint programming systems can effectively
deal with these problems.

While frequent, closed and cost-based itemset mining are ideal cases, for which the existing
constraint programming modeling language used suffices to tackle the problems, this cannot be
expected in all cases. Indeed, in our formulation of discriminative itemset mining, we introduce
a novel primitive by means of a global constraint. This is common practice in constraint pro-
gramming, and the identification and study of global constraints that can effectively solve specific
subproblems has become a branch of research on its own [5]. Here, we have exploited the ability of
constraint programming to serve as an integration platform, allowing for the free combination of
new primitives with existing ones. This property allows to find closed discriminative itemsets effec-
tively, as well as discriminative patterns adhering to any other constraint(s). Furthermore, casting
the problem within a constraint programming setting also provides us with new insights in how to
solve discriminative pattern mining problems that lead to important performance improvements
over state-of-the-art discriminative data mining systems.

A final contribution is that we compare the resulting declarative constraint programming frame-
work to well-known state-of-the-art algorithms in data mining. It should be realized that any such
comparison is difficult to perform; this already holds when comparing different data mining (resp.
constraint programming) systems to one another. In our comparison we focus on high-level con-

2We studied this problem in two conference papers [15, 38] and brought it to the attention of the AT commu-
nity [16]. This article extends these earlier papers with proofs, experiments and comprehensive comparisons with
related work in the literature.



cepts rather than on specific implementation issues. Nevertheless, we demonstrate the feasibility
of our approach using our CP4IM implementation that employs the state-of-the-art constraint
programming library Gecode [47], which was developed for solving general constraint satisfaction
problems. While our analysis reveals some weaknesses when applying this particular library to
some itemset mining problem, it also reveals that Gecode can already outperform state-of-the-art
data mining systems on some tasks. Although outside the scope of the present paper, it is an
interesting topic of ongoing research [37] to optimize constraint programming systems for use in
data mining.

The article is organized as follows. Section 2 provides an introduction to the main principles
of constraint programming. Section 3 introduces the basic problem of frequent itemset mining
and discusses how this problem can be addressed using constraint programming techniques. The
following sections then show how alternative itemset mining constraints and problems can be dealt
with using constraint programming: Section 4 studies closed itemset mining, Section 5 considers
discriminative itemset mining, and Section 6 shows that the typical monotonicity-based problems
studied in the literature can also be addressed in the constraint programming framework. We also
study in these sections how the search of the constraint programming approach compares to that
of the more specialized approaches. The CP4IM approach is then evaluated in Section 7, which
provides an overview of the choices made when modeling frequent itemset mining in a concrete
constraint programming system and compares the performance of this constraint programming
system to specialized data mining systems. Finally, Section 8 concludes.

2. Constraint Programming

In this section we provide a brief summary of the most common approach to constraint pro-
gramming. More details can be found in text books [45, 3]; we focus on high-level principles and
omit implementation issues.

Constraint programming (CP) is a declarative programming paradigm: the user specifies a
problem in terms of its constraints, and the system is responsible for finding solutions that adhere
to the constraints. The class of problems that constraint programming systems focus on are
constraint satisfaction problems.

Definition 1 (Constraint Satisfaction Problem (CSP)). A CSP P = (V, D,C) is specified by
e q finite set of variables V;
e an initial domain D, which maps every variable v € V to a set of possible values D(v);
e a finite set of constraints C.

A wvariable x € V is called fixed if |D(z)| = 1; a domain D is fixed if all its variables are fized,
Ve € V:|D(x)| =1. A domain D' is called stronger than domain D if D'(x) C D(z) for allz € V;
a domain is false if there exists an x € V such that D(z) = 0. A constraint C(x1,...,x) € C is

an arbitrary boolean function on variables {x1,...,xp} C V.
A solution to a CSP is a fized domain D’ stronger than the initial domain D that satisfies
all constraints. Abusing notation for a fized domain, we must have that VC(x1,...,x) € C :

C(D'(z1),...,D (xx)) = true

A distinguishing feature of CP is that it does not focus on a specific set of constraint types.
Instead it provides general principles for solving problems with any type of variable or constraint.
This sets it apart from satisfiability (SAT) solving, which focuses mainly on boolean formulas, and
from integer linear programming (ILP), which focuses on linear constraints on integer variables.

Example 1. Assume we have four people that we want to allocate to two offices, and that every
person has a list of other people that he does not want to share an office with. Furthermore, every
person has identified rooms he does not want to occupy. We can represent an instance of this
problem with four variables which represent the persons, and inequality constraints which encode
the room-sharing constraints:



Algorithm 1 Constraint-Search(D)

1: D :=propagate(D)

2: if D is a false domain then
3 return

4: end if

5. if 3x € V: |D(x)| > 1 then
6 1= argmingey prys1 £(2)

7 for all d € D(z) do

8 Constraint-Search(D U {z — {d}})
9: end for

10: else

11: Output solution

12: end if

D(z1) = D(x2) = D(ws) = D(z4) = {1,2}
C= {$1 75 2,$1 75 To, T3 75 .T4}.

The simplest algorithm to solve CSPs enumerates all possible fixed domains, and evaluates
all constraints on each of these domains; clearly this approach is inefficient. Most CP systems
perform a more intelligent type of depth-first search, as given in Algorithm 1 [47, 45]. Other
search strategies have been investigated as well [53, 44], but we restrict ourselves here to the most
common case. In each node of the search tree the algorithm branches by restricting the domain
of one of the variables not yet fixed (line 7 in Algorithm 1). It backtracks when a violation of
a constraint is found (line 2). The search is further optimized by carefully choosing the variable
that is fixed next (line 6); here a function f(x) ranks variables, for instance, by determining which
variable is involved in the highest number of constraints.

The main concept used to speed up the search is constraint propagation (line 1). Propagation
reduces the domains of variables such that the domain remains locally consistent. One can define
many types of local consistencies, such as node consistency, arc consistency and path consistency;
see [45]. In general, in a locally consistent domain, a value d does not occur in the domain of a
variable x if it can be determined that there is no solution D’ in which D’(z) = {d}. The main
motivation for maintaining local consistencies is to ensure that the backtracking search does not
unnecessarily branch over such values, thereby significantly speeding up the search.

To maintain local consistencies, propagators or propagation rules are used. Each constraint
is implemented by a propagator. Such a propagator is activated when the domain of one of the
variables of the constraint changes. A propagator takes the domain as input and outputs a failed
domain in case the constraint can no longer be satisfied, i.e. if there exists no

fixed D’ stronger than D with C(D’(x1),...,D'(z)) = true. (1)

When possible, the propagator will remove values from the domain that can never satisfy the
constraint, giving as output a stronger, locally consistent domain. More formally, a value ¢ should
be removed from the domain of a variable z if there is no

fixed D’ stronger than D with D'(z) = ¢ and C(D'(z1),...,D'(zx)) = true. (2)

This is referred to as propagation; propagation ensures domain consistency. The repeated applica-
tion of propagators can lead to increasingly stronger domains. Propagators are repeatedly applied
until a fized point is reached in which the domain does not change any more.

Consider the constraint x7 # x2, the corresponding propagator is given in Algorithm 2. The
propagator can only propagate when x; or a9 is fixed (lines 1 and 4). If one of them is, its value
is removed from the domain of the other variable (lines 2 and 5). In this propagator there is no
need to explicitly check whether the constraint is violated, as a violation results in an empty and
thus false domain in line 2.



Algorithm 2 Conceptual propagator for x1 # 2

1. if |D(z1)] = 1 then

2: D(ZL'Q) :D(SCQ)\D(SCl)
3: end if

4: if |D(x2)| =1 then

5: D(acl) :D(l‘l)\D(l‘g)
6: end if

Example 2 (Example 1 continued). The initial domain of this problem is not consistent: the
constraint x1 # 2 cannot be satisfied when D(x1) = {2} so value 2 is removed from the domain
of x1. Subsequently, the propagator for the constraint x1 # xo is activated, which removes value
1 from D(z2). At this point, we obtain a fized point with D(x1) = {1}, D(x2) = {2}, D(x3) =
D(z4) = {1,2}. Person 1 and 2 have now each been allocated to an office, and two rooms are
possible for person 8 and 4. The search branches over x3 and for each branch, constraint rs # x4
is propagated; a fired point is then reached in which every variable is fixed, and a solution is found.

In the above example for every variable its entire domain D(z) is maintained. In constraint
programming many types of consistency and algorithms for maintaining consistency have been
studied. A popular type of consistency is bound consistency. In this case, for each variable only
a lower- and an upper-bound on the values in its domain is maintained. A propagator will try to
narrow the domain of a variable to that range of values for which it still believes a solution can
be found, but does not maintain consistency for individual values. To formulate itemset mining
problems as constraint programming models, we mostly use variables with binary domains, i.e.
D(z) = {0,1} with z € V. For such variables there is no difference between bound and domain
consistency.

Furthermore, we make extensive use of two types of constraints over boolean variables, namely
the summation constraint, equation (3), and reified surmmation constraint, equation (6), which are
introduced below.

Summation constraint. Given a set of variables V' C V and weights w, for each variable x € V,
the general form of the summation constraint is:

Z wex > 0. (3)

zeV

The first task of the propagator is to discover as early as possible whether the constraint is violated.
To this aim, the propagator needs to determine whether the upper-bound of the sum is still above
the required threshold; filling in the constraint of equation 1, this means we need to check whether:

max (Z me’(m’)> > 9. (4)

fixed D’ stronger than D

A more intelligent method to evaluate this property works as follows. We denote the maximum
value of a variable z by 2™ = maxgep(y) d, and the minimum value by gmn = minge p(z) d-
Denoting the set of variables with a positive, respectively negative, weight by V* = {z € V|w, >
0} and V— = {z € V]w, < 0}, the bounds of the sum are now defined as:

max(g W) = E wex ™ 4+ E wer™"

zeV zeV+ eV —
min( g W) = E wex™" + g wex
zeV eVt eV -

These bounds allow one to determine whether an inequality constraint ) w,x > ¢ can still be
satisfied.



The second task of the propagator is to maintain the bounds of the variables in the constraint,
which in this case are the variables in V. In general, for every variable & € V', we need to update
2™ 0 the lowest value ¢ for which there exists a domain D’ with

fixed D' stronger than D, D'(Z) = ¢ and (Z me'($)> > 0. (5)
eV

Also this can be computed efficiently; essentially, for binary variables x € V we can update all
domains as follows:

e D(z) < D(x) \ {0} if w, € VT and 0 <max(}_ .\ wex) < 0+ wy;
e D(x) + D(x)\ {1} if w, € V™ and 0 <max(D_, oy wet) < 0 — w,.
Example 3. Let us illustrate the propagation of the summation constraint. Given

D(z1) = {1}, D(x2) = D(xs) = {0,1},
2%xx1 +4*xx0 +8%x23 > 3;

we know that at least one of xo and x3 must have value 1, but we cannot conclude that either one
of these variables is certainly zero or one. The propagator does not change any domains. On the
other hand, given

D(x1) = {1}, D(x2) = D(x3) = {0,1},
2%x1 +4xxo+8%xx3>7T;

the propagator determines that the constraint can never be satisfied if xs is false, so D(x3) = {1}.

Reified summation constraint. The second type of constraints we will use extensively is the reified
summation constraint. Reified constraints are a common construct in constraint programming
[62, 54]. Essentially, a reified constraint binds the truth value of a constraint C’ to a binary

variable b:
b+ C.

In principle, C’ can be any boolean constraint. In this article, C' will usually be a constraint on a
sum. In this case we speak of a reified summation constraint:

bHszxZH (6)

zeV

This constraint states that b is true if and only if the weighted sum of the variables in V' is higher
than . The most important constraint propagation that occurs for this constraint is the one that
updates the domain of variable b. Essentially, the domain of this variable is updated as follows:

e D(b) < D(b) \ {1} if max(}_, oy wax) < 0;
e D(b) <= D(b) \ {0} if min(}_, oy wew) > 0.

In addition, in some constraint programming systems, constraint propagators can also simplify
constraints. In this case, if D(b) = {1}, the reified constraint can be simplified to the constraint
Y wey Wex > 05 if D(b) = {0}, the simplified constraint becomes ) w2 < 6.

Many different constraint programming systems exist. They differ in the types of variables they
support, the constraints they implement, the way backtracking is handled and the data structures
that are used to store constraints and propagators. Furthermore, in some systems constraints are
specified in logic (for instance, in the constraint logic programming system ECLiPSe [3]), while
in others the declarative primitives are embedded in an imperative programming language. An
example of the latter is Gecode [47], which we use in the experimental section of this article.



Tid Itemset Td A B C D E
7n  {B} 1 0O 1 0 0 0
T, {E} 2 0 0 0 0 1
Ty {AC} 3 1 0 1 0 0
7. {AE} 4 1 0 0 0 1
Ts  {B,C} 5 0 1 1 0 0
Ts {DE} 6 0 0 0 1 1
T; {C,D,E} 7 0 0 1 1 1
Ts {AB,C} 8 1 1 1 0 0
T, {ABE} 9 1 1 0 0 1
T {AB,CE} 0 1 1 1 0 1

Figure 1: A small example of an itemset database, in multiset notation (left) and in binary matrix notation (right)

3. Frequent Itemset Mining

Now that we have introduced the key concepts underlying constraint programming (CP), we
study various itemset mining problems within this framework. We start with frequent itemset
mining in the present section, and then discuss closed, discriminative and cost-based itemset mining
in the following sections. For every problem, we provide a formal definition, then introduce a
constraint programming model that shows how the itemset mining problem can be formalized as
a CP problem, and then compare the search strategy obtained by the constraint programming
approach to that of existing itemset mining algorithms.

We start with the problem of frequent itemset mining and we formulate two CP models for
this case. The difference between the initial model and the improved one is that the later uses
the notion of reified constraints, which yields better propagation as shown by an analysis of the
resulting search strategies.

3.1. Problem Definition

The problem of frequent itemset mining was proposed in 1993 by Agrawal et al. [1]. Given is
a database with a set of transactions®. Let Z = {1,...,m} be a set of items and A = {1,...,n}
be a set of transaction identifiers. An itemset database D is as a binary matrix of size n x m with
Dy; € {0,1}, or, equivalently, a multi-set of itemsets I C Z, such that

D' = {(t,I)|te A, ICTI,Viel:Dy,=1}

A small example of an itemset database is given in Figure 1, where for convenience every item is
represented as a letter.

There are many databases that can be converted into an itemset database. The traditional
example is a supermarket database, in which each transaction corresponds to a customer and
every item in the transaction to a product bought by the customer. Attribute-value tables can
be converted into an itemset database as well. For categorical data, every attribute-value pair
corresponds to an item and every row is converted into a transaction.

The coverage ¢p(I) of an itemset I consists of all transactions in which the itemset occurs:
pep(I)={te A|Viel: Dy =1}
The support of an itemset I, which is denoted as supporty(I), is the size of the coverage:
supportp (1) = ep(I)] -
In the example database we have pp({D, E}) = {Ts,T7} and supporty({D,E}) = [{T6, T7} = 2.

3Ttemset mining was first applied in a supermarket setting; the terminology still reflects this.



Figure 2: A visualization of the search space for the database of Figure 1; frequent itemsets for 6 = 2 are highlighted.
Frequent closed itemsets are highlighted black; non-closed frequent itemsets are grey.

Definition 2 (Frequent Itemset Mining). Given an itemset database D and a threshold 0, the
frequent itemset mining problem consists of computing the set

{I|I CZ,supporty(I) > 0}.

The threshold 0 is called the minimum support threshold. An itemset with supportp(I) > 6 is
called a frequent itemset.

Note that we are interested in finding all itemsets satisfying the frequency constraint.

The subset relation between itemsets defines a partial order. This is illustrated in Figure 2 for
the example database of Figure 1; the frequent itemsets are visualized in a Hasse diagram: a line
is drawn between two itemsets I; and Iy iff Iy C I and |Ix| = |I1] + 1.

By changing the support threshold, an analyst can influence the number of patterns that is
returned by the data mining system: the lower the support threshold, the larger the number of
frequent patterns.

3.2. Initial Constraint Programming Model

Our model of the frequent itemset mining problem in constraint programming is based on the
observation that we can formalize the frequent itemset mining problem also as finding the set:

Here we make the set of transactions T' = @p(I) explicit. This yields the same solutions as the
original problem because the set of transactions 7" is completely determined by the itemset I. We
will refer to T' = ¢p(I) as the coverage constraint while |T| > 6 expresses a support constraint.

To model this formalization in CP, we need to represent the set of items I and the set of
transactions T'. In our model we use a boolean variable I; for every individual item ¢; furthermore
we use a boolean variable T; for every transaction ¢. An itemset [ is represented by setting I; = 1
for all i € [ and I; = 0 for all ¢ ¢ I. The variables T; represent the transactions that are covered
by the itemset, i.e. T = o(I); Tz = 1 iff t € p(I). One assignment of values to all I; and T}
corresponds to one itemset and its corresponding transaction set.

We now show that the coverage constraint can be formulated as follows.



Property 1 (Coverage Constraint). Given a database D, an itemset I and a transaction set T,
then

T=gp(l)e (Vte A:Ti=1 « Y Li(l—Dy)=0), (7)
€T
or equivalently,
T=¢p(I)= MVteA:T,=1 « N\(Du=1VI=0), (8)
€T

where I;, T; € {0,1} and I; =1 4ffi € T and Ty =1 iff t € T

Proof. Essentially, the constraint states that for one transaction ¢, all items ¢ should either be
included in the transaction (Dy; = 1) or not be included in the itemset (I; = 0):

T=pp(I) = {teAViel:D,;=1}
—Vte A : Ti=1<Viel:Dy=1
—=VvVteAd : Ty=1Viel:1-Dy;=0.
—=Vte A Tt:1<—>ZIi(1—Dti):0.
i€Z
The representation as a clause in equation (8) follows from this. O

It is quite common in constraint programming to encounter different ways to model the same
problem or even the same conceptual constraint, as above. How propagation is implemented for
these constraints can change from solver to solver. For example, watched literals could be used
for the clause constraint, leading to different runtime and memory characteristics compared to a
setting where no watched literals are used. We defer the study of such characteristics to Section 7.

Under the coverage constraint, a transaction variable will only be true if the corresponding
transaction covers the itemset. Counting the frequency of the itemset can now be achieved by
counting the number of transactions for which 73 = 1.

Property 2 (Frequency Constraint). Given a database D, a transaction set T and a threshold 0,
then

T >0 < > T,>0, (9)
te A

where Ty € {0,1} and Ty =1 iff t € T.

We can now model the frequent itemset mining problem as a combination of the coverage
constraint (7) and the frequency constraint (9). To illustrate this, we provide an example of
our model in the Essence’ language in Algorithm 3. Essence’ is a solver-independent modeling
language; it was developed to support intuitive modeling, abstracting away from the underlying
solver technology [21].

We will now study how a constraint programming solver will search for the solutions given the
above model. A first observation is that the set of transactions is completely determined by the
itemset, so we need only to search over the item variables.

When an item variable is set (D(I;) = {1}) by the search, only the constraints that contain this
item will be activated. In other words, the frequency constraint will not be activated, but every
coverage constraint that contains this item will be. A coverage constraint is a reified summation
constraint, for which the propagator was explained in Section 2. In summary, when an item
variable is set, the following propagation is possible for the coverage constraint:

o if for some t: Y, 7 (1 — Dy;) * I > 0 then remove 1 from D(T;);

o if for some t: ), /(1 — Dy;) * I7*** = 0 then remove 0 from D(T}).



Algorithm 3 Fim_cp’s frequent itemset mining model, in Essence’

1: given NrT, Nrl : int

2: given TDB : matrix indexed by [int(1..NrT),int(1..NrI)] of int(0..1)
3: given Freq : int

4: find Items : matrix indexed by [int(1..NrI)] of bool

5: find Trans : matrix indexed by [int(1..NrT)] of bool

6: such that

7. § Coverage Constraint (equation (7))
8: forall t: int(1..NrT).
9:  Trans[t] <=> ((sum i: int(1..NrI). (1-TDB[t,i])*Items[i]) <= 0),

10: $ Frequency Constraint (equation (9))
11: (sum t: int(1.NrT). Trans[t]) >= Freq.

Once the domain of a variable T3 is changed, the support constraint will be activated. The support
constraint is a summation constraint, which will check whether:

Sy oTrer >0,

te A
If this constraint fails, we do not need to branch further and we can backtrack.

Example 4. Figure 3(a) shows part of a search tree for a small example with a minimum frequency
threshold of 2. Essentially, the search first tries to add an item to an itemset and after backtracking
it will only consider itemsets not including it. After a search step (indicated in green), the propa-
gators are activated. The coverage propagators can set transactions to 0 or 1, while the frequency
constraint can cause failure when the desired frequency can no longer be obtained (indicated by a
red cross in the two left-most branches).

Observe that in the example we branched on item 2 first. This follows the generic ‘most con-
strained’ variable order heuristic, which branches over the variable contained in most constraints
first (remember that the coverage constraints are posted on items that have a 0 in the matrix).
If item 1 would be branched over first, the search tree would be larger, as both branches would
have to determine separately that Iy = 1 does not result in a frequent itemset. An experimental
investigation of different branching heuristics is done in Section 7.

3.3. Improved Model

Inspired by observations in traditional itemset mining algorithms, we propose an alternative
model that substantially reduces the size of the search tree by introducing fine-grained constraints.
The main observation is that we can formulate the frequency constraint on each item individually:

Property 3 (Reified Frequency Constraint). Given a database D, an itemset I # ) and a trans-
action set T, such that T = op(I), then

T|>0=Viel: =1 — Y TiDy>0. (10)
te A

where I;, Ty € {0,1} and I; =1 4ffi €l and Ty =1 iff t € T

Proof. We observe that we can rewrite ¢p(I) as follows:

pp(I)={te AVi e I:Dy =1} = (| ep({i})
i€l

10



Using this observation, it follows that:

T|>60 < |[Vep({i})| =0
Jjerl

— Viel:ep({ihn[eo{ih)] 20
Viel:|lep({i}))NT| >0

<
— ViEI:L-:lﬁZTtDMZH.
te A

O

The improved model consists of the coverage constraint (equation (7)) and the newly introduced
reified frequency constraint (equation (10)). This model is equivalent to the original model, and
also finds all frequent itemsets.

The reified frequency constraint is posted on every item separately, resulting in more fine-
grained search-propagation interactions. Essentially, the reified frequency constraint performs a
kind of look-ahead; for each item, a propagator will check whether that item is still frequent given
the current itemset. If it is not, it will be removed from further consideration, as its inclusion
would make the itemset infrequent. In summary, the main additional propagation allowed by the
reified constraint is the following:

o if for some i: ), Dy * T{"*® < 0 then remove 1 from D(I;), i.e. I; = 0.

Example 5. Figure 8 shows the search trees of both the original non-reified model as well as the
improved model using the reified frequency constraint.

In the original model (Figure 3(a)), the search branches over Iy = 1, after which the propagation
detects that this makes the itemset infrequent and fails (left-most branch). In the reified model
(Figure 3(b)) the reified frequency propagator for I detects that this item is infrequent. When
evaluating the sum (0 T{"% 4 1% T3™% 4 0 % T4"%), it is easy to see that the mazimum is 1 < 2,
leading to I = 0 (second level). The same situation occurs for Is near the bottom of the figure.
This time, the propagator takes into account that at this point Ts = 0 and hence T3"** = 0.

The reified propagations avoid creating branches that can only fail. In fact, using the reified
model, the search becomes failure-free: every branch will lead to a solution, namely a frequent
itemset. This comes at the cost of a larger number of propagations. In Section 7 we experimentally
investigate the difference in efficiency between the two formulations.

3.4. Comparison

Let us now study how the proposed CP-based approach compares to traditional itemset mining
algorithms. In order to understand this relationship, let us first provide a short introduction to
these traditional algorithms.

The most important property exploited in traditional algorithms is anti-monotonicity.

Definition 3 (Anti-Monotonic Constraints). Assume given two itemsets I1 and Iz, and a predicate
p(I, D) expressing a constraint that itemset I should satisfy on database D. Then the constraint
is anti-monotonic iff VI, C Iy : p(Is, D) = p(I1,D).

Indeed, if an itemset I5 is frequent, any itemset I; C I is also frequent, as it must be included
in at least the same transactions as I». This property allows one to develop search algorithms
that do not need to consider all possible itemsets. Essentially, no itemset Iy D I; needs to be
considered any more once it has been found that I; is infrequent.
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Figure 3: Search-propagation interaction of the non-reified frequent itemset model (left) and the reified frequent
itemset model (right). A propagation step is colored in blue, a search step in green.

Starting a search from the empty itemset, there are many ways in which one could traverse the
search space, the most important ones being breadth-first search and depth-first search. Initial
algorithms for itemset mining were mostly breadth-first search algorithms, of which the APRIORI
algorithm is the main representative [2]. However, more recent algorithms mostly use depth-first
search. Given that most CP systems also perform depth-first search, the similarities between CP
and depth-first itemset mining algorithms are much larger than between CP and breadth-first
mining algorithms. An outline of a general depth-first frequent itemset mining algorithm is given
in Algorithm 4. The main observations are the following:

e if an item is infrequent in a database, we can remove the corresponding column from the
database, as no itemset will contain this item and hence the column is redundant.

e once an item is added to an itemset, all transactions not containing this item become irrele-

12



vant for the search tree below this itemset; hence we can remove the corresponding row from
the database.

The resulting database, which contains a smaller number of transactions having a smaller number
of items, is often called a projected database. Hence, every time that we add an item to an itemset,
we determine which items and transactions become irrelevant, and continue the search for the
resulting database, which only contains frequent items and transactions covered by the current
itemset. Important benefits are that the search procedure will never try to add items once they
have been found to be infrequent; transactions no longer relevant can similarly be ignored.

Please note the following detail: in the projected database, we only include items which are
strictly higher in order than the highest item currently in the itemset. The reason for this is that
we wish to avoid that the same itemset is found multiple times; for instance, we wish to find
itemset {1,2} only as a child of itemset {1} and not also as a child of itemset {2}.

Algorithm 4 Depth-First-Search(Itemset I, Database D)
: F=A{I}
: determine a total order R on the items in D
: for all items ¢ occurring in D do
create from D projected database D;, containing;:
- only transactions in D that contain ¢
- only items in D; that are frequent and higher than 4 in chosen order R
F := F U Depth-First-Search(I U {i},D;);
end for
return F

© PN DT Ewh

An important choice in this general algorithm is how the projected databases are stored. A
very large number of strategies have been explored, among which tid-lists and FP-trees [29]. Tid-
lists are most relevant here, as they compare best to strategies chosen in CP systems. Given an
item ¢, its tid-list in a database D is pp({i}). We can store this list as a list of integers [56], a
binary vector, or using variations of run-length encoding [49]. The projected database of a given
itemset [ is thus the set

{ G ep(TU{i}) | lep(T Ui} >0}

The interesting property of tid-lists is that they can easily be updated incrementally: if we
wish to obtain a tid-list for item j in the projected database of itemset {i}, this can be obtained
by computing ¢p({i}) N ep({j}), where D is the original database; for instance, in the case bit
vectors are used this is a binary AND operation, which most CPUs evaluate efficiently. The most
well-known algorithm using this approach is the Eclat algorithm [56].

An example of a depth-first search tree is given in Figure 4, using the same database as in
Figure 3; we represent the projected database using tid-lists. The order of the items is assumed
to be the usual order between integers. In the initial projected database, item 2 does not occur
as it is not frequent. Each child of the root corresponds to an itemset with one item.

Comparison with search using the CP model. We now compare the above descriptions of itemset
mining algorithms and constraint programming systems. Necessarily we need to restrict this
discussion to a comparison of high level principles; a detailed comparison of both approaches is
not possible without studying the data structures of specific constraint programming systems in
detail, which we consider to be out of the scope of this article; see [37] for a first attempt in that
direction.

We first consider the differences in the search trees when using our CP model as compared
to traditional mining algorithms. These differences can be understood by comparing the trees in
Figure 3 and Figure 4. In depth-first itemset mining, each node in the search tree corresponds to
an itemset. Search proceeds by adding items to it; nodes in the search tree can have an arbitrary
number of children. In CP, each node in the search tree corresponds to a domain, which in

13



Z[1i3 i4
tl t1 tl
2 t3 2

t3

T

{1}] i4 {3} 4 {4}
3 H o«
t2 t3

{1,4}|:| {3,4}|:|

Figure 4: The search tree for depth-first frequent itemset miners, for the same example as in Figure 3, where the
items are ordered by the natural order on integers. Each itemset has a corresponding projected database containing
only frequent items higher than the items chosen so far. For instance, the projected database for itemset {4} is
empty as items 1 and 3 are lower than 4; the database of {1} does not contain item 3 as {1, 3} is not frequent.

our model represents a choice for possible values of items and transactions. Search proceeds by
restricting the domain of a variable. The resulting search tree is always binary, as every item is
represented by a boolean variable that can either be true or false (include or exclude the item).

We can identify the following relationship between nodes in the search tree of a CP system
and nodes in the search tree of itemset miners. Denoting by D(I;) the domain of item variable I;
in the state of the CP system, we can map each state to an itemset as follows:

{ieZ| D) ={1}}.

Essentially, in CP some branches in the search tree correspond to an assignment D(I;) = {0} for
an item ¢ (i.e. the item 4 is removed from consideration). All nodes across a path of such branches
are collapsed in one node of the search tree of the itemset miner, turning the binary tree in an
n—ary tree.

Even though it might seem that this different perception of the search tree leads to a higher
memory use in CP systems, this is not necessarily the case. If the search tree is traversed in
the order indicated in Figure 3(b), once we have assigned value D(I;) = {0} and generated the
corresponding child node, we no longer need to store the original domain D with D(I;) = {0,1}.
The reason is that there are no further children to generate for this original node in the search
tree; if the search returns to this node, we can immediately backtrack further to its parent (if any).
Hence, additional memory only needs to be consumed by branches corresponding to D(I;) = {1}
assignments. This implies that in practice the efficiency depends on the implementation of the
CP system; it does not depend on the theoretically different shape of the search tree.

In more detail these are the possible domains for the variables representing items during the
search of the CP system:

e D(I;) = {0, 1}: this represents an item that can still be added to the itemset, but that cur-
rently is not included; in traditional itemset mining algorithms, these are the items included
in the projected database;

e D(I;) = {0}: this represents an item that will not be added to the itemset. In the case of
traditional itemset mining algorithms, these are items that are neither part of the projected
database nor part of the current itemset;

e D(I;) = {1}: this represents an item that will be part of all itemsets deeper down the search
tree; in the case of traditional algorithms, this item is part of the itemset represented in the
search tree node.

Similarly, we have the transaction variables:
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e D(T;) = {0,1}: this represents a transaction that is covered by the current itemset (since 1
is still part of its domain), but may still be removed from the coverage later on; in traditional
algorithms, this transaction is part of the projected database;

e D(T;) = {0}: this represents a transaction that is not covered by the current itemset; in
traditional algorithms, this transaction is not part of the projected database;

e D(T;) = {1}: this represents a transaction that is covered by the current itemset and that
will be covered by all itemsets deeper down the search tree, as the transaction contains all
items that can still be added to the itemset; in traditional itemset mining algorithms, this
transaction is part of the projected database.

A second difference is hence which information is available about transactions during the search.
In our CP formalization, we distinguish transactions with domain D(T}) = {0,1} and D(T}) = {1}.
Frequent itemset mining algorithms do not make this distinction. This difference allows one to
determine when transactions are unavoidable: A transaction becomes unavoidable (D(T;) = {1}) if
all remaining items (1 € D(I;)) are included in it; the propagation to detect this occurs in branches
where items are removed from consideration. Such branches are not present in the itemset mining
algorithms; avoiding this propagation could be important in the development of new constraint
programming systems.

Thirdly, to evaluate the constraints, CP systems store constraints or propagators during the
search. Essentially, to every node in the search tree a state is associated that reflects active
constraints, propagators and variables. Such a state corresponds to the concept of a projected
database in itemset mining algorithms. The data structures for storing and maintaining prop-
agators in CP systems and in itemset mining algorithms are however often very different. For
example, in itemset mining efficient data representations such as tid-lists and fp-trees have been
developed; CP systems use data structures for storing both propagators and constraints, which
may be redundant in this problem setting. For instance, while in depth-first itemset mining, a
popular approach is to store a tid-list in an integer array, CP systems may use both an array to
store the indexes of variables in a constraint, and use an array to store a list of constraints watch-
ing a variable. Resolving these differences however requires a closer study of particular constraint
programming systems, which is outside the scope of this paper.

Overall, this comparison shows that there are many high-level similarities between itemset
mining and constraint programming systems, but that in many cases one can also expect lower-
level differences. Our experiments will show that these low-level differences can have a significant
practical impact, and hence that an interesting direction for future research is to bridge the gap
between these systems.

4. Closed Itemset Mining

Even though the frequency constraint can be used to limit the number of patterns, the con-
straint is often not restrictive enough to find useful patterns. A high support threshold usually
has as effect that only well-known itemsets are found; for a low threshold the number of patterns
is often too large. To alleviate this problem, many additional types of constraints have been in-
troduced. In this and the following sections, we will study how three further representative types
of constraints can be formalized as constraint programming problems. Closed itemset mining
aims at avoiding redundant itemsets, discriminative itemset mining wants to find itemsets that
discriminate two classes of transactions, and cost-based constraints are representative for a fairly
general class of constraints in the monotonicity framework.

4.1. Problem Definition

Condensed representations aim at avoiding redundant itemsets, which are itemsets whose nec-
essary presence in the full solution set may be derived from other itemsets found by the algorithm.
The closedness constraint is a typical constraint that is used to find such a condensed representa-
tion [40]. We now introduce the closedness constraint more formally.
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One way to interpret itemsets, is by seeing them as rectangles of ones in a binary matrix. For
instance, in our example database of Figure 1 on page 7, for itemset {D} we have corresponding
transactions {74, T7}. The itemset { D} and the transaction set {Tg,T7} select a submatrix which
can be seen as a rectangle in the matrix. Observe that due to the way that we calculate the set of
transactions from the set of items, we cannot add a transaction to the set of transactions without
including a zero element in the rectangle. However, this is not the case for the columns. In this
case, we have o({D}) = o({D, E}) = {T6,T7}; we can add item F and still obtain a rectangle
containing only ones. Closed itemset mining can be seen as the problem of finding maximal
rectangles of ones in the matrix.

An essential property of ‘maximal’ rectangles is that if we consider its transactions, we can
derive the corresponding set of items: the largest itemset shared by all transactions must define
all columns included in the rectangle. This leads us to the following definition of closed itemset
mining.

Definition 4 (Frequent Closed Itemset Mining). Given a database D, let 1p(T) be defined as
Yp(T)={ieZ|VteT Dy =1}.
Given a threshold 0, the frequent closed itemsets are the itemsets in
{111 €I, supportp(I) = 0, vp(ep(1)) =1}

Given an itemset I, the itemset ¥p(pp(I)) is called the closure of I. Closed itemsets are those
which equal their closure.

If an itemset is not equal to its closure, this means that we can add an item to the itemset
without changing its support. Closed itemsets for our example database are highlighted in black
in Figure 2.

The idea behind closed itemsets has also been studied in other communities; closed itemset
mining is in particular closely related to the problem of finding formal concepts in formal contexts
[23]. Essentially, formal concepts can be thought of as closed itemsets that are found without
applying a support threshold. In formal concept analysis, the operators ¢ and 1 are called Galois
operators. These operators define a Galois connection between the partial orders for itemsets and
transaction sets, respectively.

4.2. Constraint Programming Model

Compared to frequent itemset mining, the additional constraint that we need to express is
the closedness constraint. We can deal with this constraint in a similar way as with the coverage
constraint. Assuming that T represents the set of transactions covered by an itemset I, the
constraint that we need to check is the following:

Yp(T) =1, (11)

as in this case ¥p(¢p(I)) = I. This leads to the following constraint in the CP model, which
should be posted together with the constraints in equation (7) and equation (10).

Property 4 (Closure Constraint). Given a database D, an itemset I and a transaction set T,
then

I=yp(T) <= (VieI: ;=1 < » T,(1-Dy)=0), (12)
teA

where I;, Ty € {0,1} and ; =1 iffi € I and Ty =1 iff t € T.

The proof is similar to the proof for the coverage constraint.
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4.8. Comparison

Several classes of algorithms have been proposed for closed itemset mining, each being either
an extension of a breadth-first algorithm such as Apriori, or a depth-first algorithm, operating on
tid-lists or fp-trees. We limit ourselves here to depth-first mining algorithms once more.

Initial algorithms for mining closed itemsets were based on a repository in which closed itemsets
were stored. The search is performed by a depth-first frequent itemset miner which is modified as
follows:

e when it is found that all transactions in a projected database contain the same item, this
item is immediately added to the itemset as without it the itemset cannot be closed;

e for each itemset I; found in this way, it is checked in the repository whether an itemset
I, O I; has been found earlier which has the same support; if not, the itemset is stored
in the repository and the search continues; otherwise the closed supersets, starting with I,
have already been found earlier as children of I3 so this branch of the search tree is pruned.

The first modification only checks items that are in the projected database, which are by con-
struction items ¢ > max(I) that are higher in the lexicographic order. The repository is needed
to check whether there is no superset with an additional item i < maz(I); this is what the second
modification does. With an appropriate search order only closed itemsets are stored [43].

This procedure works well if the number of closed sets is small and the database is large. When
the number of closed itemsets is large storing itemsets and searching in them can be costly. The
LCM algorithm addresses this problem [51]. In this algorithm also for the items ¢ < max(I) it is
checked in the data whether they should be part of the closure, even though the depth-first search
procedure does not recurse on such items.

Constraint Propagation. The additional constraint (12) for closed itemset mining is similar to the
coverage constraint and hence its propagation is also similar. When all remaining transactions
(i.e. those for which 1 € D(T})) contain a certain item, the propagator will:

e change the domain of the item i to D(I;) = {1} if 1 € D(L;);
o fail if 1 & D(I;).

Hence, in this case we do not have failure-free search; if the closure constraint requires the inclusion
of an item in the closure that cannot be included, the search will backtrack.

Overall this behaviour is very similar to that of the LCM algorithm: essentially we are perform-
ing a backtracking search without storing solutions, in which items in the closure are immediately
added and some branches are pruned as they fail to satisfy an order constraint. The main dif-
ference between LCM and the CP system is as in the previous section: other data structures are
used and the search tree is differently organized.

5. Discriminative Itemset Mining

Itemset mining was initially motivated by the need to find rules, namely association rules.
However, in the problem settings discussed till now, no rules were found; instead we only found
conditions and no consequents. In this section we study the discovery of rules in a special type of
transactional data, namely, data in which every transaction is labeled with a (binary) class label.
The task is here to find itemsets that allow one to discriminate the transactions belonging to one
class from those belonging to the other class. As it turns out, integrating this constraint efficiently
in constraint programming requires the addition of a new primitive to the constraint programming
system that we used till now. On the one hand this shows the limits of the declarative approach
presented till now; on the other hand, our results demonstrate the feasibility of adding new data
mining primitives as global constraints. Furthermore, as we will see, the application of the CP
principles in the development of a new constraint propagator turns out to be crucial in improving
the performance of existing mining systems.
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Tid Itemset Class

7. {B} -
. {E} -
Ts {AC} -
T, {AE} -
Ts {B,C} +
Ts {D,E} -
T {CD,E} -
Ts {AB,C} +
To {ABE} -
Tw {AB,CE} +

Figure 5: A small example of a class-labelled itemset database, in multiset notation

5.1. Problem Definition

To illustrate the problem of discriminative itemset mining, consider the database given in
Figure 5. We are interested in finding itemsets that discriminate transactions in different classes
from one another. In the example database, for instance, the itemset {B, C'} almost only occurs
in the positive examples, and hence can be thought to discriminate positive transactions from
negative ones, leading to the rule {B,C} — +.

Whereas we will refer to this mining problem here as the problem of discriminative itemset
mining [35, 12, 20], it is also known under many other names, such as correlated itemset mining
[48, 39], interesting itemset mining [31], contrast set mining [4], emerging itemset mining [19] and
subgroup discovery [55, 32, 27]. The problem is also highly related to that of rule learning in
machine learning [22]. The key difference is that rule learning in machine learning usually uses
heuristic techniques, while in itemset mining typically exhaustive techniques are used to find the
global optimum.

Even though in the general case a target attribute may have multiple values, we will restrict
ourselves to the case where the target attribute has two values: positive and negative. We refer
to the part of the database for which the target attribute is positive as DT, and the part for
which the target attribute is negative as D~. The set of transactions identifiers appearing in the
corresponding parts is indicated by AT and A~. We define the stamp point of an itemset I as
o(I) = (|supportp+ (I)|, |supporty—- (I)]). Hence the stamp point of an itemset is a vector (p,n)
where p is the frequency of this itemset in DT and n is the frequency of this itemset in D~.
Given these numbers, we can compute a discrimination score f(p,n). For itemsets, the stamp
point o(I) = (p,n) is used to calculate the score f(o(I)), written f(I) in short. Examples of
discrimination measures f include x?, information gain, gini index, Fisher score and others. For
example x? is a well-known measure of correlation in statistics:

(0 - G52 [DH? (n— G5 D))

2 D] D]
X“(p,n) = +
{5tk - D] G5 1D
D|— n — D|— n _
(P —p— PggEm o) (| —n - P e
D|— n D|— n _
| I‘é17‘+),|p+| | I‘ép‘-l-),|p |

where it is assumed that 0/0 = 0. An illustration of this measure is given in Figure 6. The domain
of stamp points [0, |DT|] x [0,|D~]] is often called PN-space.
Essentially, we are interested in finding itemsets which are as close as possible to the maxima
in one of the opposite corners; the x2 measure scores higher the closer we are to these maxima.
A discrimination measure can be used in a constraint in several ways. We will limit ourselves
to the following two cases.
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Figure 6: Left: Plot of the x2 measure and a threshold at x2 = 20. Right: isometric of the threshold in PN space.

Definition 5 (Discriminative Itemset Mining). Given a database D, a discrimination measure f
and a parameter 0, the discriminative itemset mining problem is that of finding all itemsets in

{IIICZ f(I) =6}

Definition 6 (Top-k Discriminative Itemset Mining). Given a database D, a discrimination mea-
sure [ and a value k, the top-k discriminative itemset mining problem is the problem of finding
the first k elements of the list [I1,Ia,...,I] consisting of all itemsets I C T downward sorted by
their f(I) values.

In other words, the set of k patterns that score highest according to the discrimination measure.
For k =1 this corresponds to finding argmax;cz f(I).

5.2. Constraint Programming Model

The discrimination constraint can be expressed in a straightforward way. In addition to the
variables T; and I; we introduce two new variables p and n, calculated as follows:

p= Z T, n= Z T,. (14)

teAt teA~

Remember that AT and A~ represent the set of transaction identifiers in the positive database
DT and negative database D~ respectively. The discrimination constraint is now expressed as
follows.

Property 5 (Discrimination Constraint). Given a database D, a transaction set T, a discrimi-
nation measure f and a threshold 0, an itemset is discriminative iff

flp,n) =0,
where p and n are defined as described in equation (14).

Such a constraint could be readily expressed in CP systems; essentially, a discrimination mea-
sure such as x2 is composed of a large number of mathematical operations on the variables p, n,
|A~| and |AT|. By carefully decomposing the measure into simple operations using intermediate
variables, CP systems may be able to maintain bound consistency. This approach would however
be cumbersome (for instance, in the case of the x? function we would need to rewrite the formula
to take care of the division by zero) and it is not guaranteed that rewriting its formula leads to
an efficient computation strategy for all discrimination measures.

Hence, we propose a more robust approach here, which requires the addition of a new constraint
in a CP system to enable the maintenance of tighter bounds for discrimination measures with ‘nice’
properties. Adding specialized global constraints is common practice in CP [45] and hence well
supported in systems such as Gecode. The main observation that we use in this case is that many
discrimination measures, such as x?2, are zero on the diagonal and convex (ZDC).
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Figure 7: Illustration of a rectangle of stamp points in PN space; within the rectangle [p1,p2] X [n1,n2], a ZDC
measure reaches its highest value in one of the two highlighted stamp points

Definition 7. A scoring function f is zero diagonal convex (ZDC) if it has the following two
properties:

e the function reaches its minimum in all stamp points on the diagonal in PN-space, i.e.,

Vo <a<1:f(a]AT],alA7])=0.

e the function is convex, i.e., for every pair of stamp points o # o’ it holds that

VO<a<l:flaoc+(1—a)d)<af(o)+(1—a)f(c).

Theorem 1. Fisher score, information gain, gini index, and x? are ZDC measures.

Definitions, as well as independent, alternative proofs of this theorem, can be found in [12,
34, 35]. The plot of x? in Figure 6 illustrates these two properties: the function is zero on the
diagonal and convex.

For a ZDC measure the following can be proved.

Theorem 2 (Maximum for ZDC Measures). Let f be a ZDC measure and 0 < p; < py and
0 <ni <ng. Then

max f(o1,09) = max{f(p1,n2), f(p2,m1)}
(01,02)€[p1,p2] X [n1,m2]
Proof. The proof is similar to that of [35]. First, we observe that the function is convex. Hence,
we know that the maximum in a space [p1, p2] X [n1,n2] is reached in one of the points (p1,n1),
(p1,n2), (p2,n1) and (p2,n2). Next, we need to show that we can ignore the corners (p1,n1) and
(p2,n2). Observing that the minimum is reached on the diagonal, we can distinguish several cases.

If ny/|A~] < p1/|AT|, the point (p1,n1) is ‘below’ the diagonal. We know for the point
(%nl,nl) on the diagonal that f(‘lﬁ—jl‘nl,nl) = 0. Due to the convexity we know then that

A+
FHEE1,m) = 0 < f(pr,m1) < f(pa,ma).
Similarly, we can show that if (p;,n;) is above the diagonal that f(p1,n1) < f(p1,n2); that

f(p2,mn2) < f(p2,n1) if (p2,na) is below the diagonal; and that f(p2,n2) < f(p1,ne) if (p2, na) is
above the diagonal. O

The bound states that to find the highest possible score in a rectangle of points, it suffices to
check two corners of the rectangle. This is illustrated in Figure 7, where a rectangle [p1, p2] X [n1, na)
is highlighted; the maximum on a ZDC measure is reached in one of the two corners (p2,n1) and
(p1,n2). This property can be used to implement a propagator for a discrimination constraint.
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Similar to the model for standard frequent itemset mining, we can improve the model by post-
ing the discrimination constraint on each item individually, leading to the reified discrimination
constraint:

VieZ:Li=1-f(Y TiDu, Yy TiDy)>0 (15)
te At te A-

Our CP model of discriminative itemset mining is a combination of this constraint and the coverage
constraint in equation (7).
The propagator for the above constraint is obtained by applying Theorem 2:

Algorithm 5 Conceptual propagator for I; =1 — f(>_,c 4+ TtDti, D oy n- TtDri) > 0
1. if D(I;) = {1} then

post constraint f(>,c 4+ TtDri, Y pea- TtDri) > 0
: else

upper = max{f(},c 4+ T/ Di, >pea- 17" Dys),

2

3

4

5 F (e T Dy, Sy TP Dy}
6: if upper < 6 then
7

8

9

D(L;) = D(I;) \ {1}
end if
: end if

To understand this propagator, consider the example in Figure 7, where we have marked the
curve f(p,n) = 6 for a particular value of §. Due to the convexity of the function f, stamp
points for which f(p,n) > 6 can be found in the lower-right and upper-left corner. None of the
stamp points in (p,n) € [p1,p2] X [n1,n2], where p1 = >, 4+ T{"" Dy, p2 = 3 e g+ 11" D
1= yea LDy and ng = Y, 4 T Dy, satisfies f(p,n) > 6 in the figure; this can easily
be checked by the propagator by determining that f(p1,n2) < 8 and f(p2,n1) < 0.

5.83. Comparison

Traditional discriminative itemset mining algorithms essentially proceed by updating frequent
itemset mining algorithms such that a different anti-monotonic constraint is used during the search.
This constraint is based on the derivation of an upper-bound on the discrimination measure [35].

Definition 8 (Upper-Bound). Given a function f(p,n), function g(p,n) is an upper-bound for f
ifVp,n: f(p,n) < g(p,n).

In the case of itemsets it is said that the upper-bound is anti-monotonic, if the constraint
g(I) > 0 is anti-monotonic. The following upper-bound was presented by Morishita and Sese for
ZDC measures [35].

Theorem 3 (Upper-Bound for ZDC Measures). Let f(p,n) be a ZDC measure, then g(p,n) =
max(f(p,0), f(0,n)) is an upper-bound for f(p,n) and g(I) > 6 is an anti-monotonic constraint.

Proof. The fact that this function is an upper-bound follows from Theorem 2, where we take
p1 =n1 =0, pa = 01(I) and ng = 02(I). The anti-monotonicity follows from the fact that f(p,0)
and f(0,n) are monotonically increasing functions in p and n, respectively. p and n represent the
support of the itemset in the positive and negative databases DT and D~ respectively, which are
anti-monotonic as well. O

The bound is illustrated in Figure 8. Given the threshold # in this figure, the itemset I
with stamp point (p,n) = o(I) will not be pruned, as at least one of f(p,0) or f(0,n) has a
discrimination score that exceeds the threshold 6.

This bound is used in an updated frequent itemset miner, of which the main differences are:

e we need to be able to compute the support in the two classes of data separately. This can
be achieved both using tid-list and fp-trees;

21



p-axis

fto.n)=0 .~

p2g————m—”

Figure 8: Stamp points (p2,0) and (0, n2) are upper bounds for the itemset I with (p2,n2) = o(I).

e to prune items from the projected database, instead of a support constraint, a constraint on
the upper-bound of the discrimination score is used: a subtree of the search tree is pruned
iff g(I) < 6, where 6 is the threshold on the score (or the score of the kth best itemset found
so far in top-k mining).

In case we do not wish to find all discriminative patterns with a score above 6, but instead the
top-k patterns with the highest discriminative score, a branch-and-bound search strategy can be
employed. In top — 1 branch-and-bound search, the bound on the discrimination score f(p,n) is
increased as patterns with a higher score are found. For top — k branch-and-bound search, the
bound is set to that of the k-th pattern.

Constraint Propagation. Intuitively, when we compare Figures 7 and 8, we can see that the search
would continue for the itemset in Figure 8 because the maximum reachable score is measured in
the points (p2,0) and (0,nz), for which the score is above the threshold . On the other hand
the search would stop in Figure 7 because the maximum the itemset can reach is measured in
(p2,n1) and (p1,n2), for which the score is below the threshold. The difference is that in Figure 7
p1 and n are taken into account, which is the number of unavoidable transactions. As outlined
on page 15, unavoidable transactions are transactions for which min D(T;) = 1. So instead of
having to use the upper-bound of Theorem 3, which does not take unavoidable transactions into
account, we can use Theorem 2, which offers a much tighter bound, especially in the case of many
unavoidable transactions.

Using the reified discrimination constraint leads to fine-grained interaction between search and
propagation similar to the reified frequency constraint in Section 3.3; Excluding an item from the
itemset by reducing its domain to D(I;) = {0}, can lead to the following propagation loop:

1. some transactions become unavoidable and are changed to D(T};) = {1};

2. D(T};) having changed, the reified discrimination constraints are checked; possibly a con-
straint detects that some item can no longer be included in the itemset and the item’s
domain is reduced to D(I;) = {0};

3. return to step 1.

This propagation loop is illustrated in Figure 9. It is absent in traditional discriminative item-
set miners, which use the more simple bound g(I). We will experimentally verify whether it is
beneficial to perform the additional proposed propagation in Section 7.

6. Itemset Mining with Costs

In cases where the mining process still yields a very large set of patterns, additional constraints
can reduce the number of patterns. Several papers have studied alternative constraints to the
support constraint, which has lead to the concepts of monotonic, anti-monotonic and convertible
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Figure 9: Illustration of the possible propagation for discriminative itemset mining; this propagation loop was not
vet studied in specialized itemset mining algorithms. In step 1 we have itemset {2}; we find out that itemset {2, 6}
can not reach the desired score and hence item 6 is excluded from consideration. As a result, some transactions
may become unavoidable. Consequently, itemset {2, 4} may now be known not to reach the threshold and item {4}
is excluded from consideration.

anti-monotonic constraints. The prime example on which these concepts have been illustrated
both in theory and in practice are constraints in which a cost, or weight, is associated with every
item. In this section, we review these constraints and then show how they can be handled in the
constraint programming approach.

6.1. Problem Definition

Essentially, every item i now has an associated weight c(i), often called the cost? of the item.
Let us now define the total cost of an itemset as

()= cli).

el
Then we may be interested in finding itemsets for which we have a high total cost [42, 10, §].

Definition 9 (Frequent Itemset Mining with Minimum Total Cost). Given a database D and two
parameters 6 and 7y, the frequent itemset mining problem under a minimum cost constraint is the
problem of finding the itemsets in

{II CZ,supporty(I) > 0,c(I) >~}
Similarly, we can mine under maximum cost constraints and average cost constraints.

Definition 10 (Frequent Itemset Mining with Maximum Total Cost). Given a database D and
two parameters 0 and v, the frequent itemset mining problem under a mazximum cost constraint is
the problem of finding the itemsets in

{II CZ,supportp(l)>0,c(I) <~}.

Definition 11 (Frequent Itemset Mining with Minimum Average Cost). Given a database D
and two parameters 8 and vy, the frequent itemset mining problem under a minimum average cost
constraint is the problem of finding the itemsets in

{I'lI CZ,supportp(I)>0,c(I)/|I| > ~}.

Please note that a special case of cost-based itemset mining is achieved when ¢(i) = 1 for all s.
These constraints are usually referred to as size constraints. A minimum size constraint is similar
to a minimum support constraint: one is defined on the items, the other on the transactions.

4This terminology is again from the supermarket setting, where the cost of an item could be its price or profit.
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6.2. Constraint Programming Model

In analogy to the support constraint, cost constraints can be expressed in two ways, non-reified
and reified, and can be added to the usual support and coverage constraints in the CP model.

Property 6 (Non-reified Minimum and Maximum Total Cost Constraint). Given a database D,
an itemset I and a threshold v, then

e(I) S v = (Q_Tic(i) S ), (16)
i€
where S€ {<,<,>,>}, I; € {0,1} and I; = 1 iff i € I.

Property 7 (Reified Minimum and Maximum Total Cost Constraint). Given a database D, an
itemset I and a threshold v, if supportp(I) > 1 then

(1) S5 = (T =1 3" LDueli) S 7). (1)
i€T
where s€ {<, <, >, >}, ;€ {0,1}, =14ffie I and Ty =1 iff t€T.

Proof. This follows from the assumption that also the coverage constraint should hold; hence if
T; = 1 we know that for all ¢ with I; = 1 we must have Dy; = 1. Because supporty(I) > 1, we
know that there is at least one transaction for which T; = 1. O

Average cost constraints can be expressed by allowing for negative coeflicients.

Property 8 (Non-reified Minimum and Maximum Average Cost Constraint). Given a database
D, an itemset I and a transaction set T, then

D/ <7y = Y Lile(i) =) s 0), (18)
=
where SE {<, <, =,#,>,>} [, €{0,1} and I; = 1 iff i € I.
Proof. This follows from the following observation:
c)/Hs v cl) sl < (c(I) —7lI]) S 0.
O

The reified average cost constraints are obtained in a similar way as the reified total cost
constraints.

6.3. Comparison

All specialized algorithms for mining under cost constraints exploit that these constraints have
properties similar to anti-monotonicity.

Definition 12 (Monotonic Constraints). Assume given two itemsets I and Is, and a predicate
p(I,D) expressing a constraint. Then the constraint is monotonic iff VI, C I : p(I;,D) =

p(IQ,D)

Examples are maximum support and minimum cost constraints. Different approaches have
been proposed for dealing with monotonic constraints in the literature. We will discuss these
approaches separately, at the same time pointing out the relation to our models in CP.
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Minimum Total Cost Constraint: Simple Approach. The simplest depth-first algorithms developed
in the data mining community for dealing with monotonic constraints are based on the observation
that supersets of itemsets satisfying the constraint also satisfy the constraint. Hence, during the
depth-first search procedure, we do not need to check the monotonic constraint for children of
itemsets satisfying the monotonic constraint [41]. To emulate this behaviour in CP, we would only
check the satisfiability of the monotone constraint, and refrain from possibly propagating over
variables. This would result in branches of the search tree being cut when they can no longer
satisfy the constraint; the constraint would be disabled once it can no longer be violated.

Minimum Total Cost Constraint: DualMiner/Non-reified. More advanced is the specialized DualMiner
algorithm [10]. DualMiner associates a triplet (L, Icheck, Lout) With every node in the depth-first
search tree of an itemset miner. Element I, represents the itemset to which the node in the search
tree corresponds; I.peck and I,,: provide additional information about the search node. Items in
Icheck, are currently not included in the itemset, but may be added in itemsets deeper down the
search tree; these items are part of the projected database. For items in I,,; it is clear that they
can no longer be added to any itemset deeper down the search tree. Adding an item of I pecr to

I;, leads to a branch in the search tree. An iterative procedure is applied to determine a final
triplet (Zin, Icheck, Lout) for the new search node, and to determine whether the recursion should
continue:

e it is checked whether the set I, satisfies all anti-monotonic constraints. If not, stop.

e it is checked which individual items in I pecr, can be added to I;, and satisfy the anti-
monotonic constraints. Only those that do satisfy the constraints are kept in I .pecr, others
are moved to I ;.

e it is checked whether the set I, U I necr satisfies the monotonic constraints. If not, stop.
Every item ¢ € Iopecr for which itemset (I, U Iepecr)\{i} does not satisfy the monotonic
constraints, is added to I;,. (For instance, if the total cost is too low without a certain
item, we have to include this item in the itemset.) Finally, the procedure is iterated again
to determine whether I, still satisfies the anti-monotonic constraints.

If the loop reaches a fixed point and items are still left in I ;.. the search continues, unless it also
appears that I, U I pecr satisfies the anti-monotonic constraints and I, satisfies the monotonic
constraints; in this case the sets I.peck € I C Iy U Icpeck could immediately be listed.

A similar search procedure is obtained when the cost constraints are formulated in a non-reified
way in the CP system. As pointed out earlier, a non-reified minimum or maximum cost constraint
takes the following form:

Z Lic(I) s 7.

Propagation for this constraint is of the following kind:

e if according to current domains the constraint can only be satisfied when the CP system
includes (minimum cost constraint) or excludes (maximum cost constraint) an item, then
the system does so; this corresponds to moving an item to the I;, or I,,: set in DualMiner;

e if according to current domains the constraint can no longer be satisfied, backtrack;

e if according to current domains the constraint will always be satisfied the constraint is
removed from the constraint store.

Hence, the overall search strategy for the non-reified constraint is similar to that of DualMiner.
There are also some differences. DualMiner does not aim at finding the transaction set for every
itemset. If it finds that I, satisfies the monotonic constraint and I;, U I pecr satisfies the anti-
monotonic constraint, it does not continue searching, and outputs the corresponding range of
itemsets explicitly or implicitly. The CP system will continue enumerating all itemsets in the
range in order to find the corresponding transaction sets explicitly.
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Minimum Total Cost Constraint: FP-Bonsai/Reified. In the FP-BONSAI algorithm [7], the idea of
iteration till a fixed point is reached was extended to monotonic constraints. The main observation
on which this algorithm is based is that a transaction which does not satisfy the minimum cost
constraints, will never contain an itemset that satisfies the minimum cost constraint. Hence, we
can remove such transactions from consideration. This may reduce the support of items in the
projected database and result in the removal of more items from the database. The reduction in
size of some transactions may trigger a new step of propagation.
If we consider the reified minimum cost constraint,

Ty =1- Y Lic(I)Dy >,

2

we can observe a similar propagation. Propagation essentially removes a transaction from con-
sideration when the constraint can no longer be satisfied on the transaction. The removal of
this transaction may affect the support of some items, requiring the propagators for the support
constraints to be re-evaluated.

Note that the reified constraint is less useful for a maximum total cost constraint, ¢(I) < ~.
Essentially, for every transaction only items already included in the itemset can be considered.
If the sum of these items is to large, the transaction is removed from consideration. This would
happen for all transactions separately, leading to a failed branch. Overall, the propagation is
expensive to evaluate (as it needs to be done for each transaction) and not as effective as the
non-reified propagator which can also prune items from consideration instead of only failing.

Thus the reified and non-reified form are complementary to each other. We can obtain both
types of propagation by posting constraints of both types in a CP system.

Minimum and Mazimum Average Cost Constraints. Average cost constraints are neither mono-
tonic nor anti-monotonic. Still, they have a property that is related to that of monotonic and
anti-monotonic constraints.

Definition 13 (Convertible Anti-Monotonic Constraints). Assume given two itemsets Iy and I,
a predicate p(I, D) expressing a constraint, and an order < between items. Then the constraint
is convertible anti-monotonic for this order iff VIy C I,min(Iz \ I1) > max([;) : p(I2,D) =
p(Il N D) .

For example, if the items are ordered according to increasing cost ¢(I), when adding items that
are more expensive than the current items, the average cost can only increase. For a decreasing
order in item cost, the minimum average cost constraint is convertible anti-monotonic. Different
orderings will not result in anti-monotonic behaviour, i.e. if after adding expensive items an item
with a low cost would be added, the average cost would go down. Note that a conjunction of
maximum and minimum cost constraints is hence not convertible anti-monotonic, as we would
need opposing orders for each of the two constraints.

Essentially our formalization in CP of average cost constraints is very similar to that of total
cost constraints, the main difference being that negative costs are allowed. Consequently, depend-
ing on the constraint (minimum or maximum) and the weight (positive or negative) either the
maximum value in the domain or the minimum value in the domain is used in the propagator.
In the non-reified form, we obtain propagation towards the items; in the reified form towards the
transactions.

This search strategy is fundamentally different from the search strategy used in specialized
mining systems, in which the property is used that one average cost constraint is convertible anti-
monotonic. Whereas in specialized systems the combination of multiple convertible constraints
poses problems, in the CP-based approach this combination is straightforward.

Conclusions. Interestingly, when comparing models in CP and algorithms proposed in the data
mining community, we can see that there are many similarities between these approaches. The
different approaches can be distinguished based on whether they represent a reified or an non-
reified constraint. The main advantage of the constraint programming approach is that these
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approaches can also easily be combined. This advantage is also evident when combining convertible
constraints; specialized algorithms can only optimize on one such constraint at the same time.

7. Experiments

In previous sections we concentrated on the conceptual differences between traditional algo-
rithms for itemset mining and constraint programming; we showed that itemset mining can be
modelled in constraint programming. In the present section, we first consider several choices that
have to be made when implementing itemset mining in a constraint programming framework and
evaluate their influence on the performance of the mining process. More specifically, we answer
the following two questions about such choices:

QA What is the difference in performance between using reified versus non-reified constraints of
itemset mining?

QB What is the effect of the different variable orderings on the performance of itemset mining?

Further (more technical and system dependent) choices made in our implementation are explained
in Appendix A for completeness and reproducibility. All used implementations are also available
on our website: http://dtai.cs.kuleuven.be/CP4IM/.

We use the best approach resulting from the above experiments to experimentally compare
our constraint programming framework CP4IM to state-of-the-art itemset mining systems. More
specifically, our comparative experiments focus on answering the following questions:

Q1 What is the difference in performance of CP4IM for frequent itemset mining and traditional
algorithms?

Q2 What is the difference in performance of CP4IM for closed itemset mining and traditional
algorithms?

Q3 Is the additional propagation in CP4IM for discriminative itemset mining beneficial? If so,
how much?

Q4 Is the alternative approach for dealing with convertible constraints in CP4IM beneficial? If
so, how much?

We ran experiments on PCs with Intel Core 2 Duo E6600 processors and 4GB of RAM,
running Ubuntu Linux. The experiments are conducted using the Gecode constraint programming
system [24]. Gecode® is an open source constraint programming system which is representative
for the current state-of-the-art of efficient constraint programming.

The starting point for our experiments was Gecode version 2.2.0. In the course of our experi-
ments we tried several formulations and implemented alternative propagators, explained in detail
in Appendix A, some of which are now included in Gecode by default.

7.1. Data Sets

In our experiments we used data from the UCI Machine Learning repository®. To deal with
missing values we preprocessed each dataset in the same way as [15]: we first eliminated all at-
tributes having more than 10% of missing values and then removed all examples (transactions)
for which the remaining attributes still had missing values. Numerical attributes were binarized
by using unsupervised discretization with 4 equal-frequency bins; each item for an attribute cor-
responds to a threshold between two bins. These preprocessed datasets can be downloaded from
our website”. The datasets and their basic properties can be found in Table 1. The density is the
relative amount of ones in the matrix. In many itemset problems, a higher density indicates that
the dataset is more difficult to mine.

Shttp://www.gecode.org/
6http://archive.ics.uci.edu/ml/
Thttp://dtai.cs.kuleuven.be/CP4IM /
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Dataset | # transactions # items density | 10% freq # solutions (10% freq)

1. soybean 630 59 0.25 63 12754
2. splice-1 3190 290 0.21 319 1963
3. anneal 812 41 0.43 81 1891712
4. mushroom 8124 119 0.19 812 574514

Table 1: Properties of the datasets used.

CP4IM LCM Eclat Patternist DDPmine
Frequent itemsets X X* X X
Closed itemsets X X X*
Correlated itemsets X X
Monotone constraints X X
Convertible constraints X X
Combinations of the above | X X**

Table 2: Comparing the mining tasks that different miners support. X*: Not originally designed for this task. X**:
Combinations of the constraints it supports, except multiple convertible constraints.

7.2. Alternative itemset miners

We used the following state-of-the-art specialized algorithms, for which implementations are
freely available, as the basis for our comparative evaluation:

LCM LCM [51] is a specialized frequent closed itemset mining algorithm based on tid-lists;
Eclat Eclat [56] is a specialized depth-first frequent itemset mining based on tid-lists;

Patternist Patternist [8] is a specialized breadth-first algorithm for mining under monotonic and
anti-monotonic constraints;

DDPMine DDPMine [12] is a specialized depth-first closed discriminative itemset mining algo-
rithm based on fp-trees and a repository of closed itemsets; it uses a less tight bound than
the bound summarized in Section 5 [38].

Note that in our experiments we are not using all algorithms discussed in previous sections. The
reason is that we preferred to use algorithms for which comparable implementations by the original
authors were freely available (i.e. executable on the same Linux machine).

Table 2 provides an overview of the different tasks that these data mining systems support.
The LCM and Eclat algorithms have been upgraded by their original authors to support respec-
tively frequent itemset mining and closed itemset mining too. Patternist is a constraint-based
mining algorithm which has been carefully designed to make maximal use of monotone and con-
vertible constraints during the search. Our CP4IM system is the only system that supports all
of these constraints as well as combinations of these constraints. Furthermore, thanks to the use
of a declarative constraint programming system it can easily be extended with further types of
constraints. This is what we regard as the major of advantage of the constraint programming
methodology. It is also interesting to contrast this approach with that taken by the alternative,
more procedural systems, which were typically designed to cope with a single constraint family
and were later upgraded to deal with other ones too. This upgrade usually involves changing the
algorithm dramatically and hard-coding the new constraint in it. In contrast, in CP one might
need to add a new propagator (as we have done for the discrimination constraint), but the corre-
sponding constraint can freely be used and combined with any other current and future constraint
in the system. This is essentially the difference between a declarative and a procedural approach.

On the other hand, generality and flexibility also may have a price in terms of performance.
Therefore, we do not expect CP4IM to perform well on each task, but we would hope its perfor-
mance is competitive when averaging over a number of tasks.
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Non-reified frequency Reified frequency
Dataset freq. | mem. props. failures time (s) | mem. props. time (s) | faster
anneal 5% 2694 235462 170 46.3 2950 236382 44.7 | 1.04
anneal 10% 2438 221054 248 19.3 2501 224555 18.9 | 1.02
anneal 15% 2309 200442 298 8.4 2373 203759 8.3 | 1.01
mushroom 5% | 17862 7737116 10383 269.5 | 20486 5980478 239.8 | 1.12
mushroom 10% | 17862 4184940 3376 74.2 | 20229 2853248 43.4 | 1.71
mushroom 15% | 17862 2680479 1909 40.8 | 19973 1589289 10.5 | 3.89

Table 3: Comparing the reified versus non-reified formulation of the frequency constraint on 2 datasets for different
frequencies. The reified formulation never has failed branches.

arbitrary minimum degree maximum degree
mem. props. time | mem. props. time | mem. props.  time
1860 799791 0.5 1540 3861055 3.1 1860 137666 0.2

124431 3188139 49 | 126927 3772591 60 | 122511 2602069 41
2116 121495848 73 2116 472448674 374 1796 577719 18
31236 344377153 365 | 30148 997905725 1504 | 26244 6232932 48

- N

Table 4: Comparison of peak memory, number of propagations and time (in seconds) using different variable
ordering heuristics on the 4 datasets listed in Table 1.

7.8. QA: Non-Reified vs Reified

In Section 3.3 we argued that using reified frequency constraints for the standard frequent
itemset mining problem can lead to more propagation. Table 3 shows a comparison between
running the CP model with non-reified and reified frequency constraints. Two datasets were used,
each with three different frequency thresholds. For the reasonably small anneal dataset, it can
be noted that the non-reified version needs a bit less memory and propagation, but at the cost of
some failed branches in the search tree. This leads to a small increase in run time. For the bigger
mushroom dataset however, the difference is larger. For higher minimum frequency thresholds the
reified pruning becomes stronger while for the non-reified formulation the cost of a failed branch
increases, leading to a larger difference in runtime. In general we have observed that using the
reified frequency constraints often leads to better performance, especially for larger datasets.

7.4. QB: Variable ordering

In constraint programming it is known that the order in which the variables are searched over
can have a large impact on the size of the search tree, and hence the efficiency of the search.
This has received a lot less attention in the itemset mining community, except in algorithms like
fp-growth where a good ordering is needed to keep the fp-tree size down.

We consider three possible variable ordering strategies, for the standard frequent itemset mining
problem:

arbitrary: the input order of variables is used;
minimum degree: the variable occurring in the smallest number of propagators;
maximum degree: the variable occurring in the largest number of propagators.

The comparison of the three variable orderings can be found in Table 4. The experiments show
that choosing the variable with maximum degree leads to a large reduction in the number of
propagations and runtime. The maximum degree heuristic corresponds to choosing the item
with the lowest frequency, as this item occurs in the coverage constraint (equation (7)) of most
transactions. In other words, the most efficient variable ordering strategy is a fail-first strategy
that explores the most unlikely branches of the search tree first. Such a conclusion is not surprising
in the constraint programming community.
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Figure 10: Standard itemset mining on different datasets
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Figure 11: Closed itemset mining on different datasets

7.5. Q1: Frequent Itemset Mining

A comparison of specialized frequent itemset miners and CP4IM is provided in Figure 10
for a representative number of datasets. In this figure we show run times for different support
thresholds as it was previously found that the differences between systems can highly depend on
this constraint [26].

The run time of all systems is correlated to the number of patterns found (the red line).
Our CP4IM model implemented in Gecode, indicated by FIM_CP, is significantly slower than
the other depth-first miners, but shows similar behaviour. This indicates that indeed its search
strategy is similar, but the use of alternative data structures and other overhead in the constraint
programming system introduces a lot of overhead for standard frequent itemset mining. It is
remarkable that CP4IM compares well to the breadth-first Patternist system, which does not use
the concept of projected databases as pervasively as other systems; the compact representations
developed in the specialized itemset miners for projected databases indeed explain the performance
difference.

7.6. Q2: Closed Itemset Mining

In Figure 11 the runtime of all mining algorithms is shown for the problem of closed itemset
mining. Again, run time is correlated with the number of patterns found. The difference between
CP4IM and the other miners is smaller in this experiment. We argued in the previous section
that the CP system behaves similar to the LCM system. Indeed, our experiments on both the
mushroom and letter data set show that this is the case; in one case even outperforming the Eclat
system, which as not originally developed for closed itemset mining.

It should be noted that on sparse data, such as mushroom, the difference in performance
between Gecode and specialized systems is larger than on dense data, such as the letter data.
This can be explained by the inefficient representation of sparse data in Gecode; on dense data, as
compared to Eclat, this inefficient representation is compensated by more effective propagation.
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Name Dense Trans Item | CP4IM(4) CP4IM(2) ddpmine [13] lcm [51]
anneal 0.45 812 93 0.22 24.09 22.46 7.92
australian-cr 0.41 653 125 0.30 0.63 3.40 1.22
breast-wisc 0.50 683 120 0.28 13.66 96.75 27.49
diabetes 0.50 768 112 2.45 128.04 — 697.12
german-cr 0.34 1000 112 2.39 66.79 - 30.84
heart-clevel 0.47 296 95 0.19 2.15 9.49 2.87
hypothyroid 0.49 3247 88 0.71 10.91 — >
ionosphere 0.50 351 445 1.44 > — >
kr-vs-kp 0.49 3196 73 0.92 46.20 125.60 25.62
letter 0.50 20000 224 52.66 > - >
mushroom 0.18 8124 119 14.11 13.48 0.09 0.03
pendigits 0.50 7494 216 3.68 > - >
primary-tum 0.48 336 31 0.03 0.13 0.26 0.08
segment 0.50 2310 235 1.45 > - >
soybean 0.32 630 50 0.05 0.07 0.05 0.02
splice-1 0.21 3190 287 30.41 31.11 1.86 0.02
vehicle 0.50 846 252 0.85 > - >
yeast 0.49 1484 89 5.67 781.63 — 185.28

Table 5: Statistics of UCI datasets, and runtimes, in seconds, of two CP models and other systems.

7.7. Q3: Discriminative Closed Itemset Mining

In this experiment we compare several approaches for finding the most discriminative itemset,
given labeled data. Results are shown in Table 5. As in this setting we do not have to determine a
threshold parameter, we perform experiments on a larger number of datasets. The missing values
of the datasets were preprocessed in the same way as in previous experiments. However, the
numerical attributes were binarized using unsupervised discretisation with 7 binary split points (8
equal-frequency bins). This enforces a language bias on the patterns that is closer to that of rule
learning and subgroup discovery systems [27]. In case of a non-binary class label, the largest class
was labeled positive and the others negative. The properties of the datasets are summarized in
Table 5; note the higher density of the datasets than in the previous experiments, resulting from
the discretisation procedure.

We report two types of experiments with CP4IM: using the propagator introduced in Section 5.2
(CP4IM(4)) and using a propagator that mimics the propagation occurring in the specialized
discriminative itemset miner introduced in [35] (CP4IM(2)). Furthermore, we also apply the
LCM algorithm; in [38] it was shown that for well-chosen support thresholds, the resulting set of
frequent itemsets is guaranteed to contain all itemsets exceeding a correlation threshold. We use
the correlation threshold of the best pattern (found using our algorithm) to compute a support
threshold according to this method and run LCM with this support threshold. Note that by
providing LCM knowledge about the best pattern to be found, the comparison is unfair to the
advantage of LCM.

For experiments marked by “>” in our table no solution was found within 900 seconds. In
experiments marked by “-” the repository of closed itemsets runs out of memory. The experiment
shows that CP4IM(4) consistently outperforms existing data mining systems, where in most cases
this increased performance can be attributed to the improved propagation that was revealed in
CP4IM(4).

It can be noted that on one dataset, the mushroom dataset, the new propagator takes slightly
more time. Our hypothesis is that this is related to the low density of the data, for which 4-
bound pruning can be less effective when there is no structure in the data which would lead to
unavoidable transactions. To test this hypothesis, we performed additional experiments in which
we gradually sparsified two dense datasets, given in Figure 12. The sparsification was performed
by randomly removing items uniformly from the transaction database, until a predefined sparsity
threshold was reached. Averaging runtimes over 10 different samples for each setting, we ran our
CP4IM system using three different propagators: CP4IM(4) and CP4IM(2), as explained above,
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_m30, etc. of the name indicates the minimum size threshold. In the right figure, the suffix _1%, etc. represent the
minimum support threshold.

and CP4IM(1) which uses the simple frequency based propagator used in [13].

The experiments show that when the density is decreased, and hence the sampling removes
structure from the data, the advantage of the more advanced pruning method over the more simple
ones disappears. However, within the CP framework the 4-bound method is often better and at
worse equivalent to the 2- and 1-bound pruning.

7.8. Q4: Cost-based Itemset Mining

In this experiment we determine how CP4IM compares with other systems when additional
cost constraints are employed. Results for two settings are given in Figure 13, where our system is
indicated by FIM_CP. In the first experiment we employed a (monotonic) minimum size constraint
in addition to a minimum frequency constraint; in the second a (convertible) maximum average
cost constraint. The results are positive: even though for small minimum size constraints the brute
force mining algorithms, such as LCM, outperform CP4IM, CP4IM does search very effectively
when this constraint selects a small number of very large itemsets (30 items or more); in extreme
cases CP4IM finishes within seconds while other algorithms do not finish within our cut-off time
of 30 minutes. Patternist, being a breadth-first algorithm, was unable to finish some of these
experiments due to memory problems. This indicates that CP4IM is a competitive system when
the constraints require the discovery of a small number of very large itemsets. The results for
convertible constraints are particularly promising, as we did not optimize the item order in any of
our experiments, as is usually done when dealing with convertible constraints.

8. Conclusions

We started this paper by raising the question as to whether constraint programming can be used
for solving itemset mining problems in a declarative way. Our results show that the answer to this
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question is indeed positive and that the use of constraint programming offers several advantages as
well as new insights. Perhaps the more important advantage is that constraint programming sys-
tems are general purpose systems supporting many different types of constraints. In this regard,
we showed that it is possible to incorporate many well-known constraints, such as cost constraints,
closedness or discriminative measures as defined above, as well as their combinations in the con-
straint programming system. The advantage of the resulting declarative approach to data mining
is that it is easy to extend or change in order to accommodate new constraints, and that all
constraints can automatically be combined with one another. Furthermore, a detailed analysis of
the solution strategy of constraint programming systems showed that there are many similarities
between these systems and specialized itemset mining systems. Therefore, the constraint program-
ming system arguably generalizes these systems, not only from a theoretical perspective but also
from a practical one. This was confirmed in our experiments: for problems such as frequent and
closed itemset mining, for which fast implementation contests were organized, these specialized
systems usually outperform CP4IM; however the runtime behavior of our constraint programming
approach is similar to that of the specialized systems. The potential of the CP approach from a
performance perspective was demonstrated on the problem of discriminative itemset mining. We
showed that by rigorously using the principles of constraint programming, more effective propa-
gation is obtained than in alternative state-of-the-art data mining algorithms. This confirms that
it is also useful in an itemset mining context to take propagation as a guiding principle. In this
regard, it might be interesting to investigate the use of alternative search strategies that have been
developed in the constraint programming community [53, 44].

Continuing this research, we are currently studying the application of our approach to problems
arising in bioinformatics. For instance, itemset mining has commonly been applied to the analysis
of microarray data; our hope is that constraint programming may offer a more general and more
flexible approach to analyze such data. Whereas the above work is still restricted to the discovery
of patterns in binary data, the use of constraint programming in other pattern mining related
problems is also a promising direction of future research. A problem closely related to pattern
mining is that of pattern set mining [18], where one does not only impose constraints on individual
patterns, but also on the overall set of patterns constituting a solution [28]. Constraints that can
be imposed include, for instance, the requirement that patterns do not overlap too much, or that
they cover the complete set of transactions together. Another related problem is that of finding
patterns in continuous data. This requirement is in particular relevant to deal with problems in
bioinformatics. Likewise, there are many approaches to mining structured data, such as sequences,
trees and graphs. It is an interesting open question as to whether it is possible to represent such
problems using constraint programming too. One of the challenges here is that such structured
data can no longer be represented using a fixed number of features or variables.

In addition to pattern mining, other areas of machine learning and data mining may also profit
from a closer study of constraint programming techniques. One such area is statistical machine
learning, where problems are typically formulated using mathematical programming. Recently
some results in the use of other types of solvers have already been obtained for certain probabilistic
models [11, 14]. In these approaches, however, Integer Linear Programming (ILP) or satisfiability
(SAT) solvers were used. CP solvers address a more general class of problems than ILP and SAT
solvers, but this generality sometimes comes at a computational cost. Current developments in CP
that aim at combining ILP and SAT with CP may also help in addressing these machine learning
problems.

Other topics of interest are constraint-based clustering and constraint-based classifier induction.
In constraint-based clustering the challenge is to cluster examples when additional knowledge is
available about these examples, for instance, prohibiting certain examples from being clustered
together (so-called cannot-link constraints). Similarly, in constraint-based classifier induction, one
may wish to find a decision tree that satisfies size and cost-constraints. A first study on the
application of CP on this problem was recently performed by Bessiere, Hebrard, and O’Sullivan
[6]. In data mining, the relationship between itemset mining and constraint-based decision tree
learning was studied [36]. It is an open question as to whether this relation can also be exploited
in a constraint programming setting.
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Whereas the previous cases study how data mining could profit from constraint programming,
the opposite direction is also a topic of interest: how can constraint programming systems be
extended using techniques from data mining? For example, in constraint programming systems
the data is typically spread over the constraints, and possibly multiple times in different ways.
In contrast, in data mining the data is typically centrally accessed, allowing the use of different
matrix representations.

To summarize, we believe that the further integration of machine learning, data mining and
constraint programming may be beneficial for all these areas.
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pendix A. Improved Solving, continued

In section 7 we empirically studied the effect of non-reified versus reified formulations and

of different variable ordering heuristics. In this appendix we include some additional findings,
as we have experienced that making the right low-level decisions is necessary to be competitive
with the highly optimized itemset mining implementations. We start by studying the differences
between using boolean variables and integers with a domain of {0,1}. We continue by studying
two implementation alternatives for an essential constraint shared by all models: the coverage
constraint. We end with a comparison of different value ordering heuristics; to explain and improve

the

results we have to provide some additional details about the Gecode system.
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original boolean integers
Dataset peak mem. # props time | peak mem. # props time | gain
1. soybean 2.820 5.909.592 14 2.436 1.839.932 0,8 1,7
2. splice-1 147.280 23.708.807 129 142.032 9.072.323 57 | 2,3
3. anneal 3.140 1.121.904.924 279 2.564 273.248.618 136 | 2,1
4. mushroom 45.636 2.989.128.466 1.447 39.940 862.480.847 508 | 29

Table A.6: Comparison in propagations, peak memory and time (in seconds) of using boolean variables and their

respective constraints versus using integer variables and constraints.

integers dedicated boolean
Dataset peak mem. # props time | peak mem. # props time | gain
1. soybean 2.436 1.839.932 0,8 1.796 1.058.238 0,5| 1,6
2. splice-1 142.032 9.072.323 57 123.279 6.098.820 68 | 0,8
3. anneal 2.564 273.248.618 136 2.500 121.495.848 741 18
4. mushroom 39.940 862.480.847 508 30.852 520.928.196 387 | 1,3

Table A.7: Comparison in propagations, peak memory and time (in seconds) of the channelled integer formulation
of the base model and the boolean formulation with the dedicated propagator.

Apart from Gecode specific remarks, which are applicable only to solvers that do copying and
cloning, the results presented in this appendix are also valid and applicable to other solvers. In
fact, parts of the work studied here are now by default in the aforementioned Gecode system.

Booleans vs Integers. Finite domain integer solvers can choose to represent a boolean as an integer
with a domain of {0,1}, or to implement a specific boolean variable.

An essential constraint in our models is the reified summation constraint. Such a sum can
be expressed both on boolean and integer variables, but the reification variable always has a
boolean domain. Using boolean variables should be equally or more efficient than integer variables,
especially since in our model, the integer variables need to be ‘channelled’ to boolean variables
for use in the reification part. However, in our experiments (Table A.6) the model using booleans
was slower than the one using integers. The reason is that a given reified summation constraint
on booleans B; and boolean variable C,

%

was decomposed into two constraints: S = ) . B; and S > v < C, where S is an additional
integer variable; separate propagators were used for both constraints. For integers on the other
hand, a single propagator was available. Our experiments show that decomposing a reified sum
constraints over booleans into a sum of booleans and reifying the integer variable is not beneficial.

We implemented a dedicated propagator for a reified sum of boolean variables constraint,
which includes an optimization inspired by SAT solvers [25]. A propagator is said to watch the
variables on which it depends. A propagator is activated when the domain of one of its watched
variables changes. To improve efficiency, the number of watched variables should not be larger
than necessary. Assume we have a sum Y ., B; > v <> C, where all B; and C are boolean
variables, then it is sufficient to watch max(v,n —v+ 1) (arbitrary) variables B; not fixed yet: the
propagator can not succeed (v variables true) or fail (n — v+ 1 variables false) without assigning at
least one of the watched variables. In Table A.7 we compare the formulation of the basic frequent
itemset mining problem using integers and channelling, to using boolean variables and the new
dedicated propagator. The peak amount of memory needed when using only booleans is naturally
lower. The amount of propagations is also decreased significantly, leading to lower runtimes for
all but one dataset. Hence it is overall recommended to use boolean variables with dedicated
propagators.
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boolean sum boolean sum, advisers clause, advisers
mem. # props time | mem. # props time | mem. # props time

1.796 1.058.238 0,5 2.500 799.791 0,5 1.860 799.791 0,5
123.279 6.098.820 68 | 237.071 3.188.139 54 | 124.431 3.188.139 49
2.500 121.495.848 74 2.500 121.495.848 73 2.116  121.495.848 73
30.852 520.928.196 387 | 47.172 344.377.153 372 | 31.236 344.377.153 365

= N

Table A.8: Comparison in propagations, peak memory and time (in seconds) of formulating the coverage constraints
using: the new reified sum constraint, the advisor version of the new reified sum constraint and the clause constraint

minimum value maximum value
Dataset mem props time | mem props time
1. soybean 1.860 137.666 0,2 899 217.802 0,3
2. splice-1 122,511  2.602.069 41 | 16.328 4.961.137 109
3. anneal 1.796 577.719 18 1.412 726.308 18
4. mushroom | 26.244 6.232.932 48 | 20.229 9.989.882 63

Table A.9: Comparison of peak memory, propagations and time (in seconds) using the minimum or maximum value
ordering heuristics on the frequent itemset mining problem.

Coverage Constraint: Propagators versus Advisers. When a variable’s domain changes, the prop-
agators that watch this variable can be called with different amounts of information. To adopt the
terminology of the Gecode system, we differentiate between classic 'propagators’ and ’advisers’:

e propagators: when the domain of at least one variable changes, the entire propagator is
activated and re-evaluated;

e advisers: when the domain of a variable changes, an adviser is activated and informed of the
new domain of this variable. When the adviser detects that propagation can happen, it will
activate the propagator.

Both techniques have their advantages and disadvantages: classic propagators are conceptually
simpler but need to iterate over all its variables when activated; advisers are more fine-grained
but require more bookkeeping. We implemented the coverage constraint using both techniques,
and compare them in Table A.8. Using advisers requires more memory but reduces the overall
amount of propagations, the runtimes also decrease.

Coverage Constraint: Clauses vs Sums. As we pointed out in Property 7 on page 9, the coverage
constraint can be expressed in two equivalent ways: using reified sums or using reified clauses.
Both options are evaluated in Table A.8. Overall, we find that the formulation using clauses
performs best.

Value ordering. For boolean decision variables, two value ordering heuristics are meaningful: se-
lecting the minimum value (0) or selecting the maximum value (1) first. A comparison can be
found in Table A.9, where the maximum degree variable ordering is used.

The results are surprising: using the maximum value heuristic leads to more propagation
and longer run times. This is counter-intuitive: the search tree is equally large in both cases
and because the complete tree is searched, the total amount of propagation should be identical
too. The explanation can be found in how the Gecode system stores intermediate states during
the search. Gecode uses a technique called copying and recomputation [46]. In this technique,
some nodes, but not necessarily all nodes, in the depth-first search tree are copied and stored.
To backtrack, one retrieves the latest copied node and recomputes the propagations using the
assignments leading to the desired node. This can save memory consumption and runtime for
large problems [46]. The amount of copying/recomputation is set by the copy distance parameter.
In Gecode, the default is 8, meaning that a new copy is made every 8 nodes.

When we consider a search tree using the minimum value first heuristic for our models (see
Figure A.14), we see that all variables are set to zero first, creating one long branch. The copied
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Figure A.14: Search tree for the first 35 variables of the mushroom dataset. Every blue circle is a branchpoint over
an item, every green diamond is a solution. A branch to the left assigned 0 to the item of that branchpoint, a
branch to the right assigned 1.

minimum, c-d 8 minimum, c-d 0 maximum, c-d 0
mem props time | mem props time | mem props time
1. 1.860 137.666 0,2 7.626 64.823 0,2 1.796 64.823 0,2
2. | 122.511 2.602.069 41 | 911.863 1.822.064 24 | 16.328 1.822.064 23
3. 1.796 577.719 18 4.231 224.555 19 | 2.501 224.555 19
4. | 26.244 6.232.932 48 | 148.173 2.853.248 43 | 20.229 2.853.248 43

Table A.10: Comparison of peak memory, propagations and time (in seconds) using the minimum or maximum
value ordering heuristics. The copy distance is either the default (c-d 8) or zero (c-d 0).

nodes in this branch are reused throughout the rest of the search. When using the maximum value
heuristic, more propagation is possible and shorter branches are explored first. Consequently, less
nodes are copied, and a lot of recomputation needs to be done in each of the short branches. In
our experiments this results in increased overhead.

Table A.10 compares two values of the copy distance parameter, and how this influences the
value ordering heuristic. With a distance of 0, every node in the search tree is copied. This results
in a smaller amount of propagation compared to a distance of 8, independent of the value ordering
heuristic used. Interestingly, the amount of runtime is also decreased compared to a larger copy
distance. Using the maximum value first heuristic is about as fast as the minimum value heuristic,
but needs significantly less memory. For our application it is thus faster and less memory intensive
to clone every node in the search tree and choose the maximum value first.

Summary. An overview of the relative improvements of each step can be found in Figure A.15.
Overall, we see that even though our initial model —using reified constraints— could be specified
straightforwardly, the scalability of the approach is highly depended on making the right low-
level decisions, as discussed in this section. Only this modeling process as a whole can make
the CP-based approach competitive with current specialized systems for constraint-based itemset
mining.

Relative runtime improvements Relative amount of props improvements Relative peak memory improvements
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Figure A.15: Relative improvements from applying several heuristics.
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