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Abstract

Probabilistic reasoning is often attributed a temporal meaning, in which conditioning is regarded as a normative rule to
compute future beliefs out of current beliefs and observations. However, the well-established ‘updating interpretation’
of conditioning is not concerned with beliefs that evolve in time, and in particular with future beliefs. On the other hand,
a temporal justification of conditioning was proposed already by De Moivre and Bayes, by requiring that current and
future beliefs be consistent. We reconsider the latter proposal while dealing with a generalised version of the problem,
using a behavioural theory of imprecise probability in the form of coherent lower previsions as well as of coherent sets
of desirable gambles, and letting the possibility space be finite or infinite. We obtain that using conditioning is normative,
in the imprecise case, only if one establishes future behavioural commitments at the same time of current beliefs.
In this case it is also normative that present beliefs be conglomerable, which is a result that touches on a long-term
controversy at the foundations of probability. In the remaining case, where one commits to some future behaviour after
establishing present beliefs, we characterise the several possibilities to define consistent future assessments; this shows
in particular that temporal consistency does not preclude changes of mind. And yet, our analysis does not support that
rationality requires consistency in general, even though pursuing consistency makes sense and is useful, at least as a
way to guide and evaluate the assessment process. These considerations narrow down in the special case of precise
probability, because this formalism cannot distinguish the two different situations illustrated above: it turns out that the
only consistent rule is conditioning and moreover that it is not rational to be willing to stick to precise probability while
using a rule different from conditioning to compute future beliefs; rationality requires in addition the disintegrability of
the present-time probability.

Keywords: Temporal reasoning, imprecise probabilities, conditioning, lower previsions, sets of desirable gambles,
coherence, conglomerability.

1. Introduction

What has time to do with probability?

We are interested in probability understood in the subjective tradition: as an uncertainty formalism that allows
you1 to express beliefs and do rational reasoning. Conditioning is an important component to reason with probability.
In fact, the computation of conditional beliefs (i.e., expectations or probabilities) is taken by some researchers as
‘the’ procedure to obtain future rational beliefs out of current beliefs and observations (i.e., some evidence), as if the
Bayesian calculus—and Bayes’ rule in particular—had captured the essence of the reasoning process itself through
time.

Is this view justified? To see whether this is the case, it is useful to go back at the foundations of probability. As it
has been well documented by Shafer [55, 56], De Moivre and Bayes provided, already in the 18th century, an argument
for the temporal use of conditioning: it relies on constructing two bets, at present and future times, that jointly yield
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1We follow Good, de Finetti and Walley in referring to ‘you’ as the subject that holds some probabilistic assessments.
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you a sure loss if you do not use conditioning to compute your future beliefs. This is, in other words, a (Dutch) book
argument applied through time. The approach is not uncontroversial2 and it may well clash with one’s intuition: in fact,
from the temporal-book argument it follows that once you have established your initial beliefs, your future rational
behaviour will be ‘mechanically’ determined. Should this be the case, should you not be allowed to change your mind?

Nowadays, well-established approaches to probability seem to have taken a more cautious approach to defining the
role of conditioning; this caution de facto corresponds to eliminating time from the picture. The so-called updating
interpretation of conditioning reads as follows: “your expectation of a gamble (i.e., a bounded random variable)
f : Ω→ R, conditional on event B from a partition B of the possibility space Ω, represents your current beliefs about
f under the assumption that B occurs and that you obtain no other relevant information about Ω”. The crucial word in
the previous phrase is ‘current’: it means that under the updating interpretation, conditional beliefs are beliefs that you
hold now; moreover, there is nothing in that phrase that relates your current conditional beliefs with the behaviour you
will adopt once, and if, B occurs. In this view, Bayes’ rule loses its temporal flavor and reveals a simpler nature, that of
a consistency requirement between your current conditional and unconditional beliefs: in fact, Bayes’ rule can be made
to follow from the traditional book argument, the one that is applied to beliefs held at the same point in time.

Yet, part of the literature has kept on exploring the relationship between probability and time, in the spirit of De
Moivre and Bayes’ original intuition: this is the case, for instance, of the philosophical work on ‘dynamic coherence’
started in the seventies with Teller (who credited David Lewis for having originated the argument, see [63, note 1 to
Section 1.3]) and that continued in the eighties with a number of papers [2, 3, 59, 60, 61]; Shafer’s work, we have
already mentioned, was also concerned to some degree with temporal considerations [55, 56]. More recent work by
Shafer et al. [57] stresses such an aspect even more: among other things, it shows that Walley’s generalisation of Bayes’
rule to sets of probabilities [68, Section 6.4] is temporally consistent in a game-theoretic sense [58].

Some other tightly connected approach is the statistical work on ‘temporal coherence’ by Goldstein [21, 22, 23, 24],
and the related one in philosophy by van Fraassen [66, 67]. In our view the aim here is different, however, as the
focus does not appear to be on relating present and future behaviour, but rather on widening present beliefs so as to
encompass also beliefs about future beliefs. The field of ‘belief revision’, originated in the work of Gärdenfors and
colleagues [1, 18], attempts also to deal with temporal considerations in probability, besides logic. Its connection with
the temporal-book idea is weaker, though.

Contributions

We aim at making a thorough analysis about the extent to which De Moivre and Bayes’ intuition can be made to
provide a firm foundation for a temporal interpretation of probabilistic reasoning. To this end, we consider a framework
made of two time points: now, and a future one determined by the occurrence of an event B ∈ B. Accordingly, we
consider two uncertainty models: one that you hold at present time, that is, your current beliefs (we also call them your
current commitments3), and another one that you will hold after B occurs. We call the latter your future commitments.

Our approach to the problem initially makes no assumptions on the relationship between current and future
commitments. We do not even force the analysis to focus on conditional beliefs: present beliefs are allowed to be
generically made both of conditional and unconditional information. Rather, we let the relationship between current and
future assessments emerge by itself by characterising what it means that current and future commitments are consistent.
This will also reveal whether and when it is actually rational (or normative) for you to be self-consistent in time.

We shall pursue our aims within the framework of imprecise probability, and in particular start our work using
Walley’s behavioural theory of coherent lower previsions [68]: this is an extension of de Finetti’s theory [12] to sets of
probabilities that is close to robust Bayesianism. De Finetti’s theory is based on the concept of a (linear) prevision,
which is another name for an expectation functional; a coherent lower prevision is a lower envelope of linear previsions,
which is in one-to-one correspondence with a closed and convex set of finitely additive probabilities. These tools enable
us to deal uniformly with precise and imprecise probability, as well as with any cardinality of the possibility space
Ω—which is then allowed to be infinite. Section 2 provides an introduction to the theory that is conceived to make the
work as self-contained as it is possible in a research paper. It also discusses the alternative representation of coherent
lower previsions in terms of a set of desirable gambles: this is the set of gambles that you find desirable (i.e., that you

2See also philosopher Levi’s fierce opposition to the idea of the temporal-book argument in his ‘demons of decision’ [37].
3Probabilistic assessments can be interpreted as commitments to engage in special types of bets.
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would accept if they were offered to you) as a logical consequence of your probabilistic assessments. This helps us to
convey the intuition behind the concepts and the results we present. Section 3 describes our temporal framework in
detail, and introduces your uncertainty models in the form of two coherent lower previsions for your present and future
commitments, respectively.

The core of our work starts in Section 4. We define a number of consistency notions for your current and future
lower previsions, and show that each of these notions is appropriate in a different scenario, depending on the time when
your future commitments are declared. For each of these notions, we give a number of characterisations, and establish a
connection with other notions from the theory of coherent lower previsions.

One of the most interesting is the equivalence between one of our consistency notions and the conglomerability
of your present beliefs. Loosely speaking, the notion of conglomerability is what allows us, in precise probability, to
represent a prevision (i.e., an expectation) as an infinite mixture of conditional previsions. This notion was originally
introduced by de Finetti in 1930 [9, 11] as a property that a finitely additive—but not countably additive—probability
may not satisfy. Since then, the debate concerning whether or not conglomerability should be a rationality requirement
in probability has never had an end (e.g, see [68, Section 6.8], [46, Section 3.4], but also [28, 29, 49, 50, 54]). Here we
explicitly relate conglomerability to temporal considerations; and it is this very connection that allows us to make a
clear point: that conglomerability should in fact be a rationality requirement when present and future commitments are
established together (and moreover that future commitments should be equal to present conditional beliefs). Let us
stress that we achieve this without strengthening the assumptions commonly employed in these cases,4 like those in de
Finetti’s theory, but rather just coupling them with temporal considerations.

When present and future commitments are established at different times, the situation is more open: there are many
ways to define future commitments that are consistent with current beliefs (and hence may be constrained by them to
some extent). This means, in particular, that in the imprecise framework changing mind is compatible with temporal
consistency. On the other hand, we do not see the possibility to argue in general that it should be normative for you to
be consistent in time. The situation changes if we restrict the attention to the special case of precise probability, as
in Section 4.5, and especially if we assume in addition that conditioning events have positive probability. We argue
that in this case rationality requires that your present probability be disintegrable (disintegrability is a special case of
conglomerability, see [14]) and that future commitments be defined by Bayes’ rule. Stated differently, it appears to be a
specificity of the Bayesian setup to disallow you to change your mind in order to keep consistency, and hence to regard
future beliefs as predetermined once you have established your present beliefs. The framework is less rigid in case we
allow conditioning events to be assigned zero probability.

Although we can say much about the consistency of your uncertainty models when these are represented by means
of coherent lower previsions, there are situations when these are not expressive enough; this is for instance the case
when we want to condition on sets of probability zero, as it is common in infinite spaces, or if we want to give a meaning
to gambles with prevision equal to zero, which is important when we wish to model preferences. A more informative
model for those cases are just sets of desirable gambles, when we use them in their full generality. We review the model
in this light in Section 5, and discuss in addition how desirable gambles can be regarded as a particularly natural and
powerful generalisation of propositional logic to uncertainty.

In Section 6 we take desirable gambles as our primitive model (from which one can actually derive coherent lower
previsions, in case), and show how the consistency notions we have introduced in Section 4 can be extended to such a
generalised setup, and which are the properties that hold in this case. In particular, we consider the important special
case where your present beliefs are constructed in a hierarchical way through marginal extension [41, 44, 68], which is
a generalisation of the law of iterated expectations to imprecise probability. We reconsider also the Bayesian case in the
light of desirability: thanks to the notion of precision that is tailored to sets of desirable gambles, we show that in this
case conditioning is the only rational rule to compute future commitments even when the probability of a conditioning
event is zero.

4Technically speaking, this has to do with a finitary feature of these uncertainty representations, including the ones we use in this paper, according
to which it is never assumed that you should be willing to accept infinitely many gambles that are desirable to you, in case they are offered to you. It
is controversial that the opposite should be assumed (e.g., de Finetti does not find it rationally justified while Walley does), and in addition it is a
very strong assumption: one that makes it trivial to derive conglomerability, so that the latter is deprived of its own meaning—which lies entirely in
the assumption—, and even that probabilities should be σ-additive. But σ-additivity leads us into measurability problems, which we are instead
dispensed of in case we stay with finitely additive models.
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In Section 7 we comment on the connections between our work and some related approaches: dynamic coherence;
Jeffreys’ rule and probability kinematics; the work by Goldstein and van Fraassen; Shafer et al.’s game-theoretic
reinterpretation of the theory of coherent lower previsions; belief revision. In Section 8 we discuss at some length our
updated point of view on these matters after the analysis we have done. Some additional technical results are given
in Appendix A.

2. Coherent lower previsions

2.1. An introduction to the theory
Let us denote by Ω the possibility space, that is, the set of possible outcomes of an experiment, intended in a broad

sense. Let us make this more concrete with the help of a running example that will be developed throughout the text.

Example 1 (Running example). You are a physician confronted with a situation of uncertainty originated by two
different viruses causing flu: the usual seasonal virus (i.e., virus s) and a more serious atypical variant (virus a). Your
experience tells you something about the likelihood of each of these two viruses on a person; there is also a blood test
(with positive or negative outcomes) that allows you to discriminate the viruses to some good degree. However, the
information in these two cases may be uncertain, and this may render impossible the task of modelling it by means of
precise probabilities. For the time being, we shall only model this problem by the variables V and T , for virus and
test, with possible values {a, s} and {p, n}, respectively. The possibility space in this example is just the product space
Ω := {(a, p), (a, n), (s, p), (s, n)}. We shall use the convention to denote by V = v and T = t, for generic values
(v, t) ∈ Ω, the events {(v, p), (v, n)} and {(a, t), (s, t)}, respectively. �

In this paper we let Ω be general in the sense that we do not impose any restriction on its cardinality. We call a
gamble any bounded function from Ω to the real numbers. A gamble is interpreted as an uncertain reward that depends
on the unknown outcome of the experiment; we assume that the rewards are expressed in a utility scale that is linear for
you.

We denote by L(Ω) the set of all gambles on Ω. L+(Ω) denotes the set of positive gambles on Ω: that is, all
gambles f such that f(ω) ≥ 0 for all ω ∈ Ω and f(ω) > 0 for some ω ∈ Ω; we rewrite this notation for short as f 
 0
(similarly, the negative gambles {f � 0} are such that f(ω) ≤ 0 for all ω ∈ Ω and f(ω) < 0 for some ω ∈ Ω). We
shall often use the symbol B to denote a subset B of Ω, as well as to denote the indicator function IB of subset B; this
means for instance that Bf shall denote the gamble given by

Bf(ω) =

{
f(ω) if ω ∈ B
0 otherwise.

(1)

L(B) denotes the set of all gambles on B, and L+(B) is its subset of positive gambles. Sometimes we shall also use
the shorter notation L to refer to the set of all gambles on a certain possibility space, when this is clear from the context
or when we want to establish some result for a generic possibility space. We shall also use sometimes the short notation
L+.

It is convenient to also introduce the following notation: when f ∈ L(Ω) and B is an element of a partition B of Ω,
we shall denote by fB the restriction of f to B. Hence, fB ∈ L(B). More generally speaking, we shall use subscript B
for gambles in L(B). On the other hand, if fB is a gamble on B, we shall denote by BfB its extension to a gamble on
Ω, given by Eq. (1). Thus, f =

∑
B∈B BfB .

Operations on gambles are understood point-wise. We shall focus in particular on the multiplication of a gamble
f with a constant λ, giving rise to gamble λf , and on the sum of two gambles f and g, giving rise to gamble f + g.
Constant gambles are denoted by the corresponding real value: the distinction between the two cases will be clear from
the context; for example, if α is a real number, then f + α denotes the sum of f and the gamble constant on α. Also,
when a gamble is constant on the elements of a partition B of Ω, we call it B-measurable. Comparisons of gambles,
such as f ≥ g, are to be intended point-wise too (although f 
 0 is an exception to this rule as it is different from
f > 0).

The theory of coherent lower previsions generalises probability theory (in the sense of de Finetti [12]) to the
case where beliefs are specified imprecisely via sets of (finitely additive) probabilities. To see this, we need to define
expectation, which de Finetti calls prevision. We focus in particular on lower and upper previsions, which arise naturally
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when your set of beliefs is consistent with a range of previsions; in addition we directly focus on the conditional case,
and discuss the unconditional one as a special case.

Definition 1 (Coherent conditional lower previsions). Let B be a partition of Ω, and for every B ∈ B let P (·|B)
be a real-valued functional on L(Ω). Then P (f |B) is called the lower prevision of f conditional on B. The B-
measurable gamble P (f |B) :=

∑
B∈B BP (f |B) is called the lower prevision of f conditional on B. The functional

P (·|B) : L(Ω)→ L(Ω) is called a separately coherent conditional lower prevision when the following conditions hold
for every f, g ∈ L, B ∈ B and λ > 0:

(SC1) P (f |B) ≥ infω∈B f(ω);

(SC2) P (λf |B) = λP (f |B);

(SC3) P (f + g|B) ≥ P (f |B) + P (g|B).

In that case P (·|B) is called a coherent lower prevision.

The behavioural interpretation of the conditional lower prevision P (f |B) is that of your current supremum price
for buying gamble f under the assumption that ω ∈ B. When the focus is on selling rather than buying gambles, we
come to conditional upper previsions: P (f |B) is your current infimum price to sell gamble f under the assumption
that ω ∈ B. P (·|B) and the functional P (·|B) are then defined analogously to the case of lower previsions, and are
called coherent and, respectively, separately coherent conditional upper previsions. The definition of conditional lower
and upper previsions makes it clear that the following conjugacy relationship holds: P (f |B) = −P (−f |B) for all
f ∈ L and B ∈ B; this allows us to focus our development on conditional lower previsions only. The occasional use
we do of conditional upper previsions will be mostly motivated by mathematical convenience.

As we have mentioned already, coherent lower previsions represent lower expectation functionals (note that they are
applied to gambles, that is, to bounded random variables). In fact, it is important to be aware right from the beginning
that the theory of imprecise probability we have just started to describe, regards expectation as the primitive concept
rather than probability. The idea is that you model your uncertainty by providing conditional and unconditional coherent
lower previsions. Accordingly, when we speak of ‘beliefs’, we technically mean the uncertainty model, which in this
case are lower previsions.5

Of course, you may still want to model your uncertainty using probabilities; this is possible by providing your
lower previsions of the indicator functions. Thus, in this theory, an event A ⊆ Ω is represented by gamble IA, and your
lower probability for A is just the lower prevision P (IA). This can be written more simply as P (A), thanks to the
convention that allows us to use A, besides IA, to denote the indicator function of set A.

Example 2 (Running example). Assume for instance that you have imprecise information about the likelihood of the
two different types of flu depending on the outcome of the test. You may know for instance that if the test is positive,
the atypical virus is at least three times as likely as the seasonal one, while if the test is negative, the seasonal virus is at
least four times as likely as the atypical one. This leads to the probabilistic assessments

P (V = a|T = p) ≥ 3P (V = s|T = p) and P (V = s|T = n) ≥ 4P (V = a|T = n).

These assessments can equivalently be represented by the following lower and upper conditional probabilities:

P (V = a|T = p) = 0.75 and P (V = a|T = n) = 0.2,

which, in turn, determine the following coherent conditional lower previsions:

P (f |T = p) = min{f(a, p), 0.75f(a, p) + 0.25f(s, p)}
P (f |T = n) = min{f(s, n), 0.8f(s, n) + 0.2f(a, n)},

where f is any gamble on the product space {(a, p), (s, p), (a, n), (s, n)}. �

5Later, when we introduce a more general theory than coherent lower previsions in Section 5, it will be a set of gambles that you desire, i.e.,
which you are prepared to accept.
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However, modelling uncertainty only with probabilities (that is, specifying buying and selling prices only for
indicator functions) limits expressiveness in the imprecise case: it is well known that lower probabilities do not
determine coherent lower previsions in general, in the sense that there may be more than one coherent lower prevision
that is consistent with the specified probabilities (see, e.g., [68, Section 2.7.3]). Therefore, to take full advantage of the
theory, it is necessary to move from events to the richer language of gambles.

Precise probability is obtained when conditional lower and upper previsions coincide:
Definition 2 (Conditional linear previsions). If for a coherent lower prevision it holds that P (f |B) = P (f |B) for all
f ∈ L, then we denote the common value by P (f |B) and call it the linear prevision of f conditional on B. When this
holds for all B ∈ B, we define P (·|B) in analogy with the case of conditional lower previsions, and call it a conditional
linear prevision.
Example 3 (Running example). In case you had precise information, stating that if the test is positive, the atypical virus
is exactly three times as likely as the seasonal one, while if the test is negative, the seasonal virus is exactly four times
as likely as the atypical one, we would end up with the conditional linear prevision P (V |T ) given by

P (f |T = p) = 0.75f(a, p) + 0.25f(s, p) and P (f |T = n) = 0.8f(s, n) + 0.2f(a, n)

for any gamble f on {(a, p), (s, p), (a, n), (s, n)}. �
The case of (unconditional) lower and linear previsions follows as a special case from the above definitions by

considering the trivial partition {Ω}. In that case we simplify the notation by writing P := P (·|{Ω}) as well as
P := P (·|{Ω}).

A linear prevision P is in one-to-one correspondence with the finitely additive probability that is its restriction to
(indicator functions of) events. A coherent lower prevision P is in one-to-one correspondence with the credal set6

M(P ) of linear previsions given byM(P ) := {P : P (f) ≥ P (f) ∀f ∈ L}. This shows that P is in correspondence
with a set of finitely additive probabilities; in addition, P corresponds to the lower envelope of the previsions inM(P ):
P (f) = inf{P (f) : P ∈M(P )} for every f ∈ L. These relationships immediately extend to the conditional case.

In this paper we are going to work with beliefs established at different points in time. When these beliefs are
represented by means of lower previsions, we may end up with an unconditional coherent lower prevision P and with a
separately coherent conditional lower prevision P (·|B). The consistency between an unconditional and a conditional
lower prevision in Walley’s theory is verified by means of a notion of (joint) coherence. In order to define it, it is
convenient to consider some special gambles: given a separately coherent conditional lower prevision P (·|B) and a
gamble f ∈ L, we let

G(f |B) := B(f − P (f |B)) and G(f |B) := f − P (f |B) =
∑
B∈B

G(f |B).

Definition 3 (Coherence for lower previsions). Let P be a coherent lower prevision on L, B a partition of Ω and
P (·|B) a separately coherent conditional lower prevision on L. We say that P , P (·|B) are coherent when they satisfy
the following conditions:

GBR. P (G(f |B)) = 0 for every f ∈ L, B ∈ B. [Generalised Bayes rule]

CNG. P (G(f |B)) ≥ 0 for every f ∈ L. [Conglomerability]

Condition GBR is called generalised Bayes rule because it amounts to applying Bayes’ rule to all the elements of a
credal set—if that is possible—in order to obtain the conditional credal set. Therefore it becomes Bayes’ rule in the
precise case. Condition CNG refers to the conglomerability of an unconditional lower prevision with a conditional one,
and is tightly related to de Finetti’s original formulation of conglomerability [9] (a related definition of conglomerability,
in this case of a single coherent lower prevision, is provided in Definition 5 later on). Note moreover that CNG follows
from GBR and the coherence of P when the partition B is finite. Together, GBR and CNG can also be given a behavioral
interpretation [68, Chapter 6]: they mean that a finite combination of gambles whose desirability follows from the
lower previsions P , P (·|B) should still be desirable, and moreover that a gamble you have not deemed desirable should
not become desirable by considering the implications of the assessments in P , P (·|B).

6By a credal set we mean a set of linear previsions that is closed in the weak* topology and convex. The weak* topology is the smallest topology
for which all the evaluation functionals given by f(P ) := P (f), where f ∈ L, are continuous.
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Example 4 (Running example). Assume for instance that you have unconditional information, stating that the prevalence
of the atypical virus in that region is of at most 5%, while that of the seasonal virus is of at least 95%. This corresponds
to the probabilistic assessments

P (a) ≤ 0.05 and P (s) ≥ 0.95;

if we consider the set of probabilities on {(a, p), (s, p), (a, n), (s, n)} that are compatible with this information, we
end up with the coherent lower prevision P given by

P (f) = min{min{f(s, n), f(s, p)}, 0.95 min{f(s, n), f(s, p)}+ 0.05 min{f(a, n), f(a, p)}} (2)

for any gamble f . To see if this lower prevision satisfies coherence with respect to the conditional model from
Example 2, note that given the gamble f := I(a,p), it holds that

P (f |T = p) = 0.75, whence G(f |T = p) = 0.25I(a,p) − 0.75I(s,p),

and this means that

P (G(f |T = p)) = min{−0.75, 0.05 · 0− 0.95 · 0.75} = −0.75 < 0.

Therefore, the two lower previsions are not coherent, because they do not satisfy GBR. Note that in this specific
example GBR is equivalent to coherence, because condition CNG follows from it since the partition is finite. �

Generalised Bayes enables us to define the least-committal extension of a coherent lower prevision to the conditional
case:

Definition 4 (Conditional natural extension for lower previsions). Let P be a coherent lower prevision on L. The
natural extension of P conditional on B ∈ B is given by

E(f |B) :=

{
sup{µ : P (B(f − µ)) ≥ 0} if P (B) > 0

infω∈B f(ω) otherwise.
(3)

This is a separately coherent conditional lower prevision determined through generalised Bayes rule when the conditio-
ning event has positive lower probability: in that case, E(f |B) is the only value for which GBR is satisfied with respect
to P ; and it is vacuous, which means completely uninformative, in the remaining case. In fact, when the conditioning
event has zero lower probability there may be many conditional lower previsions satisfying generalised Bayes rule
with P [68, Section 6.10]; the vacuous one corresponds to the smallest [68, Theorem 8.1.6]. The conditional natural
extension E(·|B) is always coherent with P when B is finite.

Example 5 (Running example). If we consider the coherent lower prevision P from Example 4, then it satisfies
P (V = a) = 0 and P (V = s) = 0.95. Hence, the conditional natural extension P (T |V = a) is vacuous: we have
P (f |V = a) = min{f(a, p), f(a, n)}. On the other hand, P (f |V = s) is determined by the generalised Bayes rule,
which in this case produces a vacuous model too:

P (T |V = s) = min{f(s, p), f(s, n)};

this is because if we consider any µ > min{f(s, p), f(s, n)}, then

P (Is(f − µ)) = min{f(s, n), f(s, p)} − µ < 0,

and therefore GBR is not satisfied. �

When the conditioning partition B is infinite, a lower prevision need not be coherent with its conditional natural
extension; the latter is rather a lower bound of any conditional lower prevision that is coherent with the unconditional
model. Hence, the acceptable buying prices encoded by the conditional natural extension should be acceptable under
any coherent extension to the conditional case. On the other hand, the coherence of a coherent lower prevision with its
conditional natural extension is characterised by the notion of conglomerability:
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Definition 5 (Conglomerability for lower previsions). A coherent lower prevision P is called B-conglomerable when
there is a separately coherent conditional lower prevision P (·|B) such that P , P (·|B) are coherent.

In this paper we always focus on a single partition B of Ω; for this reason we shall often say simply that a
lower prevision is conglomerable rather than B-conglomerable. In particular, P is conglomerable if and only if it is
coherent with its conditional natural extension E(·|B) given by Eq. (3) [68, Theorem 6.8.2]. Moreover, P is always
conglomerable when P (B) = 0 for every B ∈ B, or when the partition B is finite.

A related notion is that of disintegrability:

Definition 6 (Disintegrability). A linear prevision P is called B-disintegrable (or just disintegrable) when there is a
linear conditional prevision P (·|B) such that P, P (·|B) are coherent.

Given a linear prevision P and a conditional linear prevision P (·|B), conditions GBR and CNG together are
equivalent to the equality P = P (P (·|B)). Trivially, if a linear prevision P is disintegrable, then it is also conglomerable.
However, the converse is not true: there are linear previsions P satisfying conditions GBR and CNG with respect to a
conditional lower prevision P (·|B) but not with respect to any conditional linear prevision P (·|B) (for an example, see
[14] and [68, Example 6.6.10]).

There is also a weaker consistency notion for lower previsions that is called avoiding sure loss:

Definition 7 (Avoiding sure loss for previsions). Let P be a coherent lower prevision on L, B a partition of Ω and
P (·|B) a separately coherent conditional lower prevision on L. We say that P , P (·|B) avoid sure loss when for every
f, g ∈ L, it holds that

ASL. sup[G(f) +G(g|B)] ≥ 0.

The behavioural interpretation of this condition is that by accepting a finite combination of gambles whose
desirability follows from the definition of P , P (·|B) you should never be subject to a sure loss. If P , P (·|B) are
coherent then they also avoid sure loss; both conditions are equivalent when P , P (·|B) are linear (unconditional and
conditional) previsions.

Example 6 (Running example). Consider again the unconditional and conditional lower previsions P , P (V |T ) from
Example 4. We already saw there that they are not coherent. To see that they avoid sure loss, note that for any gamble f
it follows from Eq. (2) that P (f) ≤ min{f(s, n), f(s, p)}, whence G(f)(s, n) ≥ 0 and G(f)(s, p) ≥ 0. Since on the
other hand it also follows from the definition of P (V |T ) that P (g|T = n) ≤ g(s, n) for any gamble g, we deduce that

[G(f) +G(g|T )](s, n) ≥ 0

for any pair of gambles f, g. As a consequence, P , P (V |T ) avoid sure loss. �

In particular, if we apply condition ASL to an unconditional lower prevision P on L, it turns out that P avoids sure
loss if and only if its associated credal setM(P ) is non-empty. This holds in particular when P is coherent, although
both conditions are not equivalent.

2.2. Correspondence with a set of gambles

A coherent lower prevision can be expressed equivalently by determining the set of gambles whose acceptability it
encompasses.

Given a coherent lower prevision P on L, its associated set of gambles is given by

R := L+ ∪ {f ∈ L : P (f) > 0}. (4)

If we interpret the values P (f), f ∈ L, as your supremum acceptable buying prices for the gambles f ∈ L, then the set
R represents those that you are sure to find acceptable: those non-zero gambles that may only make you subject to a
gain (L+) and those for which you are disposed to pay a positive amount in order to buy them ({f ∈ L : P (f) > 0}).

Similarly, given a conditional lower prevision P (·|B) on L(Ω), its associated set of gambles is given by

R|B := {f ∈ L : f = Bf and (Bf ∈ L+ or P (f |B) > 0)}. (5)
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Note also that we can recover P (·|B) fromR|B by means of

P (f |B) = sup{µ : B(f − µ) ∈ R|B}. (6)

In this paper, we shall make a connection between a number of notions of temporal consistency for coherent
lower previsions and associated properties of the sets of desirable gambles they induce. In particular, we shall use the
following:

Definition 8 (Coherence for gambles). A subsetR ⊆ L is called coherent when it satisfies the following conditions:

D1. L+ ⊆ R; [Accepting Partial Gains]

D2. 0 /∈ R; [Avoiding Null Gain]

D3. f ∈ R, λ > 0⇒ λf ∈ R; [Positive Homogeneity]

D4. f, g ∈ R ⇒ f + g ∈ R, [Additivity]

and it is said to avoid partial loss when it is included in a coherent set.

Coherence means that you should be willing to accept a transaction represented by a finite number of desirable
gambles (D4), and to make a linear change in the utility scale without affecting the desirability of the gambles (D3).
Moreover, it implies that a non-zero gamble that can never give you a negative reward should be desirable (D1), while
a gamble that can never give you a positive reward should not (D2). Avoiding partial loss suffices to extend your
assessments while ‘correcting’ them into coherent ones. Geometrically, a coherent set is a convex cone, that is, a set
closed with respect to finite positive linear combinations (as from D3–D4). The smallest, and hence the least committal,
of the coherent cones that includeR, is called its natural extension:

Definition 9 (Natural extension for gambles). If a setR avoids partial loss, then the intersection of all its coherent
supersets, denoted by ER, is coherent and it is called its natural extension.

ThenR is coherent if and only if it coincides with its natural extension. An example of a coherent set is the one induced
by a coherent lower prevision, as in (4).

Remark 1. Note that ER does not contain any gamble g ≤ 0. The case g = 0 is excluded by D2. In the case g � 0, we
should have that 0 = −g + g ∈ ER, by D1 and D4, and this contradicts D2 again.

On the other hand, it is not difficult to show that given two coherent sets of gamblesR1,R2, their unionR1 ∪R2

avoids partial loss if and only if the set

R1 ⊕R2 := {f + g : f ∈ R1 ∪ {0}, g ∈ R2 ∪ {0}, f 6= 0 or g 6= 0}

satisfies D2, and it is coherent if and only if R1 ∪ R2 = R1 ⊕ R2 (see Proposition 7 in Secton 6 and Lemma 3
in Appendix A). �

Axioms D1–D4 show that the coherence notion we have introduced is equivalent to that proposed by Peter Williams
in [69]; in particular, it should not be confused with the strongest definition proposed by Walley in [68, Appendix F1].
Walley’s definition includes in addition a requirement of conglomerability as expressed by axiom D5 below:7

Definition 10 (Conglomerability for gambles). Given a set of desirable gamblesR that satisfies D1–D4 and a partition
B of Ω,R is called B-conglomerable (or just conglomerable) when it also satisfies:

D5. f ∈ L \ {0}, Bf ∈ R ∪ {0} ∀B ∈ B ⇒ f ∈ R,

where Bf is given by Eq. (1), and of course f =
∑
B∈B Bf .

7However, Walley requires axiom D5 to hold for all the partitions of Ω; this is called ‘full conglomerability’. In contradistinction, our axiom D5 is
only used with respect to the single partition B. This is called ‘partial conglomerability’ and bears no implications on the much stronger requirement
of full conglomerability. Therefore, whenever we talk of conglomerability in this paper, we mean partial conglomerability.
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Conglomerability follows from D4 in case the partition is finite; hence Williams’ and Walley’s coherence notions
are equivalent in that case (and in particular when Ω is finite). The treatment of the infinite case is a controversial matter:
Walley claims that conglomerability should be imposed as a rationality requirement [68, Section 6.9.8] while other
authors, such as de Finetti [9, 11] and Williams [69], reject this idea. This question is important, especially because
conglomerability can be related to σ-additivity: this means that what de Finetti rejects, by rejecting conglomerability, is
that σ-additivity should be a rationality requirement; to him, rationality only constrains us to stay with finitely additive
probabilities.

Conglomerability can be used to define a special type of natural extension [44]:

Definition 11 (Conglomerable natural extension for gambles). Given a set of desirable gamblesR and a partition B
of Ω, the B-conglomerable natural extension ofR, if it exists, is the smallest set F that containsR and satisfies D1–D5.

Let us move on now to consider conditioning for a set of desirable gambles. Conditioning is made with respect to
an element B of a partition B of Ω.

Definition 12 (Conditioning for gambles). Given a coherent set of desirable gamblesR and a partition B of Ω, we
define beliefs conditional on an element B of B as the set

R|B := {f ∈ L : f = Bf ∈ R} . (7)

Sometimes we need to represent this set through gambles defined on L(B); then we use the equivalent representation
given byR|B :=

{
fB ∈ L(B) : BfB ∈ R|B

}
.

One interesting property is that this conditional set of gambles induces the conditional natural extension of P , given
by Eq. (3). If we define

P (f |B) := sup{µ : B(f − µ) ∈ R} = sup{µ : B(f − µ) ∈ R|B}, (8)

whereR is the set of gambles induced by P through (4) andR|B is derived fromR by means of (7), then we have the
following:

Lemma 1. Let P be a coherent lower prevision on L, and let P (·|B) be the conditional lower prevision it induces by
means of Eq. (8). Then:

(a) P , P (·|B) satisfy GBR.

(b) P (·|B) coincides with the conditional natural extension E(·|B) of P .

Proof.

(a) Consider a gamble f on Ω and B ∈ B. From Eq. (8), for every δ > 0 the gamble B(f − P (f |B) + δ) ∈ R,
whence P (B(f−P (f |B)+δ)) ≥ 0 by Eq. (4). Since this holds for every δ > 0 we deduce that P (G(f |B)) ≥ 0.
On the other hand, if P (G(f |B)) > 0, then there is some δ > 0 such that P (B(f − P (f |B)− δ)) > 0, whence
B(f − P (f |B)− δ) ∈ R and as a consequence P (f |B) ≥ P (f |B) + δ, a contradiction.

(b) Taking point (a) into account, now we must show only that P (f |B) = infB f whenever P (B) = 0. We have that

P (f |B) = sup{µ : B(f − µ) ∈ R} = sup{µ : B(f − µ) ≥ 0 or P (B(f − µ)) > 0}
= sup{µ : B(f − µ) ≥ 0} = inf

B
f,

because of Eq. (4), and because P (B(f − µ)) ≤ P (B(supB f − µ)) = P (B)(supB f − µ) = 0, taking into
account that µ ≤ P (f |B) ≤ supB f .

The definition of conditioning for a set of desirable gambles is simply based on restricting the attention to the
desirable gambles that are zero outside B. This corresponds to the so-called contingent interpretation of conditioning:
we can think of it as a way of modelling your present attitudes towards gambles that are called off if the outcome
ω ∈ Ω of the experiment, for which you are accepting gambles, does not belong to B. On the other hand, the updating
interpretation of conditioning understands setR|B as the gambles you are disposed to accept now if you assume that B
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occurs and that you obtain no other relevant information about Ω. Walley discusses the agreement of the contingent and
the updating interpretations in [68, Section 6.1.5].

A question of particular importance is that the updating interpretation makes no claim whatsoever concerning the
gambles you will be committed to accept once (and if) B actually obtains. Since this is a frequent source of confusion
in subjective probability, let us stress once again that conditional beliefs refer only to your current beliefs and bear
no implications (in absence of further conditions or justifications) on the future. To enforce this distinction, in the
following we shall use the terminology conditional beliefs to talk of (current) updated beliefs, and future commitments
for the probability model you will endorse after B actually obtains. See Section 3 for a more detailed discussion.

3. Introducing the temporal setup

3.1. On the relationship of probability with time

Let us recall that you are interested in the outcome of an experiment that is known to belong to the set Ω. Section 2
described, among other things, how to model your uncertainty about Ω through a coherent lower prevision P . This
lower prevision has to be intended as commitments on your side: by providing P , you commit yourself to accept any
gamble you are offered from the setR originated by P through Eq. (4). This implies also that you will not accept the
zero gamble, because of D2, nor any gamble −f ∈ −R, for you are committed to accept f and f − f = 0. On the
other hand, establishingR has no implications on the gambles in L \ (R∪−R ∪ {0}): in the actual transactions with
an opponent, you could actually accept some of them and reject some others, or just be undecided. In other words, we
acknowledge that your uncertainty model may be only an incomplete representation of your beliefs, rather than an
exhaustive one. This means, in particular, that your actual behaviour might even be consistent with a lower previsions
that is more (but never less) precise than P . There are many reasons why this may happen; see [68, Section 2.10.3] for
a discussion about this point.

It is important to clearly understand the relationship of all this with time. In fact, Section 2 was entirely focused on
a single point in time—which we conventionally take to be the present moment. In particular, that section assumes that
you are providing your beliefs about Ω now and makes no claims about the dynamics of your beliefs through time. This
is the case even when one considers conditional assessments, which still refer, by definition, to beliefs at present time.
In this setup, there is no link, let alone a formal one, between your present and future commitments.

If we want to relate your present commitments to your future ones, we need to explicitly introduce time in the
process of defining your assessments. This is what we set out to do. To this end, we consider an additional time point,
besides now, that is determined by the outcome of a further experiment. The latter experiment will yield an element B
of a partition B of Ω, thus informing you that the outcome ω ∈ Ω of the former experiment—the one you are really
after—actually belongs to B.

The situation then is going to be the following. At present time you define your current beliefs P ; from this moment
to the future time point when B occurs, an opponent may offer you a (finite) number of gambles and you will be
committed to accept all those that belong toR, the set associated to P . On the other hand, you will also establish some
other assessments in the form of a lower prevision PB : this represents your future commitments, which only become
effective after B is observed. The idea here is that from that occurrence of B onwards, you will be committed to accept
gambles from the set of desirable gamblesRB associated to PB , and no longer fromR. We consider three possible
time periods when you can decide to establish your future commitments, as shown in Figure 1: now, later but before B,
after B.

In practice there are a number of reasons why you might want to define PB in different time periods. For example,
you might exclude that the availability of extra time to reflect on P could lead you to modify your current conditional
beliefs. In this case you might want to set your future commitments equal to your conditional beliefs, and you would do
it now. Or it could be the case that at the time when you establish your present beliefs you do not even know which are
the possible events to observe in the future, that is, you do not know what the partition B is going to be. Imagine that
you come to know the form of B some time later and before B occurs. You will probably use some of the remaining
time to specifically improve on your assessments concerned with your beliefs conditional on the events of B, and
possibly commit to them (for the future) before B occurs. Finally, it could well be the case that you know both B and
B only after the latter occurs. In this case you will specifically focus only on beliefs that depend on the occurrence of
such a specific B.
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TIME

NOW FUTURE

current beliefs
established

future
commitments

established

B is
observed

future commitments
become effective

Figure 1: The temporal setup. Current beliefs are always established now. Future commitments can be established in three different periods: now;
afterwards but before B occurs; after B occurs. Future commitments are never effective before B occurs.

Needless to say, your future commitments PB express your beliefs about Ω at the time point when you establish
them (also in this case,RB may be only an incomplete representation of your beliefs). Therefore, in case you establish
them before B occurs, they cannot in general be regarded as your beliefs after B. This is the reason why we call them
future commitments rather than future beliefs. Still, they are commitments: for you are aware that in the moment when
you decide to establish (i.e., declare) them, you are committing yourself to accept gambles, after B occurs, from the set
of desirable gamblesRB induced by PB . Note moreover that the beliefs represented by PB will obviously take into
account that the commitments they express will become effective after B occurs, and therefore they will only focus on
the case where the outcome ω ∈ Ω of the original experiment belongs to B; in other words, they are beliefs about the
set B ⊆ Ω.

A few additional remarks are in order:

• In this paper we are interested in the case of two time points, as indicated above; we are not considering extensions
to multiple future time points. Accordingly, we assume that the present time coincides with the beginning of the
process of establishing commitments, in the sense that P represents the first commitments you have made about
Ω.

• Let us point out more clearly something that is already implied by the above discussion: after the present moment,
when your current lower prevision P is established, you are no longer allowed to modify or drop it until event B
occurs. This means that the commitments it encodes actually constrain your behaviour up to the occurrence of B.
We are aware that some may feel that this requirement (as well as others in this section) comes as too restrictive.
On the other hand, we need to clearly define the problem to deal with. More flexible settings will likely be easier
to address after some basic framework like the present one has been analysed.

• We are making no assumptions about the process that leads you to define the future lower prevision PB ; you can
define it arbitrarily. In particular, we are not assuming that it coincides with the conditional natural extension
E(·|B) of P , that is, your present conditional beliefs. However, we shall assume that your future commitments
are known, instead of being random variables, as is the case for the related approaches by Goldstein and van
Fraassen we shall discuss in Section 7.3. Moreover, we are assuming that they are indeed commitments: once
they are established, your behaviour after B is going to be constrained by PB (it is not necessarily going to be
fully determined by PB , since we are not assuming that PB is an exhaustive model). This appears to be in line
with recent work by Shafer et al. [57], and less so with respect to older work by Shafer.8

8In fact, we have to say that it is not entirely clear to us yet how much Shafer was actually discussing a temporal setting rather than the updating
interpretation in his early works on the subject. For instance, in the third last paragraph in [56, p. 266], Shafer seems to support the updating
interpretation, while in other parts of the paper he seems to be concerned with temporal questions.
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• In order to avoid confusion, let us also point out that your future commitments PB are beliefs (at the time when
you establish them) about B: they are not, and should not be interpreted as, beliefs about your future beliefs.

• On the other hand, we assume that after the definition of P , you will not receive new information relevant to Ω
other than B (and the related partition B); hence, we are dealing with a case of exact information, in the words
of Shafer et al. [56].9 This setup resembles the one commonly adopted in probability when defining the updating
interpretation of conditioning: that a subject, in the process of assessing his conditional beliefs, assumes to get to
know B and nothing else new about Ω. However, there are also differences with our setup. One that is especially
clear arises if you define PB after B occurs: in that case it will not be only an assumption for you that B is the
only new information observed, it will arguably be a matter of fact. Another difference is indeed that your future
commitments can be established later than now (check Figure 1), while conditional beliefs are always established
at present time. A final difference is that in the traditional updating interpretation there is no statement claiming
that your future behaviour should be constrained by your conditional beliefs: in fact, this is one of the key points
of this paper, that is, distinguishing clearly your future commitments, those that will actually constrain your
behaviour in the future, from your current conditional beliefs.

• The previous point assumes that your state of information stays the same from now to the occurrence of B. What
then justifies a possible difference between E(·|B) and PB is just the availability of additional time: having
more time allows you in general to rework your original assessments E(·|B) by examining the available evidence
more carefully so as to come up with model PB . In fact, in this paper we aim at taking into account also the
situations where your initial beliefs P may have been specified only roughly, for instance for lack of time or
other resources; in this case, the availability of additional time to define PB may well change much your future
commitments from your current conditional beliefs.10 Note moreover that despite the above reworking process
may be made in time in an incremental way through different stages, we only consider the final stage where you
decide that the model PB is definitive and hence declare it (i.e., establish it). For it is only then that you will
commit yourself to accept gambles, after B occurs, fromRB . (We comment on this point and the previous one
to some further extent in the concluding section 8.)

• Finally, we assume that you value gambles according to a linear utility scale throughout. This implies that the
time when you accept some gamble does not affect its value for you. We need this assumption to be able to
compare gambles accepted at different times, as in the following discussion.

Letting time enter the picture of belief assessment raises a new kind of consistency problem about your commitments
that is not present otherwise: it may happen that despite both your present and future commitments are coherent when
taken on their own, they may lead to some form of inconsistency when considered together. For instance, even if each
of the sets of gambles R and RB , respectively induced by P and PB , are coherent, this cannot prevent you from
establishing that for a certain f ∈ L(Ω), and ε0 > ε1 > 0, the gambleB(f−ε0) is desirable now and that afterB occurs,
the gamble B(ε1 − f) becomes desirable; these assessments (considered also that B represents the event that occurs)
imply that you are actually exposing yourself to the possibility of accepting the gamble f − ε0 + ε1− f = ε1− ε0 < 0,
that is, to a sure loss. Note that you can undergo such a loss only by combining commitments related to different
times: the reason is that, although at each time point you are coherent, at the moment we are missing some notion, or
requirement, of consistency of your commitments through time. The rest of this paper will be devoted to introduce and
discuss some notions of time consistency.

3.2. Basic tools
We start introducing some basic tools, in terms of the sets of desirable gambles associated to your current and future

commitments, that we need for the following mathematical development:

9This is also related to the problem of observability within subjective probability. See [68, Sections 6.1 and 6.11] and [12, 21] for some additional
discussion. Very briefly, the question is that conditioning is well defined under the updating interpretation, as well as in a temporal setup, if the
conditioning event is the outcome of an experiment, and hence it belongs to a partition of Ω. Overlooking this subtlety may lead into troubles by
neglecting the role of the process by which one makes observations. All this is related to the condition of coarsening at random (see [8, 20, 56, 72]).

10One could argue then that E(·|B) and PB should coincide when they are established together. Our choice is to leave you freedom also in this
case to choose PB as you wish, so as to make a treatment uniform with all the other cases; only later we shall discuss how rationality will require in
this case to set PB equal to E(·|B) (as well as to make P conglomerable; see Section 4.4 and in particular Theorem 2(c)).
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• R is the coherent set of gambles induced by the coherent lower prevision P that represents your current beliefs
by means of Eq. (4). For each B ∈ B, your beliefs conditional on B as induced byR are given by the setR|B
determined by Eq. (7).

• RB is the set of desirable gambles that represents your future commitments in case B ∈ B obtains, and that is
induced by the lower prevision PB by means of Eq. (5).11

The specification of future commitments can be more or less informative depending on the period when they are
established. If they are established after B occurs, then there will be only a single setRB . But if you establish them
before B occurs, then you will have to specify a lower prevision PB for every B ∈ B, given that at that time you will
not know which B is going to obtain; correspondingly, there will be a setRB for every B ∈ B.

Let us analyse the latter case more in detail. Expressing all those sets commits you to accept any gamble inRB
provided that (and hence after) B occurs, and this for every B ∈ B. What we claim now is that this actually implies
more: that you are committed to accept any gamble f such that Bf belongs toRB for any B ∈ B. In fact, when the
setsRB , B ∈ B, have been established, an opponent might offer you the following agreement: that he will give you
gamble Bf in case B occurs, and this for all B ∈ B. By the very definition of the setsRB , B ∈ B, you will have to
accept this agreement. But the agreement just says that you will accept Bf after any B occurs, so that eventually you
will be rewarded with f(ω) whatever ω ∈ Ω will come true. It is important to realise that this kind of acceptance of f
does not imply that you will be involved in transactions made by infinitely many gambles: you will eventually accept
the single gamble Bf related to the only event B that will obtain.

These considerations lead us to define your future commitments in a way that everything that can happen in the
future, and hence also all the agreements that you would accept, is properly represented. We can do this by a single set
of gambles:

FB := {f ∈ L(Ω) : Bf ∈ RB ∪ {0} ∀B ∈ B} \ {0} (9)

=

{
f ∈ L(Ω) : f =

∑
B∈B

Bg : Bg ∈ RB ∪ {0}

}
\ {0}. (10)

In Eqs. (9)–(10) we allow that for each set B ∈ B the restriction of f to B is equal to zero, because in this wayRB is
correctly included in FB for all B ∈ B. Saying this differently, letting each of these restrictions to possibly equal zero
allows us to represent also the agreements (you would accept) stating that you will be given a gamble from a certain
RB in case B happens, and nothing otherwise. Finally, observe that we exclude the zero gamble from FB. This is
harmless, just because it represents a trivial transaction, and at the same time it allows us to make FB comply with
axiom D2.12 In fact, FB satisfies a much stronger property:

Proposition 1. FB is the conglomerable natural extension of ∪B∈BRB .

Proof. Let us show that FB satisfies D1–D5.
D1. Consider h 
 0. Then for every B ∈ B, it holds that Bh ≥ 0, and as a consequence it belongs toRB ∪ {0}.

Hence, h ∈ FB.
D2. We know that 0 /∈ FB by definition.
D3. Consider h ∈ FB and λ > 0. Then for every B ∈ B the gamble Bh belongs to RB ∪ {0}, whence

λ(Bh) = B(λh) also belongs toRB ∪ {0} and as a consequence λh ∈ FB.

11Although Eq. (5) induces a set of desirable gambles from a conditional lower prevision P (·|B), nothing prevents us from applying it to PB ,
given that PB formally acts like a conditional lower prevision—only its interpretation is different. Note also that to maintain a consistent notation
here we denote the induced set byRB rather than byR|B as in Eq. (5).

12A more subtle issue is that when we create gambles in a piece-wise way along the elements of a partition as inFB , we can give rise to unbounded
gambles even if each setRB contains only bounded ones: for instance, consider a countable partition B with elements B1, B2, . . . , Bk, . . . , and
select the positive constant gamble k inRBk for all k ∈ N. We rule out situations of this type by requiring in (9) that f belongs to L(Ω), which is a
set made of bounded gambles by definition. The reason is that currently the theories of coherent sets of desirable gambles, as well as of coherent
lower previsions, are developed only for the case of bounded gambles (with the notable exception of [64]). Such a choice is not restrictive for the
subsequent analysis since we were already assuming that beliefs be expressed only with reference to bounded gambles.
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D4. Consider h, h′ ∈ FB. Then for every B ∈ B it holds that Bh,Bh′ ∈ RB ∪ {0}, whence B(h + h′) =
Bh + Bh′ ∈ RB ∪ {0}. This implies that h + h′ ∈ FB ∪ {0}. To see that h + h′ 6= 0, assume ex-absurdo that
h + h′ = 0. Since neither of these gambles is equal to zero, there must be some B ∈ B such that Bh 6= 0 and
Bh′ = −Bh. But then Bh,Bh′ ∈ RB and Bh + Bh′ = 0, a contradiction with the coherence of RB . Hence,
h+ h′ ∈ FB.

D5. Consider 0 6= h ∈ L such thatBh ∈ FB∪{0} for allB ∈ B. Then it follows from Eq. (9) thatBh ∈ RB∪{0}
for every B ∈ B, whence h ∈ FB.

On the other hand, any superset F of ∪B∈BRB satisfying D1–D5 should include any gamble f 6= 0 for which
Bf ∈ RB ∪ {0} for every B ∈ B, because then Bf ∈ ∪B∈BRB ∪ {0} for every B and applying D5 it follows that
f ∈ F . We conclude that FB is the smallest superset of ∪B∈BRB satisfying D1–D5, i.e., its conglomerable natural
extension.

This result tells us in particular that FB is conglomerable. But remember that we are still not assuming that, at a
certain moment in time, an infinite sum of desirable gambles is desirable to you: the commitments expressed by the
sum

∑
B∈B Bg will become effective only after a certain B occurs, so that in the end you will only make the single

transaction represented by Bg.

R

RB1

RB2

... . . .

RB...
. . .

B1g ∈ RB1 ∪ {0}

B2g ∈ RB2 ∪ {0}

. . .

Bg ∈ RB ∪ {0}
. . .

FB

TIME

NOW FUTURE

Figure 2: We can represent the establishment of commitments through time by a tree. At the root there are present beliefsR. Later, depending on the
event that occurs, a certain setRB represents the commitments, such as Bg, that are effective since then. FB represents the totality of what can
happen in the future, without assuming to know the specific event B that will occur.

Another way to look at this is that the above infinite sum does not involve gambles representing commitments that
you hold simultaneously, given that the different setsRB are exclusive: you will never hold commitmentsRB′

together
with RB′′

, for two different events B′, B′′ in B. This can be seen also from Figure 2. Therefore FB is not a set of
commitments that you will hold at some point in time; it is rather a formal tool that we use to represent everything that
can happen in the future based on the commitments that you have established (separately) relative to the occurrence of
different events.

The situation is different in the case of conditional beliefs. Consider a gamble g :=
∑
B∈B Bg such that Bg ∈ R|B

for all B ∈ B, whereR|B is induced fromR by means of Eq. (7). Then for every B ∈ B, you are willing to accept Bg
now (and not after B occurs). But this does not mean that you are now willing to accept

∑
B∈B Bg: in fact, all the

gambles Bg belong toR and hence express commitments that you hold altogether at the same point in time; and you
are allowed to combine only a finite number of them through the finitary axiom D4. As a consequence, an opponent
may have you at most accept a gamble like g′ :=

∑
B∈B′ BgB , where B′ is a finite subset of B. But this will not be

able to represent gamble g in general. As a consequence,R is not going to be closed with respect to D5 in general.
We see then that the mechanisms that allow us to combine gambles through sums are very different in the case

where we focus on a set of beliefs maintained at the same point in time (R) or on a set summarising sets of commitments
relative to different future events that will occur (FB). And it is particularly revealing in our view to see that the
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conglomerability of FB is a feature that arises spontaneously without being imposed on the set. Note in particular that
without using infinite sums in FB we would not be able to represent all the possible future scenarios: for instance, the
scenario where you will accept some Bg 6= 0 after B occurs, and this for all B ∈ B, can be represented only through
the infinite sum

∑
B∈B Bg because by making it finite some elements Bg (actually infinitely many of them) should

equal zero. The set that arises if we use only finite sums is in fact different from FB, as the following corollary shows:

Corollary 1. The natural extension of ∪B∈BRB is given by

EB :=

{
f ∈ L(Ω) : f = h+

∑
B∈B′

Bg : Bg ∈ RB ∪ {0}, h ≥ 0,B′ ⊆ B s.t. |B′| <∞

}
\ {0}. (11)

Proof. It is enough to show that EB is the smallest coherent superset of ∪B∈BRB . That ∪B∈BRB ⊆ EB is trivial, and
that any coherent superset of ∪B∈BRB must include EB follows with a reasoning analogous to that used w.r.t. FB in
Proposition 1. On the other hand, given a gamble in (11), if we rewrite

h+
∑
B∈B′

Bg =
∑
B∈B′

B(g + h) +
∑
B/∈B′

Bh

we see, through (10), that EB ⊆ FB. Then the axioms D1–D4 are trivial to verify, considered in particular that sums of
gambles from EB cannot yield zero as 0 /∈ FB.

Observe in particular that the natural extension EB satisfies D1–D4 and not D5 in general.
On the other hand, since in Section 4 we shall focus primarily on coherent lower previsions, we shall need also a

way to aggregate the several models of future commitments directly through lower previsions. In this case we have a
prevision PB on L(B) for all B ∈ B. We summarise them by means of the functional PB given by

PB(f) :=
∑
B∈B

BPB(fB),

which mathematically acts as a separately coherent conditional lower prevision on L(Ω). However, since, strictly
speaking, it is not a conditional lower prevision (which, by definition, represents current beliefs), we shall use for it the
terminology of separately coherent future lower prevision.

Let us remark that although the setsR,FB will be used already in Section 4, as a way to easily convey a behavioural
interpretation of the results we shall pursue, it is from Section 6 onwards that these sets will actually play a primary
role in the development, because we shall take them as our primitive models, not only as models derived from coherent
lower previsions. This will allow us to establish results similar in spirit to the first part of the paper but in a much more
general way.

4. Temporal consistency

Remember that we distinguish different time periods for the definition of your future commitments. In this section
we start by focusing on the intermediate period, where you define them beforeB occurs, but also after having established
your current beliefs. In this situation, the relevant models in terms of lower previsions are an unconditional lower
prevision P on L(Ω) that represents your present beliefs, and the separately coherent future lower prevision PB on
L(Ω) that summarises your future commitments.

4.1. Temporal consistency

We are ready to define our first notion of consistency across your current and future commitments. To this end, let
R,RB (B ∈ B) be the sets of gambles associated to P , PB by means of Eqs. (4), (5) and let FB be the conglomerable
natural extension of ∪B∈BRB .

Theorem 1. The following statements are equivalent:
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(a) R∪ FB avoids partial loss.

(b) P , PB avoid sure loss.

(c) P (f − PB(f)) ≥ 0 for every f ∈ L.

(d) PB(f) ≥ 0⇒ P (f) ≥ 0 for every f ∈ L.

(e) P (f) ≥ inf PB(f) for every f ∈ L.

Proof. Let us make a circular proof.

(a)⇒ (b) Assume ex-absurdo that P , PB do not avoid sure loss. Then from ASL we deduce that there are gambles f, g
such that sup[G(f) +GB(g)] < 0, whence there is some δ > 0 such that sup[G(f) +GB(g) + δ] < 0. Since

G(f) +
δ

2
= f − (P (f)− δ

2
) ∈ R and

GB(gB) +B
δ

2
= B(g − (PB(g)− δ

2
)) ∈ RB ∀B ∈ B ⇒ GB(g) +

δ

2
∈ FB,

we deduce that the gamble G(f) +GB(g) + δ belongs to the natural extension ofR∪ FB (because the natural
extension is closed w.r.t. sums of gambles). But since such a gamble is negative, we deduce that the natural
extension is incoherent, a contradiction with (a). As a consequence, P , PB avoid sure loss.

(b)⇒ (c) This follows from [68, Theorem 6.3.5].

(c)⇒ (d) Because if PB(f) ≥ 0 then P (f) ≥ P (f − PB(f)) ≥ 0.

(d)⇒ (e) Taking into account that, since P is a coherent lower prevision, P (f − inf PB(f)) = P (f)− inf PB(f), and
PB(f − inf PB(f)) ≥ 0 because PB is separately coherent.

(e)⇒ (a) Use Remark 1, and assume there are gambles f ∈ R, g ∈ FB such that f + g ≤ 0. Note that f /∈ L+ because in
that case we would have g ≤ 0, a contradiction with the coherence of FB. Then g ∈ FB implies that PB(g) ≥ 0,
whence, applying (e), P (g) ≥ 0. Using the conjugacy between upper and lower previsions, together with f ≤ −g,
we deduce that P (−g) ≤ 0, and the monotonicity of P implies then that P (f) ≤ 0. But since f /∈ L+, we
deduce from Eq. (4) that f cannot belong to the set of gamblesR, a contradiction. Hence,R∪FB avoids partial
loss.

This result generalises [68, Theorem 6.3.5(1) and (3)], where the implications (b) ⇒ (e) and (b) ⇒ (c) were
established.13 From it, we establish the following:

Definition 13 (Temporal consistency). We say that your current and future commitments P , PB are temporally
consistent when any of the equivalent conditions of Theorem 1 holds.

The rationale behind this definition should be clear: if you failed temporal consistency, an opponent could create a
combination of current and future transactions that will have the overall effect of making you desire, and then accept, a
gamble that is strictly smaller than 0. For example, assume that there are gambles f and g such that ASL fails, because
there is some δ > 0 such that

sup [G(f) +GB(g)] ≤ −δ < 0.

Then the definition of P means that you should be disposed to buy the gamble f for the price P (f)− δ
3 , or, equivalently,

that you should accept the gamble G(f) + δ
3 ; on the other hand, for any B ∈ B, you should be disposed to buy the

gamble g at the price PB(g) − δ
3 after observing B, or equivalently, to accept the gamble B(g − PB(g) + δ

3 ). But
this means that no matter which is the B you observe, you should accept the gamble G(f) +GB(g) + 2δ

3 , which will
produce a loss of at least δ3 irrespective of the actual B that will occur. This is an inconsistency.

13But note that Walley was not concerned with temporal considerations as we are; his results deal with a pair of unconditional and conditional
lower previsions that are both established at present time. Therefore the aims and the interpretation of the results in the two cases are very different.
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Example 7 (Running example). Consider again the situation depicted in Example 1: take the variables V := ‘virus type’
(seasonal, atypical) and T := ‘test result’ (positive, negative). Assume you model your current beliefs about the two
variables by means of the coherent lower prevision P from Example 4, and that, at some later time, but before you know
the results of the test, you set your future commitments equal to the separately coherent conditional lower prevision
P (V |T ) from Example 2. Since we have showed in Example 6 that these two lower previsions avoid sure loss, we
conclude that your assessments are temporally consistent: they cannot be exploited together in order to make you
subject to a sure loss. This is easy to see if we consider their associated sets of gambles by means of Eqs. (4) and (5):
we have that

R := L+ ∪ {f : f(s, n) > 0, f(s, p) > 0 and 0.95 min{f(s, n), f(s, p)}+ 0.05 min{f(a, n), f(a, p)} > 0};

and

RB := {f : f(a, n) = f(s, n) = 0 and (f(a, p) > max{0,−f(s, p)

3
} or f(a, p) = 0 < f(s, p))},

RBc

:= {f : f(a, p) = f(s, p) = 0 and (f(s, n) > max{0,−f(a, n)

4
} or f(s, n) = 0 < f(a, n))},

where we are using B to denote the event T = p.
Then note that if the sum of a gamble f inR with a gamble g ∈ FB were negative or zero, we would deduce that

it must be f(s, n) = g(s, n) = 0, from which f ∈ L+ and therefore g ≤ 0, a contradiction. Hence, R ∪ FB avoids
partial loss. �

Theorem 1 also allows us to relate the conditional beliefs we can derive from your set of current beliefs and your
future commitments. Let R|B be the set of conditional beliefs derived from R by means of Eq. (7), and let E(·|B)
be its associated lower prevision (the conditional natural extension of P , from Lemma 1), given by Eq. (6). Since
RB ⊆ FB, then we can deduce from Theorem 1 that

E(f |B) ≤ PB(fB) ∀f ∈ L(Ω). (12)

Indeed, if (12) does not hold, then you are willing now to pay E(f |B) − δ/2, for any δ > 0, to get f under the
assumption that B happens, while after B actually happens, you are willing to sell f at price PB(fB) + δ/2; the
result of these two transactions is B(f −E(f |B) + δ/2)−Bf +PB(fB) + δ/2 = PB(fB)−E(f |B) + δ, which is
negative provided that we choose δ < E(f |B)− PB(fB).

We can use Theorem 1 also to see, intuitively, that you do not need to modify your current beliefs in order to achieve
temporal consistency: given any set of current beliefs, you can create temporally consistent future commitments. This
is an important feature of temporal consistency, because it means that you can use it also after having established (and
hence having ‘fixed’) the present beliefs. The next remark makes the point more precisely.

Remark 2. If your commitments become more imprecise, in the sense that P 1 ≤ P and P 1
B ≤ PB, then if P , PB

satisfy temporal consistency then so do P 1, P
1
B. A related comment is made in [68, Proposition 2.6.3(a)]. Furthermore,

temporal consistent models always exist (for instance the vacuous ones); and we can always find a future model that
satisfies temporal consistency with respect to your current beliefs by making it imprecise enough: if we take the vacuous
PB, then it is temporal consistent with any initial coherent lower prevision P . This shows on the one hand that temporal
consistency is weaker than conglomerability: even if we start with a conglomerable, precise prevision, a conditional
lower prevision that is temporally consistent with it is not necessarily precise. On the other hand, even if there are
coherent lower previsions that are not conglomerable, they are always temporally consistent with respect to the vacuous
PB. We shall come back to the connection with conglomerability in Section 4.4. �

4.1.1. Correcting temporal inconsistency
An interesting side problem is to determine whether you can modify your (not yet established) commitments when

temporal consistency is not satisfied, so as to obtain a temporal consistent model and with a correction that is as small as
possible. In other words, we would like to define an analogue of the notion of natural extension for temporally consistent
models, in the sense of being the closest model that satisfies temporal consistency. Since we have already remarked that
a model that is included in a temporally consistent model satisfies again temporal consistency, the correction should
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be done by making the model more imprecise. That is, you should define the temporally consistent extension as the
greatest (that is, more informative) model that is temporally consistent and is included in your assessments.

If your current and future commitments are temporally inconsistent, it follows from the definition of avoiding
sure loss that there is no linear prevision P satisfying P (G(f)) ≥ 0 and P (GB(f)) ≥ 0 for every gamble f . This
means that if we consider the credal setsM1 := {P : P (G(f)) ≥ 0 ∀f} andM2 := {P : P (GB(f)) ≥ 0 ∀f}, their
intersection is empty. Equivalently, this means that the lower prevision Q := max{P 1, P 2}, where P 1, P 2 are the
lower previsions associated toM1,M2, incurs a sure loss. Therefore, one possibility for correcting your inconsistent
assessments would be to find the ‘closest’ lower prevision that is dominated by Q and avoids sure loss (so that it is
associated to a non-empty credal set). However, such a prevision does not exist in general, as we proceed to show:

Proposition 2. Let P be a coherent lower prevision incurring sure loss. Then there is no greatest lower prevision that
avoids sure loss and is dominated by P .

Proof. First of all, we can assume without loss of generality that P (f) ∈ [inf f, sup f ] for every f : otherwise, it
suffices to consider the lower prevision P ′ given by

P ′(f) :=


inf f if P (f) < inf f

sup f if P (f) > sup f

P (f) otherwise.

Then for any credal setM we can consider the lower previsions P 1 := inf(M∪M(P )) and P 2 := inf(M∪M(P ′)),
by means of which we can make a correspondence between the lower previsions that are dominated by P and avoid
sure loss and those that are dominated by P ′ and avoid sure loss. Hence, if we show that there is not a greatest lower
prevision that is dominated by P ′ and avoids sure loss, we shall immediately deduce that there is not a greatest lower
prevision that is dominated by P and avoids sure loss either.

Assume now that there is a lower prevision Q ≤ P that avoids sure loss and such that for any other lower prevision
Q′ ≤ P that avoids sure loss it holds that Q′ ≤ Q. Since Q avoids sure loss and P does not, there must be some
gamble f such that Q(f) < P (f). Let P be a linear prevision satisfying P (f) = P (f) (such a prevision always exists
because inf f ≤ P (f) ≤ sup f ), and let us define Q′ := min{P, P}. Then P ∈ M(Q′), so Q′ avoids sure loss, and
moreover Q′ ≤ P . However, Q′(f) = P (f) > Q(f), and as a consequence Q′ is not dominated by Q. This is a
contradiction.

Hence, it is not possible to find the closest temporally consistent model to some temporally inconsistent assessments;
interestingly, it may be possible to do so if you fix your current beliefs P and look for the greatest model of future
commitments that is dominated by PB and is temporally consistent with P . This is easier to establish if we work with
sets of desirable gambles, as we shall see in Section 6.1.

4.2. Strong temporal consistency
Temporal consistency means that it should not be possible to combine your current and future commitments in

order to make you subject to a sure loss, but it does not impose any actual restriction on how these future commitments
should be defined. When we require that they are determined by your current beliefs, we obtain a strengthening of
temporal consistency that we shall call strong temporal consistency:
Definition 14 (Strong temporal consistency). We say that a coherent lower prevision P and a separately coherent
future lower prevision PB are strongly temporally consistent when they are temporally consistent and moreover PB
coincides with the conditional natural extension E(·|B) of P , given by Eq. (3).

Taking into account the comments about temporal consistency in Section 4.1, the behavioural interpretation of
this condition is that one should not be able to exploit your current and future commitments in order to make you
subject to a sure loss, when moreover your future commitments are determined by your current ones by means of
natural extension. This shall be clearer when we discuss the definition of strong temporal consistency in terms of sets
of gambles in Section 6.2.

We begin by noting that strong temporal consistency is related to the property of conglomerability, in the sense
that if you set your future commitments equal to present conditional beliefs, then strong temporal consistency holds
automatically if P is conglomerable.
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Proposition 3. Let P be a coherent lower prevision and let E(·|B) denote its conditional natural extension. Then each
of the following statements implies the next:

(a) P is conglomerable.

(b) P ,E(·|B) have dominating coherent lower previsions Q,Q(·|B).

(c) P ,E(·|B) are temporally consistent.

Proof.

(a)⇒ (b) If P is conglomerable then it is coherent with its conditional natural extension E(·|B), so the thesis holds
trivially.

(b)⇒ (c) If Q ≥ P and Q(·|B) ≥ E(·|B), and Q,Q(·|B) are coherent, then Q is conglomerable, whence it is coherent
with its conditional natural extension, which must also dominate E(·|B) because Q ≥ P . Taking into account
Remark 2, we deduce that P ,E(·|B) are temporally consistent.

On the other hand, we may note then that if the coherent lower prevision P that represents your current beliefs does
not satisfy temporal consistency with its conditional natural extension E(·|B), neither does any dominating coherent
lower prevision Q ≥ P : for if there are gambles f, g such that

sup[f − P (f) + g − E(g|B)] < 0,

then we also have
sup[f −Q(f) + g −Q(g|B)] < 0,

taking into account that the conditional natural extension Q(·|B) of Q dominates that of P . This shows that failure of
strong temporal consistency cannot be corrected by making your assessments more precise.

Example 8 (Running example). If in our running example we make your future commitments equal to the ones derived
from P by means of natural extension, we obtain the vacuous conditional lower prevision E(V |T ) from Example 5.
Since its associated set of gambles is F |B = L+, it trivially avoids partial loss with the setR induced by P . Hence,
P ,E(V |T ) are strongly temporally consistent. This could be deduced immediately from Proposition 3: since the
partition {T = p, T = n} is finite, the coherent lower prevision P is trivially conglomerable, and therefore it is
temporally consistent with its conditional natural extension. �

One particular case where P always avoids sure loss with its conditional natural extension is when you build it by
means of the marginal extension. This is a generalisation of the law of total probability for the imprecise case that is
useful in a context of hierarchical information. Consider a separately coherent conditional lower prevision P (·|B) on
L, and let P be a coherent lower prevision defined on the set K ⊆ L of B-measurable gambles. Then the marginal
extension of P , P (·|B) is the lower prevision given by P 1 := P (P (·|B)), and it can be checked [68, Theorem 6.7.2]
that this lower prevision is coherent with P (·|B).

Proposition 4. Under the above conditions, the marginal extension P 1 of P , P (·|B) is temporally consistent with its
conditional natural extension.

Proof. The result follows from Proposition 3 once we show that the conditional natural extension E(·|B) of P 1 is
dominated by P (·|B). Given B ∈ B, if P 1(B) = 0 then E(·|B) is vacuous and is trivially dominated by P (·|B); and
if P 1(B) > 0 then E(·|B) is uniquely determined from P 1 using GBR, and as a consequence it must coincide with
P (·|B), because P 1, P (·|B) are coherent.

On the other hand, the equality E(·|B) = PB between the conditional natural extension of P and the separately
coherent future lower prevision is made up of two inequalities: E(·|B) ≤ PB and E(·|B) ≥ PB. The first of these
inequalities means that your future commitments should take into account (i.e., be at least as precise as) the implications
of the current beliefs by conditional natural extension. This suggests that strong temporal consistency can naturally be
turned into a weaker consistency notion based on such an inclusion.
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Definition 15 (Strong backward temporal consistency). We say that your current and future commitments are
strongly backward temporally consistent if they are temporally consistent and E(·|B) ≤ PB.

The inequality E(·|B) ≤ PB is related to a proposal that Walley did in [68, Section 6.1.2].14 The rationale,
paraphrasing his words, is that your conditional assessments E(·|B) should be ‘reliable’, in the sense that when you
establish them, you should inspect all the evidence carefully; if you do so, when you later come to know B, you might
do some extra effort and make your assessments more precise, but there should be no possibility that you change your
mind so as to make your assessments become more imprecise. It is interesting then to see that Walley’s proposal can be
thought of as a consistency requirement of current commitments onto future ones. We can see thus strong temporal
consistency as a limit case of strong backwards temporal consistency: it would be the least-committal (i.e., the most
imprecise) model for which strong backward temporal consistency is satisfied.

But note that strong backward temporal consistency is stronger than Walley’s proposal because we are requiring
in addition that P , PB avoid sure loss, and this does not follow from the inequality E(·|B) ≤ PB and the fact that
P ,E(·|B) avoid sure loss: use [68, Example 6.6.10] for an example of a linear prevision P whose conditional natural
extension is vacuous (and which therefore trivially satisfies temporal consistency) but that is temporally inconsistent
with any precise future commitments.

4.3. Event-wise (strong) temporal consistency
In the previous sections we have focused on a setup where future commitments are established after present

beliefs and before event B occurs. Now we move on to consider the simplest case to characterise, that where future
commitments are established after the occurrence of B.

In this situation, having got to know exactly which element in the partition B has obtained, you will obviously
focus on the lower prevision PB associated to that B, which is defined on L(B), or, equivalently, on the subset of
L(Ω) given by those gambles that are zero outside B. Characterising consistency is then very similar to what we have
already done before, with the additional requirement to focus on the only set B that is available.

Proposition 5. Let P be the coherent lower prevision modelling your current beliefs and let PB be your coherent
lower prevision on L(B), or equivalently on K := {f ∈ L(Ω) : f = Bf}, that models your beliefs after knowing that
B occurs. LetR,RB be their associated sets of gambles by Eqs. (4) and (5). Then the following are equivalent:

(a) The lower prevision P 1 given by

P 1(f) :=

{
max{P (f), PB(f)} if f ∈ K
P (f) otherwise

avoids sure loss.

(b) R∪RB avoids partial loss.

(c) E(f |B) ≤ PB(f) for every f ∈ K, where E(·|B) denotes the conditional natural extension of P .

Proof.

(a)⇒ (b) Since bothR,RB are convex cones of gambles, we can deduce from Remark 1 thatR∪RB incurs partial loss if
and only if there are gambles f ∈ R, g ∈ RB such that f + g ≤ 0. We can assume without loss of generality that
none of these gambles is positive, or we would contradict the coherence of eitherR orRB . As a consequence, it
must be P (f) > 0 and PB(g) > 0, whence

sup[f − P 1(f) + g − P 1(g)] < sup[f + g] ≤ 0,

which implies that P 1 incurs sure loss, a contradiction.

14A notion related to strong backwards temporal consistency can be found in [26]; there are, however, a few differences with our framework: the
authors of [26] consider only the observation of an event, instead of a partition; they also consider a non-linear utility function, whereas we assume
your utility scale is linear; and their basic model is not established in terms of lower and upper previsions.
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(b)⇒ (a) Assume ex-absurdo that there are two gambles f, g such that sup[f − P 1(f) + g − P 1(g)] < 0; then there is
some δ > 0 such that f − P 1(f) + g − P 1(g) + δ < 0. Since both P and PB are coherent on their respective
domains, we can assume without loss of generality that f ∈ K and P 1(f) = PB(f) and that P 1(g) = P (g).
Hence, given f1 := f − P 1(f) + B δ

2 ∈ K, it holds that PB(f1) = δ
2 , whence f1 ∈ RB . Similarly, given

g1 := g − P 1(g) + δ
2 = g − P (g) + δ

2 , it holds that P (g1) = δ
2 > 0, whence g1 ∈ R. But then f1 + g1 belongs

to the natural extension of R ∪RB and it is smaller than or equal to 0. Hence, R ∪RB incurs partial loss, a
contradiction.

(b)⇒ (c) Assume ex-absurdo that there is a gamble f ∈ K such that E(f |B) > PB(f). Then from Lemma 1 there is
some δ > 0 such that B(f − PB(f) − δ) ∈ R; since B(PB(f) − f + δ

2 ) belongs to RB , we would deduce
that −B δ

2 belongs to the natural extension ofR∪RB , a contradiction.

(c)⇒ (b) If R∪RB incurs partial loss, then there are gambles f ∈ R, g ∈ RB such that f + g ≤ 0. Since Bcg = 0, it
follows that Bcf ≤ 0. Thus, Bf = f −Bcf ∈ R. Since g cannot be positive because this would contradict the
coherence ofR, we deduce that PB(g) > 0, from which we have the following contradiction:

0 ≥ PB(Bf + g) ≥ PB(Bf) + PB(g) ≥ E(f |B) + PB(g) > 0.

Here the first inequality follows from f + g ≤ 0 and the monotonicity of coherent upper previsions, the second
one follows from the coherence of PB and the third one from (c).

Definition 16 (Event-wise temporal consistency). We say that your present and future commitments are event-wise
temporally consistent when any of the equivalent conditions in Proposition 5 holds.

Hence, by event-wise temporal consistency you establish your future commitments after observing which element
B of the partition happens, while making sure that your present and future commitments cannot be exploited in order
to make you subject to a sure loss.15 As a consequence of Theorem 1 and Proposition 5, if your current and future
commitments are temporally consistent, then they are also event-wise temporally consistent for every B ∈ B. The
converse does not hold in general: if your future commitments coincide with the conditional natural extension E(·|B)
of P , then we always have (strong) event-wise temporal consistency for every B ∈ B, but not necessarily temporal
consistency. An explicit case is shown in Example 11 later on.

A consequence of the above proposition is that inequality (12), which we derived from temporal consistency, is
actually equivalent to event-wise temporal consistency. This shows that violations of event-wise temporal consistency
should be very rare if only present beliefs were assessed using some minimal care.

Example 9 (Running example). Consider again the unconditional lower prevision P that represents your current beliefs,
and assume that you postpone your assessment of your future commitments until the test has been made, and that this
turns out to be positive. Then temporal consistency should only be verified by means of P , P (V |T = p), since it makes
no sense anymore to take into account the assessments in P (V |T = n). Since we already showed in Example 7 that
P , P (V |T ) are temporally consistent, and thereforeR∪ FB avoids partial loss, so does its subsetR∪RB , where B
denotes the event T = p. Hence, we also have event-wise temporal consistency. �

We can extend the similarity to temporal consistency further up to strong temporal consistency, in an obvious way:

Definition 17 (Event-wise strong temporal consistency). We say that your present and future commitments are
event-wise strongly temporally consistent if PB = E(·|B).

The underlying idea is, as usual, that you set future commitments equal to conditional beliefs. The additional
requirement that conditional beliefs and future commitments jointly avoid sure loss is automatically satisfied in the
present case, taking into account Proposition 5.

15One might want to consider modifying the definition in the following way: given that future commitments are established after B occurs, at that
time you might know exactly which subsetR′ of the desirable gamblesR associated to P have been offered to you, and hence accepted, in that first
stage (see also Section 3.1); then it might make sense to consider a (weaker) definition of temporal consistency that involves (the natural extension
of)R′ rather thanR. The essence of the rationale behind the definition would not change, however, nor would the technical development change in
any substantial way.
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The (event-wise) consistencies we have introduced in this section are the weakest in this paper. This is due to the
limited availability of information about your future commitments. On the other hand, note that the other notions, such
as (strong) temporal consistency, are not only a separate replication of event-wise temporal consistency for all the
possible events B ∈ B: they also consider the joint effect on your current beliefs of future commitments related to
different events B through the inborn conglomerability of set FB induced by PB. This is the key to the increased
consistency power of those notions that can rely on FB.

4.4. Temporal coherence

We finally focus on the case where you define your future commitments now, at the same time of your present
beliefs. The peculiar feature of this case is that the assessments of present and future commitments can influence each
other (this should be contrasted with strong temporal consistency, for instance, where it is only possible that future
commitments are affected by present beliefs, which are established in advance and cannot be modified during the
assessment of future commitments). This allows us to give much more stringent conditions than it was possible before,
and actually allows us also to establish them as rationality requirements.

The first condition that becomes immediately tenable as a rationality requirement is that future commitments
coincide with the conditional beliefs derived from P , which, from Lemma 1, are given by

E(f |B) = sup{µ : B(f − µ) ∈ R} = sup{µ : B(f − µ) ∈ R|B},

where R is the set of gambles induced by P through (4) and R|B is derived from R by means of (7). The lower
prevision E(·|B) represents your beliefs now under the assumption that B occurs. Given that by assumption you are
also establishing now the model PB , this should just lead you to make PB equal to E(·|B). For this reason, we stick
to the equality PB = E(·|B) in this section.16 This is also equivalent to the equality FB = F |B, where

F |B := {f ∈ L : Bf ∈ R|B ∪ {0} ∀B ∈ B} \ {0}

denotes the conglomerable natural extension of ∪B∈BR|B . Note that FB = F |B if and only if RB = R|B for all
B ∈ B.

Proposition 6. Let P , PB be a coherent lower prevision and a separately coherent future lower prevision on L that
represent your current and future commitments, respectively. Let R, RB (B ∈ B) be the sets of desirable gambles
they induce by means of Eqs. (4) and (5), and let FB the conglomerable natural extension of ∪B∈BRB . On the other
hand, letR|B be the set of conditional gambles induced byR by means of (7), let F |B be the conglomerable natural
extension of ∪B∈BR|B and let E(·|B) be the conditional lower prevision induced by F |B. Then

FB = F |B ⇔ PB = E(·|B).

Proof. Since FB induces PB, the direct implication is trivial, so it suffices to prove the converse one. Fix B ∈ B, and
let us show thatR|B = RB . Recall that

RB = {f : f = Bf, f 
 0 or PB(fB) > 0}

and
R|B = {f : f = Bf,Bf ∈ R} = {f : f = Bf, f 
 0 or P (Bf) > 0}.

We skip the trivial case f 
 0. Let us show that in the remaining case it holds that E(f |B) > 0 if and only if
P (Bf) > 0, from which the thesis follows immediately. E(f |B) > 0 implies that there is δ > 0 s.t. B(f − δ) ∈ R.
This means that P (B(f − δ)) > 0, taking into account that we have excluded the case Bf 
 0, whence P (Bf) > 0.
Conversely, P (Bf) > 0 implies that there is δ > 0 s.t. P (Bf − δ) > 0, whence P (B(f − δ)) > 0. This means that
B(f − δ) ∈ R or, in other words, that E(f |B) > 0.

16When discussing these questions in the more general framework of desirability in Section 6.4, we shall see that the equality of future commitments
to conditional beliefs formally follows from a coherence condition.
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The next condition that does appear tenable too as a rationality requirement is that also your current and future
commitments cohere. If this were not the case, then some of the beliefs you are expressing at the same point in time
(now) would clash with each other. As we mentioned in Section 2, P and E(·|B) need not be coherent, because they
need not satisfy CNG. The next theorem gives insights on this important question.

Theorem 2. Let P be a coherent lower prevision on L representing your current beliefs, and E(·|B) be its conditional
natural extension. Let R be the set of gambles associated to P , and F |B the conglomerable natural extension of
∪B∈BR|B . Then the following are equivalent:

(a) R∪ F |B is coherent.

(b) P ,E(·|B) are coherent.

(c) R is conglomerable.

Proof. The equivalence of (b) and (c) follows from [44, Theorem 3] and the definition of conglomerability. We proceed
to prove the equivalence of (a) and (b).

(a)⇒ (b) Assume thatR∪ F |B is coherent, and let us show that in that case

P (f) ≥ 0 ∀f ∈ F |B. (13)

There are two possibilities: if R ⊆ F |B, [44, Proposition 10] implies thatR = F |B = L+, and therefore (13)
holds. On the other hand, ifR * F |B then we can consider a gamble g ∈ R \ F |B. This means that P (g) ≥ 0
and moreover that there is some B ∈ B such that Bg /∈ R|B ∪ {0}.
Assume ex-absurdo that (13) does not hold, and take f ∈ F |B such that P (f) < 0. Define f1 := Bcf . Then
B′f1 ∈ R|B

′ ∪ {0} for every B′ ∈ B, and moreover it cannot be f1 = 0 or we should have f = Bf ∈ R and
P (f) ≥ 0, a contradiction. As a consequence, f1 ∈ F |B, and therefore λf1 ∈ F |B for all λ > 0. Moreover,

P (f1) = P (f −Bf) ≤ P (f) + P (−Bf) = P (f)− P (Bf) < 0,

because P (f) < 0 and P (Bf) ≥ 0 taking into account that Bf ∈ R|B ∪ {0}. Define h := λf1 + g; h belongs
to the natural extension ofR∪ F |B. Then it holds that

Bh = B(λf1 + g) = Bg /∈ R|B ∪ {0} ⇒ h /∈ F |B,

and

P (h) = P (λf1 + g) ≤ P (λf1) + P (g) = λP (f1) + P (g) < 0 for λ > − P (g)

P (f1)
.

Hence, for λ big enough P (h) < 0, whence h does not belong to R either. As a consequence, R ∪ F |B is
different from its natural extension and therefore it is not a coherent set, a contradiction.

We conclude that Eq. (13) holds, and applying now [44, Theorem 2], we deduce that F |B ⊆ R. Hence, R
is conglomerable, and since the second and the third statements are equivalent we deduce that P ,E(·|B) are
coherent.

(b)⇒ (a) Conversely, assume ex-absurdo that R ∪ F |B is not coherent. Then there are gambles f ∈ R, g ∈ F |B such
that f + g /∈ R ∪ F |B; since this gamble does not belong toR, we deduce that P (f + g) ≤ 0. We can assume
without loss of generality that neither of these gambles is positive, or we should contradict the coherence of either
R or F |B. From Eq. (4), f ∈ R implies that P (f) > 0. On the other hand, g ∈ F |B implies that E(g|B) ≥ 0,
whence g ≥ g − E(g|B). As a consequence,

0 ≥ P (f + g) ≥ P (f) + P (g)⇒ 0 > −P (f) ≥ P (g) ≥ P (g − E(g|B)),

whence P ,E(·|B) do not satisfy CNG and therefore are not coherent.
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In the light of Proposition 16, we see that Theorem 2 yields a truly bright outcome: that, provided that FB = F |B,
the coherence of the union of your sets of current and future commitments is equivalent to the conglomerability ofR or,
equivalently, to the conglomerability of P . It is striking in particular that a very simple, natural, and especially finitary
requirement such as the coherence ofR∪ F |B, which is also the straightforward way to strengthen strong temporal
consistency, eventually shows itself to coincide with F |B ⊆ R. (We remark that the use of Walley’s results in the proof
of this theorem is necessary for the equivalence between the second and the third items, but not for the equivalence with
the first item, which is the main finding of the theorem, and which allows us to justify conglomerability in a finitary
way: in our knowledge, this is achieved here for the first time.)

This gives rise to the following rationality condition:

Definition 18 (Temporal coherence). Let P , PB be the coherent lower previsions representing your current and future
commitments. We say that they are temporally coherent when PB coincides with the conditional natural extension of
P and when moreover any of the conditions in Theorem 2 holds.

The conglomerability of an imprecise probability model does not imply that the model is equivalent to a set of
conglomerable precise models; an example can be found in [68, Section 6.6.9]. This means, in particular, that even
when it is rational for you to hold conglomerable beliefs, it is not necessary that your imprecise probability model be
made up of countably additive linear previsions. On the other hand, when your beliefs are precise, then our results
entail a tight connection of your model with disintegrability. This will be discussed in Section 4.5.

Example 10 (Running example). In the situation of our running example, since the partition {T = p, T = n} is finite,
the coherent lower prevision P representing your current beliefs is trivially conglomerable, and as a consequence it is
coherent with its conditional natural extension E(V |T ), which tells how you should assess your future commitments if
you establish them at the time of your present beliefs, and hence have no time to refine the assessment P . We conclude
that P ,E(V |T ) are temporally coherent. �

4.5. The precise case

In this section we discuss the important special case where your present and future commitments are precise. Hence,
we focus on the case where your present beliefs are specified via a linear prevision P on L, and we assume that also
your future commitments for any B ∈ B are given by a linear prevision, which we denote by PB and that is defined on
L(B). From these we induce the future linear prevision PB given, for any f ∈ L, by PB(f) :=

∑
B BPB(fB).

We start by focusing on temporal consistency:

Corollary 2. Let P and PB represent your present and future commitments, respectively. Then temporal consistency
holds if and only if

P (f) = P (PB(f)) ∀f ∈ L.17 (14)

Proof. This is an immediate consequence of Theorem 1.

If P (B) > 0, then it is a consequence of coherence [68, Section 6.4.1] that the conditional natural extension on B
is precise and is given by Bayes’ rule:

E(f |B) =
P (Bf)

P (B)
.

Moreover, we see from Eq. (12) that temporal consistency implies that

PB(f) ≤ E(f |B) ≤ PB(f)

and
E(f |B) ≤ PB(f) ≤ E(f |B) ∀f ∈ L.

17Note how this formula resembles very closely Goldstein’s formalisation of his notion of temporal coherence in [21]. See Section 7.3 for details.
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This means that when unconditional beliefs as well as future commitments are precise, we obtain the interesting
additional result that PB(f) = P (f |B), and as a consequence

P (B) > 0⇒ PB(f) =
P (Bf)

P (B)
∀f ∈ L. (15)

Loosely speaking, we can rephrase this by saying that for a Bayesian who wants to be consistent in time, there is only
one way to compute future commitments: Bayes’ rule (but remember we are under the constraint of the positivity
of probabilities). It is useful to notice that this result, which we have obtained from temporal consistency, actually
follows from event-wise temporal consistency. This shows that (15) follows under the weakest consistency notion we
have introduced in this paper, and that in the precise case our notion of temporal consistency gives rise to conditional
reasoning.18

This is not the only thing that we can say when your current and future commitments are precise. A key observation
is that in such a setting the notions of avoiding sure loss and coherence are equivalent: taking into account Theorem 2,
this points to a relationship between temporal consistency and conglomerability. Such a relationship was sensed already
by Walley. This is relatively clear in [68, Example 6.8.5], where Walley argues that there may be a (temporal) sure loss
when conditional beliefs are used as future commitments.19 A similar point was made also in an analogous example
by Seidenfeld [52, Section 2.2], who used it to argue that Goldstein’s proposal of generalising de Finetti’s ideas to a
temporal setting, that we shall detail in Section 7.3, was incompatible with Bayes’ rule when beliefs are modelled by a
finitely additive probability. Below we report Walley’s example in our language for completeness:20

Example 11. Let B := {{n,−n} : n ∈ N}, Θ := {+,−}, and Ω := Θ× B. Ω represents the set of non-zero integers:
to see this, identify the integer n with the pair (sign(n), |n|). B ∈ B represents the observation of a certain absolute
value, while Θ represents a hypothesis about the sign of an integer. Your current beliefs are represented by a probability
P defined as follows: for all n ∈ N, P ({n}|+) := 2−n, P ({−n}|−) := 0, and P ({+}) := P ({−}) := 1/2. It turns
out that for all B ∈ B, it holds that P (B) > 0 and P ({+}|B) = 1, so that also P ({+}|B) = 1.

Now, consistently with (15), assume that you use Bayes’ rule to define your future commitments on Θ: PB :=
E(·|B). It follows that P ({+}) = 1

2 6= 1 = P (PB({+})), which contradicts (14). And in fact, this would allow an
opponent to buy event {+} from you now at price 1

2 and, after B occurs (whatever B it is), sell you {+} at price 1,
thus making a sure gain. We deduce that if you want to preserve temporal consistency as well as the possibility to use
Bayes’ rule to define your future commitments, it is necessary that P be disintegrable. �

In order to fully clarify this matter, it is useful to establish the following result, which holds irrespective of whether
or not future commitments match conditional beliefs (that is, irrespective of whether or not PB is the conditional natural
extension of P ):

Theorem 3. Assume your current and future commitments are linear previsions P, PB, and letR,FB be the sets of
gambles they induce by means of Eqs. (4), (5) and (9). Then:

R∪ FB coherent ⇔ R∪FB avoids partial loss ⇔ P, PB coherent.

Proof. That the first condition implies the second is trivial; the second implies that P, PB avoid sure loss by Theorem 1,
and since they are linear this means that they are coherent.

Conversely, assume that P, PB are coherent, and let us show that R ∪ FB is coherent. It suffices to show that
R ∪ FB equals its natural extension. Since both R,FB are coherent, this holds if and only if f + g ∈ R ∪ FB for
every f ∈ R, g ∈ FB. Consider such f, g. We can assume without loss of generality that neither of these gambles is
positive, because the result holds trivially in that case. Using Eq. (4), we deduce that P (f) > 0. On the other hand,
g ∈ FB implies that PB(g) ≥ 0, whence

P (f + g) = P (f) + P (g) = P (f) + P (PB(g)) > 0;

18Other justifications of Bayesian updating as a temporal rule can be found in [26, 45, 57, 70]. See also Section 7.
19But Walley was not fully explicit in claiming that conditional beliefs would be taken as the definition of future commitments (more generally

speaking, he seldom talks of future commitments in his book). Overlooking this subtlety can make Walley’s argumentation easily misunderstood: in
fact, if one takes those as conditional (non-future) commitments, then there is no loss, as instead the example is supposed to show.

20This example is a specific instance of the question discussed right after Definition 13.
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the second equality follows from Corollary 2, taking into account that the coherence of P, PB implies that they are
temporally consistent; for the inequality use that the coherence of P implies that P (PB(g)) ≥ 0. As a consequence,
f + g has a positive prevision, and therefore it belongs toR. We conclude thatR∪ FB is coherent.

We can finally analyse in more detail the implications of the precise setting. We focus on the special case where
P (B) > 0 for all B ∈ B. Then Eq. (15) and Theorem 3 imply that:

Corollary 3. If P (B) > 0 for all B ∈ B and PB is derived from P by means of Bayes’ rule, then the following
conditions are equivalent:

(a) P, PB are temporally consistent.

(b) P, PB are strongly temporally consistent.

(c) P, PB are temporally coherent.

(d) P is disintegrable.

The above equivalence does not hold for event-wise temporal consistency, because it considers only the occurrence
of a single event B. On the other hand, one can argue that event-wise temporal consistency is not the notion to apply in
the present case, and more generally that it does not make sense to declare future commitments after present beliefs: in
fact, since there is no choice other than using Bayes’ rule to define future commitments, why should Bayesians want to
postpone this task? They know from the very beginning that by setting future commitments different from conditional
beliefs, they would expose themselves to incur a loss (remember also that we are assuming that you receive no new
information about Ω until B obtains). Being Bayesian together with conceding—right now—that future commitments
might differ from conditional beliefs appears irrational. Stated differently, temporal coherence appears to be a rationality
requirement in the present case.21

Example 12 (Running example). Assume that in our running example we have precise information, stating that the
prevalence of the seasonal and the atypical virus is 95% and 5%, respectively, and that the probability that the test is
positive is of 60% and 90% in each of these cases. This corresponds to the assessments

P (V = s) = 0.95, P (V = a) = 0.05, P (T = p|V = s) = 0.6, P (T = p|V = a) = 0.9

from which, applying the law of total probability, we obtain the joint model

P (s, p) = 0.57, P (s, n) = 0.38, P (a, p) = 0.045, P (a, n) = 0.005.

What our results tell us is that, in order to achieve temporal coherence (or temporal consistency, or strong temporal
consistency) your future model P (V |T ) should be determined by Bayes’ rule, so that:

P (V = a|T = p) = 0.073 and P (V = a|T = n) = 0.013,

and since there is no freedom in how to establish your future commitments in this precise case, it makes no sense to
postpone this task until the test has been performed. �

Remark 3. Let us consider now what happens in the more general situation where it may be that P (B) = 0 for some
B ∈ B. In this case, the natural extension E(·|B) of P conditional on B is vacuous, and therefore differs from PB
(which we require to be precise). The connection between the different consistency notions is weaker then. Moreover,
event-wise temporal consistency, as well as declaring future commitments after present beliefs, cannot be ruled out:
present beliefs do not constrain future commitments when P (B) = 0. (See Proposition 19 in Section 6.5 for additional
insights on this case.) �

21However, note that if one decided to use the modification of event-wise temporal consistency sketched in note 14, it might happen that the set of
actually made (current) transactionsR′ is strictly smaller thanR and hence that its natural extension may not be a precise probabilistic model. In
that case, Bayes’ rule would not necessarily be the unique consistent rule to use even though all probabilities were positive.

27



Our discussion so far does not exhaust all the possibilities to express precise assessments. For instance, when Ω is
continuous, it is common to hold precise beliefs in the form of a linear prevision P that assigns zero probability to all
the subsets of Ω while having precise, and hence non-vacuous, conditional beliefs P (·|B). In this case, the model of
present (unconditional and conditional) beliefs is not only made of P , simply because P (·|B) cannot be derived from it.
In terms of desirable gambles, this means that your conditional beliefs cannot be derived from the set of gamblesR
associated to P by means of (4). However, it is still possible to deal with questions of temporal consistency under these
types of precise assessments by considering other sets of desirable gambles different fromR; how this can be done is
the purpose of the next sections (see in particular Section 5.2).

5. Coherent sets of gambles

So far, we have assumed that your assessments are modelled by means of (unconditional and conditional) lower
previsions. These lower previsions encode your commitments to accept certain gambles. In our previous sections, we
considered the setsR,FB determined by P , PB using Eqs. (4), (5) and (9), and showed that the different consistency
notions for P , PB can be given a behavioural interpretation in terms of these sets.

However, as we shall argue in this section, in certain situations there are other sets of desirable gambles that are
also related to P , PB and that may be more informative than the ones considered in Section 4. Because of this, it may
be useful to model your assessments using directly the sets of commitments you are willing to accept. In order to
make this clear, we shall introduce next a number of aspects of the theory of sets of desirable gambles, and detail their
connection with the models of lower previsions.

5.1. Almost- and strict desirability

In the treatment done so far, we have focused on the sets of gambles induced by coherent lower previsions. One of
the most important things to realise now is that coherent lower previsions induce, through (4), only a special case of
coherent sets of desirable gambles, which can be characterised as follows:

Definition 19 (Strictly desirable gambles). R is called a set of strictly desirable gambles when it is coherent and
moreover satisfies the following condition:

D0. For every f ∈ R \ L+ there is some δ > 0 such that f − δ ∈ R.

D0 is a condition of openness: a set of strictly desirable gambles is a convex cone that, excluding the region L+ ⊆ R
from consideration, coincides with its interior. In the following we shall say that the set is open, thus neglecting the
case of L+, with an abuse of terminology. We shall adopt the notationR for a set of strictly desirable gambles in case
we need to distinguish it from different types of sets.

Given a setR of strictly desirable gambles, we can induce a coherent lower prevision from it in a way similar to
what we have already done in (6) for the conditional case:

P (f) := sup{µ : f − µ ∈ R}. (16)

It can be checked that Eqs. (4) and (16) commute; as a consequence, there is a one-to-one correspondence between
coherent lower previsions and sets of strictly desirable gambles; something similar applies to the conditional case
(Eqs. (5) and (6)). This correspondence extends also towards the notion of conglomerability we have given in
Definitions 5 and 10: a coherent lower prevision P is conglomerable if and only if its associated set of strictly desirable
gamblesR is conglomerable.

At the other extreme of the coherent open sets of desirable gambles, there are the closed sets of desirable gambles.
These are cones whose interior is a set of strictly desirable gambles, and which include the border of the cone. These
closed cones are called sets of almost-desirable gambles, and are characterised as follows:

Definition 20 (Almost-desirable gambles). R is called almost-desirable when it satisfies axiom

D0′. f + ε ∈ R ∀ε > 0⇒ f ∈ R,

the following modified versions of axioms D1 and D2:
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D1′. inf f > 0⇒ f ∈ R,

D2′. sup f < 0⇒ f /∈ R,

as well as axioms D3 and D4.

D0′ is a closure condition, which means that the uniform limit of a decreasing sequence of gambles inR also belongs
toR; axioms D1′ and D2′ guarantee thatR includes the gambles that are strictly positive and excludes those that are
strictly negative, when these gambles are at the same time bounded away from zero. Note that a set of almost-desirable
gambles is not coherent because axioms D0′–D1′ imply that 0 ∈ R, thus violating D2.

A coherent lower prevision P on L induces a set of almost-desirable gambles by

R := {f ∈ L : P (f) ≥ 0}. (17)

If we denote byR the strictly desirable set induced by P through (4), we obtain thatR corresponds to the closure ofR
in the topology of uniform convergence [42, Proposition 4], so any almost-desirable gamble can be seen as the uniform
limit of a sequence of strictly desirable gambles. For this reason, we shall also denote byR a set of almost-desirable
gambles.

In this paper almost-desirability is useful to provide the definition of avoiding sure loss in the case of gambles:

Definition 21 (Avoiding sure loss for gambles). We say that a set of gamblesR avoids sure loss when it is included
in a set of almost-desirable gambles.

Since any set of almost-desirable gambles that includesR must also include its natural extension ER because of
axioms D0′, D1′, D3 and D4, we deduce thatR avoids sure loss if and only if ER is included in a set of almost-desirable
gambles. Moreover,

R avoids sure loss⇔ ER is a set of almost-desirable gambles,

where ER denotes the closure of ER in the topology of uniform convergence. To see the direct implication, note that
any set of almost-desirable gambles that includesR must include ER because of the axioms of almost-desirability, and
moreover ER is a set of almost-desirable gambles if and only if it satisfies D2′, so if ER is not a set of almost-desirable
gambles none of its supersets can be.

Moreover, it can be checked that if ER violates D2′ then also ER does it, and from this we deduce the existence of
a positive linear combination f of gambles inR such that sup f < 0. This allows us to get some intuition about this
definition: we say thatR avoids sure loss when it is not possible that a positive linear combination of gambles inR
results in a gamble that produces a loss of at least some ε > 0, no matter the outcome of the experiment.

A set of gambles that avoids partial loss avoids in particular sure loss, because the closure of any coherent set of
desirable gambles is a set of almost-desirable gambles; however, the converse does not hold in general, since a set of
almost-desirable gambles, such as {f ≥ 0}, may incur a partial loss. Note moreover than a coherent set of desirable
gambles avoids in particular partial and sure loss.

We conclude by noting that, in a similar way to coherent lower previsions, a coherent set of desirable gamblesR is
also associated to a credal set:

M(R) := {P : P (f) ≥ 0 ∀f ∈ R},

and it can be checked that this credal set coincides withM(P ), where P is the coherent lower prevision induced byR
by Eq. (16).

5.2. Introducing general desirability

From now on we consider the general case of coherent sets of desirable gambles, i.e., those sets that satisfy
axioms D1–D4 without being necessarily strictly desirable. In the present section we introduce such a general case and
discuss why it is important to focus on it.

We start by noticing that, as opposed to the case of strict desirability, the correspondence between coherent lower
previsions and coherent sets of gambles is one-to-many: in fact, any coherent set of desirable gamblesR inducing P by
means of Eq. (16) satisfies

R ⊆ R ( R, (18)
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where R is the set of strictly desirable gambles that induces P and R is the topological closure of R (as well as of
R). In fact,R is also the set of almost-desirable gambles induced by P by means of Eq. (17). In other words, all the
infinitely many coherent sets of gambles R that satisfy the inclusion (18) are going to induce P . Such an inclusion
highlights once more that the differences between all these sets lies only in their topological border, given thatR and
R share the same interior.

Remember that in the case of strict desirability a gamble f /∈ L+ belongs to R if and only if P (f) > 0. For a
general coherent set of desirable gamblesR, it may hold instead that both f ∈ R and P (f) = 0. This has important
consequences for the conditional case. To see this, note that we can obtain a separately coherent conditional lower
prevision from a coherent set of desirable gambles in the following way:

P (f |B) := sup{µ : B(f − µ) ∈ R}, (19)

which generalises and subsumes both (6) and (16). Now, whenever P (B) = 0 for an event B ∈ B, we must have also
P (Bg) ≤ 0 for any gamble g ∈ L (cf. [44, Lemma 1]), so that there is no gamble g such thatBg ∈ R; by applying (19)
toR, we see then that the supremum µ such that B(f − µ) ∈ R is µ = infB f . This means that if we apply Eq. (19) to
a set of strictly desirable gambles, the lower prevision of any gamble f conditional on B, with P (B) = 0, is necessarily
vacuous. Note how this is consistent with (3) (in fact, the lower prevision conditional on B obtained throughR is just
the conditional natural extension of P , as we can see from Lemma 1), and that this means in particular that a set of
strictly desirable gambles is completely uninformative about any conditional inference when P (B) = 0.

This need not be the case for general desirability, as an immediate consequence of the property that allows both
P (Bf) = 0 and Bf ∈ R to hold. The implications of such a property are very broad, perhaps broader that one might
expect at first: in fact, it has been shown in [44, Theorem 25(i)] (and stated also in [68, Appendix F4]) that whenever
P is (jointly) coherent with a conditional lower prevision P (·|B), then there is a coherent set R that induces them
both. Joint coherence is particularly easy to characterise when we deal with a finite possibility space Ω and all the
conditioning events have positive upper probability: in that case, a coherent lower prevision P and a separately coherent
conditional lower prevision P (·|B) are jointly coherent if and only if P (·|B) ∈ [E(·|B), R(·|B))] for all B ∈ B, where
E(·|B) is the conditional natural extension given by Eq. (3) and

R(f |B) := sup{µ : P (B(f − µ)) ≥ 0}

is called the regular extension (see [40, Section 4.3]).22 This implies that whenever E(·|B) 6= R(·|B),23 there are
infinitely many separately coherent conditional lower previsions P (·|B) that are jointly coherent with P . For each of
those, we can find a coherent set of desirable gamblesR that induces both P and P (·|B). This shows that even if the
difference between desirability and strict desirability is only in the topological border of the involved sets, the border
actually makes all the difference when it comes to making inferences in the conditional case with P (B) = 0.

Moreover, note that the case P (B) = 0 is particularly important in applications. For instance, consider the case
where Ω is the bi-dimensional set of real numbers R2. In a case like this, it is common practice in precise probability to
express uncertainty through a density function that assigns zero probability to every pair (ω1, ω2) ∈ Ω; at the same time,
the inferences conditional on the observation of ω2 ∈ R are obtained through the conditional density, and hence are not
vacuous. This prevents the conditional and unconditional models from being represented through a coherent set of
strictly desirable gambles, because this would be incompatible with the non-vacuity of the conditional inferences. The
models can instead be induced by a single coherent set of desirable gambles, because the pair P , P (·|B), corresponding
to the unconditional and the conditional density, are jointly coherent (see [68, Section 7.7.2]).

Even though these situations cannot be represented using a single set of strictly desirable gambles, or, which is
equivalent, using a single coherent lower prevision, one could still try to use a collection of coherent lower previsions to
represent your current beliefs, such as a jointly coherent pair P , P (·|B) for your present unconditional and conditional
beliefs, respectively—where P (·|B) would not need to coincide with the conditional natural extension E(·|B) of P . But
this would technically complicate much the analysis we are pursuing in this paper compared to using desirability, taking

22Conditioning a set of mass functions by regular extension corresponds to applying Bayes’ rule to each mass function that assigns positive
probability to the conditioning event B. If there is no such mass function, then the regular extension yields the set of all the mass functions, i.e., the
vacuous model.

23This may happen only when P (B) > P (B) = 0; when P (B) > 0 both are equal to the unique value for which GBR is satisfied.
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into account that we should also need to use a further separately coherent lower prevision for your future commitments.
Perhaps more important, it has been shown that even collections of separately coherent conditional lower previsions
are not as expressive as coherent sets of desirable gambles; this is the case also when we consider finite spaces of
possibilities, as shown by the following example based on [42, Example 10].

Example 13. Two people express their beliefs about a fair coin using coherent sets of desirable gambles. The
possibility space Ω := {h, t}, represents the two possible outcomes of tossing the coin, i.e., heads and tails. For
the first person, the desirable gambles f are characterised by f(h) + f(t) > 0; for the second person, a gamble f
is desirable if either f(h) + f(t) > 0 or f(h) = −f(t) < 0. Call R1 and R2 the set of desirable gambles for the
first and the second person, respectively. It can be verified that both sets are coherent. Moreover, they originate the
same conditional and unconditional lower previsions. In the unconditional case we obtain P (f) = f(h)+f(t)

2 ; this
corresponds, correctly, to assigning 0.5 probability to both heads and tails. In the conditional case, we again correctly
obtain that each person would assign probability 1 to either heads or tails assuming that one of them indeed occurs:
P (f |{h}) = f(h), P (f |{t}) = f(t). This exhausts the conditional and unconditional lower previsions that we can
obtain fromR1 andR2, given that Ω has only two elements. It follows thatR1 andR2 are indistinguishable as far as
probabilistic statements are concerned. But now consider the gamble f := (−1, 1), which yields a loss of 1 unit of
utility if the coin lands heads and a gain of 1 unit otherwise: whereas f is not desirable for the first person, it is actually
so for the second. This distinction of the two persons’ behaviour cannot be achieved through probabilities—and in fact
gamble f lies in the border of each of the two sets. This shows, in addition, that the relationship between collections of
separately coherent conditional lower previsions and coherent sets of desirable gambles is also one-to-many. �

In summary, the focus on general desirability allows us be truly general and at the same time it does not overcompli-
cate the technical development. On the other hand, we can find yet another reason to focus on desirability, as opposed
to coherent lower previsions, in that it allows us to naturally regard coherent sets of desirable gambles as a logic24

(this is helpful, among other things, to discuss the relationship of the present work with the field of belief revision, see
Section 7.5).

5.3. Basic consistency notions for general desirability

Assume that you check L for desirability: this means that at some point you will isolate the subsetR of gambles in
L that you desire. SetR is a belief model that can be regarded as a generalisation of a set of sentences in propositional
logic, where L has the role of the language. Notice how in propositional logic the sentences represent what is certain to
you, whileR only represents what you deem desirable; this change of perspective is the passage from which uncertainty
comes into play.

The desirability analog of the deductive closure operator in logic is the mechanism that allows us to obtain the
gambles in L whose desirability is implied by those inR. To see how this mechanism works, consider first that since
gambles express rewards in units of a linear utility, then any positive linear combination of a finite number of desirable
gambles is desirable too. Let us call this the ‘posi’ of a set:

posi(R) :=


r∑
j=1

λjfj : fj ∈ R, λj > 0, r ≥ 1

 ;

posi(R) is the smallest convex cone25 that includesR. Moreover, any gamble in L+ is desirable as well, given that
it may increase the utility without ever decreasing it (whence L+ plays the role of the tautologies in logic). In other
words, the mechanism we are after simply works as follows:

ER := posi(R∪ L+),

24Joining probability and logic is the focus of some recent work by Howson [28, 29], who, interestingly, discusses also the question of
conglomerability (but not desirability).

25A setR is a convex cone if posi(R) = R.
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where ER is then the analog of the deductive closure in propositional logic (and in fact ER can be shown to satisfy
Tarski’s axioms26 for the finitary consequence operator;27 for a description of these axioms, see [62, Chapter 5§1],
axioms 2–4).

The reason why we use ER is first of all to check thatR is a rational set of assessments, which means that it does
not lead to the zero gamble being desirable:

Definition 22 (Avoiding partial loss for gambles). We say thatR avoids partial loss if 0 /∈ ER.

The name of this condition is due to the fact that once a set avoids partial loss, then no gamble g ≤ 0 can belong
to it [42, Corollary 2]. This notion of avoiding partial loss is equivalent to the existence of a coherent superset ofR
(as stated in Definition 8), and in fact in that case ER is nothing else but the natural extension of R in Definition 9.
In propositional logic the analog of avoiding partial loss is the notion of a consistent set of sentences; and when in
propositional logic we say that a set of sentences is consistent and logically closed, or a theory, in desirability we say
that setR is coherent: this is equivalent to having 0 /∈ R = ER.

In logic, a special role is taken by complete theories: in a complete theory, for every sentence in the language it
holds that either the sentence or its negation is in the theory. In desirability, the situation is very much alike: we say that
a coherent set of gamblesR is complete, or maximal, if for every non-zero gamble f ∈ L, either f ∈ R or −f ∈ R.
Geometrically, a maximal set corresponds to a cone degenerated into a hyperplane. Maximal sets are tightly related
to precise probability, because deriving a lower prevision from a maximal set by means of Eq. (16) yields a linear
prevision; more generally speaking, linear previsions are in one-to-one correspondence with the interiors of maximal
sets.

As a side note, let us point out that the relationship between desirability and logic that we have only sketched here,
is discussed in much greater detail in [6, Section 5] (which is partly based on a former work in a similar spirit [45]).
One interesting point made in that paper, among others, is that propositional logic can formally be embedded in the
logic originated by coherent lower previsions, and that linear previsions correspond to complete logical theories. This
shows in a definite sense how imprecision in probability, as well as in desirability, is what allows us to move away from
complete theories into the much more expressive and used field of general logical theories.

5.4. Advanced consistency notions for general desirability

In this section we consider the notion of coherence relative to a subset Q of L, which generalises the previous
notion of coherence. The reason why this generalisation is introduced, is that it is not always realistic to expect that you
can check all the gambles in L for desirability; you will often focus on a subsetQ of them, and identify inR the subset
of gambles inQ that you find desirable. To define coherence in this setting, we first extendR into posi(R∪L+) =: ER
and check that 0 /∈ ER, because otherwiseR would have no coherent extension to L. In case 0 /∈ ER, we proceed to
define coherence in a very natural way: we say that you are coherent if the restriction of the natural extension ER to Q
recreatesR. This means that not only you rationally definedR, but that you were also fully aware of the desirability
implications of your assessments within the set Q that you examined. This is made precise below:

Definition 23 (Coherence relative to a subset of L). Say thatR is coherent relative to Q ifR avoids partial loss and
Q∩ ER ⊆ R (and hence Q∩ ER = R). In case Q coincides with L then we simply say thatR is coherent.

This definition is indeed equivalent to axioms D1–D4 when Q = L [42, Proposition 2]. It can be understood as a more
primitive definition of coherence, which shows perhaps more intuitively what is the rationale behind those axioms. Part
of the beauty of this definition is in that it joins simplicity with generality: in fact, from this single definition one can
derive not only all the theory of coherent sets of desirable gambles but also all the theory of coherent lower previsions
(except for the part that requires conglomerability in addition, as in the case of Walley’s), as well as de Finetti’s theory
as a special case—by imposing the extra axiom of completeness.

Definition 23 has been developed for the case where you examine a single set Q ⊆ L of gambles and isolate out of
it the setR of gambles that are desirable to you. However, for the aims of this paper, we need to consider also a slightly
more general setup. The motivation is that we need to deal with a pair of sets of desirable gambles: one for your present

26Yet, note that Tarski’s axiom 1 restricts the treatment to sets that are at most countable. This restriction does not apply to L nor to the logical
formalism of coherent sets of desirable gambles.

27This is actually a more formal rewording of the claim, we repeat in a few places throughout the paper, that our setup is finitary.
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beliefs and one for your future commitments. These two sets are the result of two different assessment procedures, and
we might want the two models to cohere with each other in some sense.

To address this problem it is convenient for the moment to represent the situation abstractly, without reference to
the temporal setting of this paper. In this representation, you first examine set Q1 ⊆ L and declare that the coherent
subsetR1 ⊆ Q1 is desirable; then you examine set Q2 ⊆ L and declare that the coherent subsetR2 ⊆ Q2 is desirable.
In other words, such a situation is characterised by a collection {(R1,Q1), (R2,Q2)} of assessed models, and the
problem now is how to define the overall coherence of the collection. A basic requirement is that each model (Ri,Qi),
i = 1, 2, is coherent according to Definition 23. To define then the actual coherence of the collection, we can proceed
in two ways. One possibility is to replay the ideas at the basis of the traditional notion of coherence straightforwardly:
Definition 24 (Coherence of a collection). LetR := R1 ∪R2, andQ := Q1 ∪Q2. Say that the collection is coherent
ifR is coherent relative to Q.

However, there is another avenue that we can take. The idea is that the logical implications of the sets R1,R2,
should not force any gamble in Q1 \ R1, nor any gamble in Q2 \ R2, to become desirable:
Definition 25 (Strong coherence of a collection). LetR := R1∪R2 and ER := posi(R∪L+). Say that the collection
is strongly coherent ifR avoids partial loss and ER ∩Qi ⊆ Ri for i = 1, 2.

In other words, what we require here is that the logical implications of the collection, expressed by ER, cohere with
each model (Qi,Ri), i = 1, 2, separately. The next proposition shows that strong coherence is indeed stronger than
coherence. It is related to ideas underlying [42, Theorem 11, points (1) and (3)].

Proposition 7. Let Ri be a set of desirable gambles coherent relative to Qi, for i = 1, 2. Let ER be the natural
extension ofR := R1 ∪R2, and let Q := Q1 ∪Q2. Then the following are equivalent:

(a) The collection is coherent andR∩Qi ⊆ Ri for i = 1, 2.

(b) The collection is strongly coherent.

Proof.

(a)⇒ (b) SinceR is coherent relative toQ, then it avoids partial loss. Moreover, ER∩Q ⊆ R implies that ER∩Q∩Qi ⊆
R ∩Qi or, in other words, that ER ∩Qi ⊆ R ∩Qi ⊆ Ri, applying the assumption.

(b)⇒ (a) By hypothesis,R avoids partial loss. In addition, we know that ER ∩Qi ⊆ Ri for i = 1, 2. By taking the union
on each side of the inclusion for i = 1, 2, we see that ER ∩Q ⊆ R.

A case of special interest for this paper is that where Q1 = Q2 = L. In this case we see immediately that strong
coherence amounts to havingR1 = R2, taking into account that bothR1 andR2 are assumed to be coherent sets.28

This equality can be represented through the pair of inclusionsR1 ⊆ R2 andR1 ⊇ R2. If we look at the definition of
strong coherence, we see that the former inclusion states thatR2 must not be inconsistent with the logical implications
of R1, and the latter, that R1 must not be inconsistent with the logical implications of R2. In other words, strong
coherence can be regarded as a bidirectional requirement of coherence. We formalise the unidirectional requirement as
follows:
Definition 26 (One-way strong coherence). LetR1,R2 be two coherent sets of desirable gambles. We say thatR2

strongly coheres withR1 whenR1 ⊆ R2.
One-way strong coherence implies the coherence of the collection {(R1,L), (R2,L)}, since that is equivalent to the
coherence ofR1 ∪R2.

The unidirectional requirement of strong coherence is an important notion for this paper. The underlying reason,
which will become clear in the following sections, is that our temporal setup creates additional constraints with respect
to the abstract representation above. These constraints are related to the existence of a temporal order of the models for
which we might consider a requirement of strong coherence (such as your present and future commitments); and this
order may be compatible only with a unidirectional consistency notion, as it is the case, for instance, of strong temporal
consistency in Section 6.2. In these cases, one-way strong coherence is the strongest consistency requirement that is
possible to consider. On the other hand, there are cases where the question of the order is less constraining, such as in
the case of strong temporal coherence in Section 6.4, and then it is possible to apply also bidirectional strong coherence.

28It can be checked that this holds as soon asQ1 = Q2; note, however, that this does not mean that the setsQ1,Q2 uniquely determineR1,R2.
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6. Temporal consistency notions for coherent sets of gambles

Assume now that you assess your current and future commitments directly in terms of sets of desirable gambles.
Let us consider thus that your current beliefs are a coherent set R of desirable gambles. Your future commitments,
that become effective after a certain B ∈ B occurs, are instead represented by means of a coherent set RB of
desirable gambles with respect to L(B), or, equivalently, by means of the set RB ⊆ L it determines through
RB := {Bf : f ∈ RB}. Note that RB is coherent relative to the set {f ∈ L(Ω) : f = Bf}. In case you establish
your future commitments for all B ∈ B, then we combine all the setsRB into their conglomerable natural extension
FB, as in Proposition 1.

In this section, we shall investigate how the different consistency notions from Section 4 can be established when
your assessments are modelled by means of the above sets.

6.1. Temporal consistency

In this first case the relevant sets areR and FB. The following definition is a straightforward extension to sets of
desirable gambles of what we have already studied in Section 4:

Definition 27 (Temporal consistency for gambles). We say that your current and future commitments are temporally
consistent ifR∪ FB avoids partial loss.

Once again, the rationale behind this definition is that if you failed temporal consistency, an opponent could create a
combination of current and future transactions that will have the overall effect of making you desire, and then accept, a
gamble g ≤ 0. For example, assume that f − ε belongs toR for some ε > 0, and that at the same time −Bf belongs
toRB for all B ∈ B. Then an opponent might decide now to sell you f at price ε immediately, and to ask you for Bf
after B happens. This will earn him a gain of ε irrespective of the actual B that will occur: that is, he will make you
incur a sure loss (in time). As a side remark, observe that when Ω is infinite, this specific example is prevented from
happening under Definition 27 just because that definition is based on FB: we could not achieve this by using finite
combinations of elements from setsRB , B ∈ B.

Let us give some insight about the definition we have just introduced.

Proposition 8. LetR,R1 be coherent sets of desirable gambles. Then

(a) R∪R1 avoids partial loss if and only if f ∈ R1 ⇒ −f /∈ R.

(b) As a consequence, the following conditions are equivalent:

(b.1) Your current and future commitments are temporally consistent.

(b.2) The following implication holds:
f ∈ FB ⇒ −f /∈ R. (20)

(b.3) posi(R∪ FB) is coherent.

Proof.

(a) LetR′ := R∪R1, and call ER′ its natural extension. Given that bothR andR1 are coherent, we obtain that

ER′ = posi(R′) =

{
n∑
i=1

λifi : n ≥ 1, λi > 0, fi ∈ R′
}

= {f + g : f ∈ R ∪ {0}, g ∈ R1 ∪ {0}, f 6= 0 or g 6= 0} .

Now,R′ avoids partial loss if and only if 0 /∈ ER′ . Note that this last condition holds if and only if f ∈ R1 ⇒
−f /∈ R. The direct implication is trivial. For the converse, 0 ∈ ER′ requires that there are f ∈ R, g ∈ R1 so
that f = −g, because 0 /∈ R′ since bothR andR1 are coherent.

(b) This follows from (a) and [42, Proposition 3(d)].

34



This proposition provides an interpretation of temporal consistency: for this condition to hold, if you commit
yourself to accept some gamble in the future, you should not accept the opposite gamble now. This is related to the
ideas of Goldstein and van Fraassen we shall discuss in Section 7.3.29

Remark 4. Similarly to Remark 2, temporal consistency holds automatically when you make your sets of temporally
consistent commitments more imprecise, in the sense that if you consider two sets of current beliefs R1 ⊆ R and
two sets of future commitments FB1 ⊆ FB and R,FB are temporally consistent, then trivially also R1 and FB1 are
temporally consistent. The interpretation here is that, since temporal consistency means that the convex cone generated
by your current and future commitments does not produce partial losses, if you become more cautious (that is, more
imprecise) in your assessments and remove some gambles from your sets of current and future commitments you will
obtain a smaller convex cone, which as a consequence will not produce partial losses either. �

The setR of current beliefs induces a coherent lower prevision P by means of Eq. (19); similarly, for every B ∈ B
the set RB induces a lower prevision PB by means of Eq. (19); as a consequence, the set FB induces a separately
coherent future lower prevision PB. The sets of strictly desirable gambles associated to these two lower previsions are
included inR,FB, respectively. Then it is easy to deduce from Theorem 1 the following:

Theorem 4. Let us denote by P , PB the lower previsions induced byR,FB respectively. Then the following conditions
are equivalent:

(a) R∪ FB avoids sure loss.

(b) M(R) ∩M(FB) 6= ∅.

(c) P , PB are temporally consistent.

As a consequence, ifR,FB are temporally consistent, so are the lower previsions P , PB they induce.

Proof. Let us make a circular proof.

(a)⇒ (b) Assume that R ∪ FB avoids sure loss. This means that it is included in some set D of almost-desirable
gambles, and as a consequence the lower prevision Q given by Q(f) := sup{µ : f − µ ∈ D} is coherent [68,
Theorem 3.8.1]. Moreover, D = {f : Q(f) ≥ 0} whence, given P ∈M(Q), it holds that P (f) ≥ 0 for every
f ∈ R ∪ FB, i.e., P ∈M(R) ∩M(FB).

(b)⇒ (c) Consider P ∈ M(R) ∩M(FB), and assume ex-absurdo that P , PB do not avoid sure loss. Then there are
gambles f, g such that sup[G(f)+GB(g)] < 0, whence there is some δ > 0 such that sup[G(f)+GB(g)+δ] < 0.
Since

G(f) +
δ

2
= f −

(
P (f)− δ

2

)
∈ R ⊆ R and

GB(g) +B
δ

2
= B

(
g − (PB(g)− δ

2
)

)
∈ RB ⊆ RB ∀B ∈ B ⇒ GB(g) +

δ

2
∈ FB,

we deduce that P (G(f) +GB(g) + δ) ≥ 0. But on the other hand the coherence of P implies that P (G(f) +
GB(g) + δ) ≤ sup[G(f) +GB(g) + δ] < 0, a contradiction. Hence, P , PB avoid sure loss.

(c)⇒ (a) If P , PB are temporally consistent then it follows from Theorem 1 that given their associated sets of strictly
desirable gamblesR1,RB1 , B ∈ B, the unionR1 ∪ FB1 avoids partial loss. As a consequence,R1 ∪ FB1 avoids
sure loss, which means that it is included in a set of almost desirable gambles D. But this set D must include
the union R1 ∪ F

B
1 of the closures of R1,FB1 , and as a consequence it also includes R ∪ FB. It follows that

R∪ FB avoids sure loss.

29Interestingly, the first point in the proposition relates also to propositional logic, where it is said that a set of sentences is consistent when it is not
the case that a proposition and its negation both belong to that set.

35



For the second part it suffices to use that R,FB must include the sets of strictly desirable gambles induced by
P , PB, and as a consequence ifR,FB are temporally consistent so are these sets of strictly desirable gambles. The
result follows then from Theorem 1.

Let us show that the implication in the second part of this theorem is not an equivalence:

Example 14. Let Ω := {1, 2, 3, 4}, B := {1, 2} and B := {B,Bc}. Let your current beliefs be given by

R := {f ∈ L(Ω) : (f(1) + f(2) + f(3) + f(4) > 0) or (f(1) + f(2) + f(3) + f(4) = 0, f(1) > 0)}

and let your future commitments be given by

RB := {f ∈ L(Ω) : f = Bf, f(1) + f(2) > 0 or f(1) = −f(2) < 0},
RB

c

:= {f ∈ L(Ω) : f = Bcf, f(3) + f(4) > 0 or f(3) = −f(4) < 0}.

It can be checked that all the above sets of (present and future) commitments are coherent. Then since the partition
B is finite we have FB = EB and this set is equal to

{f ∈ L(Ω) : (f(1) + f(2) > 0 or f(1) = −f(2) ≤ 0) and (f(3) + f(4) > 0 or f(3) = −f(4) ≤ 0)} \ {0}.

Moreover, R ∪ FB does not avoid partial loss, because the gamble (1,−1, 1,−1) belongs to R and its opposite
(−1, 1,−1, 1) belongs to FB, meaning that their sum 0 belongs to posi(R∪ FB).

On the other hand,R induces the linear prevision P given by

P (f) :=
f(1) + f(2) + f(3) + f(4)

4
∀f ∈ L,

and FB induces the conditional linear prevision PB given by

PB(f) :=
f(1) + f(2)

2
, PBc(f) :=

f(3) + f(4)

2
;

P, PB satisfy GBR because PB is derived from P by means of Bayes’ rule, and, taking into account that B is finite,
also CNG. Hence, P, PB are coherent, and as a consequence also temporally consistent. �

In particular, we deduce from this example and Theorem 1 that we may have temporally inconsistentR,FB while
the lower previsions P , PB they induce satisfy any of the equivalent conditions from that result, and in particular where
their associated sets of strictly desirable gambles are temporally consistent.

When we consider the sets of strictly desirable gambles induced by your current and future lower previsions, then
Theorem 1 gives us also the opportunity to discuss an interesting side point concerned with the definition of FB.
Remember that we have allowed each Bf in Eq. (9) to possibly equal zero (as we have argued right after that equation).
Now we can show that, as long as we focus on coherent lower previsions (and only then), it is immaterial whether we
allow each Bf to equal zero or not:

Proposition 9. Let R,RB be the sets of strictly desirable gambles induced by P , PB , B ∈ B, and let us define
F := {f : Bf ∈ RB ∀B ∈ B} ⊆ FB. ThenR∪ FB avoids partial loss⇔ R∪F avoids partial loss.

Proof. The direct implication follows trivially from the inclusionF ⊆ FB. To see the converse, note that the conditional
lower previsions induced by F and FB coincide, because of the one-to-one correspondence between coherent lower
previsions and sets of strictly desirable gambles in Eqs. (16) and (4). Let us prove that if R ∪ F avoids partial loss
then the lower previsions P , PB they induce avoid sure loss; the result will follow then from Theorem 1. Assume
ex-absurdo that P , PB incur a sure loss. Then there are gambles f, g such that sup[G(f) +GB(g)] < 0, whence there
is some δ > 0 such that G(f) +GB(g) + δ < 0. Since

G(f) +
δ

2
= f −

(
P (f)− δ

2

)
∈ R and

GB(g) +B
δ

2
= B

(
g − (PB(g)− δ

2
)

)
∈ RB ∀B ∈ B ⇒ GB(g) +

δ

2
∈ F ,
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we deduce that the gamble G(f) +GB(g) + δ < 0 belongs to posi(R ∪ F), and as a consequence this set incurs a
partial loss. This is a contradiction. As a consequence, P , PB avoid sure loss and therefore R ∪ FB avoids partial
loss.

On the other hand, we can also show that the equivalence established in Proposition 8 is only an implication when
the sets of gambles are not strictly desirable:

Example 15. Let us consider the space and sets of Example 14, but considering instead RBc

:= {f ∈ L(Ω) : f =
Bcf, f(3) + f(4) > 0}. Then R ∪ FB incurs partial loss, because f := (1,−1, 0, 0) ∈ R and −f ∈ FB. However,
for every g ∈ F it holds that g(1) + g(2) + g(3) + g(4) ≥ g(3) + g(4) > 0, whence F ⊆ R and as a consequence
R∪ F is coherent and in particular avoids partial loss. �

We turn now to the problem of correcting temporally inconsistent assessments. As we discussed in Section 4.1.1,
when your current and future commitments are temporally inconsistent it may be interesting to determine the closest
model that satisfies temporal consistency.

Taking into account the negative result we obtained for the case of lower previsions (see Proposition 2), we shall take
here a different route: we shall start from temporally inconsistentR,FB, but shall study instead which is the greatest
coherent subset of FB that is temporally consistent with R. Taking into account Proposition 7, a set is temporally
consistent with R if and only if it is included in (−R)c. Hence, we shall look for the greatest coherent subset of
R1 := (−R)c ∩ FB, where ‘greatest’ means that every coherent subset ofR1 is included in it.

Proposition 10. (a) The greatest coherent subset ofR1, if it exists, is always equal toR1.

(b) IfR is a maximal set of gambles, thenR1 is coherent.

Proof. (a) It suffices to show that for every gamble f inR1 there is a coherent subset ofR1 that includes f . To see
this, note that the natural extension of {f} is given by

E{f} := {g = λf + h : λ ≥ 0, h ≥ 0} \ {0}.

This is included in FB because the latter is a coherent set of gambles that includes f . To see that it is also
included in (−R)c, assume that there is some λ ≥ 0 and some h ≥ 0 such that λf + h is non-zero and does not
belong to (−R)c. This means that λf + h ∈ −R, or, equivalently, that −λf − h ∈ R. Since this is a coherent
set, we deduce that also −λf ∈ R, and consequently so does −f . But we are assuming that f ∈ R1 ⊆ (−R)c,
whence −f /∈ R, a contradiction.

(b) IfR is a maximal set of gambles,

(−R)c = {f : f /∈ −R} = {f : −f /∈ R} = R∪ {0},

whenceR1 = R∩ FB is coherent because it is the intersection of two coherent sets.

Statement (b) of this proposition cannot be extended to the case whereR is not maximal:

Example 16. Consider Ω := {1, 2, 3, 4}, and let your current beliefs be given by

R := L+ ∪ {f : min{f(1), f(3)} > 0}.

Let your future commitments be the same as in Example 14. ThenR and FB are not temporally consistent, because for
instance

f := (1,−2, 1,−2) ∈ R and − f := (−1, 2,−1, 2) ∈ FB;

to see that in this case R1 = (−R)c ∩ FB is not coherent, consider the gambles h1 := (1, 0,−2, 3) and h2 :=
(−2, 3, 1, 0). Then h1, h2 ∈ FB, whence h1 + h2 ∈ FB. On the other hand, h1 ∈ (−R)c because −h1 =
(−1, 0, 2,−3) /∈ R, and h2 ∈ (−R)c because −h2 = (2,−3,−1, 0) /∈ R. However, h1 + h2 = (−1, 3,−1, 3) /∈
(−R)c because −h1 − h2 ∈ R. Hence, h1, h2 ∈ R1 but h1 + h2 /∈ R1, and therefore this set is not coherent. �
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This means that, although there may not be an optimal way of correcting inconsistent assessments when you modify
both your sets of commitments at the same time (see Proposition 2), such an optimal correction may be possible when
you fix your set of current beliefs and modify only the set of future commitments, i.e., when you look for the greatest
set FB1 of future commitments such thatR∪ FB1 avoids partial loss. This second scenario is actually something that
well fits the current setup where future commitments are defined after current beliefs.

In a similar vein as Proposition 9, we can in addition establish the following:

Corollary 4. Assume your current beliefs are determined by a linear prevision P , and that they are temporally
inconsistent with the separately coherent future lower prevision PB. Then if P (B) > 0 for every B ∈ B there is a
greatest lower prevision PB1 ≤ PB that is temporally consistent with respect to P .

Proof. If P (B) > 0 for every B, then it follows from Corollary 3 that the only linear conditional prevision that
satisfies temporal consistency with P is the E(·|B) determined from P by means of Bayes’ rule. Then Proposition 5
implies that any P ′B that is temporally consistent with P must be dominated by E(·|B). Hence, the greatest PB1 that is
dominated by PB and satisfies temporal consistency with P is simply PB1 := min{PB, E(·|B)} (taking into account
also Remark 2).

Hence, an optimal correction is always possible when your current beliefs are precise and all the conditioning
events have positive probability. More generally, it is not clear whether we can do an optimal correction whenever
your current beliefs are precise, because the implication between the temporal consistency of gambles and that of the
previsions they induce is not an equivalence, as we showed in Example 14.

6.2. Strong temporal consistency

If you express your assessments by means of sets of desirable gambles, the idea of strong temporal consistency
means that (i)R∪ FB avoids partial loss; and (ii) the future commitments FB strongly cohere (cf. Definition 26) with
the conditional information embedded inR, and which we can represent by the conglomerable natural extension of
∪B∈BR|B :

F |B := {f ∈ L : Bf ∈ R|B ∪ {0} ∀B ∈ B} \ {0},

where the setsR|B are derived fromR by means of Eq. (7).

Definition 28 (Strong temporal consistency for gambles). Your current and future commitments are said to be
strongly temporally consistent if they are temporally consistent and FB = F |B.

Remember that at the time when FB is established, in the present setting there is no possibility to reviseR, given
that it represents commitments that are effective at that time. Therefore it is only possible for you to make future
commitments not inconsistent with present beliefs (and not vice versa). We express this using one-way strong coherence
through F |B ⊆ FB. The equality that we have in Definition 28 follows then by focusing on the least-committal future
model that strongly coheres with F |B. If we instead do not focus on such a least-committal model, we obtain a weaker
consistency condition:

Definition 29 (Strong backward temporal consistency for gambles). We say that your current and future commit-
ments are strongly backward temporally consistent if they are temporally consistent and F |B ⊆ FB.

The latter could in particular be a more realistic consistency condition than the former as it seems unreasonable to
expect that future commitments always match conditional beliefs: why should this be the case given that you have
additional time to refine your conditional beliefs into future commitments? It may instead be more reasonable to expect
that in a number of cases future commitments are more precise than conditional beliefs, as in Definition 29, just because
of the extra time you can devote to assess them.

Remark 5. One might wonder whether the rationale behind Definitions 28–29 should rather be applied toR and FB,
leading toR = FB (orR ⊆ FB). This approach is not viable in the temporal setup we are dealing with again for the
reason that present beliefs cannot be modified at the time of establishing FB: in fact, considered the special structure
of FB, the only possibility to have R ⊆ FB would be that R is also defined similarly through sums of gambles
defined piece-wise on different elements of the partition B. But this would mean thatR is built using only conditional
information so that for every f ∈ R and every B ∈ B it holds that Bf ∈ R ∪ {0}, and as a consequence R ⊆ F |B.
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This is clearly not going to be the case in general, and therefore this approach is not applicable. Notice, however, that in
caseR ⊆ F |B, then Definition 29 represents indeed a strong coherence requirement betweenR and FB, so that the
fact that the previous definitions focus on F |B is not restrictive. �

In the remainder of this section, we explore some of the implications of strong temporal consistency. Let us start by
giving an equivalent formulation of this notion:

Proposition 11. Assume thatRB = R|B for all B ∈ B, and consider f ∈ L. Then (20) can be rewritten equivalently
as follows:

Bf ∈ R ∪ {0} ∀B ∈ B ⇒ −f /∈ R. (21)

If in additionR is maximal, then strong temporal consistency is equivalent to the conglomerability ofR.

Proof. Let us show that (20) implies (21). We skip the trivial case f = 0. For a B ∈ B s.t. Bf ∈ R, we have
that Bf ∈ R|B = RB . Applying the definition of FB in (9), we obtain that f =

∑
B∈B : Bf 6=0Bf ∈ FB and

hence −f /∈ R, using (20). We consider now the converse implication. Take f ∈ FB. Then f =
∑
B∈B Bf , with

Bf ∈ RB ∪ {0} = R|B ∪ {0}, whence Bf ∈ R ∪ {0} for all B ∈ B. Applying (21), we see that −f /∈ R.
For the second part, note that Eq. (21) together with the maximality of R imply that F |B ⊆ R, i.e., that R is

conglomerable; and conversely, ifR is conglomerable, then Bf ∈ R ∪ {0} for all B ∈ B implies that f ∈ R ∪ {0},
whence by coherence −f /∈ R and Eq. (21) holds.

Expression (21) allows us also to clarify an important point:

Proposition 12. Your setR of current beliefs fails (21) if and only if every coherent setR′ ⊇ R fails (21).

Proof. For the direct implication, consider −f ∈ R s.t. Bf ∈ R ∪ {0} ∀B ∈ B. Assume ex-absurdo that there is a
coherent setR′ ⊇ R that satisfies (21). Then Bf ∈ R′ ∪ {0} ∀B ∈ B, so that −f /∈ R′ ⊇ R. This is a contradiction.
The converse implication is trivial.

In other words, the only possible coherent extension of R that satisfies (21) is R itself. This means that if R
fails (21), there is no such an extension; and on the other hand, if it satisfies (21), we do not need to compute the
extension, as we have it already. This should be compared with the conglomerable natural extension ofR, which may
be different fromR, and can in particular be difficult to compute, as illustrated in [44]. The situation is analogous if we
work with lower previsions rather than sets of desirable gambles. This property can in fact be regarded as a particular
case of Remark 4, when you assume that your future commitments coincide with your conditional beliefs.

6.2.1. MET-beliefs
We next consider the important special case in which your current beliefs have been constructed by the marginal

extension theorem (see [41, 68], and especially [44, Proposition 29]). We call them MET-beliefs. This corresponds to a
situation of hierarchical information, where in addition to the conditional information on each element of the partition
we have unconditional information expressed in terms of a set of desirable gambles that are constant on the different
elements of the partition (recall that such gambles are called B-measurable). In order to aggregate these pieces of
information into a joint model, we consider two avenues.

Let R0 be a set coherent relative to the set of B-measurable gambles (and hence it is a set of B-measurable
gambles itself) and for every B ∈ B let R|B be a coherent set of desirable gambles with respect to L(B). Then the
conglomerable natural extension ofR0 ∪

⋃
B∈BR|B is given by

R :=

{
h+

∑
B∈B

BgB : h ∈ R0 ∪ {0}, gB ∈ R|B ∪ {0}

}
\ {0}. (22)

This set can be expressed equivalently as

R =
{
h+ g : h ∈ R0 ∪ {0}, g ∈ F |B ∪ {0}

}
\ {0}.

39



Moreover, it holds thatR|B is the conditional set of gambles derived fromR by Eq. (7): consider a gamble f ∈ L
such that f = Bf ∈ R. Then we can write Bf = h1 + h2, for some h1 ∈ R0 ∪ {0}, h2 ∈ F |B ∪ {0}, h1 + h2 6= 0.
We skip the trivial case made of Bh1 = 0. Since the gamble h1 is B-measurable, Bh1 is constant on some real number.
If this constant is negative, then there must be some B′ 6= B such that B′h1 
 0, or we should contradict the coherence
ofR0. But in that case since B′(h1 + h2) = 0 we should have B′h2 � 0, a contradiction with the definition of F |B.
As a consequence, we must have Bh1 ≥ 0. Whence, if Bh2 ∈ R|B , then f ∈ R|B because f = Bf ≥ Bh2 ∈ R|B;
otherwise, if Bh2 = 0, then f is equal to the positive constant Bh1, so that f ∈ R|B .

In the second case, we consider the natural extension of R0 ∪
⋃
B∈BR|B . In that case, your beliefs are not

necessarily30 conglomerable as we consider finite sums only. By considering the natural extension E |B of ∪B∈BR|B
in (11), then the natural extension ofR0 ∪

⋃
B∈BR|B is given by:

R :=
{
h+ g : h ∈ R0 ∪ {0}, g ∈ E |B ∪ {0}

}
\ {0}. (23)

Note that E |B is a subset of F |B, and as a consequence this set is included in that defined by (22).
Reasoning as before, we deduce that this set also induces the conditional assessmentsR|B , B ∈ B: it is trivial that

R|B ⊆ {f ∈ L : f = Bf ∈ R}; to see the converse inclusion, note that the set of conditional assessments induced
by (23) must be included in that induced by (22), which we have showed to be given byR|B , B ∈ B.

In summary, when your current beliefs are constructed by means of the marginal extension theorem, we can also
take into account conglomerability (and then we end up with the setR in Eq. (22)) or not (and then we end up with the
setR in (23)). Let us show thatR satisfies strong temporal consistency in each of these two cases.

Proposition 13. LetR be defined either by (22) or by (23), and consider f ∈ L. Then

Bf /∈ R ∀B ∈ B ⇒ f /∈ R.

As a consequence, in either caseR satisfies strong temporal consistency with its conditional beliefs.

Proof. We focus on the case that R is defined by (22); the remaining case is analogous. Assume ex-absurdo that
there is some f ∈ R such that Bf /∈ R for every B ∈ B. Then, f = h +

∑
B∈B BgB for some h ∈ R0 ∪ {0} and

gB ∈ R|B ∪ {0}, B ∈ B. Consider any element B ∈ B; we see that Bf = BhB +BgB , where hB is a constant and
gB ∈ R|B ∪ {0}.

Now, for any B ∈ B it cannot be hB > 0, because since BgB ∈ R ∪ {0} we should deduce that Bf =
BhB + BgB ∈ R, a contradiction. As a consequence, it must be h ≤ 0. On the one hand, it cannot be h � 0 or we
contradict h ∈ R0. On the other hand, h = 0 means that f =

∑
B:Bf 6=0BgB , whence Bf = BgB for every B, and

since Bf /∈ R by hypothesis we deduce that BgB = 0 for every B. This means that f = 0 /∈ R.
Let us move now to the second part. Take f ∈ L such that Bf ∈ R ∪ {0} for all B ∈ B. Then B(−f) /∈ R for all

B ∈ B. The thesis follows applying the first part of the result and Proposition 10.

This means that in the case of MET-beliefs, strong temporal consistency is automatically secured if future
commitments equal conditional beliefs, irrespective of whether current beliefs are conglomerable or not. This last
case seems to be particularly interesting. To see this more clearly, recall that we have showed that the setR induces
the conditional assessmentsR|B for B ∈ B irrespective of whether it is defined by Eqs. (22) or (23). IfR is defined
by Eq. (22) we deduce that F |B ⊆ R, and as a consequence R is conglomerable, which implies in particular that it
satisfies (21). WhenR is defined by (23), since it determines the same conditional assessments, we deduce that it also
satisfies (21): if it did not, we should have some gamble f ∈ F |B such that −f ∈ R, and this would contradict the
conglomerability of the coherent set of gambles defined by (22).

Note also that this does not contradict Proposition 10, because ifR is defined by (23) and it is not conglomerable,
then it cannot be maximal, because it is strictly included in the conglomerable coherent set defined by (22).

Proposition 12 gives us also an opportunity to simplify the initial notion of (i.e., non-strong) temporal consistency
in case of MET-beliefs:

30They are conglomerable if B is finite, as in this case the sets in (22) and (23) coincide.
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Proposition 14. If your current beliefs are given by (22), then temporal consistency holds if and only if

f ∈ FB ⇒ −f /∈ F |B. (24)

In case they are given by (23) and temporal consistency holds, then condition (24) holds.

Proof. Let us show that under (22) temporal consistency is implied by (24). Take f ∈ FB. Then f =
∑
B∈B : Bf 6=0Bf ,

and for every B such that Bf 6= 0 it holds that Bf ∈ RB ⊆ FB. We have by (24) that B(−f) /∈ F |B, whence
−Bf /∈ R|B and as a consequence B(−f) /∈ R for all B. Proposition 12 then establishes the necessity of (20). Now,
observing that the set in (23) is included in the set in (22), we obtain that necessity holds also under (23). Finally, that
temporal consistency implies (24) is trivial under (22) because in that case F |B ⊆ R.

The characterisation of temporal consistency established in Proposition 13 does not hold when your current beliefs
are not constructed by marginal extension:

Example 17. Consider Ω := {1, 2, 3, 4}, B := {1, 2},B := {B,Bc} and let us consider the linear previsions P1, P2

on L determined by

P1({1}) := 0.75, P1({3}) := 0.25, P2({2}) := 0.25, P2({4}) := 0.75.

Let P := min{P1, P2} and define your future commitments for any gamble f by

PB(f) := 0.5P1(f |B) + 0.5P2(f |B) = 0.5f(1) + 0.5f(2),

PBc(f) := 0.5P1(f |Bc) + 0.5P2(f |Bc) = 0.5f(3) + 0.5f(4).

Let R be the set of strictly desirable gambles associated to P , and RB ,RBc the sets of strictly desirable gambles
associated to PB , PBc . Note that by definition F |B is included inR, because the partition B is finite, so in this case
temporal consistency implies Eq. (24). Let us show that they are not equivalent.

Given the gamble g := 2I{2,3} − I{1,4} it holds that

PB(g) = −0.5 + 2 · 0.5 = 0.5 > 0,

PBc(g) = 0.5 · 2− 0.5 = 0.5 > 0,

whence g ∈ FB; however, P1(−g) = P2(−g) = −2 · 0.25 + 1 · 0.75 = 0.25, whence

P (−g) = min{0.25, 0.25} = 0.25 > 0⇒ −g ∈ R.

Thus,R and FB are not temporally consistent. To see that Eq. (24) holds, note that if a gamble f belongs to FB then
either fB or fBc (or both) is non-zero. Assume for instance that fB is non-zero; the remaining cases are established
similarly. It holds that fB ∈ RB , whence:

• either fB 
 0, and then −fB � 0 /∈ R|B ;

• or fB � 0, and then it must be PB(f) = 0.5f(1) + 0.5f(2) > 0; if −fB ∈ R|B , then P (−BfB) =
min{−0.75f(1),−0.25f(2)} ≥ 0, which means that max{f(1), f(2)} ≤ 0 and which contradicts f(1) +
f(2) > 0. We conclude that in this case −fB /∈ R|B either.

Thus, whenR is not established by marginal extension Eq. (24) is not equivalent to temporal consistency. �

It is possible to simplify further the expression of temporal consistency under MET-beliefs:

Proposition 15. Eq. (24) holds if and only ifR|B ∪RB avoids partial loss for all B ∈ B.

Proof. Let us focus on the direct implication. Take B ∈ B. Since bothR|B andRB are coherent with respect to L(B),
we can apply Proposition 7 to conclude thatR|B ∪RB avoids partial loss if and only if gB ∈ RB implies −gB /∈ R|B .
Then consider gB ∈ RB , so that BgB ∈ FB. By (24), B(−gB) /∈ F |B, whence −gB /∈ R|B . Consider the converse
implication. Take f ∈ FB, so that f =

∑
B∈B : BgB 6=0BgB , with gB ∈ RB for all B. The assumption implies that for

all B, −gB /∈ R|B . This implies that
∑
B∈B : BgB 6=0B(−gB) = −f /∈ F |B.
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6.3. Event-wise temporal consistency

If your assessments are expressed by means of coherent sets of gambles, we can also consider a notion of event-wise
temporal consistency, whose rationale is the same as that behind temporal consistency:

Definition 30 (Event-wise temporal consistency for gambles). We say that your present and future commitments are
event-wise temporally consistent ifR∪RB avoids partial loss.

As discussed in Section 4.3, this notion is interesting when your future commitments are established after you have
observed the element B of the partition B. It follows immediately from Proposition 5 that ifR∪RB avoids sure loss
then the lower previsions they induce satisfy the corresponding notion of event-wise temporal consistency we have
introduced in Section 4.3. A reformulation of event-wise temporal consistency follows immediately in a way similar to
the more general case of temporal consistency:

Proposition 16. The following statements are equivalent:

(a) Your present and future commitments satisfy event-wise temporal consistency.

(b) R|B ∪RB avoid partial loss.

(c) DefineRB′
:= {f ∈ L+ : f = B′f} for all B′ 6= B,B′ ∈ B, and let FB be given by (9). ThenR∪FB avoid

partial loss.

Proof. Since R|B ⊆ R and RB ⊆ FB, we deduce that (a) implies (b) and that (c) implies (a). Let us show then
that (b) implies (c). Let f ∈ FB. By definition of FB, it holds that Bf ∈ RB ∪{0}, Bcf ≥ 0. Assume ex-absurdo that
−f = −Bf −Bcf ∈ R. In this case Bcf 6= 0, because otherwise −Bf = −f ∈ R|B , contradicting our assumptions.
As a consequence, Bcf 
 0 so thatR includes the gamble (−Bf −Bcf) +Bcf = −Bf ∈ R|B , again contradicting
the assumptions.

This proposition makes it clear that event-wise temporal consistency relates only to your beliefs conditional on
B, as far as your current beliefs are concerned. In other words, we can think of event-wise temporal consistency as a
weakening of temporal consistency that focuses only on the subsetR|B ofR. In a similar way, one can also extend the
notion of event-wise strong temporal consistency to sets of desirable gambles.

6.4. Strong temporal coherence

If your current and future commitments are established at the same time, then these assessments can affect each
other. Moreover, just because the commitments are established at the same time, it would be irrational in particular
that conditional and future commitments do not cohere with each other. Using strong coherence in Definition 25, we
deduce that FB = F |B is a rationality requirement in the present setting.

For similar reasons, it would be also irrational that the full set of present beliefs R does not cohere with future
commitments. To this end, the strongest coherence condition that we can apply is one-way strong coherence in the
form F |B ⊆ R. This inequality makes sense just because the two sets are established at the same time, so that future
commitments can actually affect present beliefs. It is instead not reasonable to impose in addition the opposite inclusion
unless it is already the case that you specifyR only through conditional information (see Remark 5).

We can also see with a simple example why the condition F |B ⊆ R does intuitively make sense. Consider this
case: assume that there is g :=

∑
B∈B Bg, with Bg ∈ R|B ∪ {0} for all B ∈ B, such that g ∈ F |B \ R. As we have

discussed in Section 3.2, g represents an agreement about the future that you would accept now, and it implies that
you will be rewarded by g(ω), whatever ω ∈ Ω comes true. But when you know that accepting the agreement has the
same implications for you of accepting g, then this should make you see that g /∈ R is not compatible with your other
assessments. This should lead you to resolve the incoherence, either by making g belong toR or by removing g from
F |B. In other words, you should agree that it is rational for you that F |B ⊆ R.

We are thus led to the following:

Definition 31 (Strong temporal coherence). We say that your current and future commitments are strongly temporally
coherent if FB = F |B ⊆ R.
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Strong temporal coherence is a strengthening of strong temporal consistency: it is enough to observe that under
strong temporal coherence R ∪ F |B = R is coherent, and hence it avoids partial loss. More importantly, strong
temporal coherence is equivalent to the conglomerability ofR, provided that FB = F |B.

As we have already said, it appears to be the first time that conglomerability is obtained out of finitary considerations
as in this case. Walley, for instance, has repeatedly argued in favor of conglomerability [68, Section 6.8.4], but the
support that he gave to it appears eventually to go back to the idea that one should allow countably many transactions
to be made (see, for instance, the penultimate paragraph in page 320 of Walley’s book [68], or note 13 to Section 6.9
in the same book; other argumentations in [68, Section 6.8.4] are based on the use of the so-called ‘conglomerative
principle’, which lies at the basis of his notion of coherence, and which involves the sum of infinitely many gambles).
In contrast, our setup is finitary in that respect: all the coherence conditions we deal with are eventually based on the
natural extension, which involves only finitely many transactions; and moreover, even though FB is defined through
sums that may be infinite, the transactions related to elements of FB always involve finitely many gambles. And yet, as
we have shown, a coherence condition together with the availability of future commitments, can make it.

We should be careful in establishing the scope of our claim that conglomerability should be taken as a rationality
requirement. The notion of conglomerability is important and it has been the subject of much controversy since its early
definition by de Finetti [9]: the controversy concerns precisely whether or not it is rational to impose conglomerability.
Our standpoint is the following: conglomerability should be regarded as a rationality requirement when present beliefs
and future commitments are established at the same point in time, for the reasons discussed above. We do not claim
that conglomerability should be imposed more generally than this. In particular, we do not see reasons to impose
conglomerability in the setups where your future commitments are established after your present beliefs.31 For similar
reasons, we do not support requiring conglomerability in probabilistic models whenever these are not used to constrain
future behaviour: for example, when a model is used only in the unconditional case, or when it is used in the conditional
case under the contingent interpretation.

Despite our claim lives within the special frame indicated above, it should not be overlooked that its scope remains
quite wide. For example, it is a common statistical practice to interpret conditional beliefs as future commitments,
as if it were a sort of ‘default’ case; and in that case, our claim applies. This implies that by taking such a practice
seriously, in statistics one should always work with conglomerable models. This is straightforward to do when the
partition B is finite (and this is obviously the case for finite Ω), because conglomerability holds automatically in that
case, as a consequence of axiom D4, or by the super-additivity of coherent lower previsions. In other words, in this
case, we have the remarkable result that strong temporal coherence is equivalent to FB = F |B, that is, the equality
of future commitments with conditional beliefs. On the other hand, statistics is very often concerned with infinite
partitions and in this case working with conglomerable models can be mathematically very involved. This has recently
become even clearer [44]; more work is needed to address this problem. Alternatively, one might want to question the
default case mentioned above. Some discussion in this sense can be found for instance in [68, Section 6.11.1] (see
also Section 8). This could lead one, in some statistical problems, to prefer temporal consistency (or even event-wise
temporal consistency) to strong temporal coherence.

Strong temporal coherence implies that R ∪ F |B is coherent. This gives us some motivation to study the next
coherence condition:

Definition 32 (Temporal coherence for gambles). We say that your current and future commitments are temporally
coherent if FB = F |B andR∪ F |B is coherent.

Temporal coherence is different from strong temporal consistency because it may happen that R ∪ F |B avoids
partial loss but it is not coherent, as shown in [44, Example 7]. On the other hand, temporal coherence is also different
from strong temporal coherence because we may haveR ( F |B, as in [44, Example 2]; however, whenR is a set of
strictly desirable gambles, both conditions are equivalent, as we can see from Theorem 2.

In the case of lower prevision, temporal coherence and the corresponding notion for lower previsions coincide:
remember, from Proposition 16, that FB = F |B means that your future commitments must be specified by E(·|B), the
conditional natural extension of P ; this, together with Theorem 2, shows that if you express your current and future

31However, in some of those cases it may be rational to impose disintegrability when working with precise models, see Section 4.5 (in particular
the discussion after Theorem 3).
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commitments by means of lower previsions, they are temporally coherent if and only if the sets of strictly desirable
gambles they induce are.

More generally speaking, we can show that temporal coherence leads to some surprising facts. To this end, observe
that temporal coherence holds trivially when eitherR ⊆ F |B or F |B ⊆ R. It is useful to understand whether there are
possibilities other than these in order to comply with temporal coherence. The situation is established in the following
lemma:

Lemma 2. LetR be a coherent set of desirable gambles and let F |B be the set of conditional gambles it induces. Then

R,F |B temporally coherent ⇒ R ⊆ F |B or F |B ⊆ R.

Proof. Assume ex-absurdo that R,F |B are temporally coherent and that R * F |B and F |B * R. Then there is a
gamble f ∈ F |B \ R, whence P (f) < 0. Take on the other hand g ∈ R \ F |B. Then since g ∈ R we deduce that
P (g) ≥ 0, and since it does not belong to F |B there is some B ∈ B such that Bg /∈ R|B ∪ {0}.

Let us consider the gamble f1 := Bcf . Then B′f1 ∈ R|B
′ ∪ {0} for every B′ ∈ B, and moreover it cannot be

f1 = 0 or we should have f = Bf ∈ R, a contradiction. As a consequence, f1 ∈ F |B, and therefore λf1 ∈ F |B for all
λ > 0. Moreover,

P (f1) = P (f −Bf) ≤ P (f) + P (−Bf) = P (f)− P (Bf) < 0,

because P (f) < 0 and P (Bf) ≥ 0 taking into account that Bf ∈ R|B ∪ {0}. Define h := λf1 + g ∈ posi(R∪F |B).
Then it holds that

Bh = B(λf1 + g) = Bg /∈ R|B ∪ {0} ⇒ h /∈ F |B,
and

P (h) = P (λf1 + g) ≤ P (λf1) + P (g) = λP (f1) + P (g) < 0 for λ > − P (g)

P (f1)
.

Hence, for λ big enough P (h) < 0, whence h does not belong toR either. As a consequence, posi(R∪F |B) 6= R∪F |B
and thereforeR,F |B are not temporally coherent, a contradiction.

This result holds for any coherent set of desirable gamblesR, not necessarily strictly desirable ones. Remarkably,
whenR is a coherent set of strictly desirable gambles the inclusion FB ⊆ R is equivalent to the inclusion FB ⊆ R,
i.e., to the conglomerability of R [44, Theorem 2]. We see then that in the case of strict desirability the notion of
temporal coherence coincides with strong temporal coherence, taking into account that in such a special caseR ⊆ F |B
holds trivially only whenR = L+ so that the first inclusion is sufficient to describe all the cases. The fact that those
two notions coincide in the case of strict desirability was indeed already proved in Theorem 2.

We shall next argue that temporal coherence is not a suitable notion for the more general framework where you
define your commitments through sets of (not necessarily strictly) desirable gambles. This is the case because strong
temporal coherence is indeed stronger than temporal coherence when R is not a set of strictly desirable gambles;
temporal coherence is rather an intermediate notion between the conglomerability ofR and that ofR (the latter being
the set of strictly desirable gambles associated toR).

Theorem 5. LetR be a coherent set of gambles, and let F |B be its associated conditional set of gambles. Then

R conglomerable ⇒ R∪F |B coherent ⇒ R conglomerable.

Proof. To see the first implication, note that ifR is conglomerable then F |B is included inR, whenceR∪F |B = R
coherent.

To see the second implication, assume thatR∪ F |B is coherent. Then, taking into account Lemma 2, we have two
possibilities:

• the first is that R ⊆ F |B; then for every f ∈ R and every B ∈ B, it holds that Bf ∈ R ∪ {0}. Let P be the
coherent lower prevision induced byR. Then for every k > 0 it holds that

P (IB − kIBc) ≥ P (B) + P (−kIBc) = P (B)− kP (Bc),

and this is positive for k small enough provided that P (B) > 0. But in that case we should have a gamble
f := IB − kIBc inR such that B′f /∈ R ∪ {0} for any B′ 6= B, a contradiction. Hence, it must be P (B) = 0
for every B, whence P is trivially conglomerable and as a consequenceR is conglomerable by [44, Theorem 3].
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• The second possibility is thatF |B ⊆ R; in that case applying [44, Theorem 2] we deduce thatR is conglomerable.

The converse implications in the above result do not hold in general:

Example 18. To see that temporal coherence does not imply conglomerability, note that it may happen that R is a
proper subset of F |B; in that case, temporal coherence would hold trivially becauseR∪ F |B = F |B is coherent, but
this set would not be included inR and therefore the latter would not be conglomerable. An example of such a situation
can be found in [44, Example 2].

To see that the conglomerability ofR does not imply temporal coherence, consider the set N of positive natural
numbers, Ω := N, Bn := {2n−1, 2n},B := {Bn : n ∈ N} and P a finitely additive probability satisfying P ({n}) = 0
for every n, P (Iodd) = 0.25. ConsiderR := R1 ∪R2, forR1 := {f : P (f) > 0} andR2 := {f : P (f) = 0,∃nf ∈
N s.t. fInf→ ≥ 0,

∑
n f(n) > 0}, where nf → denotes the set {n ∈ N : n ≥ nf}.

ThenR includes any gamble f ∈ L+: it follows from the coherence of P that P (f) ≥ 0 ∀f ∈ L+. If P (f) > 0,
then f ∈ R1; if P (f) = 0, then f ∈ R2, taking nf = 1 and using that f 6= 0. Applying (18), it follows that R lies
between the set of strictly desirable gambles and that of almost-desirable gambles associated to P .

BothR1 andR2 are cones that do not include the zero gamble, so to see that the zero gamble does not belong to
posi(R) it suffices to see that it cannot be expressed as the sum of a gamble ofR1 with a gamble fromR2. But if we
take f ∈ R1, g ∈ R2, we have that P (f + g) = P (f) + P (g) > 0, so it cannot be f + g = 0. Hence, posi(R) is a
coherent set of gambles inducing P .

Since P (Bn) = 0 for every n, we deduce that P is trivially conglomerable and as a consequenceR is conglomerable.
However, given the gamble f := 2Iodd − Ieven, it holds that Bnf ∈ R for every n ∈ N, whence f ∈ F |B. However,
P (f) = −0.25 < 0, whence −f ∈ R. Hence, 0 ∈ posi(R ∪ F |B), whence R ∪ F |B incurs partial loss and as a
consequence it is not coherent. �

In other words, in the general case, temporal coherence no longer implies that F |B ⊆ R. This means that it
is no longer suited to prevent you from incurring the (second) kind of irrationality across your current and future
commitments that we have illustrated at the beginning of this section. In the case of general desirability it is then
necessary to impose the notion of (one-way) strong temporal coherence.

A geometrical interpretation of temporal coherence can help us to better see the specific features, and weaknesses
for the case of general desirability, of such a notion. In particular, Corollary 6 in Appendix A implies that for temporal
coherence it is necessary that

M(R) ∪M(F |B) is convex. (25)

It follows from this that the lower prevision corresponding to the credal set M(R) ∩ M(F |B) must agree with
max{P , P (·|B)} (see Proposition 20 in Appendix A). This condition is sufficient only when both R and F |B are
sets of strictly desirable gambles; however, F |B will never be a set of strictly desirable gambles as soon as we have
an infinite number of sets {Bn}n in B such that RBn

is different from L+(Bn), even if all these are sets of strictly
desirable gambles: for, in that case, we could select a gamble fBn

∈ RBn
\ L+(Bn) such that P (BnfBn

) ∈ (0, 1
n ) for

every n, and then their sum f would belong to FB even if f − ε does not belong to FB for any ε > 0.
That condition (25) is a very peculiar one to comply with, can also be seen if we exclude the cases where one

of the two sets is included in the other, which we have identified at the beginning of Section 4.4 as the two possible
one-way strong coherence conditions applied toR and FB. The remaining case is characterised by two convex sets
that partially overlap32 and whose union is naturally convex too. This situation is quite constraining, as it can easily
be verified with simple examples in the three-dimensional space. As a side remark, note how the difference in the
respective necessary conditions makes it clear that temporal coherence is much more of a stringent condition than
strong temporal consistency.

Moreover, it is difficult to find a ‘temporal’ meaning to condition (25) in the case just discussed. In our view, this
appears to be saying that temporal coherence is meaningful when it coincides with a strong coherence condition, and
that it is hardly so otherwise. In summary, we regard strong temporal coherence as the essential notion of coherence for
the case where you establish your present and future commitments at the same time.

32They overlap because temporal coherence implies temporal consistency, and for the latter to hold it is necessary thatM(R) ∩M(F |B) 6= ∅
(see Theorem 4(b)).
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6.5. The precise case

The above notions can also be applied to sets of gambles inducing precise conditional and unconditional previsions.
When these sets of gambles are strictly desirable, we can establish a tight relationship with disintegrability:

Proposition 17. Assume thatR is a set of strictly desirable gambles that induces the linear prevision P . Assume, in
addition, that your future commitments FB induce a linear future prevision PB. Then:

R,FB temporally consistent ⇒ P disintegrable ⇒ R,F |B temporally consistent.

As a consequence, if in addition FB = F |B thenR,FB are temporally consistent if and only if P is disintegrable.

Proof. The first implication follows from Theorem 3, taking into account that ifR,FB are temporally consistent so
areR,FB1 , where FB1 is the conglomerable natural extension of the strictly desirable gambles associated to PB. The
second follows from Theorem 2, taking into account that the disintegrability of P implies its conglomerability, and
from [44, Theorem 3]. The second statement is an immediate consequence of the first.

More in general, we can apply the notions of temporal consistency and coherence to sets of gambles that are not
necessarily strictly desirable. In that case, we can establish the following:

Proposition 18. LetR,FB be coherent sets of desirable gambles such that they induce linear unconditional and future
previsions P, PB. Then:

R∪ FB coherent ⇒ R∪FB avoids partial loss ⇒ P, PB coherent.

Proof. That the first condition implies the second is trivial; the second implies thatR∪ FB avoids sure loss, whence
by Theorem 4 P, PB avoid sure loss, and since they are linear this means that they are coherent.

However, the above implications are not equivalences: on the one hand, the sets of current and future commitments
in Example 14 induce coherent linear previsions but their union incurs partial loss. To see that the avoiding partial loss
ofR∪ FB does not imply its coherence, consider the following example:

Example 19. Consider Ω := {1, 2, 3, 4}, B := {1, 2},B := {B,Bc}, and the setR of current beliefs given by

{f ∈ L(Ω) : f(1) +f(2) +f(3) +f(4) > 0}∪{f ∈ L(Ω) : f(1) +f(2) +f(3) +f(4) = 0,min{f(1), f(3)} > 0}

and let your future commitments be given by

RB : = {f ∈ L(Ω) : f = Bf, f(1) + f(2) > 0 or f(1) = −f(2) < 0},
RB

c

: = {f ∈ L(Ω) : f = Bcf, f(3) + f(4) > 0}.

Then R induces the linear prevision associated to the uniform distribution on Ω, and FB induces the conditional
prevision PB derived fromR by means of Bayes’ rule. To see thatR∪ FB avoids partial loss, note that

R∪FB ⊆ {f ∈ L(Ω) : f(1)+f(2)+f(3)+f(4) > 0}∪{f ∈ L(Ω) : f(1)+f(2)+f(3)+f(4) = 0, f(3) ≥ 0}\{0},

and that the set on the right-hand side is coherent. To see on the other hand that R ∪ FB is not coherent, note that
given f := (1,−3, 1, 1) ∈ R and g := (−1, 1, 0, 0) ∈ FB, their sum is f + g = (0,−2, 1, 1), which does not belong
toR∪ FB. �

A straightforward deduction could then be that the precise case differs from the case of desirable gambles to that
of previsions, which was discussed in Section 4.5. This is particularly evident from the fact that the implications in
Proposition 18 were equivalences in Theorem 3. But this conclusion is based on the precision (or linearity) of the
previsions that can be derived from a set of desirable gambles. This is not the precision of the set itself: the latter is
rather the completeness, or maximality, of the set. By assuming that the involved sets are maximal, and considering the
setting of event-wise temporal consistency, we obtain a very interesting outcome:
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Proposition 19. Let your current and future commitments R,RB be event-wise temporally consistent. Assume in
addition thatR andRB := {fB ∈ L(B) : BfB ∈ RB} are both maximal. Then it holds thatRB = R|B .33

Proof. First, note that ifR is maximal, then so isR|B : indeed, if there is fB 6= 0 such that fB /∈ R|B , then BfB /∈ R;
the maximality ofR implies that −BfB ∈ R and hence −fB ∈ R|B .

Now, assume ex-absurdo that RB 6= R|B , and in particular that there is a non-zero gamble f = Bf such that
f ∈ RB and f /∈ R|B . SinceR|B is maximal, −f ∈ R|B ⊆ R and this contradicts thatR∪RB avoids partial loss. It
follows that RB ⊂ R|B . Then there is a non-zero gamble f = Bf such that f ∈ R|B ⊆ R and f /∈ RB . But since
RB is maximal, −f ∈ RB and we contradict again thatR∪RB avoids partial loss. We deduce that under event-wise
temporal consistency, it holds thatRB = R|B .

This tells us that, once we use the proper condition of precision for desirable gambles, future commitments should
be equal to conditional beliefs even under the weakest consistency notion of this paper. This leads us to replay the
reasoning in Section 4.5: since conditioning is the only (event-wise) temporally consistent rule in the case of maximal
sets, why should one postpone the task of assessing future commitments? Being maximal (i.e., Bayesian) together
with conceding—right now—that future commitments might differ from conditional beliefs appears irrational. As a
consequence, we obtain that strong temporal coherence becomes a rationality requirement whenever we stick to using
maximal sets. This means that in the case of maximal sets it holds that: (i) conditioning is the only rule to compute
future commitments; (ii) and thatR must be conglomerable. Moreover, taking into account Proposition 10, we obtain a
result similar to Corollary 3—yet without assuming that probabilities be positive:

Corollary 5. LetR be a maximal set of desirable gambles representing your current beliefs, and let FB = F |B. Then
the following conditions are equivalent:

(a) R,FB are temporally consistent.

(b) R,FB are strongly temporally consistent.

(c) R,FB are strongly temporally coherent.

(d) R is conglomerable.

7. Relationship with other approaches

In this section, we consider a number of other approaches that relate probability and time, and discuss their
connection with the work we have carried out in this paper.

7.1. Dynamic coherence

This paper is related to the work on dynamic coherence carried out by Skyrms [59, 60, 61] and Armendt [2, 3],
among others, and with a strong influence from Ramsey’s work [48] (see also [17, 31] for other references on this
topic). These authors justify the rationality of a temporal updating principle by means of the impossibility of building a
book against it, and in this way they support Bayes’ rule of conditioning, as well as Jeffrey’s and van Fraassen’s rules
we shall discuss later on. They distinguish between two concepts of coherence: the static or synchronic one, where
your present and future commitments are all established at the same time, and where coherence can be justified using
de Finetti’s or Ramsey’s arguments; and the dynamic or diachronic one, where your present and future commitments
are established at different times. In this case, the use of a book argument (i.e., of a finite combination of acceptable
gambles that yields a sure loss) has been criticised by Maher [39] and Levi [37, 38], among others (see [3] for a
response to some of these criticisms). A diachronic book argument was first proposed by David Lewis in order to justify
Bayesian updating, as reported by Teller [63, note 1 to Section 1.3].

33Strictly speaking, the notion of maximality does not hold for the sets R|B and RB , because we can add gambles to them keeping their
coherence; it applies instead to their counterparts R|B and RB ; it is this simple technical reason that makes us introduce the latter sets in the
theorem.
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That dynamic coherence is closely related in spirit to the present work is clear if we reconsider the ideas behind
temporal consistency and coherence: in the first, we have considered that your future commitments are established later
than present beliefs, and as a consequence we are considering a diachronic argument, in the above language; in the
second, instead, we assume that your present and future commitments are established together, and hence we are in the
synchronic framework.

On the other hand, our work is more general than dynamic coherence in three ways: first, we are allowing for
an imprecise model of your assessments, which allows us to apply our results in cases of uncertain or indeterminate
information; second, in our formalisation we are allowing for infinite partitions of the set of outcomes, and as a
consequence we have related our approach to the notions of conglomerability and disintegrability; and finally, we have
moved away from the language of previsions (or probabilities) into the richer language of sets of desirable gambles.
This has implications, for instance, for the type of losses we need to consider, which are partial rather than sure as in
the traditional book approach. Moreover, it has implications in that we are not led to conclude in general that rationality
requires computing future commitments by conditioning (we comment on this to a wider extent in Section 8).

7.2. Probability kinematics
An interesting and useful approach to compute future commitments was provided by Richard Jeffrey in his

celebrated theory of probability kinematics [30, 32] (see also [13]). Jeffrey’s rule is defined in the following way.
Consider a countable partition B := {Bn : n ∈ N} of the set of outcomes Ω of the experiment, each of them with

positive probability, and let P0 be your current probability model. Suppose you are interested in an event A ⊆ Ω, and
that after defining P0, you receive some evidence that leads you to revise your probabilities P0(Bn) (n ∈ N) into new
(or posterior) probabilities P1(Bn), without changing your conditional probabilities: that is, P0(A|Bn) = P1(A|Bn)
for all n. In this case your probabilities are said to satisfy probability kinematics, and your posterior probability for A
should be defined as

P1(A) :=
∑
n

P0(A|Bn)P1(Bn).

Jeffrey’s rule is useful when the new evidence represents an uncertain observation about B, rather than coinciding
with an event of such a partition. If in particular your unconditional commitments do not change in time, i.e., if
P1(Bn) = P0(Bn) for all n, we recover the law of total probability, and therefore this can be regarded as generalising
Bayesian updating (and in particular the idea of using Bayes’ rule to compute future commitments). Remark also on
the assumption of positivity of unconditional probabilities, which is formally related to our comments in Section 4.5.

Jeffrey’s approach is dual to ours, in the following sense: while we allow future commitments to differ from
the conditional ones and the unconditional beliefs are determined only at the present time, Jeffrey requires that the
conditional probabilities should not change in time, but allows the unconditional ones to be modified in the light of new
evidence. Still, in [2] and [59], it has been argued in favor of probability kinematics by means of dynamic coherence.

7.3. The temporal sure thing and reflection principles
Two very related approaches to the work carried out in this paper are due to Goldstein [21, 22, 23] and van Fraassen

[66, 67].
Goldstein [21, 23] required your current and future beliefs to satisfy the temporal sure thing principle:

“Suppose that you have a sure preference for A over B at (future) time t. Then you should not have a strict
preference for B over A now.”

In our language, the temporal sure preference principle states that if you knew that f is desirable to you in the future,
then you should not desire −f now, which is in clear connection with Eq. (20) in Proposition 7 (it is not exactly
the same because the underlying notion we are concerned with is avoiding partial loss, which is stronger than the
book-equivalent idea of avoiding sure loss).

Now, if we denote by P0 your current probability model and by P1(·|B) your future probability model conditional
on the observation of some evidence, the temporal sure thing principle implies [21, Section 3] that your current model
should satisfy

P0(f) = P0(P1(f |B)) (26)

for every gamble f .
Around the time of Goldstein’s initial proposal, van Fraassen [66, page 244] established his reflection principle:
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“My current probability for an event A, conditional that at some later time I assign A probability r, should
also be equal to r”,

which can be expressed mathematically also as

Po(A|P1(A) = r) = r. (27)

Van Fraassen also allows for vague assessments in [67], determining then a general reflection principle:

“My current opinion about event E must lie in the range spanned by the possible opinions I may come to
have about E at some later time t, as far as my present opinion is concerned.”

This general principle yields Eq. (27) in the particular case of precise probabilities.
Both these approaches are related, like ours, to the impossibility of building a book against you using your current

and future commitments.34 However, their focus is on the current beliefs, and future beliefs are treated as some uncertain
quantity. This is very clear by the way van Fraassen ends his principle: ‘as far as my present opinion is concerned’ (for
similar reasons, van Fraassen says in [66] that we may speak of a Dutch strategy instead of a Dutch book). In other
words, all these principles determine how your current beliefs should be related to the future ones, if you knew them.
On the contrary, our focus is on a time where your current and future commitments have already been established,
so the latter do not act as uncertain objects for us. Hence, even if their formula of time consistency Eq. (26) looks
basically identical to our Eq. (14), the two of them are saying very different things. In particular, since Goldstein and
van Fraassen regard future commitments as uncertain quantities, claims about them are made through expectations.
Stated differently, Eq. (26) is actually concerned with a consistency property of current beliefs alone, that cannot
prevent you from incurring a temporal sure loss. In contrast, endorsing Eq. (14) does prevent you from incurring a sure
loss. For this to be possible, however, future commitments must be known, as we indeed assume in this paper.

Another difference between our work and Goldstein’s is related to conglomerability. In fact, Goldstein maintains
that his approach does not imply the conglomerability of present beliefs and in fact he supports finitely additive models.
This claim has originated some controversy. We can find Walley, for instance, deducing that Eq. (26) does lead to
the conglomerability of present beliefs (see [68, note 11 to Section 6.5]); and other researchers who have criticised
Goldstein’s temporal sure preference principle as incompatible with finite additivity, that is, non-conglomerable models
(see [33, Section 2.3]; Goldstein’s reply is in [24], and renewed criticism is in [34]). On the other hand, our notion of
strong temporal coherence leads to conglomerability; more generally speaking, in the case of precise probability the
relationship of our approach to disintegrability is very tight even under much weaker notions than strong temporal
coherence.

7.4. The work of Shafer, Gillet and Scherl

In an interesting paper [57], Shafer, Gillet and Scherl use a dynamic approach to justify Walley’s updating rule as a
temporal rule.35 This work has some points in common with the work we have carried out here, such as, for instance,
the distinction of different time periods for the establishment of future commitments. On the other hand, their approach
is based on Shafer and Vovk’s [58] two-player reinterpretation of de Finetti’s and Walley’s subjective approach to
probability.

The idea is to consider the process of assessing subjective probabilities as a game between two players: House,
which determines the probabilities of certain events, and Gambler, the one that determines the stakes at which he is
disposed to bet on the different events. A third player, called Reality, can be used to determine what are the events that
actually happen in the end. In our language you play the role of House while Gambler is an opponent of yours. Shafer,
Gillet and Scherl use two different approaches to establish the consistency of your assessments: the first relates to the

34See also [22, 67] for other justifications of these principles.
35Shafer, Gillet and Scherl appear to regard Walley’s updating interpretation of conditioning as defining a temporal setting—one that prescribes

computing future beliefs out of present ones by conditioning—, and then try to justify it accordingly (this was already pointed out in [7, footnote 10 in
p. 1408]). In our view, Walley’s updating interpretation of conditioning is instead only concerned with your current beliefs under the assumption that
event B occurs. The justification of this interpretation of updating is already in Walley’s theory, and it follows in particular from the axioms D1–D4
of desirability through his ‘updating principle’.
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common idea of the book, that is, to avoiding losses; the second is more peculiar to Shafer and Vovk’s game-theoretic
probability and is called Cournot’s principle. According to the latter, and loosely speaking, the probabilities can be seen
as consistent when it is not possible for Gambler to exploit them in order to become infinitely rich without risking
bankruptcy. It is a principle that relates to a long-run interpretation of probability and that allows the authors to draw
stronger conclusions than those they achieve by the book-based consistency.

One of the aims in [57] is to see how probabilities should be temporally updated. The authors consider both
the precise (in Section 1) and the imprecise (in Section 2) cases, and also distinguish the case where you have
exact information [56], which means that all you know in the future is the event B ∈ B that is observed (and that
coincides with our case in this paper), or when you can have additional information besides B. They show that
under some conditions, which roughly coincide with our strong temporal coherence setup, updating beliefs by means
of Walley’s GBR is consistent in their sense; then they try to make the case also for information that is not exact
(Section 2.4) and conclude that a particular case of temporal consistency must be satisfied.

With respect to that work, there are a few novelties in our paper:

• while in [57] it is assumed that updating is made by means of GBR and afterwards it is justified that this is
consistent under some conditions, in our paper we make no assumptions about how the future commitments are
established; in particular, we show that there are several other possibilities satisfying temporal consistency, and
that even when you establish your future commitments in advance, as in the case of temporal coherence, there
are other possible rules compatible with our consistency notions (such as the regular extension).

• Our treatment allows for infinite partitions of future events, whereas only finite partitions are considered in [57].
This is what has allowed us to deal with the notion of conglomerability.

• Moreover, in [57] it is assumed that all the conditional events have positive lower probability, which is not the
case in this paper.

Remark 6. It is also interesting to consider a more subtle difference between the two approaches. In [57, Section 1.6]
the authors claim that Bayes’ rule cannot be derived in the precise case when future commitments are established
after current beliefs. This seems to follow from the impossibility of Gambler to know the future prices at the time
when present commitments are effective: in fact, to make you undergo a loss, Gambler must design two bets, one for
present and one for future commitments, that act jointly to that end. On the other hand, in the analogous case in our
paper (temporal, or event-wise temporal, consistency), we instead do derive Bayes’ rule—provided that probabilities
are positive. This is the case because we do not stress as much as in [57] the operational nature of the game: for us it
is enough that an inconsistency is possible in order to exclude the corresponding rule; we do not enforce that there
should be an actual protocol by which an opponent could exploit it. Notice, however, that also Shafer, Gillet and Scherl
eventually rule out those inconsistencies (in Section 1.7) and derive Bayes’ rule, by invoking Cournot’s principle. �

7.5. Belief revision

It is also interesting to comment on the connection between our approach and the work on belief revision developed
among others by Gärdenfors in [18] (see also [1]). Roughly speaking, belief revision refers to the general process
by which you modify your belief model to keep it up to date with the information you access (in particular, belief
revision has been given a temporal interpretation by means of temporal logic [5] or dynamic doxastic logic [51, 65]).
For more information on this topic, we recommend Peppas’ gentle introduction to the field [47] and also the web site
http://www.beliefrevision.org/.

In Gärdenfors’ view, three basic procedures are relevant when changes in a belief model are concerned: expansion,
where you add a new element to your belief set that is consistent with it; contraction, where you remove one element
from the belief set; and revision, where you add a new element to your belief set that is inconsistent with the latter.
In any of these cases, the modifications in your belief set should be made so that it remains logically consistent: this
means, as a consequence, that when belief revision is performed, some elements of the belief set must be removed in
order to maintain consistency. Moreover, the underlying rationale is that the removal of some elements should be made
so as to make a minimal change to the preexisting belief set. This gives rise to a number of axioms, first introduced by
Alchourrón, Gärdenfors and Makinson in [1], producing the so-called AGM models.
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The AGM axioms have been originally put forward in a logical context, where knowledge is represented by
sentences from a certain language L. There have been attempts to extend them to probability (even in the seminal book
by Gärdenfors), but many of these attempts seem to have faced the limitations of not being able to fully deal with
probability as a logic. This can be overcome by representing probability through desirable gambles, which, as we have
argued already, has a very direct connection with logic. In particular, de Cooman shows in [6] how some of the AGM
axioms can be extended very naturally to an imprecise probability scenario by using desirability. Some earlier work on
the same line of research was made by Moral and Wilson [45] (other work connecting imprecise probability and belief
revision has been carried out, among others, by Dubois and Prade in the framework of possibility measures [15, 16]).

Regarding the work in this paper, at the moment we do not see a direct relationship with belief revision.36 Although
we have considered two sets of assessments established at (possibly) different points in time, the problem we have
studied is that of characterising consistency across the two sets, and this is not a problem of belief revision. In particular,
for the most part we are not interested nor give guidelines as to how to modify your set of current beliefs in the light of
the event B: we just concentrate on characterising all the possible temporally consistent, or coherent, changes; as a
consequence, we are certainly not focused in particular on minimal changes. This point is probably what marks the
most significant difference from belief revision (at least from the one originally formulated by Gärdenfors). As we
understand it, the rationale of doing a minimal change originates from the underlying idea that the original belief set is
correct, or stable, before accessing the new information; therefore it should be preserved as much as possible while
incorporating new information. Our setup is instead conceived to accommodate also situations where your current
beliefs may have been roughly specified, for instance for lack of time, and thus can be (and it is actually desirable
that they are) subject even to big changes if there is additional time to take the available evidence more carefully into
consideration. More generally speaking, even the founding idea of ‘rational change’ in belief revision does not seem
to directly apply to our setup: in our setup every change may be reasonable in some situation,37 sometimes even the
changes that are not temporally consistent, simply because current beliefs may have been inaccurately specified.

Note, moreover, that even if present and future commitments satisfy the appropriate consistency notion for the
situation (temporal consistency, temporal coherence or event-wise temporal consistency, depending on when the future
commitments are established), we are not concerned with the task of enlarging the set of beliefs so as to accommodate
both: the idea is rather to drop the current beliefs in favor of the future commitments.

The only place where we appear to be closer to a belief revision problem is when we briefly study how to modify
your assessments when temporal consistency is violated (Sections 4.1.1 and 6.1), and that could be seen as a procedure
of belief contraction. However, our approach is slightly different from belief contraction, for a number of reasons:
instead of modifying the union of the set of current and future commitments in order to remove the inconsistent
gambles, we see that it is more productive to investigate how the set of future commitments can be contracted in order
to obtain consistency with the set of current beliefs (the reason why this second problem is interesting in our approach
is that in the case of temporal consistency, current beliefs cannot be modified after they are established and before event
B occurs). We show that there is not in general an optimal way of doing so, which in our context means that there
is not a greatest subset of the future commitments satisfying temporal consistency. This links to the well-known fact
within the belief revision theory that contraction is not always possible under the assumption of a minimal change,
for which a number of solutions have been proposed (see [47] for information and references). However, and perhaps
surprisingly, we do show that in the case of maximal (i.e., precise) desirability assessments, there may exist an optimal
correction (see in particular Proposition 9 and Corollary 4).

Another special trait of our work is the structure of the set FB of future commitments. We recall that this is not a
set of commitments that you hold at some point in time; it is rather a summary of different sets of commitmentsRB
that become effective depending on the element B ∈ B that comes true (see Section 3.1). This is another difference
with respect to belief revision, where the set that is produced after the changes is a new set of beliefs. And yet FB is
really a fundamental concept in order to define appropriate consistency notions across present and future commitments:
it is the very structure of FB that allows us to properly define the losses (to avoid) whenever the partition B is infinite;

36A distinction was made by Katsuno and Mendelzon [35] between belief revision and belief updating: the latter applies when you have additional
evidence that transforms your set of possible worlds, and in that case traditional techniques of belief revision are no longer applicable. The approach
we follow in this paper cannot be easily linked to Katsuno and Mendelzon’s work either: see [57, Section 4.3] for a related discussion in the context
of Shafer et al.’s approach, which is very similar in spirit to ours.

37Provided that we are not focusing on strong temporal coherence or on precise beliefs, as rationality imposes very tight constraints in these cases.
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it is moreover the structure of FB that has allowed us to find a finitary justification for the notion of conglomerability.
On the other hand, and despite the differences that we currently see between belief revision and our work, we

find that many aspects of their relationship are still unclear; moreover, we are aware that we may well have missed
contributions in the vast literature of belief revision that might have changed our mind about some of the aspects we
have been commenting on. For these reasons, we think it would be useful to study more deeply the interplay of the
ideas in this work and in the literature of belief revision.

8. Concluding remarks and future outlooks

In this section we would like to discuss what we think we have understood after the analysis we have carried out in
this paper. We recall that our focus has been on developing mathematical tools to characterise whether or not your
probabilistic assessments are consistent in time. We have restricted the attention in particular to the simplest situation
made of two time points: now, and a subsequent point that depends on the observation of an event B in a partition B of
the possibility space Ω. We have represented your current beliefs by a set of desirable gamblesR (or by the special
case made of a coherent lower prevision P ). We have assumed, in addition, that after B occurs, you will hold new
commitments, thus droppingR, and that these ‘future commitments’ are known. Moreover, we have found it useful to
consider three time periods when you might establish your future commitments: now, later but before B occurs, after
B occurs.

The case where you establish your future commitments now, together with your current beliefs, is the one closest in
spirit to the traditional probabilistic, and statistical, setup. We have argued that in this case rationality should lead you
to apply a strong temporal coherence condition. From this, we have deduced that your model of present beliefs should
be conglomerable. This result is meaningful because it provides for the first time, in our knowledge, a justification of
conglomerability obtained through considerations of temporal coherence, where the coherence notion is—in a definite
sense—finitary. This has been surprising to ourselves in the first place, because conglomerability is a non-finitary
concept. Most importantly, such a feature of our approach seems to provide new elements to settle the 83-years long,
and still on-going, controversy about whether or not conglomerability should be imposed on probabilistic models.

Another important question affected by strong temporal coherence is that of the choice of the ‘rule to update beliefs’
under imprecise probability. Here we should clearly distinguish two situations. If by updating beliefs we mean the
traditional updating interpretation of conditioning—the one that is not really concerned with future commitments—,
then the question was already thoroughly analysed and discussed by Walley: the only updating rule supported by (non-
temporal) coherence arguments is conditioning.38 This means using the generalised Bayes rule in case the conditioning
event has positive lower probability (and hence Bayes’ rule in the precise case). When this is not the case, the choice is
wider but it can still be formulated as conditioning a coherent set of desirable gambles (see Definition 12). If, on the
other hand, by updating beliefs we mean a temporal setting that involves future commitments established at present
time, then we can use the analysis in this paper to deduce that also in this case there is only one choice: again, that of
conditioning.39

Let us remark once again that these results are obtained in the specific case where you establish your future
commitments now, together with present beliefs, and that you are in fact committed to them, in the sense that they will
constrain your future behaviour. When could this be the case in practice? Most probably this would happen when you
create your present uncertainty model carefully, that is, doing your best effort to examine the available evidence and
formalise your current beliefs. In this situation, you would probably exclude that the availability of extra time to reason
could lead you to change significantly your uncertainty model in absence of new information (remember that in this
paper we assume that the only new information you will receive about Ω is B). As a consequence, you would commit
yourself, already at present time, to have your future behaviour constrained by conditional beliefs. This will give you
the opportunity to strengthen your model of present beliefs through the implications of conglomerability.

38Some caution, or additional considerations, should be used in case you were strongly focused on the Gamma-maximin criterion as a way to
solve decision-theoretic problems (see, e.g., [4, 25], and especially the criticism to Gamma-maximin in [53]).

39These outcomes should not be over-interpreted: for the conditional model constrains rather than determines your behaviour in general; you are
always allowed to accept gambles to which you did not commit in advance (see the discussion in Section 3.1). On the other hand, these constraints
can be very weak on some occasions, especially when generalised Bayes rule is used to compute conditional inferences from credal sets. In these
cases it could be useful to rely on uncertainty models more informative than sets of probabilities, such as coherent sets of desirable gambles and the
related conditioning (see Section 5.2). This would be also a way not to compromise the possibility to achieve strong temporal coherence.
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This situation is relatively close to the traditional view of some fields of research. For instance, in the case of
knowledge-based systems, you ideally do your best effort to model domain knowledge by a, possibly imprecise,
probabilistic model; once the system is built and successfully tested, then it supports decisions by making inferences
through conditioning. Another example can be statistics: a model is carefully built via (again, possibly imprecise) prior
and likelihood, and future actions are chosen to be constrained by the posterior inferences. It is for these reasons that we
think that strong temporal coherence has something to say in particular for the traditional probabilistic and statistical
setup: it appears that there you should use conglomerable models and make inferences by conditioning them.

On the other hand, it will not always be possible for you to create a model with full care. This will be the case also
in the previous fields of research, whose description above has been partly idealised, and will be definitely so if we
focus on reasoning and decisions in daily life: for it is relatively uncommon that at any time you have an accurate model
of the evidence around you that is stable and not subject to revision in absence of information. Usually, the process by
which you form beliefs is very dynamic: you start with a rough model of the evidence, whose accuracy is constrained
by time limitations or by lack of other resources; then the availability of extra time usually helps you to rework your
model and make it more stable. This process is reactivated whenever you can and think it is worth (and of course also
when you access new information). Note how this setup seems to be more in the scope of artificial intelligence than
the previous one. The scenario in which you establish your future commitments at present time appears to be just too
narrow for this case: why should you commit yourself now to constrain your future behaviour by conditional beliefs
when you may well doubt that they actually reflect a careful analysis of the evidence at hand? Most probably, you will
instead establish your future commitments at some later time (note that nothing prevents you from realising later that
conditional beliefs were instead accurate enough and can be taken as future commitments). This is precisely where the
more flexible framework of temporal consistency enters the picture.

In particular, our results on temporal consistency (by this we also mean, for short, event-wise temporal consistency in
what follows) can be used as a guidance in the process of belief assessment so as to maintain consistency between present
and future commitments: this will prevent an opponent from making you incur a (sure or partial) loss. Nevertheless, in
our view this cannot be given the status of a rationality requirement, in the sense that temporal consistency cannot be
imposed in general on probabilistic models: for it is always possible that your original modelR was too inaccurately
specified, so that you might want to reconsider part of the assessments of R in the passage to future commitments,
even though this will create an inconsistency between the two models.40

Stated differently, even though we think that it should be desirable for you to be self-consistent in time, we find
it unreasonable to impose it on you in general. In fact, the lesson we draw from the analysis in this paper is another:
the crucial point is not that you should force yourself later to define future commitments that are consistent with your
present beliefs; it is rather on adopting a procedure to assess beliefs that gives you some minimal quality guaratees
throughout. Remember, in fact, that temporal consistency is a relatively weak notion (see, e.g., Theorem 4(b)): that
your future commitments conflict with your present beliefs implies that somewhere in the process of assessing your
beliefs there has been a very serious flaw. This means that if you implement that process using some minimal care,
you will automatically minimise the possibility to be temporally inconsistent. Quality can be achieved by relying on
the tools that we have developed to check temporal consistency: for they make you aware when you contradict the
beliefs you stated first (but still allowing you to do so), so that any change of beliefs is well-reflected on. Moreover, you
achieve quality by tuning the strength of your judgments relative to the evidence at hand as well as to the depth by
which you have analysed it. The good news is that this is not too difficult to do in an imprecise probability setting: it is
enough to make your assessments the more imprecise the weaker your knowledge (it goes without saying that you
should also aim at making them the more precise the stronger your knowledge, if you want your models to be useful).

The situation could instead be quite difficult if you wanted to stick to precise probability: for there are states of
weak knowledge that cannot be represented by precise models (ignorance is one case, and there are many others that
are less extreme). In these cases, the formalism you have chosen will de facto oblige you to make stronger judgments
than those you actually support; this, together with the fact that temporal consistency becomes a very rigid notion
in the precise case (most often41 allowing only for conditioning in order to create future commitments), will make it
quite likely for you to incur a temporal loss. In this case you would behave like a person that is used to make bold

40This will be even more the case in a setup where it is allowed, unlike in this paper, to receive information about Ω besides B, and which might
even not be representable as a subset of Ω.

41Remember the possible exceptions discussed in Remark 3, note 21 and Remark 6.
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claims even when the evidence does not support them, and that is obliged to retract them at some later time. The central
question here, and somewhat loosely speaking, is that precise probability is too narrow of a framework to allow strong
temporal coherence and temporal consistency to be distinguished: these two notions nearly collapse into a single one.

A summary of the discussion up to this point is that our research in this paper indicates that there are two behavioural
probabilistic theories of uncertainty that should be considered when the focus in on temporal considerations. Referring
to the most general mathematical model in this paper, one is that of coherent sets of desirable gambles with an additional
axiom that accounts for the conglomerability of the model (that is, the theory based on axioms D1–D5;42 see [43] for
the case of lower previsions); this should be used in the case of strong temporal coherence. In the remaining cases, the
theory should be the one based on axioms D1–D4 and complemented by considerations of temporal consistency. Both
theories offer opportunities and challenges. In the first case, a definite challenge is to make the theory of practical use
in general, because the conglomerability axiom is non-finitary, and this means, in a logical language, that the deductive
closure (which in that case is the conglomerable natural extension) cannot be computed in any finitary way.43 In the
second case, the theory is mathematically much easier to deal with and, on the other hand, it is largely there to be
developed with regard to considerations of temporal consistency: for example, a vast number of possibilities open up
here to define temporally consistent updating rules.

We would like to conclude this paper by signaling some of the most prominent open problems stemming from
our work; an important one, in our view, is the extension of the notions of (strong) temporal consistency and strong
temporal coherence to several steps in the future, which would allow us to link our work to stochastic processes. We
think that if we can represent these steps by means of hierarchical information, the treatment should be similar to that of
the marginal extension theorem we have considered in Section 6.2.1, using the general version of this result established
in [41]. In this sense, it would be interesting to investigate the connections with the notion of cut-conglomerability
considered by de Cooman and Hermans in [7].

On the other hand, we may also consider the case where information cannot be represented in a hierarchical way, for
instance when we consider several different partitions, not necessarily nested, at the same point in time. We believe that
in that case temporal consistency and strong temporal coherence will probably be related to the notions of weak and
strong coherence by Walley [68, Chapter 7]. This would probably entail the generalisation of the results in Appendix A
to several sets of desirable gambles, which leads us to believe that the notions will become much more stringent.

Another interesting open problem would be to investigate in more detail the relationships of our work with the
approaches summarised in Section 7. In particular, it would be useful to detail the relationships between our approach
and belief revision, studying how the set of current beliefs should be contracted or revised taking into account the
(possibly inconsistent) information included in the set of future commitments. We think this could be particularly
useful in the case you access information that is not exact. In fact, let us recall that in this work we have restricted the
attention to the case of exact information, where B is the only new information you access about the possibility space
Ω. We have done so in the attempt to focus on a clearly defined setting, isolating the core of the temporal questions
from other types of difficult problems, and because the case of exact information is particularly important in traditional
probability. Now that the basic temporal questions have been analysed, it would be possible to try a generalisation to
the case of inexact information. We regard this as a very important research avenue for the future. Part of the results in
this paper will probably continue to hold in such a generalised setup; the challenge will be to merge them with a model
of the process by which information is accessed.
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Appendix A. On the coherence of the union of two sets of desirable gambles

In this technical appendix, we provide some insight about the coherence of the union of two coherent sets of
desirable gambles. This is used in Section 6.4 to discuss the inadequacy of temporal coherence in the case of sets of
desirable gambles. Nevertheless, the results we provide here have some interest on their own, and this is particularly
the case of the summary made at the end of this appendix in Corollary 6.

We start with a simple observation, which is also related to Remark 1.

Lemma 3. Given two coherent sets of desirable gamblesR1,R2, their unionR1 ∪R2 is coherent if and only if

f ∈ R1, g ∈ R2 ⇒ f + g ∈ R1 ∪R2. (A.1)

Proof. It is trivial thatR1 ∪R2 satisfies D1–D3, given that bothR1,R2 are coherent. ThereforeR1 ∪R2 is coherent
if and only if it satisfies D4. But D4 holds trivially in case f and g are taken from the same set; whence D4 is equivalent
to (A.1).

On the other hand, note that given coherent setsR1,R2, it holds that

M(posi(R1 ∪R2)) =M(R1 ∪R2) =M(R1) ∩M(R2).

Hence, whenR1 ∪R2 avoids partial loss, then the natural extension ofR1 ∪R2 is in correspondence with the credal
setM(R1) ∩M(R2). Note that this credal set can generally have extreme points that belong to neitherM(R1) nor
M(R2). However, whenR1 ∪R2 is coherent we can go one step further.

Proposition 20. Let P 1, P 2, defined on L, be the coherent lower previsions derived from the respective coherent sets
of desirable gamblesR1,R2. Assume thatR1 ∪R2 avoids partial loss. Then

R1 ∪R2 coherent ⇒ P (f) = max{P 1(f), P 2(f)} ∀f ∈ L, (A.2)

where P is the coherent lower prevision derived from posi(R1 ∪R2) by (16). If moreoverR1,R2 are coherent sets of
strictly desirable gambles, then the converse also holds.

Proof. For the first statement, consider that for any gamble f it holds that

P (f) = sup{µ : f − µ ∈ posi(R1 ∪R2)} = sup{µ : f − µ ∈ R1 ∪R2} = max{P 1(f), P 2(f)},

because posi(R1 ∪R2) = R1 ∪R2 when the latter is coherent.
To see that the converse holds when R1,R2 are coherent sets of strictly desirable gambles, it suffices to show

that Eq. (A.2) implies (A.1). Take f ∈ R1, g ∈ R2. If both of them are positive gambles, then so is f + g, whence
f + g ∈ R1 ∩R2 ⊆ R1 ∪R2.

On the other hand, if for instance f has a negative part, then we deduce from the definition of strictly desirable
gambles that P 1(f) > 0, whence also P (f) ≥ P 1(f) > 0. On the other hand, it holds that P (g) ≥ P 2(g) ≥ 0, and
using the coherence of P we deduce that

P (f + g) ≥ P (f) + P (g) > 0.

As a consequence, either P 1(f + g) > 0 or P 2(f + g) > 0, and therefore f + g ∈ R1 ∪R2. Applying Lemma 3 we
deduce thatR1 ∪R2 is coherent.

Theorem 6. Consider two credal setsM1,M2. The following are equivalent:

(a) M1 ∪M2 is convex.

(b) For every P1 ∈M1, P2 ∈M2 there is some α ∈ [0, 1] such that the linear prevision αP1 + (1− α)P2 belongs
toM1 ∩M2.

(c) The lower envelope ofM1 ∩M2 is the maximum of the lower envelopes P 1, P 2 ofM1,M2.
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Proof.

(a)⇒ (b) Consider P1 ∈M1, P2 ∈M2, and let us define

A1 : = {α ∈ [0, 1] : αP1 + (1− α)P2 ∈M1}
A2 : = {α ∈ [0, 1] : αP1 + (1− α)P2 ∈M2}.

SinceM1 ∪M2 is convex, we deduce that A1 ∪A2 = [0, 1]. Moreover, both these sets are non-empty, because
0 ∈ A2 and 1 ∈ A1. Let x1 be the infimum of A1 and let x2 be the supremum of A2. Then x1, x2 are a minimum
and a maximum, respectively, becauseM1,M2 are closed sets. Moreover, given 1 ≥ z > x1, then also z ∈ A1,
because

zP1 + (1− z)P2 = αP1 + (1− α)(x1P1 + (1− x1)P2) for α :=
z − x1
1− x1

.

Similarly, given z < x2 then also z ∈ A2. Thus, A1 = [x1, 1], A2 = [0, x2] and A1 ∪ A2 = [0, 1], whence
x2 ≥ x1. This implies that for every α ∈ [x1, x2] it holds that αP1 + (1− α)P2 ∈M1 ∩M2.

(b)⇒ (a) Take P1 ∈M1, P2 ∈M2. Then there is some α ∈ [0, 1] such that αP1 + (1− α)P2 ∈M1 ∩M2. SinceM1

is convex, we deduce that for every x > α it holds that

xP1 + (1− x)P2 = λP1 + (1− λ)(αP1 + (1− α)P2) ∈M1 where λ :=
x− α
1− α

,

and similarly for every y < α it holds that yP1 + (1− y)P2 ∈M2. Hence, γP1 + (1− γ)P2 ∈M1 ∪M2 for
every γ ∈ [0, 1]. We conclude thatM1 ∪M2 is convex.

(b)⇒ (c) Let us consider a gamble f ∈ L. Then there are linear previsions P1 ∈M1, P2 ∈M2 such that P1(f) = P 1(f)
and P2(f) = P 2(f). Applying (b), there is some α ∈ [0, 1] such that αP1 + (1− α)P2 ∈M1 ∩M2, whence

P (f) := min
P∈M1∩M2

P (f) ≤ αP1(f) + (1− α)P2(f) = αP 1(f) + (1− α)P 2(f) ≤ max{P 1(f), P 2(f)},

and since the converse inequality always holds we deduce the equality P (f) = max{P 1(f), P 2(f)}. Since we
can do this for every f , we deduce that (c) holds.

(c)⇒ (b) Assume ex-absurdo that (b) does not hold. Then there are P1 ∈M1, P2 ∈M2 such that αP1 + (1− α)P2 does
not belong toM1 ∩M2 for every α ∈ [0, 1]. Since bothM1 ∩M2 and V := {αP1 + (1− α)P2 : α ∈ [0, 1]}
are compact convex sets of linear previsions, we can apply [68, Appendix E3] to conclude that there is some
continuous linear functional Λ, λ ∈ R and δ > 0 such that Λ(P ) ≤ λ− δ for every P ∈ V and Λ(P ) ≥ λ+ δ
for every P ∈M1 ∩M2. Since from [68, Appendix D3] continuous linear functionals are always evaluation
functionals, there is some gamble f such that P (f) ≤ λ−δ for every P ∈ V . In particular, P1(f), P2(f) ≤ λ−δ,
whence max{P 1(f), P 2(f)} ≤ λ− δ, while

min
P∈M1∩M2

P (f) ≥ λ+ δ,

a contradiction with (c).

We are finally ready to report the most important result for a geometrical interpretation of the coherence ofR1∪R2.

Corollary 6. Consider two coherent sets of desirable gambles, R1 and R2, such that R1 ∪ R2 avoids partial loss.
Then forR1 ∪R2 to be coherent it is necessary thatM(R1) ∪M(R2) be convex. This condition is also sufficient if
R1 andR2 are sets of strictly desirable gambles.

Proof. Necessity and sufficiency follow from Proposition 20 and Theorem 6.
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