

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/139437

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

© 2020 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/139437
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrap@warwick.ac.uk

Efficient Crowdsourcing of Unknown Experts
using Bounded Multi–Armed Bandits

Long Tran-Thanh, Sebastian Stein, Alex Rogers and NicholasR. Jennings

University of Southampton, Southampton, SO17 1BJ, UK
{ltt08r,ss2,acr,nrj}@ecs.soton.ac.uk

Abstract

Increasingly, organisations flexibly outsource work on a temporary basis to a global
audience of workers. This so-calledcrowdsourcinghas been applied successfully
to a range of tasks, from translating text and annotating images, to collecting in-
formation during crisis situations and hiring skilled workers to build complex soft-
ware. While traditionally these tasks have been small and could be completed
by non-professionals, organisations are now starting to crowdsource larger, more
complex tasks to experts in their respective fields. These tasks include, for exam-
ple, software development and testing, web design and product marketing. While
this emergingexpert crowdsourcingoffers flexibility and potentially lower costs, it
also raises new challenges, as workers can be highly heterogeneous, both in their
costs and in the quality of the work they produce. Specifically, the utility of each
outsourced task is uncertain and can vary significantly between distinct workers
and even between subsequent tasks assigned to the same worker. Furthermore, in
realistic settings, workers have limits on the amount of work they can perform and
the employer will have a fixed budget for paying workers. Given this uncertainty
and the relevant constraints, the objective of the employeris to assign tasks to
workers in order to maximise the overall utility achieved. To formalise this expert
crowdsourcing problem, we introduce a novel multi-armed bandit (MAB) model,
the bounded MAB. Furthermore, we develop an algorithm to solve it efficiently,
called boundedε-first, which proceeds in two stages: exploration and exploitation.
During exploration, it first usesεB of its total budgetB to learn estimates of the
workers’ quality characteristics. Then, during exploitation, it uses the remaining
(1− ε) B to maximise the total utility based on those estimates. Using this tech-
nique allows us to derive anO

(

B
2
3

)

upper bound on its performance regret (i.e.,
the expected difference in utility between our algorithm and the optimum), which
means that as the budgetB increases, the regret tends to 0. In addition to this theo-
retical advance, we apply our algorithm to real-world data from oDesk, a prominent
expert crowdsourcing site. Using data from real projects, including historic project

Preprint submitted to Artificial Intelligence May 2, 2014

budgets, expert costs and quality ratings, we show that our algorithm outperforms
existing crowdsourcing methods by up to 300%, while achieving up to 95% of a
hypothetical optimum with full information.

Keywords:
Crowdsourcing, machine learning, multi-armed bandits, budget limitation

1. Introduction1

In recent years, a wide range of organisations, including enterprises, governments,2

academic institutions and charities, have turned to a new emerging labour market3

to achieve their operating objectives. Using the internet,they advertise jobs to a4

global audience and hire workers on a temporary basis to complete tasks, often5

in exchange for financial remuneration. This so-calledcrowdsourcingpromises6

considerable flexibility, as it quickly connects employersand workers across the7

globe without large recruitment overheads [40, 11].8

A significant amount of existing research and technologies have so far concen-9

trated on facilitating the crowdsourcing of small units of work (so-called “micro-10

tasks”) that can be completed in minutes by non-professional labourers, including11

survey participation, audio clip transcription or image annotation [20, 24]. Here,12

workers are typically paid small, fixed amounts of money for each successfully13

completed work unit, or even perform the work for free in the presence of other14

non-monetary incentives [31]. Prominent examples of mature offerings in this15

space include Amazon’s Mechanical Turk, Galaxy Zoo and Microtask.116

However, in contrast to this crowdsourcing of non-professionals, a growing17

number of businesses are beginning to crowdsource work on large-scale projects18

that require many hours of effort by experts in a particular field. Suchexpert crowd-19

sourcing is used for the development and testing of large software applications,20

building websites, professionally translating documentsor organising marketing21

campaigns.2 The rising popularity of this approach is evident in the scale of emerg-22

ing intermediaries that connect employers and expert workers. As of August 2013,23

oDesk has 2.5m registered workers, while Freelancer has 6.7m, with both having24

witnessed an approximately two-fold increase in members within 2012.25

Unlike the crowdsourcing of smaller and simpler units of work, expert crowd-26

sourcing raises new challenges. First, the quality of a completed task can vary27

greatly, both between different workers and even between several tasks completed28

1Seemturk.com, galaxyzoo.org andmicrotask.com, respectively.
2For some examples of these, seeodesk.com, utest.com, trada.com or freelancer.com.

2

by the same worker. For example, a highly-skilled software engineer might com-29

plete several times as many functions as an inexperienced worker in a single hour,30

but the same skilled engineer may occasionally struggle with a particular task, per-31

haps due to adverse personal circumstances [7]. This means that an employer needs32

to select workers carefully, in order to consistently achieve a high quality.33

Second, the online labour market is inherently open and dynamic in nature,34

with a constant influx of new workers. Thus, there is typically little or no prior35

knowledge about the expected quality of a particular worker. To illustrate this,36

more than 96% of workers advertising on oDesk have not completed any significant37

amount of work in the past.3 As a result, an employer will often need to recruit38

workers it has not previously dealt with and will only gain information about their39

performance during the course of a project.40

Third, experts often demand widely varying prices for theirservices. This can41

be due to differences in skill level, but is similarly influenced by individual expec-42

tations, local wages and the cost of living in the worker’s country of residence. As43

an example of this, different workers on oDesk charge from as little as $5 to over44

$200 for one hour of Web design work. Clearly, an employer here needs to balance45

the cost of workers with the quality of their work — while someworkers may be46

cheaper than others, their quality could be considerably lower.47

Finally, an employer in an expert crowdsourcing setting also has to take into48

account several real-world constraints. Typically, a project will have a fixed mon-49

etary budget that cannot be exceeded. Furthermore, workerscannot complete an50

arbitrary amount of work within the time scope of the project. In practice, each51

worker has a limit on the number of hours they can dedicate to agiven project.52

Taken together, these challenges pose a critical problem toany organisation that53

wishes to crowdsource a considerable amount of work — how should it allocate54

tasks to unknown workers in order to achieve the highest possible quality of service55

while staying within a given budget? For example, a company implementing a56

large software project may wish to maximise the number of working features that57

meet at least a certain level of quality; while an organisation crowdsourcing an58

online marketing campaign might be interested in attracting the highest number of59

new customers.60

To address these challenges, we turn to the field of multi-armed bandits (MABs),61

a class of problems dealing with decision-making under uncertainty [1]. These op-62

timisation problems consider settings where actions (i.e., the pulling of a particular63

arm) have initially unknown rewards that have to be learnt through noisy obser-64

3In August 2013, only 85,329 out of the 2.5m registered workers on oDesk had completed at least
one hour of work or earned $1.

3

vations, and the goal is to maximise the total amount of rewards by sequentially65

choosing different actions over time. This corresponds exactly to choosing initially66

unknown workers in an expert crowdsourcing setting. However, as we discuss in67

Section 2, no existing MAB model considers the specific constraints of the expert68

crowdsourcing setting. While some work considers MAB problems with a fixed69

budget, termed budget-limited MABs [33], and proposes a budget-limited ε-first70

algorithm for this, their model does not consider task limits per worker.71

Addressing this shortcoming, we propose thebounded MAB, a novel MAB72

model that builds on and extends the budget-limited MAB model to fit the expert73

crowdsourcing problem. Given this, we develop a new algorithm, calledbounded74

ε-first, that efficiently tackles the bounded MAB. Unlike the budget-limitedε-first75

algorithm it is based on, our algorithm explicitly models and takes into account the76

task limits per worker. More specifically, it operates as follows: To deal with the77

unknown performance characteristics of workers, our algorithm divides its bud-78

get into two amounts (as dictated by anε parameter) to be used in two sequential79

phases — an initialexplorationphase, during which it uniformly samples the per-80

formance of a wide range of workers using the first part of its budget, and anex-81

ploitation phase, during which it selects only the best workers using its remaining82

budget. In the latter, the algorithm chooses the best set of workers by solving a83

bounded knapsackproblem [19].84

The intuition behind the use of the bounded knapsack is that if we knew the real85

expected value of each worker’s expected utility, then the expert crowdsourcing86

problem could be reduced to a bounded knapsack problem. However, since the87

bounded knapsack is NP-hard, an exact algorithm (i.e., a method that provides the88

optimal solution) might not be able to guarantee a polynomial running time. Thus,89

we use an efficient approximation approach,bounded greedy[19], to estimate the90

optimal solution of the bounded knapsack.91

Furthermore, we show that using this algorithm allows us to establish theo-92

retical guarantees for its performance. More specifically,we prove that theperfor-93

mance regret(i.e., the difference between the performance of a particular algorithm94

and that of the optimal solution) of the boundedε-first approach is at mostO
(

B
2
3

)

95

with a high probability, whereB is the total budget. Thissub-linear theoretical96

bound necessarily implies that our algorithm has thezero-regretproperty, a key97

measure of efficiency within the MAB literature. That is, asB increases, theav-98

erage regret(i.e., the performance regret divided by the total budget) tends to 0.99

This property guarantees that our algorithmasymptotically convergesto the opti-100

mal solution with probability 1 asB tends to infinity (for more details, see [36]).101

As this desirable theoretical property holds only in the limit, we also conduct ex-102

tensive empirical experiments, in order to ascertain the efficiency of our proposed103

approach for realistic budgets. To this end, we use real historical data from projects104

4

carried out on oDesk, a prominent expert crowdsourcing website.105

In carrying out this work, we advance the state of the art as follows:106

• We propose the first principled approach that specifically addresses the ex-107

pert crowdsourcing problem.108

• We show that our approach outperforms current crowdsourcing techniques109

by up to 300% on a real-world dataset, and typically achievesaround 90%110

of the optimal.111

In addition, we make theoretical contributions to MABs as follows:112

• We introduce a new version of MABs, called the bounded MAB model, that113

extends the budget-limited MAB by imposing a limit on the number of times114

a particular arm may be pulled.115

• We propose boundedε-first, the first algorithm that efficiently tackles the116

bounded MAB model.117

• We devise the first theoretically proven upper bound for the performance118

regret of the boundedε-first algorithm.119

The remainder of this article is structured as follows. In Section 2, we discuss120

related work. Then, in Section 3, we formally describe the expert crowdsourcing121

problem. In Section 4, we outline our algorithm and then analyse its performance122

bounds in Section 5. In Section 6, we evaluate the algorithm empirically and Sec-123

tion 7 concludes.124

2. Related Work125

A significant amount of research has been carried out in the general field of crowd-126

sourcing and specifically how to deal with workers of varyingquality and how the127

payments to workers influence the quality of their work. We discuss this work in128

Section 2.1. Then, in Section 2.2 we turn to the general field of multi-armed ban-129

dits, which are a natural model for the expert crowdsourcingsetting we consider130

here.131

2.1. Crowdsourcing132

Crowdsourcing has received considerable attention in recent years, and there have133

been many successful applications. These include rapidly collecting information134

during a disaster [12], completing tasks that are difficult to automate and need to135

be solved by human workers [5, 39], running large-scale userstudies (i.e., surveys)136

5

[20] or contributing to scientific endeavours [9]. To support such applications,137

several mature platforms have emerged. Amazon’s Mechanical Turk, for example,138

supports the large-scale distribution of micro-tasks to human workers, Ushahidi139

provides software for collecting information from the public, in particular during140

crisis situations, and Zooniverse hosts a range of large citizen science projects.4 To141

exemplify the scale of these platforms, Amazon’s Mechanical Turk lists between142

100,000 and 200,000 available micro-tasks at any point in time, Ushahidi received143

approximately 40,000 reports during the 2010 earthquake inHaiti and Zooniverse144

currently has more than 700,000 volunteers.145

In the context of these applications, some existing work hasconsidered specifi-146

cally how to deal with the highly heterogeneous performancequality of workers —147

one of the key challenges for expert crowdsourcing we identified in Section 1. In148

the crowdsourcing of micro-tasks, many approaches rely on redundantly allocating149

the same task to multiple workers and then selecting the bestresult or a consensus150

opinion, or on iteratively improving on the work of others [22]. In this context,151

Dai et al. [10] describe a decision-theoretic control mechanism thatexplicitly bal-152

ances the benefit of further iterations of improvements withthe cost this entails.153

Zaidan and Callison-Burch [39] apply both redundancy and iterative improvements154

to the problem of crowdsourcing translations, and they showhow a classifier can155

accurately identify the best solutions based on a number of domain-specific fea-156

tures. Other work demonstrates how machine learning and statistical inference157

techniques can be used to build performance profiles of workers and combine their158

outputs in classification tasks to achieve a high overall accuracy [38], or to discard159

inaccurate workers entirely [37].160

However, while these techniques deal with the heterogeneous quality of work-161

ers in settings with micro-tasks, they are less suitable forthe expert crowdsourcing162

setting we consider. First, they assume that tasks are priced uniformly (or even car-163

ried out for free) and that the employer has little influence on selecting particular164

workers. Thus, the objective is typically to achieve the best possible performance165

given a fixed set of workers. In our setting, the employer has considerably more166

control over selecting individual workers, but also needs to take into account poten-167

tially highly heterogeneous worker costs. Furthermore, costs are generally higher168

in expert crowdsourcing, where experts often demand $10–50per hour of work,169

compared to the few cents that are normally paid per micro-task. This makes it170

infeasible to allocate the same tasks redundantly to a largenumber of workers.171

To address the specific challenges of expert crowdsourcing,a number of ad172

hoc approaches have appeared that are in use on existing crowdsourcing sites. For173

4Seemturk.com, ushahidi.com andzooniverse.org, respectively.

6

example, the expert crowdsourcing site vWorker has used an approach calledtri-174

alsourcing.5 Here, a subset of tasks of a larger project is sent to a large number175

of workers. Based on the quality of their output, the employer then picks the best176

worker and assigns all remaining tasks to him or her. Anotherapproach that has177

appeared is the notion of acurated crowd, where the expert crowdsourcing site178

carefully selects and filters its workers based on the quality of their work. Exam-179

ples of sites using this approach include Genius Rocket and Thinkspeed.6 However,180

while these sites consider the heterogeneous quality of workers, they do not deal181

with task limits and require a labour-intensive manual selection process.182

Another strand of work has looked at how to build systems thatinduce work183

of a higher quality. Morriset al. [28] show howpriming, i.e., providing implicit184

cues to effect subconscious changes in behaviour, can be used to achieve higher185

performance in crowdsourcing tasks. Specifically, they demonstrate that showing186

positive images or playing positive music while collectinginput for micro-tasks187

increases the productivity of workers. Similarly, Huanget al. [17] propose a sys-188

tem that automatically optimises the design of crowdsourcing tasks (including the189

provided incentives and the size, complexity and number of tasks) to maximise par-190

ticular performance metrics. To exemplify this, they consider an image annotation191

task and show that up to 60–71% more unique high-quality tagscan be obtained by192

carefully optimising the size and complexity of individualmicro-tasks compared193

to a simple unoptimised baseline with the same budget and payment per tag. Other194

work has examined in detail how financial incentives affect the quality of work and195

the level of participation in a crowdsourcing settings [26,16]. While the financial196

incentives are typically set by the workers, and therefore not directly controllable,197

in the expert crowdsourcing settings we consider, work on inducing higher a qual-198

ity of work through priming or optimal task design is largelycomplementary to the199

work presented in this paper. Specifically, these techniques could be used to op-200

timise how the requested work is presented to selected experts, in order to further201

increase productivity.202

2.2. Multi-Armed Bandits203

One area of work that is well suited to solving the expert crowdsourcing problem is204

the field of multi-armed bandits (MABs), a class of problems dealing with decision205

making under uncertainty. In these optimisation problems,actions (i.e., pulling a206

single arm) have initially unknown rewards that have to be learnt through noisy ob-207

servations, and the goal is to maximise the total amount of rewards by sequentially208

5Note that vWorker (available atvworker.com) has been merged with Freelancer since the time
of writing of this paper.

6Seewww.geniusrocket.com andwww.thinkspeed.com.

7

choosing different actions over time [29, 1, 4]. In particular, a MAB modelconsists209

of a machine withK arms, each of which delivers rewards that are independently210

drawn from an unknown distribution when the machine’s arm ispulled. Our goal211

is to choose which of these arms to play. At each time step, we pull one of the212

machine’s arms and receive a reward (or payoff). The objective is to maximise the213

return; that is, to maximise the sum of the rewards received over a sequence of214

pulls. As the reward distributions differ from arm to arm, the goal is to find the arm215

with the highest expected payoff as early as possible, and then to keep gambling216

using that best arm [29, 4].217

However, this MAB model gives an incomplete description of the sequential218

decision-making problem facing an agent in many real-worldscenarios. To this219

end, a variety of other related models have been studied recently [2, 8, 13, 6].220

Among existing MABs, one particularly pertinent piece of work is the budget-221

limited MAB [33, 35], which addresses a similar problem to the one of expert222

crowdsourcing. In particular, within budget-limited MABs, the actions have dif-223

ferent costs (i.e., the price of hiring different experts), and are constrained by a224

certain total budget (i.e., the crowdsourcing budget of theemployer). To tackle this225

problem, Tran-Thanhet al. proposed a number of efficient algorithms, such as the226

unboundedε-first and KUBE [33, 35]. However, the budget-limited MAB model227

is not directly applicable to the expert crowdsourcing setting, because it is assumed228

that individual workers can perform an unlimited amount of tasks and indeed the229

optimal solution of the budget-limited MAB often assigns most tasks to a single230

worker. This is not realistic in crowdsourcing, where, due to the workers’ individ-231

ual preferences and other commitments, they cannot be assumed to complete an232

arbitrary number of tasks. Nevertheless, budget-limited MAB algorithms can form233

a good basis for benchmarks against our proposed method within the bounded set-234

tings, as they provide efficient solutions for related problems (see Section 6.2 for235

more details).236

Another notable piece of related work is from Hoet al. [14], who also investi-237

gate a multi-armed bandit model in the crowdsourcing domain. In particular, they238

consider a problem where the system designer has to assign a task from a set of239

task types to an incoming worker (here, the set of task types represent the arms to240

be pulled). In this model, each type of task has a finite numberof tasks, limiting241

the number of times they can be allocated to workers. The authors describe an242

algorithm that achieves near-optimal performance and theyprovide a competitive243

ratio. However, since their model does not include a total budget limit (only a lim-244

itation in the number of pulls per arm), it requires a different underlying solution245

technique (i.e., not the bounded knapsack model), and thus,it is not feasible for246

our setting.247

Other work has considered the problem of pure exploration, or arm ranking, in248

8

bandit settings [25, 27, 3]. In particular, this problem focusses on identifying the249

ranking of the arms, given a threshold for the number of totalpulls (budget). As we250

will explain later in Section 4.2, within the exploration phase, our boundedε-first251

approach relies on an approximation method that aims to choose arms with highest252

reward-cost density values. Thus, the pure exploration problem can be regarded253

as a sub-problem within the exploration phase, where we aim to achieve efficient254

exploration (i.e., quickly identify the highest ranking arms). A number of algo-255

rithms have been proposed to tackle this problem, such as Hoeffding Races [25],256

Bernstein Races [27], and Successive Rejects (SR) [3]. However, as we will show257

both in theory (see Section 5.2) and in practice (see Section6.4), replacing the uni-258

form exploration phase of our algorithm with the above-mentioned techniques does259

not improve the performance ofε-first. Thus, these approaches do not outperform260

uniform exploration within our settings.261

3. Model Description262

We first introduce the bounded MAB model (Section 3.1). Following this, we263

describe the expert crowdsourcing problem, and show how we can map it to the264

bounded MAB model (Section 3.2).265

3.1. Bounded Multi-Armed Bandits266

The budget-limited MAB model consists of a slot machine withN arms, denoted267

by 1, 2, . . . ,N. At each time stept, an agent chooses anon-emptysubsetS(t) ⊆268

{1, . . . ,N} to pull (its action). When pulling armi, the agent has to pay a pulling269

cost, denoted byci , and receives a non-negative reward drawn from a distribution270

associated with that specific arm. The agent has a cost budgetB, which it cannot271

exceed during its operation time (i.e., the total cost of pulling arms cannot exceed272

this budget limit). Since reward values are typically bounded in real-world appli-273

cations, we assume that the reward distribution of each arm has a bounded support.274

Let µi denote the mean value of the rewards that the agent receives from pulling275

arm i. Within our model, the agent’s goal is to maximise the sum of rewards it276

earns from pulling the arms of the machine, with respect to the budgetB. How-277

ever, the agent has no initial knowledge of theµi of each armi, so it must learn278

these values in order to choose a policy that maximises its sum of rewards. Given279

this, our objective is to find the optimal pulling algorithm,which maximises the280

expectation of the total reward that the agent can achieve, without exceedingB.281

Formally, letA be an arm-pulling algorithm, giving a finite sequence of pulls.282

Let NB
i (A) be the random variable that represents the total number of pulls of arm283

i by A, with respect to the budget limitB. Note thatNB
i (A) is a random variable284

since the behaviour ofA depends on the observed rewards. Thus, we have:285

9

NB
i (A) =

∑

t

I {i ∈ SA (t)}, (1)

whereSA (t) is the subset thatA chooses to pull at time stept andI {i ∈ SA (t)} de-286

notes the indicator function whether armi is chosen to be pulled att. To guarantee287

that the total cost of the sequenceA cannot exceedB, we have:288

P

N
∑

i=1

NB
i (A) ci ≤ B

= 1, (2)

whereP(·) denotes the probability of an event. In addition, within our model, we289

assume that the agent cannot pull each armi more thanLi times in total. That is:290

∀i : P
(

NB
i (A) ≤ Li

)

= 1. (3)

Now, letGB (A) be the total reward earned by usingA to pull the arms within budget291

limit B. The expectation ofGB (A) is:292

�

[

GB (A)
]

=

N
∑

i=1

�

[

NB
i (A)

]

µi . (4)

Then, letA∗ denote an optimal solution that maximises the expected total reward,293

that is:294

A∗ = arg max
A

N
∑

i=1

�

[

NB
i (A)

]

µi . (5)

Note that in order to determineA∗, we have to know the value ofµi in advance,295

which does not hold in our case. Thus,A∗ represents a theoretical optimal algo-296

rithm, which is unachievable in general (but which we will use in Section 6 to297

benchmark our approach).298

Nevertheless, for any algorithmA, we can define the regret forA as the differ-299

ence between the expected total reward forA and that of the theoretical optimum300

A∗. More precisely, lettingRB (A) denote the regret, we have the following:301

RB (A) = �
[

GB (

A∗
)

]

− �
[

GB (A)
]

. (6)

The objective here is to derive a method of generating a sequence of arm pulls that302

minimises this regret for the class of bounded MAB problems defined above.303

Note that if we set the limitsLi = ∞ for each armi (i.e., there is no pull limit)304

and we restrict|S (t)| = 1 for eacht (i.e., the agent can only pull a single arm at305

each time step), we get the budget-limited MAB, and in addition, if we setB = ∞306

10

(there is no budget limit either), we get the standard MAB model (for more details,307

see [33, 36]).308

3.2. Expert Crowdsourcing309

Given the bounded MAB model above, we now show how to map the expert crowd-310

sourcing problem to bounded MABs. In particular, within an expert crowdsourc-311

ing system, an employer (agent) can assign tasks to a finite set of workers. This312

set of workers is usually determined through an open call forparticipation by the313

employer, to which qualified and available workers respond.7 Each workeri cor-314

responds to an arm and assigning a single task to that worker can be regarded as315

pulling the arm. This incurs a costci that is set by the worker, and the outcome316

of the assignment is of variable utility with unknown meanµi (this corresponds to317

the rewards in the bounded MAB). As described in Section 1, each workeri has a318

different maximum number of tasksLi that can be assigned to it. Finally, the em-319

ployer has a total budgetB to spend on crowdsourcing and it wishes to maximise320

the overall sum of the achieved utility.321

To illustrate this, an employer may wish to carry out a large software devel-322

opment project, where each task represents a single hour of work by one of the323

workers. The utility generated by such a task is the number ofworking features324

that meet certain quality requirements. However, workers charge different prices325

per hour,ci , and have different skill levels, represented by their expected number of326

working features they can implement per hour,µi. The employer has a set budget to327

spend on developers, e.g.,B = $5,000, and wishes to maximise the total number of328

working features.8 In so doing, it wants to choose the best subset of workers who329

provide the optimal solution. However, the employer has to take into account the330

working hour preferences of each worker, which limits the total number of hours a331

worker can spend on the project.332

Given the mapping and the illustrative example above, the mapping between333

expert crowdsourcing and bounded MABs is trivial. With a slight abuse of notation,334

hereafter we will use both standard terms of MAB (i.e., arms,pulls, and agent)335

and expert crowdsourcing (i.e., workers, task assignment,and employer). In what336

follows, we propose an efficient algorithm to tackle the bounded MAB. We then337

continue with its theoretical and empirical performance analysis.338

7To illustrate this, although there are 100,000s of workers on oDesk, typically only up to 20
respond to each such job advert (see Figure 1 on page 24 for thedistribution of responses to adverts).

8This is a realistic budget — in August 2013, over $19 million were spent on oDesk, with an
average spend per project of over $4,000.

11

4. The Boundedε-First Algorithm339

Recall that within our setting,µi are unknowna priori. Given this, the agent has340

to explorethese values by repeatedly pulling a particular arm in orderto estimate341

its expected reward value. However, if it solely focuses on exploration, the agent342

typically fails to maximise the total expected reward (i.e., exploit). In contrast, if343

it stops exploring too quickly, it may fail to determine the best arms to pull. Given344

this, the key challenge of bounded MABs (and of other bandit models in general)345

is to find an efficient trade-off between exploration and exploitation. Within this346

section, we propose a novel algorithm that efficiently trades off exploration with347

exploitation by splitting exploration from exploitation.The intuition behind this348

explicit distinction is that by doing so, we can control the degree of exploration349

by setting the value ofε, which becomes very useful for the theoretical analysis350

(see Section 5 for more details). Besides, this approach wasshown to be efficient351

in many real-world applications, compared to other bandit based methods such352

as UCB orε-greedy [30, 32, 33, 36]. In what follows, we first describe the ex-353

ploration phase of the algorithm (Section 4.1), followed byits exploitation phase354

(Section 4.2).355

4.1. Uniform Exploration356

Within the exploration (or trial) phase, we dedicate anε portion of budgetB to357

estimate the expected reward values of the arms. First, we repeatedly pull all arms358

in the first
⌊

εB
∑N

i=1 ci

⌋

time steps. That is,S (t) = {1, . . . ,N} if 1 ≤ t ≤
⌊

εB
∑N

i=1 ci

⌋

.359

Following this, we sort the arms by their cost in an increasing (non-decreasing)360

order, and we sequentially pull the arms starting from the one with the lowest cost,361

one after the other, until the next pull would exceed the remaining budget. We362

repeat the last step until none of the arms can be further pulled with the remaining363

budget. Given this, ifxexplore
i denotes the number of times we pull armi within364

the exploration phase, we have

⌊

ǫB
∑N

i=1 ci

⌋

≤ xexplore
i . For the sake of simplicity, we365

assume thatLi ≥ xexplore
i . Otherwise, we stop pulling armi onceLi is reached. The366

reason for choosing this method is that, since we do not know which arms will be367

chosen in the exploitation phase, we need to treat them equally in the exploration368

phase. Hereafter we refer to the allocation sequence performed by the uniform369

algorithm asAuni.370

4.2. Bounded Knapsack-Based Exploitation371

In order to describe the exploitation phase of the boundedε-first algorithm, we start372

with the introduction of the bounded knapsack problem, which forms the founda-373

tion of the method used in this phase. We then describe an efficient approximation374

12

method for solving this knapsack problem, which we subsequently use in the ex-375

ploitation phase.376

The bounded knapsack problem is formulated as follows. Given N types of377

items, each typei has a corresponding valuevi , and weightwi. In addition, there378

is also a knapsack with weight capacityC. The bounded knapsack problem selects379

integer units of those types that maximise the total value ofitems in the knapsack,380

such that the total weight of the items does not exceed the knapsack weight capac-381

ity. However, each itemi cannot be chosen more thanLi times. That is, the goal is382

to find thenon-negative integers x1, x2, . . . , xN that383

max
N

∑

i=1

xivi s.t.
N

∑

i=1

xiwi ≤ C, ∀i : 0 ≤ xi ≤ Li . (7)

Note that if we set eachLi = 1, we get the standard knapsack (or the 0−1 knapsack)384

model. Since the bounded knapsack is a well-knownNP-hard problem [19, 23],385

exact algorithms (i.e., methods that achieve optimal solutions) cannot guarantee a386

low computation cost.9 However, near-optimal approximation methods have been387

proposed to solve this problem, such as bounded greedy or greedy (a detailed sur-388

vey of these algorithms can be found in [19]). In particular,here we make use of a389

simple, but efficient, approximation method, thebounded greedyalgorithm, which390

hasO
(

N logN
)

computational complexity, whereN is the number of item types391

[19]. The reason for this choice is that besides its efficiency, it provides a solution392

with specific properties that can be used for theoretical analysis (see Section 5 for393

more details).394

The bounded greedy algorithm works as follows: Letvi
wi

denote thedensityof395

type i. At the beginning, we sort the item types by decreasing density. This has396

O
(

N logN
)

computational complexity. Then, in the first round of this algorithm,397

we identify the item type with the highest density and selectas many units of this398

item as are feasible, without either exceeding the knapsackcapacity or its item399

limit Li . Following this, in the second round, we identify the item with the highest400

density among the remaining feasible items (i.e., items that still fit into the residual401

capacity of the knapsack), and again select as many units as are feasible, without402

exceeding the remaining capacity or the corresponding itemlimit. We repeat this403

step in each subsequent round, until there is no feasible item left. Clearly, the404

maximal number of rounds isN. The reason for choosing this algorithm is that it405

9There are pseudo-polynomial exact algorithms such as dynamic programming or dominance
relationship based approaches [23], but as we will show later, we can achieve efficient performance
with polynomial approximations.

13

Algorithm 1 Boundedε-First Algorithm
1: Exploration phase:
2: t = 1; Bexpl

t = εB;
3: while pulling is feasibledo
4: pull all the arms;
5: Bexpl

t+1 = Bexpl
t −

∑N
k=1 ck; t = t + 1;

6: end while
7: while pulling is feasibledo
8: if Bexplore

t < mini ci then
9: STOP!{pulling is not feasible}

10: end if
11: pull arm i (t), wherei (t) = t mod N {choose the subsequent arm to pull};
12: Bexpl

t+1 = Bexpl
t − ci(t); t = t + 1;

13: end while
14: Exploitation phase:
15: use bounded greedy that solves Equation 8 to pull the arms;

provides a well-behaved sequence of items (i.e., they are ordered by density), that406

can be efficiently exploited in the theoretical performance analysis.407

Now, we reduce the task assignment problem in the exploitation phase to a408

bounded knapsack problem as follows. Let ˆµi denote the estimate ofµi after the409

exploration phase. This estimate can be calculated by simply taking the average of410

the received reward samples from armi. Given this, we aim to solve the following411

integer program:412

max
N

∑

i=1

µ̂i x
exploit
i s.t.

N
∑

i=1

ci x
exploit
i ≤ (1− ǫ) B, (8)

∀i : 0 ≤ xexploit
i ≤ Li − xexplore

i ,

wherexexploit
i are the decision variables, representing the number of times we pull413

arm i in the exploitation phase. In order to solve this problem, weuse the above-414

mentioned bounded greedy algorithm for the bounded knapsack. Having the value415

of eachxexploit
i , we now run the exploitation algorithm as follows: At each subse-416

quent time stept, if the number of times armi has been pulled does not exceed417

xexploit
i , then we pull that arm att. Hereafter we refer to this exploitation approach418

asAgreedy. When used together with the uniform exploration techniquedescribed419

above, we refer to this algorithm asboundedε-first, or Aǫ−first.420

14

The pseudo code of the algorithm is depicted in Algorithm 1. In what follows,421

we formally examine the performance of this algorithm.422

5. Performance Analysis423

In this section, we first derive an upper bound for the boundedε-first algorithm, for424

any givenε value. We then show that by efficiently tuning the value ofε, we can425

refine the upper bound toO
(

B
2
3

)

(Section 5.1). In addition, we also investigate the426

performance of the modified version of theε-first, where the uniform exploration427

phase is replaced with Successive Rejects (SR), a state-of-the-art pure exploration428

algorithm [3]. In particular, we also provide aO
(

B
2
3

)

bound for this modified429

version, however, with larger coefficient constants (Section 5.2). This implies that430

even with this more sophisticated exploration method, we cannot achieve a better431

performance, compared to that of uniform exploration.432

5.1. Regret Bounds ofε-First with Uniform Exploration433

Recall that bothAuni andAgreedytogether form sequenceAǫ−first, which is the policy434

generated by the boundedǫ-first algorithm. The expected reward for this policy can435

be expressed as the sum of the expected performance ofAuni andAgreedy. That is:436

GB (Aǫ−first) = GεB (Auni) +G(1−ε)B
(

Agreedy

)

. (9)

Now, without loss of generality, we assume that the reward distribution of each437

arm has support in [0, 1], and the pulling costci > 1 for eachi (our result can be438

scaled for different size supports and costs as appropriate). Letimax = arg maxj
µ j

cj
.439

Similarly, let imin = arg minj
µ j

cj
. In addition, letcmax = maxj

µ j

cj
, and cmin =440

min j
µ j

cj
, respectively. We state the following:441

Theorem 1. Let0 < ε, β < 1. Suppose thatεB ≥
∑N

j=1 c j . With at least probability442

β, the performance regret of the boundedε-first approach is at most443

2+
cminµimax

cmax
i

+ εBdmax+ 2N

√

√

√

B
(

− ln 1− N√β
2

)

∑N
j=1 c j

ε

, (10)

where dmax = maxi, j

∣

∣

∣

∣

µi
ci
− µ j

cj

∣

∣

∣

∣

(i.e., the largest distance between different density444

values).445

To prove this theorem, we will make use of the following version of Hoeffding’s446

concentration inequality for bounded random variables:447

15

Theorem 2 (Hoeffding’s inequality [15]). Let X1,X2, . . . ,Xn denote the sequence448

of random variables with common range[0, 1], such that for any1 ≤ t ≤ n, we have449

� [Xt |X1, . . . ,Xt−1] = µ. Let Sn =
1
n

∑n
t=1 Xt. Given this, for anyδ ≥ 0, we have:450

P (Sn ≥ µ + δ) ≤ e−2nδ2, (11)

P (Sn ≤ µ − δ) ≤ e−2nδ2. (12)

The proof can be found, for example, in [15].451

Now, if we relax the bounded knapsack problem defined in Section 4.2 (see452

Equation 7) such thatxi can be fractional, we get thefractional bounded knapsack453

[19, 23]. Marcello and Toth (1990) proved that the bounded greedy algorithm454

provides an optimal solution to the fractional bounded knapsack, and this optimal455

solution is always at least as high as the optimal solution ofthe (integer) bounded456

knapsack (for more details, see [19]).457

Given this, let〈x̂1, . . . , x̂N〉 denote the optimal solution to the fractional relax-458

ation of the knapsack problem given in Equation 8 (i.e., the problem we have to459

solve within the exploitation phase and that uses the estimated µ̂i values). In ad-460

dition, let 〈x+1 , . . . , x
+
N〉 denote the corresponding optimal solution to this problem461

when the trueµi values are known. Recall that both of these solutions can be ob-462

tained using the bounded greedy algorithm. Next, we prove the following auxiliary463

lemmas:464

Lemma 3. �
[

G(1−ε)B (A∗)
]

≤
∑N

j=1 x+j µ j.465

Lemma 4. �
[

GεB (Auni)
]

≥ ǫB
(

µimin/cimin

)

− 1.466

Lemma 5. �
[

G(1−ε)B
(

Agreedy

)]

≥
∑N

j=1 x̂ jµ j − 1.467

Proof of Lemma 3. Note that the right hand side of the inequality is the optimal468

solution of the fractional bounded knapsack. In addition, the left hand side is the469

optimal solution of the integer bounded knapsack problem. Moreover, it is well470

established that the optimal solution of the fractional problem is always higher471

than that of the integer knapsack [23, 19]. This concludes the proof. �472

Proof of Lemma 4. Note that for any armj,
∑N

i=1 ci x
explore
i ≥ ǫB− c j , since none473

of the arms can be pulled after the stop ofAuni without exceedingǫB. Furthermore,474

µi = ci

(

µi

ci

)

≥ ci

(

µimin

cimin

)

.

Recall thatµi ≤ 1. Thus:475

N
∑

i=1

xexplore
i µi ≥

N
∑

i=1

xexplore
i ci

µimin

cimin
≥

(

ǫB− cimin
) µimin

cimin
≥
ǫBµimin

cimin
− 1.

16

�476

Proof of Lemma 5. Without loss of generality, assume that the bounded greedy477

chooses the arms to pull in the order of 1, 2, . . . ,N. Let b denote the largest index478

such that ˆxb , 0. SinceAgreedyalso uses the bounded greedy, we can easily show479

that for i < b:480

xexploit
i = x̂i ,

and481

xexploit
b = ⌊x̂b⌋ .

Note that ifi > b, thenxexploit
i ≥ 0. Thus482

�

[

G(1−ε)B
(

Agreedy

)]

≥
b−1
∑

j=1

x̂ jµ j + ⌊x̂b⌋µb ≥
b−1
∑

j=1

x̂ jµ j + (x̂b − 1) µb, (13)

which concludes the proof, sinceµb ≤ 1. �483

Proof of Theorem 1. Using Hoeffding’s inequality for each armi, and for any484

positiveδi , we have:485

P (|µ̂i − µi | ≥ δi) ≤ 2e−2δ2i xexplore
i .

By settingδi =

√

− ln 1− N√β
2

2xexplore
i

, we can prove that, with at least probabilityβ,

|µ̂i − µi | ≤ δi

holds for each armi. Hereafter, we strictly focus on this case. We first show that486

�

[

GB (

A∗
)

]

≤ εBµimax

cmax
i

+ �
[

G(1−ε)B (

A∗
)

]

+
cminµimax

cmax
i

. (14)

In particular, letσi be the difference between the number of pulls of armi within the487

optimal solution ofGB (A∗) and that ofG(1−ε)B (A∗). Note thatσi can be negative.488

We know that:489

�

[

GB (

A∗
)

]

=

N
∑

i=1

σiµi + �
[

G(1−ε)B (

A∗
)

]

.

In addition, from [19, 23], we have:490

17

N
∑

i=1

σici ≤ εB+ cmin,

wherecmin = mini ci . By solving the relaxed unbounded knapsack (and allowing491

negativeσi values as well), we have that492

N
∑

i=1

σiµi ≤ (εB+ cmin)
µimax

cmax
i

= εB
µimax

cmax
i

+
cminµimax

cmax
i

.

Putting the previous inequalities together, we get Equation 14. This implies that493

RB (Aε−first) ≤
(

εB
µimax

cmax
i

− �
[

GεB (Auni)
]

)

+
(

�

[

G(1−ε)B (

A∗
)

]

− �
[

G(1−ε)B
(

Agreedy

)])

. (15)

Using Lemma 4, we can bound the first term on the right-hand side as follows:494

εB
µimax

cmax
i

− �
[

GεB (Auni)
]

≤ εB
(

µimax

cimax
−
µimin

cimin

)

+ 1 = εBdmax+ 1. (16)

We now turn to bound the second term on the right-hand side of Equation 15. From495

Lemmas 5 and 3 we get:496

�

[

G(1−ε)B (

A∗
)

]

− �
[

G(1−ε)B
(

Agreedy

)]

≤
N

∑

j=1

x+j µ j −
N

∑

j=1

x̂ jµ j + 1.

Since〈x̂1, . . . , x̂N〉 is the optimal solution of the fractional bounded knapsack that497

we have to solve at the exploitation phase, we have:498

N
∑

j=1

x̂ j µ̂ j ≥
N

∑

j=1

x+j µ̂ j .

Similarly, we have499

N
∑

j=1

x+j µ j ≥
N

∑

j=1

x̂ jµ j .

This is due to〈x+1 , . . . , x
+
N〉 being the real optimal solution. Recall that|µ̂i − µi | ≤ δi500

holds for each armi. This implies that501

18

N
∑

j=1

x+j µ j −
N

∑

j=1

x̂ jµ j ≤
N

∑

j=1

δ j

(

x+j + x̂ j

)

.

Note thatx̂ j ≤ (1−ε)B
cj
≤ (1− ε) B. Similarly we have:x+j ≤ (1− ε) B. This implies502

that503

�

[

G(1−ε)B (

A∗
)

]

− �
[

G(1−ε)B
(

Agreedy

)]

≤ (1− ε) B
N

∑

j=1

2δ j ≤ B
N

∑

j=1

2δ j . (17)

Recall thatδi =

√

− ln 1− N√β
2

2xexplore
i

and504

xexplore
i ≥

εB
∑N

j=1 c j

≥ εB

2
∑N

j=1 c j
.

The second inequality can be easily proven by using elementary algebra. Substi-505

tuting these into Equation 17, and combining with Equation 16 we conclude the506

proof. �507

Now, by using elementary algebra, we can show that by setting508

ε =

N2

d2
maxB

(

− ln
1− N
√
β

2

) N
∑

j=1

c j

1
3

, (18)

the upper bound given in Theorem 1 is minimised. Thus, we get:509

Theorem 6. Letεopt denote the abovementioned value that minimises Equation 10510

and0 < β < 1. By setting the exploration budget to be Bεopt, with at least proba-511

bility β, the regret of the boundedε-first algorithm is at most512

2+
cminµimax

cmax
i

+ 3B
2
3

N2
(

− ln
1− N
√
β

2

) N
∑

j=1

c jdmax

1
3

. (19)

That is, the upper bound can be tightened toO
(

B
2
3

)

. The proof only requires513

elementary algebra, and is omitted for brevity. This resultimplies that the regret514

bound is guaranteed to be sub–linear (i.e., less thanO (B)), and thus, our algorithm515

converges to the optimal solution in an asymptotic manner. In particular, for any516

0 < α < 1, there is a sufficiently largeB0 such that for any budget sizeB > B0, the517

performance of our algorithm for that budget size is guaranteed to be better than518

anα-ratio of the optimal solution.519

19

Algorithm 2 Exploration with Successive Rejects
1: Initialisation phase:
2: A1 = {1, 2, . . . ,N}, setnk as given in Equation 20,i = 1;
3: Bres= εB−

∑N
k=1 nkck;

4: while Bres> 0 do
5: pull arm i, Bres= Bres− ci ;
6: i = (i + 1) modN;
7: end while
8: Exploration phase:
9: t = 1;

10: while t < K do
11: pull each arm inAt with (nt − nt−1) times;
12: eliminate the arm with lowest estimated mean reward fromAt and denote

the new set withAt+1;
13: t = t + 1;
14: end while

5.2. Regret Bounds ofε-First with Successive Rejects Exploration520

Recall the performance of the exploitation phase mainly relies on how accurately521

we can estimate the correct ranking (in decreasing order) ofthe density of the522

arms. This motivates the usage of the uniform distribution,which explores all523

arms equally, and thus, the ranking of the arms can be efficiently identified. How-524

ever, due to the nature of the bounded greedy algorithm, the performance of the525

exploitation phase in fact typically relies only on the highest-ranking arms, and not526

the full ordering, as we may run out of budget before reachingthe lower-ranking527

arms. Thus, it is not obvious whether we should focus only on high-ranking arms,528

instead of aiming to identify the full ordering (as we do withthe uniform explo-529

ration). Given this, we now analyse the performance of a modified version of the530

ε-first algorithm, where the uniform exploration approach isreplaced with other531

exploration methods that do not aim to estimate the correct full ordering. As men-532

tioned in Section 2, there are a number of algorithms designed for this problem.533

Among them, Successive Rejects (SR) proposed by Audibertet al. (2010), prov-534

ably outperforms the other methods (see [3] for more details). Given this, we re-535

place the uniform exploration approach with SR, in order to study whether we can536

improve the performance of boundedε-first. In what follows, we first describe how537

SR can be adapted to our setting and then we provide theoretical regret bounds.538

The pseudo code of the SR-based exploration can be found in Algorithm 2. Let
l(N) = 1

2 +
∑N−1

j=2
1
j andn0 = 0. For eachk ∈ {1, 2, . . . ,N − 1}, we set the value of

20

nk as follows:

nk =

⌊

1
l(N)

εB
(N + 1− k)cmax

⌋

, (20)

wherecmax = maxj c j . Within the initialisation phase, we setBres= εB−
∑N

k=1 nkck539

and allocate the residual budgetBres among the arms (lines 3− 7). Within the540

exploration phase, at each time stept, we pull all the arms within the set of armsAt541

exactly (nt−nt−1) times. We then eliminate the arm with the lowest estimated mean542

reward from the set of arms and continue with the next time step (lines 10− 14).543

Following Audibertet al. (2010), we can show that in SR, there is exactly one544

arm which is pulledn1 times, onen2 times, ..., and two that are pullednN−1 times.545

Furthermore, the total consumed budget does not exceedεB. In particular, without546

loss of generality, we assume that the order of arm elimination is 1, 2,. . . , N − 1.547

We have:548

N
∑

k=1

nkck ≤
N

∑

k=1

nkcmax ≤
N−1
∑

k=1

1
l(N)

εB
(N + 1− k)

+
1

l(N)
εB
2
≤ εBl(N)

l(N)
= εB.

Given this, the regret of this approach can be bounded as follows.549

Theorem 7. Let0 < ε, β < 1. Suppose thatεB ≥
∑N

j=1 c j . With at least probability550

β, the performance regret of the boundedε-first with SR exploration approach is at551

most552

2+
cminµimax

cmax
i

+ εBdmax+ 2N

√

(N + 3) ln N
2

√

√

√

B
(

− ln 1− N√β
2

)

cmax

ε
. (21)

In addition, by optimally tuningε, we can show that the regret is at most553

2+
cminµimax

cmax
i

+ 3B
2
3

(

N2 (N + 3) ln N
2

cmax

(

− ln
1− N
√
β

2

)

dmax

)
1
3

. (22)

Note that forN ≥ 9, this regret bound is clearly worse than that of theε-first
approach with uniform exploration (see Equation 19), as(N+3) ln N

2 cmax >
∑N

j=1 c j

holds for this case. In particular, forN ≥ 9, we have

(N + 3) ln N
2

> (N + 3),

and thus,
(N + 3) lnN

2
cmax > (N + 3)cmax >

N
∑

j=1

c j .

21

This implies that forN ≥ 9, by using uniform exploration, we can achieve a better554

regret bound, compared to exploration with SR.10
555

556

Proof of Theorem 7. Similar to the proof of Theorem 1, we can show that with at557

leastβ probability, the regret is at most558

2+
cminµimax

cmax
i

+ εBdmax+ 2B
N

∑

j=1

δ j , (23)

whereδi =

√

− ln 1− N√β
2

2xexplore
i

. Without loss of generality, we assume that within the SR559

exploration, the order of arm elimination is 1, 2, . . . ,N − 1. From the definition of560

SR, we have that for eachk ∈ {1, 2, . . . ,N − 1}:561

xexplore
k ≥

⌊

εB
l(N)(N + 1− k)cmax

⌋

≥
εB

2l(N)(N + 1− k)cmax
,

and

xexplore
N ≥ εB

4l(N)cmax
.

That is, we get562

N
∑

j=1

δ j ≤
N−1
∑

j=1

√

−l(N)(N + 1− k)cmax ln 1− N√β
2

εB
+

√

−2l(N)cmax ln 1− N√β
2

εB

≤

√

−l(N)cmax ln 1− N√β
2

εB

√
2+

N
∑

j=2

√

j

. (24)

We now rely on the following fact:

l(N) =
1
2
+

N
∑

j=2

1
j
≤ ln N.

In addition, we can use induction to show that

√
2+

N
∑

j=2

√

j ≤ N

√

N(N + 1)+ 1
2N

≤ N

√

N + 3
2
.

10For the case ofN < 9, it is not always guaranteed that the coefficient constant of SR is worse
than that of uniform exploration, as it also depends on the values ofcj .

22

These imply that563

N
∑

j=1

δ j ≤

√

−l(N)cmax ln 1− N√β
2

εB
N

√

N + 3
2
, (25)

which concludes the proof. In addition, by optimally tuningthe value ofε, we564

achieve the regret bound given in Equation 22. �565

6. Experimental Evaluation566

While we have so far developed theoretical upper bounds for the performance re-567

gret of our algorithm, we now turn to practical aspects and examine its performance568

in realistic settings. This is necessary and complements our theoretical analysis,569

because the latter concentrates on asymptotic performancebounds as the budget570

tends to infinity and for arbitrary performance distributions. In this section, we are571

now interested in how the algorithm performs for realistic budget sizes and perfor-572

mance distributions that occur in real expert crowdsourcing settings. To this end,573

we run the algorithm on a range of problems from a large real-world dataset and574

compare its results with a number of benchmarks. In the following, we first out-575

line the dataset we use to generate our experiments (Section6.1), then describe the576

benchmarks (Section 6.2) and detail our results (Section 6.3). In addition, we also577

compare the performance of our uniform exploration approach with other explo-578

ration methods in Section 6.4.579

6.1. Experimental Setup580

To test our algorithm on realistic settings, we use real datafrom the expert crowd-581

sourcing website oDesk.11 Specifically, we assume an employer wishes to crowd-582

source a large-scale software project and is looking to hireJava experts. Since only583

a small fraction of all registered Java experts will be available at any time, we deter-584

mine the number of applicants by sampling from the real historical distribution of585

applicants per Java-related job. This distribution is shown in Figure 1 (we consider586

only closed jobs and truncate the distribution to the interval [2, 100], as smaller587

jobs are trivial and as there was a small number of extremely large outliers).588

To determine the characteristics of those workers, we sample them from the set589

of more than 30,000 Java experts registered on the website. For each experti, we590

use their real advertised hourly costs forci , and we randomly determine their task591

11This data is available through their API atdevelopers.odesk.com and was downloaded in
February 2012.

23

 0

 50

 100

 150

 200

 10 20 30 40 50 60 70 80 90 100

C
ou

nt

Number of Candidate Workers per Job

Figure 1: Distribution of applicants for jobs with “Java” keyword on oDesk.

limits Li by drawing from the discrete uniform distribution on [1, 5000] (since real592

data on these limits is not available through the API).12 That is, a worker would593

spend between a single hour up to approximately two and a halfworking years on594

a project.595

Finally, to establish the worker’s utility distribution, we use real feedback rat-596

ings received from employers for previously completed projects (indicating the597

quality of their work), as well as some additional noise to account for variability598

in the work they perform. Specifically, the quality distribution is the sum of two599

random variables, 0.9 · Ri + 0.1 · U(0, 1), whereRi is the empirical distribution of600

the user’s actual ratings obtained on previous jobs13 andU(0, 1) is the continuous601

uniform distribution on the interval [0, 1] (to add a small amount of noise). Thus,602

a sample from this distribution represents the quality of the work achieved in one603

hour and ranges from 0 to 1, where 0 is the worst, making no contribution to the604

employer’s overall utility and 1 is the highest quality achievable. Trivially, the605

expected quality,µi, is then 0.9 · � [Ri] + 0.05.606

12Note that task limits are measured in hours, and 5000 workinghours limit is approximately 2
years. This value is reasonable as some workers on oDesk are willing to work on large projects for
more than a year.

13Ratings on oDesk are 1 – 5 stars, which we map to the interval [0, 1]. Note we use this only to
generate realistic distributions and assumeRi is unknown to our agent. To avoid bias when only few
ratings are available, we pad this empirical distribution with samples fromU(0,1) until it is based on
at least five samples.

24

6.2. Benchmarks607

To demonstrate that our algorithm outperforms the state of the art, we compare its608

performance to a number of benchmark methods:609

1. Budget-limited ε-first : a practically efficient budget-limited MAB algo-610

rithm that assigns all tasks to a single expert, that can provide the highest611

total quality with respect to his task limit, during the exploitation phase [33].612

This algorithm has been demonstrated to be the most efficient among budget-613

limited MAB algorithms in practice (see [32] for more details).614

2. Trialsourcing : an existing approach that is used on the expert crowdsourc-615

ing website vWorker (see Section 2.1). This first assigns a single task to each616

of the applicants and then chooses the worker with the highest estimated617

quality-cost density out of these until that worker reachesits task limit. This618

algorithm can be regarded as a simpler version of the budget-limited ε-first619

with only one round of exploration.620

3. Random: this algorithm randomly chooses a single worker to whom it as-621

signs all tasks. This represents a typical expert crowdsourcing task alloca-622

tion, where the employer chooses an applicant from some preferred prior623

distribution (see, e.g.,freelancer.com or utest.com). Within our exper-624

iments, we sample this applicant from a uniform prior distribution (we have625

also tested with other priors without any significant improvements).626

4. Uniform : this approach uniformly assigns tasks to all applicants. We include627

this to test the efficiency of pure exploration (i.e., uniform task assignment).628

5. Bounded KUBE: this is a modified version of KUBE, a budget-limited629

MAB algorithm with optimal theoretical performance regretbounds (see630

[32, 35] for more details), that is adapted to our bounded knapsack set-631

ting. In particular, at each time step, bounded KUBE solves acorrespond-632

ing bounded knapsack problem and uses the frequency of occurrence of the633

arms within the optimal solution of the knapsack problem as the distribution634

from which it randomly chooses an arm to pull. In contrast to our approach,635

bounded KUBE does not have theoretical performance guarantees, and it636

is also computationally more expensive (see Section 6.3 formore details).637

By comparing against this benchmark algorithm, we aim to demonstrate that638

theǫ-first approach is typically more efficient than other, more sophisticated,639

approaches in practice, especially in the budget-limited settings (for similar640

discussions, see, e.g., [32, 36, 21]).641

6. Simplified bounded KUBE: this is a simplified version the the bounded642

KUBE. In particular, in order to improve the computational efficiency of643

bounded KUBE, it does not solve the corresponding bounded knapsack prob-644

lem as the bounded KUBE algorithm does (note that bounded knapsack645

25

problems are NP-hard). Instead, the simplified bounded KUBEapproach646

approximates the optimal solution by using the bounded greedy method (see647

[32, 35] for more details).648

7. Optimal : this is ahypotheticaloptimal algorithm with full knowledge of649

each worker’s mean qualityµi. We approximate its performance in this sec-650

tion using the solution to the corresponding fractional bounded knapsack651

problem. Hence, any results we present are an upper bound on the perfor-652

mance of any algorithm.653

6.3. Results654

Throughout this section, we adopt the basic setup describedin Section 6.1, but655

vary a number of controlled parameters to evaluate how our algorithm performs in656

a variety of settings. Specifically, we first consider settings with varying budgets,657

to represent smaller or larger project sizes (Section 6.3.1). Then, we examine how658

the algorithm performs when the number of candidates is varied (Section 6.3.2),659

and then we investigate how varying correlations between the quality and cost of a660

worker affect the performance of the algorithm (Section 6.3.3).661

6.3.1. Performance with Variable Budgets662

To analyse the behaviour of each algorithm in different job scenarios, we vary663

the budgetB. In particular, we first focus on four different job types: (i) small664

(B = $500); (ii) moderate (B = $5,000); (iii) large (B = $30,000); and (iv) ex-665

tremely large (B = $100,000). Throughout our experiments, we also restrict the666

set of candidates for a particular budget, as highly-paid workers are unlikely to667

apply for a low-budget project. Thus, for the four settings used here, we restrict668

the candidates to those that charge at most $30, $50, $100 and$200, respectively.669

These are realistic values based on real jobs that have been advertised on oDesk.670

Additionally, for each budget, we re-sample the number and set of experts 10,000671

times to achieve statistical significance, and we calculate95% confidence intervals672

for all results. These results are depicted in Table 1 (with the 95% confidence in-673

tervals shown in brackets). Here, we set theε value of our algorithm to 0.15, while674

the ε value of the budget-limitedε-first is set to 0.05, 0.1, and 0.15, respectively675

(we have also tested with differentε values, which result in the same broad trends).676

As we can see from the results, our algorithm typically outperforms the existing677

algorithms by up to 78%. In particular, it outperforms the budget-limitedε-first by678

23% in the case of a small budget (ε = 0.1 for the budget-limited algorithm). In679

addition, our method outperforms this benchmark by 85%, 100%, and 155% in the680

cases of moderate, large, and extremely large budgets, respectively. This significant681

improvement over the benchmarks is due to several reasons. First, allocating a682

26

Small Moderate Large Extreme

Boundedε-first
(ε = 0.15)

59.88(0.35) 707.14(3.49) 3,833.8(18.61) 11,065(54.07)

Budget-limited
ε-first (ε = 0.05)

36.61(0.25) 360.41(1.55) 1,873(7.8) 4,062.8(16.14)

Budget-limited
ε-first (ε = 0.10)

48.62(0.27) 382.72(1.56) 1,910.8(7.81) 4,347(16.09)

Budget-limited
ε-first (ε = 0.15)

44.03(0.26) 374.15(1.55) 1,951.7(7.82) 4,206.1(16.11)

Trialsourcing 53.29(0.28) 362.80(1.61) 1,804.6(7.86) 3,864.5(16.38)

Random 26.34(0.2) 186.63(0.36) 991.2(6.97) 2,345.6(16.44)

Uniform 24.91(0.08) 135.23(0.55) 723.11(4.25) 2,167.1(13.79)

Bounded KUBE 46.9(0.33) 397.14(3.06) 2,721.04(18.19) −

Simplified
bounded KUBE

28.24(0.31) 277.42(3.25) 2,176.46(20.36)6,307.07(49.88)

Optimal 98.09(0.53) 946.66(2.1) 4,917.1(20.17) 14,102(58.77)

Table 1: Performance evaluation of the algorithms in different job settings with small (B = 500),
moderate (B = 5,000), large (B = 30,000) and extremely large (B = 100,000) budgets. The numbers
represent the total collected utility of each algorithm.

27

part of the budget to exploration ensures that our algorithmidentifies the best-683

performing workers, which are then exploited with the remaining budget. Second,684

unlike most of the other benchmarks, it also takes into account task limits in an685

intelligent way and therefore hires several high-quality workers in parallel while686

satisfying their respective task constraints. Other benchmarks, such as the budget-687

limited ε-first algorithm, due to their non-efficient way of handling task limits, here688

often fail to achieve high performance. As the budget rises,it becomes increasingly689

likely that this limit is met, explaining the relatively higher performance of our690

approach compared to the benchmarks in settings with largerbudgets. Compared691

to the budget-limitedε-first algorithm, the other benchmarks perform even worse692

— trialsourcing lacks the necessary exploration to identify the best-performing693

workers, while the uniform and random approaches do not takeinto account the694

workers’ performance distributions at all.695

We can also observe that our algorithm outperforms the modified versions of696

KUBE, a theoretically efficient budget-limited MAB algorithm, by up to 78%. In697

particular, bounded KUBE always outperforms its simplifiedcounterpart. How-698

ever, it also incurs a significantly higher computational cost, and thus, it is not699

possible to use bounded KUBE to calculate the solution for the case of an ex-700

tremely large budget within reasonable time.14 More specifically, apart from the701

modified versions of KUBE, all the algorithms achieve less than 1 second running702

time for the small, moderate and large cases, and they still need less than 2 seconds703

for the extremely large case. On the other hand, the simplified bounded KUBE704

approach needs approximately 7 seconds for the large case, and 17 seconds for the705

extremely large case. In addition, the running time of the bounded KUBE method706

is around 1 hour for the large case, and it cannot achieve any results for the ex-707

tremely large case. Nevertheless, both bounded KUBE and itssimplified version708

are outperformed by our approach. One possible reason is that KUBE needs more709

exploration to find efficient solutions, and thus, typically provides less efficiency in710

cases with lower budgets (for more discussions, see [32, 36]).711

Note that our algorithm approaches the theoretical optimumby up to 75% (in712

the cases of moderate, large and extreme budgets), while it achieves 61% of the713

optimal solution’s performance in the scenario with small budgets. This confirms714

the theoretical regret bounds that show that our solution quality approaches the715

optimum with a growing budget.716

While these results cover a wide range of possible budget levels, around 80% of717

14All the numerical tests appearing in this paper are performed on a personal computer,
Intelr Xeonr CPU W3520 @2.67GHz with 12GB RAM running the Fedora 18 operation sys-
tem.

28

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

Budget size

T
ot

al
 p

er
fo

rm
an

ce
 (

%
)

Performance evaluation

Trialsourcing
Random
Uniform
Bounded KUBE
Regret bound

Boundedε-first (ε = 0.15)
ε-first (ε = 0.10)

Figure 2: Performance ratio of the algorithms (compared to the optimal solution) in case of jobs with
small budgets (smaller than $1,000).

the jobs on oDesk have a budget smaller than $1,000. Given this, we next further718

analyse the performance of the algorithms within this budget range (restricting719

the set of candidates to those that charge at most $30 per hour). The results are720

depicted in Figure 2 (for ease of comparison, the performance is now expressed721

as a percentage of the optimal). We also depict the regret bound calculated from722

Theorem 1 as well, to demonstrate that our algorithm indeed can guarantee the723

regret bound. Note that hereafter we only show the results ofthe bounded KUBE724

(as it has been shown in Table 1 that it outperforms its simplified counterpart).725

As we can see, for jobs with very small budgets (i.e., smallerthan $100), the726

performance of our algorithm is similar to that of the budget-limited ε-first and727

trialsourcing. This is due to the fact that with a small budget, longer exploration728

is a luxury, and thus, those approaches perform well with only a small budget for729

exploration. However, if the budget is higher than $100, ouralgorithm clearly730

outperforms the others by up to 67%. As before, this is because our approach731

identifies the best-performing workers and deals with the task limits of workers732

(which start to become an issue with a rising budget). We can also observe that the733

uniform and random algorithms are clearly worse than our approach for any budget734

size, as they do not take into account the workers’ performance characteristics at735

all. In addition, it can clearly be seen that our algorithm isthe only one that can736

guarantee the regret bound (as the others all perform worse than the regret bound737

as the budget rises above $150).738

Interestingly, the budget-limitedε-first and trialsourcing algorithms first per-739

29

5000 10000 15000 20000
0

10

20

30

40

50

60

70

80

90

100

Budget size

T
ot

al
 p

er
fo

rm
an

ce
 (

%
)

Performance evaluation

Trialsourcing
Random
Uniform
Bounded KUBE
Regret bound

Boundedε-first (ε = 0.15)
ε-first (ε = 0.10)

Figure 3: Performance ratio of the algorithms (compared to the optimal solution) in case of jobs with
large budgets (between $5,000 and $20,000).

form better with an increasing budget (compared to the optimal), but their per-740

formance eventually starts to decrease. This is due to two opposing factors —741

initially, an increasing budget means the approaches can spend more of their bud-742

get on exploiting the best workers; however, eventually thetask limits become an743

issue, resulting in workers hitting their limits more frequently. This trend is not744

displayed by the uniform approach, which consistently performs better with an in-745

creasing budget. This is because it is not affected by task limits and because the746

relative advantage of the optimal solution decreases as more workers are included747

due to the larger budget. We can also observe that when the budget is small, the748

performance of bounded KUBE is not efficient, compared to the others, as it needs749

more time to converge.750

Another interesting set of jobs is those with large budgets,as they present long-751

term investments that require careful task allocation. Thus, we also vary the budget752

B from $5,000 to $20,000, to analyse the performance of the algorithms (for con-753

sistency fixing the set of candidates to those that charge at most $50 per hour). In754

fact, this range covers 77% of large jobs on oDesk (i.e., jobswith budget> $5,000).755

From Figure 3, we can see that our algorithm typically outperforms the others by756

up to 200%, and it achieves around 95% of the optimum. Here, the significantly757

higher performance compared to the benchmarks is due to the ability of our al-758

gorithm to take into account the workers’ task limits and divide the high budget759

between several workers. In addition, our algorithm outperforms the others by up760

to 162% (for the case of budgetB = $10,000). We can also see that when the761

30

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Number of candidates

T
ot

al
 p

er
fo

rm
an

ce

Performance evaluation

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

Number of candidates

Performance evaluation

Trialsourcing
Random
Uniform
Regret bound

(A) (B)

Boundedε-first (ε = 0.15)
ε-first (ε = 0.10)

Figure 4: Performance ratio of the algorithms (compared to the optimal solution) with budget
B = $5,000 and: (A) small number of candidates (varied between 5 and100); (B) large number
of candidates (varied between 100 and 1000).

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Number of candidates

T
ot

al
 p

er
fo

rm
an

ce

Performance evaluation

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

Number of candidates

Performance evaluation

Trialsourcing
Random
Uniform
Regret bound

(A) (B)

Boundedε-first (ε = 0.15)
ε-first (ε = 0.10)

Figure 5: Performance ratio of the algorithms (compared to the optimal solution) with budgetB =
$30,000 and: (A) small number of candidates (varied between 5 and100); (B) large number of
candidates (varied between 100 and 1000).

budget is sufficiently large, bounded KUBE achieves a higher performance,com-762

pared to other benchmarks. However, it can still only achieve less than 60% of the763

boundedε-first.764

To conclude this section, we note that the boundedε-first algorithm performs765

well in most cases, achieving up to 95% of the optimal solution. This proportion766

is largest for projects with a high budget, which is not surprising given the per-767

formance bounds discussed in Section 5. It also achieves thehighest performance768

gains compared to the benchmarks in those settings, as it reasons about task limits,769

and so our approach is particularly beneficial for large-scale projects.770

31

6.3.2. Performance with Variable Numbers of Candidates771

In this section, we investigate the performance of all algorithms when we increase772

the number of candidates available for a crowdsourcing project. Settings with a773

large number of candidates are likely to create new challenges for the learning ap-774

proaches (boundedε-first, budget-limitedε-first and trialsourcing), because these775

rely on exploringall candidates first prior to exploitation. To this end, Figures4776

and 5 show the performance results (as a percentage of the optimal) of all algo-777

rithms for settings with moderate and extremely large budgets, respectively, as we778

vary the number of candidates from 5 to 1000 (again, for consistency, including779

only candidates that charge at most $100 per hour). Note thatdue to computational780

issues, we do not show the results of the bounded KUBE algorithms within this781

section (recall that in general, they are outperformed by our proposed method).782

In Figure 4, we note that all learning approaches perform well when there are783

few candidates, as they can explore all available candidates and are likely to select784

a good worker during the exploitation phase. However, as thenumber of candi-785

dates is increased, the performance decreases. This is due to several factors. First,786

as more candidates are available, the quality of the optimalsolution increases. Sec-787

ond, bothε-first approaches sample each worker fewer times, leading toless accu-788

rate quality estimates. Similarly, trialsourcing has an increasingly smaller budget789

left for exploitation, which also explains the significant drop in quality when the790

number of candidates reaches 250. Here, most of the budget isspent purely on ex-791

ploration, and so the performance of trialsourcing approaches that of the uniform792

algorithm.793

In Figure 5, similar trends can be observed for larger budgets. As in Sec-794

tion 6.3.1, our approach, boundedε-first, performs significantly better than all795

other benchmarks when the budget is high. Here, the higher budget also allows796

it to sustain a high quality of around 80–90% of the optimal even when there are797

a few hundreds of candidates. This is because it has a sufficient budget to explore798

even the larger number of candidates. In addition, we can seethat our method out-799

performs the best benchmark by up to 300% (in the case of budget B = 30,000 and800

when the number of candidates is between 100 and 300). This significant increase801

in relative performance to the other benchmarks is again dueto the ability of our802

algorithm to rely on several high-quality workers within their respective task lim-803

its, while most of the other benchmarks rely on a single worker that eventually hits804

its task limit.805

6.3.3. Performance with Variable Correlation between Costand Quality806

Boundedε-first, and the other algorithms evaluated here, depend on comparing807

workers based on their quality-cost density (i.e., their estimated quality divided by808

their cost). However, when there is a strong correlation between cost and quality, as809

32

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

Variance of quality−cost density

T
ot

al
 p

er
fo

rm
an

ce

Performance evaluation

Trialsourcing
Random
Uniform

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Variance of quality−cost density

Performance evaluation

Trialsourcing
Random
Uniform

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

Variance of quality−cost density

T
ot

al
 p

er
fo

rm
an

ce

Performance evaluation

Trialsourcing
Random
Uniform

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Variance of quality−cost density

Performance evaluation

Trialsourcing
Random
Uniform

(A) (B)

(C) (D)
Boundedε-first (ε = 0.15)Boundedε-first (ε = 0.15)

Boundedε-first (ε = 0.15)

Boundedε-first (ε = 0.15)

ε-first (ε = 0.10)ε-first (ε = 0.10)

ε-first (ε = 0.10)

ε-first (ε = 0.10)

Figure 6: Performance ratio of the algorithms (compared to the optimal solution) with different
quality-cost density and with (A) small budget (B = $500); (B) moderate budget (B = $5,000); (C)
large budget (B = $30,000); and (D) extremely large budget (B = $100,000). The noise variance is
1.0 in all the cases.

is often the case in traditional labour markets, where more highly-skilled workers810

can demand higher wages [18], this may not be an informative feature to distin-811

guish workers. Thus, in this section, we do not use the implicit correlations from812

the oDesk data set, as we did in previous section, but rather alter this artificially, to813

test our approach in settings with a range of such correlations.814

To achieve this, we use the advertised cost of a worker,ci , and determine its815

mean quality asµi = D ·ci , whereD is a random variable representing the worker’s816

quality-cost density. Here, we sample a value forD for each worker from a distri-817

bution with mean� [D] = 1 and variance Var [D] = v, and we varyv to explore818

different levels of correlation. Thus, whenv = 0, the quality depends completely819

on the cost, but asv is increased, the correlation drops. To achieve this, we usea820

33

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

Variance of quality−cost density

T
ot

al
 p

er
fo

rm
an

ce

Performance evaluation

Trialsourcing
Random
Uniform

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Variance of quality−cost density

Performance evaluation

Trialsourcing
Random
Uniform

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

Variance of quality−cost density

T
ot

al
 p

er
fo

rm
an

ce

Performance evaluation

Trialsourcing
Random
Uniform

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Variance of quality−cost density

Performance evaluation

Trialsourcing
Random
Uniform

(A) (B)

(C) (D) Boundedε-first (ε = 0.15)
Boundedε-first (ε = 0.15)

Boundedε-first (ε = 0.15)

Boundedε-first (ε = 0.15)

ε-first (ε = 0.10)
ε-first (ε = 0.10)

ε-first (ε = 0.10)

ε-first (ε = 0.10)

Figure 7: Performance ratio of the algorithms (compared to the optimal solution) with different
quality-cost density and with (A) small budget (B = $500); (B) moderate budget (B = $5,000); (C)
large budget (B = $30,000); and (D) extremely large budget (B = $100,000). The noise variance is
10.0 in all the cases.

mixture of uniform distributions for samplingD.15 Given a meanµi, we then pro-821

duce noisy samples for each worker by multiplying the mean byanother random822

variableN with mean� [N] = 1 and a variance that we set to either Var [N] = 1823

(low noise) or Var [N] = 10 (high noise), using the same type of mixture distribu-824

tion as forD. We vary Var [N] here to determine how the algorithms respond to825

different levels of noise.826

15Specifically, we assume that it has the cumulative probability distributionFD(x) = α · x+ (1 −
α) · x−1

k−1 for 0 ≤ x ≤ k, wherek = 3·v+1 andα = 1−k−1, while FD(x < 0) = 0 andFD(x > k) = 1. In
the special case wherev = 0, we assumeFD(x < 1) = 0 andFD(x ≥ 1) = 1. Thus, this distribution
is a mixture of two uniform distributions — with probabilityα, the sample is drawn from a uniform
distribution with support [0,1] and with probability (1− α), it is drawn from one with support [1, k].
We choose this formulation as it is simple and allows us to arbitrarily control the variance while still
ensuring a non-negative support.

34

Figure 6 shows the results in settings with low noise as we increase the variance827

of the quality-cost density,v, with low (B = $500), moderate (B = $5,000), large828

(B = $30,000), and extremely large (B = $100,000) budgets (we choose these829

as representative results — higher budgets follow similar trends). For the sake of830

better visibility, the regret bound is left out from the figures (however, they show831

similar trends to previous figures). Several interesting trends emerge here. When832

the variance is extremely low (aroundv = 0), all approaches perform well. This833

is because workers here are completely homogeneous, achieving the same level of834

quality for each currency unit spent. However, as the variance is increased slightly,835

performance drops quickly for all approaches, as they are now less likely to choose836

the best workers.837

Interestingly, in the setting with larger budgets (Figures6 (B), 6 (C), and 6 (D)),838

the performance of the learning approaches eventually starts rising again. This is839

because these settings can produce experts with a high quality but low cost that are840

likely to be identified during the exploration phase and thenexploited. This effect841

does not occur in the setting with a low budget (Figure 6 (A)),because here the842

exploration budget is low and outliers are less likely to be identified (for theε-first843

algorithms) or the exploitation budget is too low (for the trialsourcing algorithm).844

We can also see that the larger the budget is, the better our algorithm performs845

compared to the benchmark approaches, for the same reasons as described previ-846

ously.847

Finally, Figure 7 shows the results when individual qualitysamples of a par-848

ticular worker have a high variance (Var [N] = 10). Note that we have also left849

the regret bound out from the figure in order to achieve bettervisibility. This is a850

more challenging setting for all of the learning algorithmsbecause it reduces the851

accuracy of the quality estimates. Here, we first note that inthe low budget setting852

(Figure 7 (A)), there is only a small drop in performance compared to the previous853

settings with low noise. This is because estimating the quality of workers with such854

a limited budget is already challenging. A larger drop in quality is apparent for the855

moderate budget (Figure 7 (B)), where the high noise reducesthe accuracy of the856

quality estimates (as the noise variance now typically exceeds the variance of the857

quality-cost density). However, despite the significant 10-fold increase in the noise858

variance, the performance of the learning algorithms is still reasonable, with only859

an approximately 10% decrease in the total utility achieved. On the other hand, we860

can see that as the budget is further increased (Figures 7 (C)and 7 (D)), the per-861

formance of our algorithm improves, compared to the small and moderate budget862

cases. This is due to the fact that with a sufficiently large budget size, our algorithm863

can efficiently explore the quality of each worker, and thus, it can achieve a high864

performance within the exploitation phase.865

To conclude the experimental section, we note that our proposed algorithm,866

35

200 400 600 800 1000
0

20

40

60

80

100

Budget size

T
ot

al
 p

er
fo

rm
an

ce
 (

%
)

Performance evaluation

5000 10000 15000 20000
0

20

40

60

80

100

Budget size

T
ot

al
 p

er
fo

rm
an

ce
 (

%
)

Performance evaluation

Hoeffding Races
Sussecive Rejects
Regret bound

(A) (B)

Boundedε-first

Figure 8: Performance ratio of the algorithms (compared to the optimal solution) in case of jobs with
(A) small budgets (smaller than $1,000); and (B) large budgets (between $5000−$10,000).ε = 0.15
for all the algorithms.

boundedε-first, consistently outperforms all of the existing benchmark approaches867

over a range of realistic settings. Sometimes, this resultsin a many-fold improve-868

ment over the best existing approach, and it typically achieves 70-90% of the hy-869

pothetical optimal with full information. Performance is particularly good when870

the overall budget is high (allowing ample exploration) andwhen the variance of871

the quality-cost density is high (allowing the algorithm tofocus on the most cost-872

effective workers). On the other hand, when there are many available workers in873

the system, performance degrades, but our approach still significantly outperforms874

existing benchmarks.875

6.4. Comparison with Other Exploration Policies876

We now turn to the investigation of whether we can improve theperformance of877

the boundedε-first algorithm by replacing the uniform exploration approach with878

other policies. Recall that in Section 5, we have proved thatby replacing the uni-879

form approach with Successive Rejects (SR), the theoretical regret bound, that the880

boundedε-first approach can achieve, is increased. Hence, it is less efficient. In881

this section, we further demonstrate that by using Hoeffding Races for exploration,882

the performance cannot be improved either. To do so, we compare our algorithm883

with Hoeffding Races and SR, using the above-mentioned parameter settings. In884

what follows, we first briefly describe the Hoeffding Races exploration algorithm,885

and then discuss the numerical results.886

The Hoeffding Races algorithm relies on Theorem 2 as follows. Supposethat
the number of pulls of armi is xi , and let 0< β < 1. From Theorem 2, we can

36

guarantee that with at least (1− β) probability, we have:

|µ̂i − µi | ≤

√

− ln β2
2xi
,

whereµ̂i is the current estimate of armi’s expected reward valueµi . Given this, at887

each time stept, Hoeffding Races maintains an upper confidence (UC) and lower888

confidence (LC) value for each armi, such that889

UCi(t) = µ̂i(t) +

√

− ln β2
2xi(t)

, (26)

LCi(t) = µ̂i(t) −

√

− ln β2
2xi(t)

, (27)

whereµ̂i(t) is the estimate ofµi at time stept, andxi(t) is the number of pulls of arm890

i up to time stept. Hoeffding Races initially uniformly pulls the arms. However,891

if for a certaint there exist armsi , j such thatUCi(t) < LC j(t), the algorithm892

eliminates armi from the set of arms (i.e., it does not pull armi anymore). The893

algorithm stops when there is only one arm left. Note that in practice,β is typically894

set to be 0.05 (see [25] for more details).895

To compare the performance of the algorithms, we focus on twoscenarios: (i)896

small budget; and (ii) large budget cases. In particular, due to its nature, Hoeffd-897

ing Races only displays a different behaviour when the budget is sufficiently large898

(otherwise it will behave exactly as the uniform exploration). The results are de-899

picted in Figure 8. We can clearly observe that in case the budget is small, both900

Hoeffding Races and uniform exploration provide the same performance. This is901

due to the fact that the Hoeffding Races method does not have a sufficient budget902

to eliminate the arms, and thus, it continues with the initial uniform pull behaviour903

(Figure 8(A)). On the other hand, as the budget becomes larger, Hoeffding Races904

can start eliminating the arms within the exploration phase. This, however, results905

in a decreased performance efficiency. A possible reason is that by eliminating the906

arms, Hoeffding Races only focuses on the best arms (it pulls them the most). This,907

however, may lead to poor performance within the exploitation phase, as we might908

need an accurate estimation of the ranking of all the arms in order to efficiently909

solve the corresponding bounded knapsack problem. This is also the reason why910

SR performs poorly, compared to the uniform pull approach. This is in line with911

our theoretical analysis in Section 5.2.912

It is worth noting that we also achieve broadly similar results when we modify913

Hoeffding Races and SR to find the arm with the highest density, instead of the914

37

arm with the highest expected reward. A possible reason behind this is that it is915

not sufficient either to solely focus on arms with the highest density, as those might916

have low pulling limits and this will lead to a poor performance in the exploitation917

phase.918

7. Conclusions and Future Work919

In this paper, we introduced the expert crowdsourcing problem with variable worker920

performance, heterogeneous costs and task limits per worker. In this problem, an921

employer wishes to assign tasks within a limited budget to a set of workers such922

that its total utility is maximised. To solve this problem, we introduced a new923

MAB model, the bounded MAB, with a limited number of pulls perarm to repre-924

sent task limits. Given this, we proposed a simple, but efficient, boundedε-first-925

based algorithm that uses a uniform pull strategy for exploration, and a bounded926

knapsack-based approach for exploitation. We proved that this algorithm has a927

O
(

B
2
3

)

theoretical upper bound for its performance regret. This result means that928

our algorithm has the desirable zero-regret property, implying that the algorithm929

asymptotically converges to the optimal solution as the budget tends to infinity.930

To establish the performance of our algorithm in realistic expert crowdsourcing931

settings, we also applied it to real data from oDesk, a prominent expert crowdsourc-932

ing website. We showed that the algorithm consistently outperforms state-of-the-933

art crowdsourcing algorithms within this domain by up to 300%, also achieving934

up to 95% of a hypothetical optimal benchmark that has full information about the935

workers’ performance distributions. Furthermore, the empirical results confirmed936

our theoretical bounds, indicating that the algorithm works best for projects with937

large budgets.938

As a result, our work could potentially form a promising basis to crowdsourc-939

ing websites which aim to provide efficient teams of experts. We envisage that it940

could be used to automate the formation of curated crowds, which are currently941

mostly formed on an ad hoc basis (see Section 2.1). In particular, our algorithm942

could be employed to implement a crowdsourcing intermediary, which, given a943

customer’s budget for a project, automatically explores a potential crowd of work-944

ers and then assembles a promising team of the best performers.945

In addition to this, our work also constitutes a general contribution to the field946

of MABs and is applicable to a wide range of decision-making problems under947

uncertainty beyond the domain of expert crowdsourcing. In more traditional labour948

markets, our approach could be used to hire unknown contractors to work on a949

large project, or it could be used to allocate existing workers within a company to950

a new project (where costs are incurred by removing workers from their day jobs951

and performance may be unknown if no similar projects have been carried out in952

38

the past). Another potential application of our work is cloud computing, where953

services are potentially unreliable or vary in their quality, and where the maximum954

number of jobs on one service is restricted either by a fixed deadline or by user955

quotas. Finally, our work applies generally to resource allocation problems with956

costly but limited resources of an unknown quality. For example, a government957

may need to procure medicines to fight a new epidemic, but it isuncertain what958

medicines work best and it is restricted by budget constraints and stock levels of959

the medicines.960

Currently, our work also has a number of limitations that we will explore fur-961

ther in future work. First, our approach does not exploit thefact that in many962

real-world applications employers typically have additional information about the963

applicants, which could be used to find the best workers more quickly (e.g., repu-964

tation ratings or lists of qualifications). However, as thisinformation might not be965

accurate either, it is not trivial how to efficiently handle it in practice. One possible966

way is to maintain belief-based models for each user’s profile, which measures the967

uncertainty of our knowledge about the user, based on current observations. These968

belief models are then iteratively updated as we observe theutility values from969

the users while assigning tasks to them. Our model, however,does not currently970

handle such belief updates. Thus, as possible future work, we intend to extend our971

analysis to these settings.972

Our current work also assumes that a particular worker’s performance is static,973

that is, it is drawn from a stationary distribution. However, it may be the case974

that due to external reasons (e.g., health and weather conditions, or other duties),975

the performance distribution may vary over time. The bounded ε-first algorithm976

might fail to tackle these settings, as it is not capable of handling dynamic environ-977

ments. In particular, due to the explicit split of exploration from exploitation, our978

algorithm might not be able to detect future changes once theexploration phase979

is completed. One possible way to extend our model is to use bandit algorithms980

that do not split exploration from exploitation, such as UCBor ε-greedy (for more981

details, see [30, 32]). However, these algorithms are not designed for the bounded982

multi-armed bandit model, and thus, it is not trivial how to extend them to our set-983

tings. Given this, we also aim to extend our proposed algorithm to systems with984

dynamic behaviour.985

Furthermore, our model considers independent tasks, wherethe total utility of986

the tasks is the sum of each individual task’s utility. However, tasks may affect987

each other’s value, and thus, the total utility of these tasks may not be equal to988

their sum of utility. For example, two tasks may contain overlapping parts. This989

implies that their total utility is less than their sum. In contrast, two other tasks990

might complement each other, boosting each other’s value ifboth are completed991

(i.e., their total utility is higher than their sum). As our algorithm is currently not992

39

designed to address this setting, we intend to extend our model to this scenario as993

well.994

Acknowledgements995

This is a significantly extended version of a prior conference publication [34]. The996

work was carried out as part of the ORCHID project (www.orchid.ac.uk), which997

is funded by EPSRC, the UK Engineering and Physical SciencesResearch Council998

(EP/I011587/1).999

References1000

[1] Agrawal, R. (1995). Sample mean based index policies with O(log n) regret1001

for the multi-armed bandit problem.Adv. in Appl. Prob., 27, 1054–1078.1002

[2] Anantharam, V., Varaiya, P., and Walrand, J. (1987). Asymptotically efficient1003

allocation rules for the multiarmed bandit problem with multiple plays — part1004

I: I.i.d. rewards.IEEE Transactions on Aumatic Control, 32(11), 977–982.1005

[3] Audibert, J.-Y., Bubeck, S., and Munos, R. (2010). Best arm identication in1006

multi-armed bandits.Proceedings of the Twenty-Third Annual Conference on1007

Learning Theory, pages 41–53.1008

[4] Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite–time analysis of the1009

multiarmed bandit problem.Machine Learning, 47, 235–256.1010

[5] Bernstein, M. S., Little, G., Miller, R. C., Hartmann, B., Ackerman, M. S.,1011

Karger, D. R., Crowell, D., and Panovich, K. (2010). Soylent: a word processor1012

with a crowd inside. InProceedings of the 23rd Annual ACM Symposium on1013

User Interface Software and Technology, pages 313–322.1014

[6] Beygelzimer, A., Langford, J., Li, L., Reyzin, L., and Schapire, R. (2011).1015

Contextual bandit algorithms with supervised learning guarantees. InPro-1016

ceeding of the Forteenth International Conference on Artificial Intelligence and1017

Statistics, pages 19–26.1018

[7] Brooks, F. P. (1995).The Mythical Man-Month : Essays on Software Engi-1019

neering. Addison-Wesley Pub. Co.1020

[8] Bubeck, S., Munos, R., and Stoltz, G. (2009). Pure exploration for multi-armed1021

bandit problems. InProceedings of the Twentieth international conference on1022

Algorithmic Learning Theory, pages 23–37.1023

40

[9] Clery, D. (2011). Galaxy zoo volunteers share pain and glory of research.1024

Science, 333(6039), 173–175.1025

[10] Dai, P., Mausam, and Weld, D. S. (2011). Artificial intelligence for artifi-1026

cial artificial intelligence. InProceedings of the 25th Conference on Artificial1027

Intelligence (AAAI 2011), pages 1153–1159.1028

[11] Doan, A., Ramakrishnan, R., and Halevy, A. Y. (2011). Crowdsourcing sys-1029

tems on the world-wide web.Communications of the ACM, 54(4), 86–96.1030

[12] Gao, H., Barbier, G., and Goolsby, R. (2011). Harnessing the crowdsourcing1031

power of social media for disaster relief.IEEE Intelligent Systems, 26(3), 10–1032

14.1033

[13] Guha, S. and Munagala, K. (2009). Multi-armed bandits with metric switch-1034

ing costs. In S. Albers, A. Marchetti-Spaccamela, Y. Matias, S. Nikoletseas, and1035

W. Thomas, editors,Automata, Languages and Programming, volume 5556 of1036

Lecture Notes in Computer Science, pages 496–507. Springer Berlin/ Heidel-1037

berg.1038

[14] Ho, C.-J. and Vaughan, J. W. (2012). Online task assignment in crowdsourc-1039

ing markets. InProceedings of the 26th Conference on Artificial Intelligence1040

(AAAI 2012), pages 45–51.1041

[15] Hoeffding, W. (1963). Probability inequalities for sums of bounded random1042

variables.Journal of the American Statistical Association, 58, 13–30.1043

[16] Horton, J. J. and Chilton, L. B. (2010). The labor economics of paid crowd-1044

sourcing. InProceedings of the 11th ACM Conference on Electronic Commerce1045

(EC’10), pages 209–218.1046

[17] Huang, E., Zhang, H., Parkes, D. C., Gajos, K. Z., and Chen, Y. (2010).1047

Toward automatic task design: a progress report. InProceedings of the ACM1048

SIGKDD Workshop on Human Computation (HCOMP ’10), pages 77–85.1049

[18] Juhn, C., Murphy, K. M., and Pierce, B. (1993). Wage inequality and the rise1050

in returns to skill.Journal of Political Economy, 101(3), 410–442.1051

[19] Kellerer, H., Pferschy, U., and Pisinger, D. (2004).Knapsack Problems.1052

Springer.1053

[20] Kittur, A., Chi, E. H., and Suh, B. (2008). Crowdsourcing user studies with1054

mechanical turk. InProceedings of the SIGCHI Conference on Human Factors1055

in Computing Systems (CHI ’08), pages 453–456.1056

41

[21] Kuleshov, V. and Precup, D. (2010). Algorithms for the multi-armed bandit1057

problem.Unpublished.1058

[22] Little, G., Chilton, L. B., Goldman, M., and Miller, R. C. (2010). Exploring1059

iterative and parallel human computation processes. InProceedings of the ACM1060

SIGKDD Workshop on Human Computation (HCOMP ’10), pages 68–76.1061

[23] Marcello, S. and Toth, M. (1990).Knapsack Problems: Algorithms and Com-1062

puter Implementations. Wiley.1063

[24] Marge, M., Banerjee, S., and Rudnicky, A. (2010). Usingthe amazon me-1064

chanical turk for transcription of spoken language. InProceedings of the 35th1065

International IEEE Conference on Acoustics, Speech, and Signal Processing1066

(ICASSP’10), pages 5270–5273.1067

[25] Maron, O. and Moore, A. W. (1993). Hoeffding races: Accelerating model se-1068

lection search for classification and function approximation. Proceedings of the1069

Seventh Annual Conference on Neural Information Processing Systems, pages1070

59–66.1071

[26] Mason, W. and Watts, D. J. (2009). Financial incentivesand the performance1072

of crowds. InProceedings of the ACM SIGKDD Workshop on Human Compu-1073

tation (HCOMP ’09), pages 77–85.1074

[27] Mnih, V., Szepesvari, C., and Audibert, J. (2008). Empirical bernstein stop-1075

ping. Proceedings of the 25th International Conference on Machine Learning,1076

pages 672–679.1077

[28] Morris, R. R., Dontcheva, M., and Gerber, E. M. (2012). Priming for better1078

performance in microtask crowdsourcing environments.IEEE Internet Comput-1079

ing, 16, 13–19.1080

[29] Robbins, H. (1952). Some aspects of the sequential design of experiments.1081

Bull. of the AMS, 55, 527–535.1082

[30] Sutton, R. S. and Barto, A. G., editors (1998).Reinforcement Learning: An1083

Introduction. MIT Press.1084

[31] Tokarchuk, O., Cuel, R., and Zamarian, M. (2012). Analyzing crowd labor1085

and designing incentives for humans in the loop.IEEE Internet Computing,1086

16(5), 45–51.1087

[32] Tran-Thanh, L. (2012).Budget–Limited Multi–Armed Bandits. Ph.D. the-1088

sis, University of Southampton, School of Electronics and Computer Science,1089

Southampton UK.1090

42

[33] Tran-Thanh, L., Chapman, A., de Cote, J. E. M., Rogers, A., and Jennings,1091

N. R. (2010). Epsilon–first policies for budget–limited multi–armed bandits.1092

In Proceedings of the 24th Conference on Artificial Intelligence (AAAI 2010),1093

pages 1211–1216.1094

[34] Tran-Thanh, L., Stein, S., Rogers, A., and Jennings, N.R. (2012a). Efficient1095

crowdsourcing of unknown experts using multi-armed bandits. In 20th Euro-1096

pean Conference on Artificial Intelligence (ECAI 2012), pages 768–773.1097

[35] Tran-Thanh, L., Chapman, A., Rogers, A., and Jennings,N. R. (2012b).1098

Knapsack based optimal policies for budget-limited multi-armed bandits. In1099

Proceedings of the 26th Conference on Artificial Intelligence (AAAI 2012),1100

pages 1134–1140.1101

[36] Vermorel, J. and Mohri, M. (2005). Multi-armed bandit algorithms and em-1102

pirical evaluation. InProceedings of the 16th European Conference on Machine1103

Learning (ECML’05), pages 437–448.1104

[37] Vuurens, J. and de Vries, A. (2012). Obtaining high-quality relevance judg-1105

ments using crowdsourcing.IEEE Internet Computing, 16(5), 20–27.1106

[38] Welinder, P., Branson, S., Belongie, S., and Perona, P.(2010). The multidi-1107

mensional wisdom of crowds. InAdvances in Neural Information Processing1108

Systems 24 (NIPS 2010), pages 2424–2432.1109

[39] Zaidan, O. F. and Callison-Burch, C. (2011). Crowdsourcing translation:1110

professional quality from non-professionals. InProceedings of the 49th Annual1111

Meeting of the Association for Computational Linguistics:Human Language1112

Technologies - Volume 1 (HLT ’11), pages 1220–1229.1113

[40] Zook, M., Graham, M., Shelton, T., and Gorman, S. (2010). Volunteered1114

geographic information and crowdsourcing disaster relief: A case study of the1115

haitian earthquake.World Medical& Health Policy, 2(2), 7–33.1116

43

