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Abstract

One of the biggest challenges in the design of real-world decision support
systems is coming up with a good combinatorial optimization model. Often
enough, accurate predictive models (e.g. simulators) can be devised, but they
are too complex or too slow to be employed in combinatorial optimization.

In this paper, we propose a methodology called Empirical Model Learning
(EML) that relies on Machine Learning for obtaining components of a prescrip-
tive model, using data either extracted from a predictive model or harvested
from a real system. In a way, EML can be considered as a technique to merge
predictive and prescriptive analytics.

All models introduce some form of approximation. Citing G.E.P. Box [1]
“Essentially, all models are wrong, but some of them are useful”. In EML,
models are useful if they provide adequate accuracy, and if they can be effectively
exploited by solvers for finding high-quality solutions.

We show how to ground EML on a case study of thermal-aware workload
dispatching. We use two learning methods, namely Artificial Neural Networks
and Decision Trees and we show how to encapsulate the learned model in a
number of optimization techniques, namely Local Search, Constraint Program-
ming, Mixed Integer Non Linear Programming and SAT Modulo Theories. We
demonstrate the effectiveness of the EML approach by comparing our results
with those obtained using expert-designed models.

Keywords: Combinatorial Optimization, Machine Learning, Complex
Systems, Local Search, Constraint Programming, Mixed Integer Nonlinear
Programming, SAT Modulo Theories, Artificial Neural Networks, Decision
Trees
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1. Introduction

Advances in Combinatorial Optimization methods in the last decades have
enabled their successful application to a broad range of industrial problems.
Many of such approaches rely on the availability of some declarative system
description. This typically consists of a hand-crafted mathematical model, ob-5

tained after thorough discussion with the domain experts by introducing some
simplifying assumptions.

Devising a good model is a complex task, especially challenging when dealing
with real-world systems. A good model finds a proper balance between model
complexity and model accuracy: on the one hand, excessive simplification may10

lead to “optimal” – but completely useless – solutions. On the other hand,
incorporating too many details results in extremely hard computational issues.
Despite this, a number of successful optimization approaches have been proposed
in the literature and applied to real-life industrial problems, enabling in many
cases1 huge savings in terms of resources (time, money, machines, energy).15

Nevertheless, many systems are still impervious to approaches such as Mixed
Integer Linear Programming (MILP), Constraint Programming (CP), or SAT
(propositional SATisfiability) and this is often due to modeling issues. There
are basically two kind of “high-complexity systems” that are out-of-reach for
traditional combinatorial approaches: (1) Complex Systems, which exhibit phe-20

nomena that emerge from a collection of interacting objects capable of self-
organization and affected by memory or feedback; and (2) physical systems
whose dynamic model is known, but its embedding in a combinatorial model is
computationally intractable.

A very common way for supporting decision-making in these systems is to25

design a predictive model (e.g., a simulator) based on real data and to use it via
what-if analysis (see [2] for a recent reference). In what-if analysis, the decision
maker repeatedly feeds scenarios (i.e. sets of decisions) to the predictive model
to extract the values of certain observables of interest (e.g. quality measures).
Inevitably, only a limited number of scenarios is investigated, and then the30

decision maker commits to the one showing the best behavior. In combinatorial
problems the decision space might be so large that selecting scenarios manually
or in isolation results in far-from-optimal choices.

The aim of this paper is to bring such high-complexity systems within the
reach of combinatorial decision making and optimization. The idea is to use35

Machine Learning (ML) to learn an approximate relation between decisions and
their impact on the system. In particular, we devise a methodology, called
Empirical Model Learning (EML) that: (1) learns relations between decidables
and observables2 from data, and (2) encapsulates these relations into compo-
nents of an optimization model, namely objective functions or constraints. The40

training data for the learning techniques can be harvested from the real system

1The reader may find some examples on the web page dedicated to the Franz Edelman
Award at https://www.informs.org/Recognize-Excellence/Franz-Edelman-Award

2The names decidables and observables have been suggested by Peter Flach [3].
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or extracted from a predictive model (e.g. simulator). The integration into
model components is not merely a matter of encoding, since in some cases an
operational semantics for the efficient use of the component should be defined.

The ability to integrate Machine Learning models in combinatorial optimiza-45

tion has the potential to play a major role in bridging the gap between predictive
and prescriptive analytics. An EML based system may be capable of suggesting
optimal decisions in a complex real-world setting, by taking advantage of recent
developments in big data analysis and predictive model design.

This paper provides three main contributions. First, we introduce the Em-50

pirical Model Learning approach in a general fashion. Second, we present a
number of methods for embedding Machine Learning models (namely Decision
Trees and Artificial Neural Networks) into several optimization techniques (Lo-
cal Search, Mixed Integer Non-Linear Programming, Constraint Programming,
SAT Modulo Theories). Some of our embedding techniques have been presented55

in previous papers of ours [4, 5]. Third, we show that despite the main idea be-
hind EML being very simple, its application requires some care for obtaining an
effective optimization approach. We highlight the main difficulties and suggest
possible solutions by applying the EML approach on two practical examples.

As motivating (and running) examples, we use two thermal-aware workload60

dispatching problems, defined over an experimental multicore Intel CPU called
“Single-chip Cloud Computer” (SCC, see [6]). Both problems consist in map-
ping a set of heterogeneous jobs on the platform cores so as to maximize some
cost metric involving the platform efficiency. The efficiency of each core is af-
fected by a number of complex factors including the thermal dynamics of the65

chip, the workload distribution, and the presence of low-level schedulers and
thermal controllers. Although an accurate system simulator for the platform is
available, it cannot be inserted into a decision model due to its high complexity
and large run time. We show that EML allows considerable improvements over
simpler optimization approaches either based on expert-designed heuristics, or70

on expert-designed models refined via function fitting.
The paper is structured as follows: in Section 2 we provide a comparative

analysis of related work. In Section 3 we introduce the example problems. In
Section 4 we give a brief overview of the EML approach. Section 5 presents
techniques for embedding Machine Learning models into Combinatorial Opti-75

mization models. Sections 6 and 7 discuss respectively how to design the core
combinatorial structure of the optimization problem, and how to extract a sys-
tem model from data: in both cases, our example problems are employed to
present the process. We provide experimental results in Section 8 and conclud-
ing remarks in Section 9.80

2. Comparative Analysis of Related Work

The EML approach combines elements of Combinatorial Optimization, Ma-
chine Learning, and Complex Systems/Simulation. In this section we provide a
brief overview of approaches related to the integration of such research fields.

3
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Loosely Related Approaches. Researchers have been interested for a long time85

in the integration of optimization techniques in Machine Learning. This is not
surprising, given that training problems are fundamentally (very peculiar) op-
timization problems. Works such as [7, 8] have studied the core optimization
problems in ML algorithms and proposed efficient methods for extracting knowl-
edge from huge volumes of data. Other works (e.g. [9, 10] and those presented90

in [11]) have applied Constraint Programming to Machine Learning tasks.
In the optimization community, a substantial effort has been recently ded-

icated to using learning to improve a solution approach. Clustering methods
have been employed for automatic algorithm selection (e.g. [12]). Several Ma-
chine Learning techniques have been used for predicting the run time of opti-95

mization algorithms, once again with the aim to perform algorithm selection
(e.g. [13, 14]). A few works have focused on learning customized optimization
problem instances for testing new techniques (see [15]).

Constraint Acquisition. Some papers [16, 17, 18] have focused on learning a set
of constraints that match a number of positive and negative examples, a task100

known as constraint acquisition. An extension to these approaches is repre-
sented by the QuAcq system [19], which requires only partial queries on subsets
of problem variables (with no need of positive examples). Other constraint
acquisition approaches are surveyed in [20]. All such approaches attempt to
combine constraints from a given library to build a model that is compatible105

with the available data. Conversely, in EML the emphasis is on enabling the in-
tegration of a “standard” Machine Learning model (e.g. a Neural Network) into
a combinatorial problem. Our approach requires an additional design effort, but
it is also more flexible and better suited for dealing with practical applications,
especially in cases where a good Machine Learning model is already available.110

Many constraint acquisition approaches make use of active learning : the
candidate solutions found by a solver are evaluated (e.g. via a simulator) and
then serve as new examples for the training set. This kind of approach allows
one to tune the model for the specific instance being solved. As a drawback,
the response times can become impractically large if evaluating a data point is115

expensive. Moreover, if a simulator is not available, then active learning would
require one to deploy the intermediate solutions on the real system, which may
be unreasonable in practice. In this work, we assume that the training is done
entirely off-line. Integrating active learning in our method is possible, but left
as a subject of future research.120

Surrogate Models. Surrogate models (see [21] for an excellent overview) are ap-
proximate system models. They are typically employed on design problems for
which declarative models are difficult to obtain, but simulation is viable. A
surrogate model takes the form of a function with pre-defined structure and
unknown parameters, or of a combination of kernel functions (e.g. Gaussian125

processes). Surrogate models are tuned over a training set and then are typi-
cally employed for blackbox optimization (see the next paragraph). In some ap-
proaches (e.g. ALAMO [22]) optimization and simulation are jointly employed

4
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to explore alternative surrogate model structures and tune the parameters.
The idea of using surrogate models is closely related to the one we pro-130

pose, but there are important differences in terms of focus, scope, and (ideal)
generality. Most works on surrogate models focus: (1) on a specific class of
Machine Learning techniques, e.g. relatively simple compositions of non-linear,
continuous, functions (only a minority of works have considered Artificial Neural
Networks [23, 24]); (2) on specific problems, typically with continuous variables135

and range constraints; and (3) on specific solution techniques, e.g. Genetic Al-
gorithms, blackbox/derivative-free optimization, sometimes Mixed Integer Non-
Linear Programming. Conversely, in EML we aim at enabling the use of as many
Machine Learning techniques as possible, within as many optimization methods
as possible: the goal is having the ability to choose the most adequate solution140

approach for each problem. As a consequence, our focus is mostly on handling
the integration of Machine Learning models in optimization: for example, we
emphasize the importance of model embedding techniques (in Section 5), and of
methods to exploit the structure of the extracted model for boosting the search
process. This paper will specifically focus on problems, Machine Learning mod-145

els, and techniques that are outside the typical scope of surrogate models.

The LION Approach. Off-line learning is employed in the LION approach [25]
to extract an approximate cost function from abundant data. The authors stress
that there are practical cases (e.g. when user preferences are involved) where
there is no obvious numeric approach to rank solutions. In this situation, using150

historical data is the only way to obtain an approximate cost function without
repeatedly querying the user at solution time. The LION approach relies on
model fitting to obtain close-to-optimal solutions: this makes it difficult to
target decision problems with a complex combinatorial structure.

Black box optimization. Black-box optimization approaches are concerned with155

finding solutions for optimization problems having cost or constraint functions
with unknown structure: the typical case is that of systems lacking a declarative
model, but for which a simulator is available. This is the same use case of
surrogate models, which in fact are often employed in black box optimization.

If the black box function is fast enough to evaluate, then local search ap-160

proaches, meta-heuristics, or Genetic Algorithms can be directly applied (e.g.
[26]). If the black box evaluation is expensive to evaluate (this is frequent with
simulators), then it becomes necessary to employ more advanced techniques to
limit the number of simulator calls.

Most of the methods for black box optimization with expensive cost func-165

tions have been developed in the field of derivative free optimization. Within
that field, the book [27] makes a distinction between Directional Search and
Model-based approaches. Informally speaking, Directional Search methods (see
the survey by [28]) rely on discretization to limit the number of black box evalua-
tions. Model-based approaches, instead, employ active learning to fit an internal170

surrogate model (often referred to as response surface). The internal model is
used to guide the search process. In [29] and in Simulation for Optimization [30]
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the internal model is a stochastic process, which allows the search algorithm to
take into account both the estimated solution quality and the estimated model
accuracy in order to identify promising solutions. The OptQuest [31] system175

integrates in a closed loop simulation and meta-heuristics and relies on a Neural
Network for quick, approximate, solution checking.

Black box optimization approaches differ from EML in three important re-
gards. The most important difference is that most black-box optimization ap-
proaches are designed for problems without a complex combinatorial structure.180

Hence, they are likely to be ineffective (or inapplicable) for problems with dis-
crete variables and non-trivial constraints. This is exactly the class of problems
where techniques such as CP, MILP, or SAT (i.e. the most interesting for our
technique) tend to provide the best results. Second, black-box optimization
often relies on performing simulation during the search process: this may be ex-185

cessively time-consuming, or even impossible if a simulator is not available. In
EML, the simulation time has no direct impact on the solver performance, and
the model extraction can rely on historical data, or on experiments performed
on the real system. Third, in EML the function that describes the system be-
havior is not a black box: on the contrary, the structure of the Empirical Model190

is well known, and we wish to exploit it for boosting the search process.

3. Motivating Example

As a case study and motivating example, we consider two problems related
to thermal-aware workload dispatching over an experimental multicore CPU by
Intel, called Single-chip Cloud Computer (SCC [6]). The two problems share the195

same combinatorial structure, but are different w.r.t. the objective function and
the observables of interest. In this section we describe the problems, identify the
critical difficulties for defining a model, and outline possible solution approaches.

Problem Description. The SCC platform has 24 dual-core tiles arranged in a 4×
6 grid (overall, 48 cores in a 8×6 grid). Each core runs an independent instance200

of the Linux kernel. Inter-tile communication occurs via message passing on
a network interface, hence tasks cannot easily migrate between cores. The
chip is designed to accept job batches from an external node (e.g. a separate
computer). Due to the large number of cores packed on a single silicon die, the
platform is prone to overheating. Since the chip is a prototype, Intel has chosen205

to make it thermally stable via an overly large (and noisy) fan, rather than by
implementing a more advanced thermal controller.

With the aim of studying temperature control policies on SCC, researchers
at the University of Bologna (the domain experts in our case) have devised an
accurate simulator based on Matlab and the Hotspot thermal modeling tool210

[32]. The simulator characterizes the jobs in terms of their CPI value (Clocks
Per Instruction) at maximum frequency: jobs with low CPI make a more intense
use of the CPU and generate more heat, whereas jobs with high CPI are com-
paratively colder. On each core of the simulated platform, two thermal control
approaches have been introduced:215

6
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1. A preemptive thermal-aware scheduler that interleaves the execution of
“hot” and “cold” jobs in an effort to keep the temperature stable. Jobs
are classified at run time based on their effect on the current temperature.

2. A thermal controller that dramatically lowers the core frequency if the
temperature exceeds a safety threshold.220

The jobs are assumed to run indefinitely: hence, the domain experts have de-
cided to avoid overloading by running the same number of jobs on each core.

Problem Variants. Both our dispatching problems consist in mapping a set of
heterogeneous jobs on the platform cores so as to maximize an objective related
to the core efficiencies. Due to the presence of a thermal controller, the efficiency225

of each core depends on its temperature, and on a number of complex factors
including: (1) the workload, (2) the temperature of the other cores, (3) the core
position on the die, (4) the action of the thermal-aware scheduler and of the
threshold controller. As already mentioned, we consider two problem variants:

1. In the first variant (referred to as WDPbal), the goal is to balance the230

platform efficiency and to avoid the occurrence of hot spots (abnormally
warm cores). Together with the domain experts, we have formalized this
objective as that of maximizing the worst-case core efficiency.

2. In the second variant (referred to as WDPmax ), the goal is to have a
portion of the platform as large as possible that operates at high efficiency.235

Together with the domain experts, we have formalized this objective as
that of maximizing the number of cores having an efficiency larger than a
certain threshold.

Base Models. As a preliminary step for defining a solution approach, we intro-
duce a base model for each of our example problems. In both the base models,240

the relation between the mapping decisions and the efficiency is captured by
means of generic functions. Formally, let n and m respectively be the number
of jobs and cores (m = 48 for SCC). Let us introduce a set of binary variables
xik such that xik = 1 iff job i is mapped on core k and 0 otherwise. Then a
possible formulation for WDPbal is:245

Base Model for the WDPbal

max z = min
k=0..m−1

(eff k) (1)

subject to: eff k = hbalk (x) ∀k = 0..m− 1 (2)

m−1∑
k=0

xik = 1 ∀i = 0..n− 1 (3)

n−1∑
i=0

xik =
n

m
∀k = 0..m− 1 (4)

xi ∈ {0, 1} ∀i = 0..n− 1 (5)

7



Constraints (3) ensure that each job is mapped on a single core and Con-
straints (4) force the same number of jobs (i.e. n/m) to run on each core3.

Constraints (2) define the behavior of the target CPU. This is done by relying
on a set of functions hbalk : {0, 1}n → (0, 1], each of which associates a mapping250

of all jobs to a value for the eff k variable, representing the efficiency of core k.
A base model for the second problem variant can be formulated as follows:

Base Model for the WDPmax

max z =

m−1∑
k=0

heff k (6)

subject to: heff k = hmaxk (x) ∀k = 0..m− 1 (7)

Constraints (3), (4), and (5) (8)

The model is identical to the one for the WDPbal, except for the cost function
and the functions hmaxk that define the system behavior. In particular, we255

assume here that each heff k is binary and such that heff k = 1 iff the efficiency
of core k is above the threshold value. Therefore, we have that each hmaxk is a
function hmaxk : {0, 1}n → {0, 1}.

Modeling the System Behavior. The critical step for defining a solution approach
for the WDPbal and the WDPmax is finding a suitable embodiment of the hbal260

and hmax functions. Here we survey the main alternatives.
First, the hbal and hmax functions can be evaluated in an exact fashion by

simply running the SCC simulator. This is the typical scenario in black box
optimization (see Section 2), and a viable approach when using GAs or Local
Search as solution methods. Unfortunately, in our case each simulation run265

requires several minutes, while the acceptable response time for the dispatcher is
in the order of (tens of) seconds. Amortizing the simulation time (by limiting
simulator calls or relying on an internal model) is not enough to solve the issue,
and therefore direct evaluations via the simulator are simply not viable.

Second, it is possible to use a heuristic measure as a “proxy” for the exact270

system behavior. Heuristics of this kind are often easy to embed in a combina-
torial model. More importantly, such heuristics are easy to define for domain

3For sake of simplicity we assume n to be a multiple of m. In the general case, computing
the features that will be introduced in Section 7.2 requires one to introduce some (simple)
non-linear constraints. This can be done via standard modeling constructs in Local Search or
MINLP. In CP, the computation can be done via the Weighted Average Constraint from [33].
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experts, who typically base their decisions on some kind of simple rule. For
example, in the case of the WDPbal, the designer of the simulator suggested to
use the average CPI (Clocks Per Instruction) of the jobs mapped on a core as275

a proxy for its efficiency. This approach has been considered in our experimen-
tation in Section 8. The main drawback of using a heuristic is that it becomes
usually impossible to a-priori quantify the degree of approximation. This is
undesirable in general, and may have an adverse affect on the solution quality.

Third, it is possible to define the hbal and hmax functions by using (e.g.)280

linear regression for fitting an expert-design model : we rely on the knowledge
of the domain expert for defining the model structure, while we extract the
parameter values from data. The accuracy of the model can be evaluated over
the training set or on a separate test set. We have considered this approach
(which is in fact a simple form of model learning) in our experimentation.285

Finally, we can use Empirical Model Learning and employ Machine Learning
to extract from data both the structure and the parameters of the system model.
This approach is applicable even when the structure of hbal and hmax is not
obvious, and it will be discussed in detail in the remainder of the paper.

4. The Empirical Model Learning Approach290

In EML, we are interested in solving optimization problems defined over
high-complexity systems, which typically have the following structure:

min f(x, z) (9)

s.t. gj(x, z) ∀j ∈ J (10)

z = h(x) (11)

xi ∈ Di ∀xi ∈ x (12)

where x is a vector of decision variables xi with domain Di, and z is a vector
of observables related to the target system. We make no special assumption on
the domains Di in the general case. The cost function f may depend on both
the decision variables and the observables.

All problem variables may be subject to constraints, represented as logi-295

cal predicates gj(x, z). The predicates may correspond to classical inequali-
ties from Mathematical Programming, or to combinatorial restrictions, such
as Global Constraints in Constraint Programming (e.g. alldiff, element).
Equations (9), (10), and (12) represent the core combinatorial structure of the
optimization problem. The h(x) function describes the (approximate) behavior300

of the high-complexity system and specifies how the observables depend on the
decision variables. The function h corresponds to the encoding of the Empirical
Model, obtained via Machine Learning.

Designing an optimization approach based on EML requires to take care of
three main activities:305

1. Defining the core combinatorial structure of the problem.

2. Obtaining a Machine Learning model.
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3. Embedding the Empirical Model in the combinatorial problem.

The third step is the critical one, and it will be the first to be presented (in Sec-
tion 5). It is possible to embed a Machine Learning model into a combinatorial310

problem only if a suitable encoding has been defined. Such an encoding should
be designed so that it can be exploited by the optimization approach for boosting
the search process (e.g. via bound computation or constraint propagation).

Step 1 consists in defining a combinatorial model and Step 2 is a classical
Machine Learning task (regression or classification). Both activities are non-315

trivial and may be time consuming, but they have been extensively studied in
the past. In the context of EML, they require some special attention: they will
be discussed in Section 6 and 7, using the WDPbal and WDPmax as running
examples.

5. Embedding the Empirical Model320

Embedding the extracted EM into an optimization model requires: (1) to
encode the Empirical Model in terms of variables and constraints; (2) to define
an operational semantics for such an encoding.

By operational semantics we refer to any procedure that can improve the
optimization process by reasoning over the EM. This operational semantics may325

be provided implicitly by the underlying solver (e.g. convex envelope bounding
in some MINLP solvers) or may be defined explicitly together with the encoding
(e.g. ad hoc filtering algorithms in CP).

In this section, we will show embedding techniques for two types of Machine
Learning models – namely Artificial Neural Networks (ANNs) and Decision330

Trees (DTs) – and four Combinatorial Optimization approaches – namely Lo-
cal Search (LS), Mixed Integer Non-Linear Programming (MINLP), Constraint
Programming (CP), and SAT Modulo Theories (SMT). The exact combinations
that we consider are reported in Table 1: we provide no technique for integrat-
ing ANNs in SMT, because solvers with support for non-linear theories are not335

widely available. We did not try to encode Decision Trees in MINLP, because
it would require extensive linearization of disjunctions, likely leading to poor
bounds. Additionally, the interested reader may find a technique for embedding
Random Forests in CP in work [5], by some of the authors of this paper. All our
encoding techniques are general and not restricted to our example problems.340

As a baseline case, we consider embedding a Machine Learning model in
Local Search. The core idea in Local Search is to improve iteratively an in-
cumbent solution, by exploring (evaluating) a set of neighbor solutions. Local
Search methods are originally designed for problems with discrete variables (un-
like many blackbox optimization methods), and they can deal with non-trivial345

constraints (either via violation-based cost functions or by incorporating the
constraints in the neighborhood definition).

LS approaches require only the ability to evaluate the cost and constraint
functions, and they always manipulate fully-instantiated solutions. For these
reasons, embedding a Machine Learning model requires simply to implement a350
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LS MINLP CP SMT
Artificial Neural Networks × × ×

Decision Trees × × ×

Table 1: Supported combinations of learning and optimization techniques

function evaluator. As a downside, LS approaches are limited in their ability to
exploit the model structure for boosting the search process.

5.1. Embedding Artificial Neural Networks in Optimization Methods

We briefly recall that ANNs (see [34] for a comprehensive reference) are com-
putational systems consisting in networks of basic units called artificial neurons.
Technically, an artificial neuron is a function with vector input x and scalar out-
put y, corresponding to the equation:

y = φ

(
b+

∑
i

wi xi

)
(13)

where xi denotes a single element in x, the wi terms are the input weights
(obtained via training), and b is a bias. The term φ is a monotonic, non-355

decreasing, often non-linear, activation function. Its argument is known as the
neuron activity.

5.1.1. Embedding ANNs in MINLP

Mixed Integer Non-Linear Programming (MINLP, see [35]) is a field of Math-
ematical Programming that is concerned with finding extreme points of non-360

linear functions subject to linear, non-linear, or integrality constraints. Modern
MINLP solvers can take advantage of the problem structure (constraints and
cost function) via convex envelope approximation, linearization, cutting planes,
constraint propagation, and branching.

An ANN can be embedded in a MINLP model by introducing variables to365

model the input and output of each neuron, and then by directly inserting the
neuron equations in the model. This is easy as long as the considered MINLP
solver supports the activation functions employed in the neurons. Once the EM
has been encoded, its equations will be automatically taken it into account by
the solver for computing bounds and generating cuts.370

There are a few aspects that deserve some care. First, several MINLP solvers
rely on convexity for providing globally optimal results. Any such MINLP solver
will converge to a local optimum (possibly different from the global optimum),
if the neurons use non-linear functions and the network has enough layers.

Second, numerical stability may be an issue. For example, some MINLP375

solvers need at some point to invert the model functions. In principle, most
activation function types can be inverted. In practice, however, due to the
finite precision of the underlying machine, the inversion may be possible only
on a restriction of the function domain, possibly leading to software crashes
and missed solutions. The issue can be addressed by restricting the domain380
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of the input/output variables of each neuron: this approach may accidentally
eliminate a high-quality solution, but the risk should be very low.

5.1.2. Embedding ANNs in CP

Constraint Programming (CP, see [36]) is an Artificial Intelligence technique
designed to solve Constraint Satisfaction Problems (CSP) and Constraint Op-385

timization Problems (COP). A CSP is defined as a set of variables, subject to
a set of constraints. Each constraint has an associated filtering algorithm that
can prune, at search time, provably infeasible values from the variable domains.
Pruning a value may trigger other filtering algorithms in a process known as
propagation. A constraint solver combines filtering, propagation, and search390

(which is highly customizable) to find solutions for a combinatorial problem.
Optimization can be performed by dynamically adding bounding constraints
whenever a feasible solution is found.

We have shown in [4] that an ANN can be encoded in CP by introducing
additional variables like in MINLP, and then by encoding each neuron as a
global Neuron Constraint. A Neuron Constraint has signature:

φ(y, x, w, b) (14)

where φ denotes the activation function type, y is the output variable, x is the
vector of input variables, w is the vector of weights, and b is the bias. Using a395

constraint to model each neuron allows one to encode complex networks (even
recurrent ones) with a limited number of basic modeling components (i.e. a
constraint for each type of activation function).

A Neuron Constraint maintains Bound Consistency on Equation (13), i.e.
its filtering algorithm is capable of pruning the x and y variables so that the400

extremes of their domains are guaranteed to be consistent. Bound Consistency
can be enforced for a Neuron Constraint by filtering the neuron activity and the
activation function separately. Formally, we consider the decomposition:

y = φ(y′) (15) y′ = b+
∑
i

wi · xi (16)

405

where y′ is a real-valued variable representing the neuron activity. The variable
is introduced to explain the filtering method, and typically it does not appear
in the model. Equation (16) is a linear expression, for which classical filtering
techniques exist. Since the activation function is monotonic and non-decreasing,
Bound Consistency on Equation (15) can be enforced by means of the following
rules:

y′ updated −→ y = min(y, φ(y′)) (17)

y updated −→ y′ = min(y′, φ−1(y)) (18)

where the notation y, y′ denotes the maximum in the domain of y and y′. The
key idea is that whenever the domain maximum of y′ is narrowed, this triggers
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Figure 1: An example of Decision Tree.

a reduction of the domain maximum of y, and vice-versa. The rules for filtering
the domain minima are analogous.

We recall that the φ function may be invertible in practice for a restricted410

range of values, due to the finite precision of the underlying machine. This issue
can be addressed by replacing φ−1(y) in Equation (18) with the expression
max{v ∈ R : φ(v) = y}. Moreover, since many constraint solvers do not provide
support for real-valued variables, it is often necessary to use integer variables and
a finite-precision representation. More details about practical implementation415

issues can be found in [4].
Using a global constraint for each neuron is not the only viable CP encoding.

An alternative approach consists in using a single global constraint to capture
a whole network: this method is less flexible, but can provide stronger filtering.
In [37] one of the authors of this paper has devised a global propagator based420

on a Lagrangian relaxation for a very common class of networks, i.e. two-layer,
feed-forward ANNs. For simplicity, however, in this paper we limit ourselves to
the original approach using one constraint per neuron.

5.2. Embedding Decision Trees in Optimization Methods

Decision Trees (DT) are a type of Machine Learning model typically em-425

ployed for classification tasks (see [38] for a comprehensive overview). Each leaf
of a DT is labeled with a class. Each node is labeled with one of a set of at-
tributes xi that are used to described the DT input. Attributes can be numeric
or symbolic. The outgoing branches of a node are labeled with conditions over
its attribute. The conditions form a partition of the attribute domain: every430

branch bj over a symbolic attribute is labeled with a set L(bj) of acceptable
symbolic values; every branch over a numeric attribute is labeled with a split-
ting condition over a threshold θ(bj), in the form xi ≤ θ(bj) or xi > θ(bj).
A simple Decision Tree is depicted in Figure 1. An example is classified by
starting from the root node and traversing the tree, always taking the branches435
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whose condition is satisfied by the values of the attributes. For a fully specified
example, this process leads to a single leaf, corresponding to the predicted class.

5.2.1. Embedding Decision Trees in SMT

Satisfiability Modulo Theories (SMT) is an extension of SAT that allows one
to include non-boolean predicates (e.g. linear inequalities over integer variables)440

in a logical formula. An SMT solver [39] combines a SAT solver and one or more
theory solvers, each providing support for some constraints via dedicated ap-
proaches (e.g. the Simplex algorithm). The SAT solver manages the boolean
representation, taking care of (e.g.) unit propagation and conflict learning. Sev-
eral search strategies are possible, ranging from lazy approaches where all the445

boolean decisions are instantiated before the theory variables, to more com-
plex schemes where the SAT and theory solvers work in an interleaved fashion.
Optimization can be performed by posting a bounding constraint whenever a
solution is found, and then restarting the search process.

SMT allows one to treat constraints over non-logical domains as boolean
predicates, enabling a convenient encoding of DTs. First, we introduce variables
to model the input attributes and the class (let them be x and y respectively).
Symbolic attributes and classes can be modeled as integer variables. Then, we
can obtain a simple rule-based encoding based on the observation that each
path π from root to leaf can be viewed as a logical implication:∧

bj∈π

cst(bj)⇒ Jy = C(π)K (19)

where the notation J−K refers to the boolean predicate corresponding to the
constraint enclosed in the brackets. The term C(π) is the class corresponding
to the leaf in the path π, and each bj is a branch along the path. Each expression
cst(bj) is in the form:

cst(bj) =


∨

v∈L(bj)

Jx(bj) = vK if x(bj) is symbolic

Jx(bj) ≤ θ(bj)K if x(bj) is numeric and bj is a left-branch

Jx(bj) > θ(bj)K if x(bj) is numeric and bj is a right-branch

where x(bj) refers in this case to the attribute variable associated to branch bj .450

Posting Clause (19) for each path in the tree is sufficient to encode a DT.
However, it is possible to obtain a formulation leading to stronger propagation.
The key observation is that the set of leaves labeled with a certain class specifies
all and only the input configurations that should be mapped to such class. This
allows one to encode a whole tree as a set of clauses:

∀ class ch : Jy = chK⇔
∨

πk:C(πk)=ch

 ∧
bj∈πk

cst(bj)

 (20)
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In other words, the class variable y takes the value ch iff at least one of the im-
plications associated to the paths πk labeled with ch is true. This formulation
allows the SMT solver to perform more powerful deductions via unit propaga-
tion, and it is therefore the one we employ in the remainder of the paper.

5.2.2. Embedding Decision Trees in CP455

If the Constraint Programming solver used for the implementation supports
logical expressions, then it is possible to directly employ in CP the encoding
from Equation (20). Indeed, such an encoding was originally designed for CP
and presented by some of the authors of this paper in [5].

If logical constraints are not supported, it is still possible to obtain an equiv-
alent reformulation of Equation (20), by separately modeling the left-to-right
and right-to-left implications associated with the ⇔ operator. In particular,
the right-to-left implication corresponds to Equation (19) and for the whole DT
translates to:

∀ path πk :
∏
bj∈πk

cst(bj) ≤ Jy = C(πk)K (21)

where the notation J−K refers here to a reified constraint, which denotes 1 if the
expression between the double square brackets is true and 0 if the expression
is false. Informally, Equation (21) forces the class variable y to take the value
C(πk) if the current domain of the attribute variables is such that all the cst(bj)
constraints are necessarily satisfied. Conversely, if y takes the value C(πk), then
at least one of the conjunctions of cst(bj) constraints must be true. This leads
to:

∀ class ch : Jy = chK ≤
∑

πk:C(πk)=ch

 ∏
bj∈πk

cst(bj)

 (22)

None of the presented encodings is capable of enforcing Generalized Arc Con-460

sistency (GAC). GAC can be actually achieved in CP using the two encodings
that we have presented in [5] (respectively based on a table and an mdd con-
straint). For sake of simplicity in this paper we restrict ourselves to the simple
encodings that we have presented, and we refer the interested reader to [5].

6. Design of the Optimization Model465

In this section we discuss Step 1 of the EML design process, i.e. the definition
of the core combinatorial structure of the optimization problem. Informally, this
is the part of the optimization model that can be designed by a domain expert
in a traditional fashion. Defining the combinatorial structure requires one to
identify the input and output of the Empirical Model, i.e. to define which part of470

the final model should be extracted from data. This decision affects the Machine
Learning techniques that can be used to extract the Empirical Model.
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For our example problems, we have already provided a first definition of the
core combinatorial structure in the two base models from Section 3. In both
cases, the input of the Empirical Model is given by the mapping variables. The475

EM output for the WDPbal is given by the efficiency of each core: this implies
that some kind of regression technique must be used to obtain the Empirical
Model. The output for the WDPmax is a vector of binary variables (eff k = 1
iff core k has “high” efficiency), hence in this case the Empirical Model is a
classifier.480

In the remainder of this section we will present models for the core combina-
torial structure of the WDPbal and the WDPmax, using a variety of optimization
techniques (LS, MINLP, CP, and SMT). We refer to each model with the nota-
tion Tp(h), where T identifies the solution technique, and p the problem type
(bal for the WDPbal and max for the WDPmax). The h term identifies how the485

relation between the mapping and the efficiency variables is modeled, which is
is left unspecified in this section (the possible alternatives will be discussed in
Sections 7 and then again in Section 8).

Core Model for Local Search. The Local Search model for the WDPbal is identi-
cal to the base model presented in Section 3, and reported here for convenience:490

LSbal(h)

max z = min
k=0..m−1

(effk ) (23)

subject to: eff k = hk(x) [empirical model] ∀k = 0..m− 1 (24)

m−1∑
k=0

xik = 1 ∀i = 0..n− 1 (25)

n−1∑
i=0

xik =
n

m
∀k = 0..m− 1 (26)

xi ∈ {0, 1} ∀i = 0..n− 1 (27)

where we recall that n is the number of jobs and m is the number of cores. The
hk functions represent the Empirical Model, which will be discussed in detail in
Section 7. Analogously, the LS model for the WDPmax is:

LSmax(h)

max z =

m−1∑
k=0

(heffk ) (28)

subject to: heff k = hk(x) [empirical model] ∀k = 0..m− 1 (29)

Constraints (25), (26), (27)

495
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Core Model for MINLP. A MINLP model for the WDPbal can be obtained from
the base model by linearizing the objective function:

MINLPbal(h)

max z (30)

subject to: z ≤ effk ∀k = 0..m− 1 (31)

eff k = hk(x) [empirical model] ∀k = 0..m− 1 (32)

Constraints (25), (26), (27)

We did not design a MINLP model for our second example problem, because
we have not defined a technique for encoding in MINLP a Decision Tree, i.e.500

the Empirical Model that we employ for the WDPmax (see Section 7).

Core Model for CP. We have designed CP models for the two dispatching prob-
lems presented in Section 3. Unlike the LS and MINLP case, in the CP models
we represent the mapping decisions via integer variables xi ∈ {0, ..,m−1}, such
that xi = k iff job i is mapped on core k. This encoding ensures that a job is505

always mapped to a single core. The full model for WDPbal is as follows:

CPbal(h)

max z = min
k=0..m−1

(effk ) (33)

subject to: eff k = hk(x) [empirical model] ∀k = 0..m− 1 (34)

gcc
(
x, {0, ..,m− 1}, n

m

)
(35)

xi ∈ {0, ..,m− 1} ∀i = 0..n− 1 (36)

effk ∈ (0, 1] ∀k = 0, ..m− 1 (37)

Constraints (35) employ a gcc (Global Cardinality Constraint [40]) to ensure
that the same number of jobs is mapped to each core. The gcc constraint forces
each value of the set {0, ..m− 1} to be taken by exactly n/m of the x variables.510

The model for the WDPmax is identical, except for the cost function and the
definition of the efficiency variables:

CPmax(h)

max z =

m−1∑
k=0

(heff k) (38)

subject to: heff k = hk(x) [empirical model] ∀k = 0..m− 1 (39)

Constraints (35), (36) (40)

heff k ∈ {0, 1} ∀k = 0, ..m− 1 (41)
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Core Model for SMT. We did not design an SMT model for the WDPbal, be-
cause the Empirical Model that we employ in this case is a Neural Network and515

we have not devised a technique for embedding ANNs in SMT. We did however
define an SMT model for the WDPmax. In the model we represent the mapping
decisions via integer variables xi,k such that xi,k = 1 iff job i runs on core k,
similarly to what was done for LS and MINLP. The resulting SMT model is:

SMTmax(h)

max z =
∑
k=0

m− 1 (heff k) (42)

subject to: heff k = hk(x) [empirical model] ∀k = 0..m− 1 (43)

m−1∑
k=0

xik = 1 ∀i = 0..n− 1 (44)

n−1∑
i=0

xik =
n

m
∀k = 0..m− 1 (45)

Jxik = 0K ∨ Jxik = 1K
∀i = 0..n− 1,

k = 0..m− 1
(46)

520

where Jxi,k = 0K and Jxi,k = 1K are boolean predicates associated to non-boolean
constraints (in this case, linear equations over integer variables). The boolean
clauses (46) model the binary domain of the xi,k variables.

7. Extracting an Empirical Model

In this section we discuss Step 2 of the EML design process, i.e. obtaining525

the Empirical Model. In principle, extracting the Empirical Model is simply a
supervised learning task: given a training set containing known input/output
pairs (i.e. examples) for the considered system, the goal is to obtain a function
to predict the system behavior on unseen examples. This goal can be achieved
via a number of powerful techniques from the Machine Learning domain. In530

this work, we will limit ourselves to Artificial Neural Networks (ANNs) and
Decision Trees (DTs), i.e. the Machine Learning models for which an embedding
technique has been provided in Section 5.

In general, extracting a Machine Learning model requires one to: (1) obtain
a training set, (2) choose the features to be used as input, (3) choose a Machine535

Learning technique, and then (4) proceed with the training and the evaluation.
Extracting an Empirical Model is done in the same way, except that each step
requires some special care because of the peculiarities of the EML context. In
the remainder of this section we identify such peculiarities and how to deal with
them, using the two dispatching problems from Section 3 as running examples.540
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7.1. EM Extraction, Step 1: Obtaining a Training Set

In EML, a training set can be obtained either by collecting historical data
or by running ad-hoc experiments. This can be a costly operation, but it needs
to be performed only once4, for obtaining the Empirical Model.

A good training set should be representative of the instances (input con-545

figurations) for which a prediction needs to be made. In a classical Machine
Learning scenario, the set should include instances that are likely to occur in
practice, so as to introduce a controlled bias that simplifies the learning problem.
In EML, however, the instances to be evaluated are generated by an optimization
system: in our example problems, given a specific set of jobs, the search engine550

will try to explore the space of possible mappings as extensively as possible. In
this kind of situation, defining which input configurations are more likely to be
generated can be extremely difficult.

We address this issue by designing a training set that is as unbiased as
possible with respect to the decisions made by the search engine. For example,555

we can (1) collect groups of jobs that are likely to be submitted to the system,
and then (2) build a training set by generating mappings at random so as to
“cover” the set of possible mappings as uniformly as possible. This approach
yields a training set that is biased towards likely sets of jobs, but unbiased w.r.t.
how such jobs can be mapped.560

The Training Set for the Example Problems. For our dispatching problems, we
learn a different Machine Learning model for each core. Using different models is
necessary since the cores have non-homogeneous behavior, due to unique factors
such as their position on the chip, or variability in the manufacturing process.
Using a model for each core rather than a single model for the whole platform565

allowed us to obtain high accuracy using a limited number of inputs, leading to
a dramatic reduction of the training set size.

We built the training set for each core by generating random groups of
mapped jobs. Then, the corresponding efficiency values were obtained via the
simulator. The efficiency values were employed directly in the training set for
the WDPbal , while for the WDPmax the efficiency was discretized into a 0-1
class using the value 0.97 (i.e. 97%) as a threshold. The threshold was chosen
together with domain experts. The efficiency measure that we consider is the
average efficiency of the mapped jobs, computed as:

effk =
1

n/m

∑
job i on core k

cpii

ĉpii
(47)

where n/m is the number of jobs mapped on the core, cpii is the nominal CPI of

job i (which assumes maximum operating frequency), and ĉpii is the job CPI as
measured during simulation (which includes the slow-down due to the thermal570

controller). The formula provides an indication of the main factors that affect
the core efficiency. In particular, we observe that:

4Unless active learning is employed, but we leave this as a subject for future research.
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1. Because of the thermal controller, the efficiency of a core depends on its
temperature, which is affected by how much the running jobs stress the
CPU. In particular, there is a known correlation between the temperature575

of a core and the average CPI of the running jobs (see Section 8).

2. The temperature of a core is also subject to thermal interactions from the
other cores, in particular the nearest ones.

3. The temperature of a core depends on its position on the silicon die, which
affects its ability to disperse heat: this dependency is taken into account580

by learning a different model for each core.

4. The temperature of a core is affected by that of the computer room. For
sake of simplicity, we disregard this factor in the paper (it could be taken
into account – for example – by learning different models for different
room temperature ranges).585

5. Finally, not all jobs are affected by the thermal controller in the same
way. Jobs with higher cpii values spend a lot of clock cycles waiting for
memory operations to conclude: as a consequence, their actual CPI value
is less affected by the thermal controller (which acts on the frequency of
the CPU and not of the memory). Conversely, jobs with low CPI are more590

affected by frequency reductions.

Based on these observations, we obtained training sets via a factorial design
(similarly to what is done for surrogate models [21]). In particular, for each
core k we generated multiple random sets of 288 jobs (6 per core) so as to
cover the possible values of some key parameters, reported in Table 2. Each595

parameter in the table is an approximation for one of the main factors affecting
the core efficiency. The p0, p1, p2 parameters are related to the average CPI of
the jobs on each core, which is used as a proxy for the temperature. The actual
CPI values on core k are randomly generated following a beta distribution,
with 4 different parameterizations (see p3 in the table). The CPI values on the600

remaining cores are also beta distributed, but a single parameterization is used
in this case (chosen uniformly at random from those considered for core k).

Overall, for each core we obtained (up to) 3×21×3×4 = 756 sets of mapped
jobs, which were simulated in order to obtain the corresponding efficiency values.
The process was quite time consuming, given that each simulation takes two-605

to-three minutes of computation time. However, the training set needs to be
generated only once, during the system setup: the performance of the EML
based solution approach is not affected by the training time, but rather by the
complexity of the extracted model. All our training sets are publicly available5.

7.2. EM Extraction, Step 2: Choosing the Input Features610

In EML, the input of the Empirical Model consists in principle of the deci-
sion variables themselves. In practice, feeding the decisions (e.g. the job-core
mapping) directly to a Machine Learning model would make it dependent on

5In the git repository https://bitbucket.org/m_lombardi/eml-aij-2015-resources
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Parameter Corresponding Factor #Values

p0
Average CPI of the jobs mapped on
core k

Power consumption of
core k

3

p1
Average CPI of the jobs mapped on
neighboring cores

Power consumption of
nearby cores

up to 21

p2
Average CPI of the jobs mapped on
the remaining cores

Power consumption of
far-off cores

3

p3
α and β values for a beta distribution,
for generating CPIs values

Effect of the individual
CPI values of the jobs
on core k

4 α, β
pairs

Table 2: Factorial design of the training set for core k

the problem size and reduce the generality of the method. In Machine Learn-
ing, this issue is usually addressed by using aggregation functions (e.g. average,615

standard deviation...) to obtain features that are then fed to the model.
In EML, this means that the Empirical Model constraints in the formulation

from Section 4 are in fact a combination of two relations:

z = h(x) is equivalent to

{
y = hfeat(x)

z = hEM (y)
(48)

where y is a vector of variables representing the features, hEM is the encoding of
the Machine Learning model, and hfeat are feature extraction constraints. The
need to encode in the final model also the feature extraction constraints may
lead to accuracy/effectiveness trade-offs: for example, an important feature may620

be difficult to encode in the optimization technique that is best suited for the
combinatorial part of problem.

Input Features for the Example Problems. We designed and tested several input
features, based on the factors affecting the efficiency that have been identified
in Section 7.1. After several attempts, we settled for the following list:625

1. The average CPI of the jobs on core k: avgcpik = 1
m

∑
job j on k cpij

2. The minimum CPI of the jobs on core k: mincpik = minjob j on k (cpij)

3. The average of the average CPI of the neighboring cores:
neighcpik = 1

|N(k)|
∑

core h∈N(k) avgcpih

4. The average of the average CPI of all the other cores:630

othercpik = 1
m−1−|N(k)|

∑
core h6=k,h/∈N(k) avgcpih

where N(k) is the set of cores having H∞ distance (i.e. the maximum between
the distances along the x and y coordinates on the chip grid) equal to one from
the target k. Most of the input features correspond directly to the parameters
from Table 2, which is quite natural. The mincpik feature was introduced635

(among other, eventually discarded, ones) to provide the Machine Learning
model with information about the individual CPI values.
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The feature extraction constraints for the Local Search models are:

avgcpik =
1

m

n−1∑
i=0

cpii · xi,k ∀k = 0..m− 1 (49)

mincpik = min
i=0..n−1

(maxcpi − (maxcpi − cpii) · xi,k) ∀k = 0..m− 1 (50)

neighcpik =
1

|N(k)|
∑

h∈N(k)

avgcpih ∀k = 0..m− 1 (51)

othercpik =
1

m− 1− |N(k)|
∑

h6=k,h/∈N(k)

avgcpih ∀k = 0..m− 1 (52)

where avgcpik,mincpik, neighcpik, othercpik are real-valued variables, andmaxcpi
is the maximum possible CPI (a constant). The feature extraction constraints
for the CP models are identical to those used for Local Search, except that in640

place of the xi,k variables we use reified constraints in the form Jxi = kK.
Constraints (49), (51), and (52) can be directly inserted in a MINLP model.

This is not the case for Constraints (50), because of the presence of the “min”
operator. It may be possible to encode the minimum operator in a MINLP via
integer variables and linearization, with adverse effects on the bound quality. For645

sake of simplicity, however, we have decided to extract two groups of Empirical
Models, respectively with and without the mincpik input feature. Only the
second group has been embedded in MINLP.

In the SMT model from Section 6, linear predicates that define avgcpik,
neighcpik, othercpik can be obtained from Constraints (49), (51), and (52) by
replacing the xi,k variables with the LIA (Linear Integer Arithmetic) predicates
Jxi,k = 1K. For defining the feature extraction constraints of mincpik, we first
build a vector s containing all job indices, sorted by increasing CPI value. Then,
we post the hybrid linear/logical predicate:

mincpik = ite(Jxs0 = 1K , cpis0 , ite(Jxs1 = 1K , cpis1 , . . .)) (53)

where ite is an if-then-else statement: the first parameter is the condition to
test, the second and third parameter are the expressions to be denoted if the650

condition is respectively true or false.

Normalization. For many Machine Learning approaches (e.g. the Artificial Neu-
ral Networks that we will employ in the next section), it is beneficial to normalize
the input features in a fixed range (typically [−1, 1]). In our case, this was done
using the formula:

avgcpi′k =
1

span1
(avgcpik − span0) ∀k = 0..m− 1 (54)

for avgcpik and analogously for all other features. In the formula, span0 =
(maxcpi +mincpi)/2 and span1 = (maxcpi −mincpi)/2. The value mincpi rep-
resents the minimum possible CPI value, which is assumed to be 0 in a slightly
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conservative fashion (CPI values are always strictly positive). The normaliza-655

tion Formula (54) was included in the feature extraction constraints for all our
approaches using ANNs for the Empirical Model.

7.3. EM Extraction, Step 3: Training and Quality Assessment

Designing and training a model are very well studied topics in Machine
Learning (see [41] for an excellent overview). Both steps require one to assess the660

quality of the extracted model, which is measured via metrics such as the Mean
Squared Error or the number of correctly classified instances. The assessment
is typically done on a separate test set or via cross-validation.

In EML, the fact that the input of the Machine Learning model is generated
by a search approach makes the quality assessment more complicated. Suppose665

for example that the extracted model has a large prediction error for a certain
range of values of the input features that is not very frequent in the training
set. If the same values happen to be favorable in terms of cost in the problem
model, then such input configurations, despite being uncommon in the training
set, will be actively sought by the optimizer and will be much more likely to670

appear at search time. Because of this, the actual error in the final system has
a chance to be similar to the maximum error on the test set.

This issue could be addressed by using (for example) the maximum error
as an evaluation metric during training. Alternatively, one could dynamically
generate new examples that are similar to the ones leading to the largest errors,675

and then repeat the training. For sake of simplicity, in this paper we limit
ourselves to classical training techniques: this means for example that we use
the Mean Squared Error to evaluate the quality of ANNs at training time. Since
the Mean Squared Error assigns a higher penalty to errors with large absolute
value, it also tends to mitigate the issue that we have described.680

In traditional Machine Learning applications, evaluating the model (i.e.
making a prediction) is usually a simple operation. In EML the extracted model
is not simply evaluated, but rather it is exploited in a number of ways in or-
der to boost the search process. This makes the size and complexity of the
extracted model particularly important, since they determine the computation685

effort required for (e.g.) bounding or constraint propagation. This can lead
to a trade-off between model size and accuracy, which may be critical if the
final optimization system operates under tight time constraints. For our exam-
ple problems, it was possible to obtain accurate and yet quite small EMs, and
therefore we leave a thorough evaluation of this trade-off for future research.690

Empirical Models for the WDPbal . We used Artificial Neural Networks (ANNs)
for the Empirical Model of the WDPbal , for several reasons. First, we needed
a regression technique because the EM output had to be an efficiency value.
Moreover, ANNs are a classical technique in Machine Learning, they require
little domain knowledge, and their modular nature makes them easier to embed695

in Combinatorial Optimization (see Section 5).
We trained for each core a feed-forward network with one hidden layer. We

used bipolar sigmoid neurons (with tanh activation function) in both the hidden
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Figure 2: Mean prediction error for the main ANN0

and the output layers: the use of alternative activation functions (e.g. rectifiers)
may be considered as part of future research. The output of each network is700

therefore in the (−1, 1) range, and must be scaled in order to obtain an easily
understandable efficiency value. We used the Encog framework [42] for training
the ANNs, via the Levenberg-Marquardt algorithm. After some experiments,
we settled for using two neurons in the hidden layer (increasing the size did not
significantly improve the accuracy).705

We trained two ANN variants for each core, both having the same number
and type of neurons. The first variant, referred to as ANN0, takes as inputs
all the features from Equations (49)-(52). The second variant is referred to as
ANN1 and lacks the mincpik input, which is the most difficult to encode in
Combinatorial Optimization.710

We evaluated the ANNs over their training sets and over separate test sets.
The test set for each core was obtained by sampling 50 examples at random
from the training sets of the other cores. Therefore, each test set contains 50×
47 = 2, 350 unseen examples, it is considerably different from the corresponding
training set and considerably challenging.715

Figure 2 reports the mean absolute values of the prediction errors for ANN0
on each core. The cores are indexed by rows over an 8 × 6 grid, hence cores
0-5 refer to the first row, 6-11 to the second and so on. The errors refer to
efficiency values in the range (0, 1], hence a mean error of 0.01 corresponds to a
1% efficiency difference. The mean prediction errors are very low for both the720

training and the test set. Moreover, the efficiency of the cores on the first row
and of those on the left and right chip borders is considerably easier to predict.
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Figure 3: Mean prediction error for the ANN1 lacking the “min” input.

Figure 3 reports the mean absolute values of the prediction errors for the
ANN1 networks, i.e. those without the mincpik input. Their average accuracy
is still quite good, but definitely worse than ANN0 (∼ 2.5% against ∼ 1%). On725

the other hand, the ANN1 networks are easier to embed and may be employed
with more effective optimization techniques. This kind of trade-off is not unique
to EML. Rather, it is common when dealing with real world problems that
involve approximate models. In this context, EML provides a flexible approach
to balance model accuracy and solver efficacy.730

Figure 4 reports the error histogram over the training set for the ANN0 and
ANN1 networks corresponding to core #20 (located close to the center of the
chip). Actual errors are considered here rather than their absolute values. In
most cases, both networks provide very accurate predictions, but larger error
values (e.g. in the order of 10%) are more likely to occur for ANN1. This is735

potentially an issue, given the importance of maximum errors in EML (see the
beginning of this Section 7.3).

Finally, we have investigated the impact that changing the size of the training
set has on the accuracy of the ANN1 networks. In particular, we have tried to:
(1) decrease the size of each training set by removing a (varying) percentage of740

instances, chosen uniformly at random; and (2) increase the size of each training
set, by adding a (varying) number of instances chosen uniformly at random from
the other training sets. The networks trained on these modified sets have been
tested on the original test sets. We have found that both removing and adding as
little as 10% instances has a significant adverse effect on the accuracy, leading to745

much larger average errors for some cores. The rationale is that both removing
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ANN0 ANN1

Figure 4: Prediction error histograms for the ANNs corresponding to core 20

and adding instances causes an alteration of the factorial designed employed in
the original training sets, making some region of the input space either over- or
under-represented. The accuracy plots for this experimentation are not reported
in this paper, but they are available on-line6.750

Empirical Models for the WDPmax . For the second dispatching problem, we
can use a classifier as an Empirical Model, trained to distinguish low- and high-
efficiency cores. Specifically, our Empirical Model consists of a Decision Tree
(DT) for each core. We chose DTs for two main reasons: first, DTs were accurate
enough for the problem at hand. Second, our choice gives the opportunity to755

discuss the EML approach on a Machine Learning technique that is radically
different from Artificial Neural Networks.

We trained our Decision Trees using the C4.5 algorithm [43], implemented
in Weka [44] with the name J48, with the default parameters (in particular, all
trees are pruned). The performance of the DTs was assessed both via 10-fold760

cross-validation over the training set, and via evaluation over the test sets used
for the ANNs. The outcome of the two evaluations is reported in Figure 5, which
shows the percentage of correctly classified instances for the DT corresponding
to each core. The accuracy is actually very high in both cases.

8. Experimental Results765

In this section, we present an experimental evaluation of several solution
methods for our example problems. We consider all the alternative modeling
approaches discussed in Section 3, namely: (1) using a heuristic as a proxy for

6In the git repository https://bitbucket.org/m_lombardi/eml-aij-2015-resources
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Figure 5: Percentage of correctly classified instances for the Decision Trees.

the efficiency values; (2) using fitting to adjust the parameters of an expert-
designed model; and finally (3) several solution methods based on EML.770

The benchmark for the experimentation is a set of 20 instances, each with
288 jobs to be mapped on 48 cores (i.e. the full SCC platform). The instances
were designed to be as diverse as possible. As a common trait, each instance
includes a majority of low-CPI jobs, plus a small number of jobs with a relatively
high CPI: this was done to make the benchmark challenging, leaving at the same775

time sufficient room for improvements. The instances and the detailed results
are publicly available for download7.

All the solution approaches that we present are based on approximate mod-
els, since relying on the simulator during search would lead to unacceptable
response times. As a consequence, it is necessary to distinguish two levels in780

our experimental comparisons:

1. First, we compare the effectiveness of different solution approaches in
terms of the value of the cost function, i.e. the predicted solution quality.

2. Second, we compare solution approaches in terms of the “real” solution
quality, which in our case is obtained from the simulator.785

The first level of comparison is the one adopted by many combinatorial opti-
mization papers: it allows one to assess the effectiveness of a given approach
in finding solutions for a given model. This comparison is meaningful only for

7In the git repository https://bitbucket.org/m_lombardi/eml-aij-2015-resources
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Figure 6: Core efficiency over the average CPI of the mapped jobs.

solution approaches based on the same approximate system model. The second
type of comparison evaluates the combined effectiveness of the solution method790

and the approximate model. We will use the first type of comparison in Sec-
tion 8.3, in order to determine the best solution method for each modeling
approach (heuristic, model fitting, EML); the second type of evaluation is used
in Section 8.4 to compare optimization approaches based on different models.

8.1. Approximate System Models795

In this section, we briefly present/review the approximate system models
considered in our experimentation.

A Heuristic as a Proxy for the Efficiency. The computation workload of each
job is measured by its CPI value, and jobs are executed on each core in an
interleaved fashion by the thermal aware scheduler from Section 3. As a conse-800

quence, it seems reasonable to expect on each core k a correlation between the
efficiency and the average job CPI.

The existence of such a correlation has been checked empirically by per-
forming some pilot experiments. Figure 6 shows the results for core #41, and
contains a scatter plot with the efficiency on the y-axis and the average CPI of805

the jobs on the x-axis. Each point corresponds to a different set of jobs, and
the color reflects the density of the data points (red denotes higher values, and
hence the most typical region of operation). There is indeed a strong correlation
between the efficiency and the average CPI, which is almost linear for low av-
erage CPI values (i.e. the most interesting region for the considered problems).810

The results for the other cores are not always as clean as those obtained for core
#41, but a good degree of correlation is always present.

Based on these observations, our domain experts (i.e. the authors of the
platform simulator) have suggested to employ the average job CPI on each core
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as a proxy for its efficiency in the WDPbal. The resulting system model is:

eff = hACPI (x) = wTavgcpi (55)

where avgcpi is the vector of the avgcpik values, as specified in the feature
definitions (i.e. Equation (49)), and w is a vector of weights that identifies how
sensitive each core is to changes of the average CPI. Assuming we want to avoid815

the use of model fitting (which will be considered in the next paragraph), the
value of w must be fixed based on the knowledge of the domain expert. In our
experiments, we have considered two possibilities:

1. w = 1 for all cores;

2. w = 1 for internal cores, w = 0.75 for cores on the chip borders, w = 0.5820

for cores on the chip corners.

the first choice (referred to as ACPI model) is appropriate if reliable information
is missing. The second choice (referred to as wACPI model) takes into account
that heat dissipation is more efficient for the cores along the border of the silicon
die. We have employed the heuristic approach only for the WPDbal problem.825

Using Fitting to Adjust an Expert-designed Model. A compromise between using
EML and relying on a heuristic consists in employing function fitting to adjust
the parameters of an expert-designed model. With the aim to evaluate this
approach, we have devised a linear model for the WDPbal based on the features
from Section 7. The idea is that pilot experiments and the observations from
Section 7.1 should be sufficient to define this model structure, without relying
on more powerful learning techniques. The resulting model is referred to as
FEAT and is given by:

eff = hFEAT (x) = waTavgcpi+ wmTmincpi+ wnTngbcpi+ woT otrcpi

where wa, wm, wn, wo are vectors of weights that are obtained via linear regres-
sion. Linear regression makes it feasible to obtain values for all the parameters;
however, it also requires one to build a training set, and therefore an overall de-
sign effort much closer to that of extracting an Artificial Neural Network. Still,
in the FEAT model the cost function is linear, which may allow the optimization830

approach to get considerably closer to the optimum (predicted) cost. We have
employed the model fitting approach only for the WDPbal problem.

Using an Empirical Model. Finally, we have modeled the system behavior via
Empirical Model Learning. The details of our Empirical Models have already
been given in Section 7. Here we simply recall that we employed the ANN0835

and ANN1 Neural Networks for the WDPbal, while we employed Decision Trees
(referred to as DT) for the WDPmax. We recall also that the ANN1 model
differs from ANN0 because it lacks the mincpik input feature.
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Opt. Technique
Model LS MILP MINLP CP SMT
ACPI × × ×

wACPI × × ×
FEAT × × ×
ANN0 × ×

WDPbal

ANN1 × × ×
WDPmax DT × × ×

Table 3: Solution approaches considered in the experimentation.

8.2. The Solution Approaches

A summary of the solution approaches considered in our experimentation is840

reported in Table 3. The table highlights the solution techniques, the problems
they were applied to (i.e. WDPbal and WDPmax), and the models employed
for the system behavior. Only two of the solution techniques (LS and CP) have
been applied in all configurations: all the remaining ones were restricted to
linear formulations (MILP) or to specific system models (MINLP and SMT).845

We used Localsolver v3.0 [45] to implement our LS approach. We defined
our MINLP model in GAMS [46] and we solved it using BARON, via the Neos
Servers for Optimization [47]. As a CP system, we chose Google or-tools8, and
we employed the Neuron Constraint implementation that we developed in [4]. In
the CP model, we use integer variables with a fixed precision factor to represent850

real-valued variables. Finally, we chose Z3 by Microsoft Research for our SMT
models [39] and IBM ILOG CPLEX9 v12.5 for the MILP models. All solvers
were chosen based on their effectiveness (tested in some pilot experiments) and
on the accessibility of their modeling interfaces.

We use the default configuration of Localsolver, CPLEX, and BARON to855

solve our LS, MILP, and MINLP models. The CP and SMT models are instead
solved via a Randomized Adaptive Decomposition approach, similar in spirit
to Large Neighborhood Search and described in the next paragraph. This was
done in order to boost their ability to find high quality solutions in a reasonably
small time (a few tens of seconds in our case). The decomposition technique860

was not applied in LS (because Localsolver is already designed to be scalable),
nor in MINLP (because we had access to BARON via a slow, http-based, API),
nor in MILP (this could be a topic for future research).

Randomized Adaptive Decomposition. Our CP and SMT approaches are wrapped
in a decomposition method similar to Large Neighborhood Search to reduce the865

time for obtaining high-quality solutions. The method starts from an initial solu-
tion, which is obtained via the simple greedy heuristic presented in Algorithm 1.
The heuristic works by iteratively mapping the most computation-intensive job
(i.e. the one with lowest CPI) on the least loaded cores. A core k0 is considered

8The software and the existing documentation are available at: https://developers.

google.com/optimization/
9See the software page at http://www-01.ibm.com/software/commerce/optimization/

cplex-optimizer/
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Algorithm 1 Find Initial Solution(n, m, cpi)

sumk = 0, cntk = 0 ∀k = 0..m− 1
repeat

select the job i∗ with lowest cpii
map job i∗ on the core k∗ with min cntk, break ties by max sumk

sumk∗ = sumk∗ + cpii∗

cntk∗ = cntk∗ + 1
until all jobs are mapped

to be less loaded than a core k1 if: (1) there are fewer jobs on k0 than on k1;870

(2) the number of jobs is identical, but the sum of job CPIs on k0 is lower than
the sum for k1. This approach tries to balance the average CPI value on each
core, essentially following the same idea at the basis of the ACPI model.

Then, the decomposition method proceeds analogously to Large Neighbor-
hood Search, by iteratively: (1) selecting a small set CR of cores; (2) relaxing
the mapping decisions for all jobs running on such cores; (3) solving a restricted
problem to re-map the jobs within the cores in CR, with the aim to improve the
solution quality. The difference with LNS is that, when solving the restricted
subproblem, we change the objective function to:

max z = min
k∈CR

effk (WDPbal) max z =
∑
k∈CR

effk (WDPmax)

i.e. in the cost function we neglect the efficiency of all cores, except those in the
set CR. In other words, when solving the restricted problem at each iteration875

we look for local improvements rather than for global ones. This is particularly
useful for the WDPbal, for which it may happen that during search multiple cores
have a similarly low efficiency. In this situation, the decomposition approach
can focus on each of those critical cores individually.

We stop each iteration as soon as one improving solution is found, or when a880

time limit is reached. In the SMT approach, the restricted subproblem is solved
via Z3 with default parameters. In the CP case we use restarts and depth first
search, with random variable and value selection.

For choosing the cores to relax, we always select a number nbad of “bad”
cores, of which we want to improve the efficiency, plus a number ngood of “good”885

cores, for which we can accept an efficiency reduction. In practice we employ a
slightly different criterion on the two example problems.

For the WDPbal : the “bad” cores are chosen randomly (with uniform probabil-
ity) among those with minimum efficiency; the “good” cores are chosen
randomly among the rest, with a selection probability given by the (nor-890

malized) ratio effk /avgcpi′k , where avgcpi′k is equal to avgcpik/maxcpi
.

For the WDPmax : the “bad” cores are chosen randomly (with uniform proba-
bility) among those having low efficiency; the “good” cores are chosen at
random among the rest, with a selection probability given by the (normal-
ized) value of avgcpik.895
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# obj obj UB obj (%) obj (%) obj (%) obj (%) UB

0 2.90 2.88 2.93 74.6 (0.4) 73.6 (1.1) 70.0 (0.2) 67.1 (1.0) 72.1
1 2.93 2.92 3.58 78.8 (0.6) 75.5 (2.1) 77.4 (0.4) 68.1 (2.5) 84.0
2 2.35 2.33 2.39 71.9 (0.3) 71.5 (1.3) 66.9 (0.7) 65.8 (0.5) 85.4
3 2.18 2.17 2.18 70.5 (0.4) 68.0 (4.6) 66.2 (0.1) 65.4 (0.6) 86.9
4 2.00 2.00 2.00 68.8 (0.4) 68.2 (0.8) 64.5 (0.1) 64.6 (0.6) 66.2
5 2.83 2.82 2.88 73.1 (0.5) 73.5 (1.0) 69.2 (0.3) 66.9 (0.6) 72.3
6 4.19 4.19 5.05 84.7 (0.3) 77.8 (5.5) 85.8 (0.4) 76.8 (6.5) 95.2
7 2.72 2.70 2.76 72.9 (0.4) 73.3 (0.8) 68.2 (0.7) 66.8 (0.8) 71.0
8 2.65 2.63 3.01 76.7 (0.3) 73.4 (3.2) 73.0 (0.5) 66.5 (1.8) 83.3
9 3.62 3.57 4.34 82.9 (0.5) 76.4 (4.0) 83.6 (0.6) 74.6 (4.8) 95.4
10 3.08 3.05 3.80 80.5 (0.5) 75.3 (1.9) 79.7 (0.5) 69.7 (3.1) 91.9
11 2.00 2.00 2.00 69.0 (0.1) 68.2 (1.1) 64.5 (0.1) 65.0 (0.4) 66.3
12 2.68 2.67 2.71 77.1 (0.4) 72.7 (1.5) 72.7 (0.6) 67.0 (1.0) 85.5
13 2.15 2.13 2.16 70.1 (0.3) 69.9 (0.8) 65.7 (0.3) 65.2 (0.4) 66.7
14 2.90 2.89 2.96 74.8 (0.5) 74.5 (0.7) 70.2 (0.1) 66.2 (0.9) 72.3
15 2.76 2.75 2.80 76.5 (0.6) 74.2 (3.1) 73.5 (0.6) 66.2 (1.4) 87.8
16 2.17 2.16 2.22 70.4 (0.2) 69.9 (1.8) 66.1 (0.1) 65.6 (0.4) 83.8
17 4.22 4.22 5.10 84.8 (0.2) 78.9 (3.5) 85.7 (0.4) 77.9 (6.5) 87.2
18 2.60 2.58 2.62 72.3 (0.3) 72.2 (0.8) 67.3 (0.8) 65.8 (0.8) 69.9
19 2.76 2.75 3.12 77.1 (0.6) 74.4 (1.8) 74.9 (0.7) 67.5 (0.9) 79.1

Table 4: Results for the WDPbal with the ACPI, ANN0, and ANN1 model.

In our experiments, we have nbad = 1 and ngood = 3 for the WDPbal , and we
have nbad = 2 and ngood = 3 for the WDPmax .

8.3. Evaluation based on the Predicted Quality

In this section, we compare the solution approaches from Table 3 in terms
of the predicted solution quality: this allow us to assess the effectiveness of each900

approach at finding good solutions for specific system models. The wACPI and
FEAT models were solved via Local Search, since such an approach performed
slightly better than MILP on the (very similar) ACPI model.

Results for the WDPbal. We obtained a LS approach based on the ACPI model
for the WDPbal by inserting the hACPI(x) function into the core Local Search905

model from Section 6. An analogous process was followed to obtain a MILP
approach. We solved the problem using a time limit of 90 seconds for Localsolver
(after that time no significant improvement was obtained) and of 1 hour for
CPLEX (in an effort to prove optimality).

The results of this experimentation are reported in Table 4, in the ACPI910

columns. For both the approaches we report the minimum average CPI for each
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instance (i.e. the value of the objective function). For MILP we also report the
value of the best upper bound at the end of the search process: as can be seen,
it was not possible to prove optimality within the time limit in most cases.
However, the bound values provide an indication that the solutions found by915

both approaches are indeed very good, with Localsolver having a slight edge.
Table 4 presents also the results of the EML approaches, based on the ANN0

and ANN1 model, respectively in the ANN0 and ANN1 columns. The prob-
lem objective (lowest core efficiency) is reported as a percentage value. It is
important to realize that only approaches operating on the same system model920

can be directly compared in terms of their predicted quality. Comparisons be-
tween approaches based on different system models will be taken into account
in Section 8.4, and are meaningless at this stage: this is emphasized in the table
by using double-lines to separate the ACPI, ANN0, and ANN1 columns.

We recall that a MINLP model has not been designed for the “full” Artificial925

Neural Network (i.e. ANN0), but only for the simplified version without the
mincpik input (i.e. ANN1). Moreover, since we rely on a remote server for
solving MILP problems, it was impossible for us to use the MINLP model within
our Randomized Adaptive Decomposition scheme, which severely affected the
performance of the approach.930

Eventually, we decided to make a different use of the MINLP model, namely
we employed it for computing a bound on the solution quality. This was done by
removing the integrality restriction from the mapping variables and by solving
the resulting Non-Linear Programming model. The best bound found after
2 hours is shown in Table 4 in the MINLPbal/UB column, where values in935

italic font denote optimal (non-integer) solutions. We believe this – somehow
disappointing – result provides actually a good example of how the flexibility of
EML allows one to obtain valuable information that would be inaccessible if a
single solution technique was used.

Localsolver makes use of a randomized search algorithm, and the decom-940

position method that we employ for solving our CP (and SMT) model is also
randomized. Therefore, for the LS and CP approaches we performed 10 runs
per instance with a time limit of 90 seconds. In CP, a timeout of 2 seconds
was enforced on each iteration of the decomposition method. For LS and CP,
the table reports in the obj columns the average value of the objective function945

(i.e. minimum core efficiency) over the 10 runs, and within round brackets the
standard deviation of the objective value over the 10 runs.

Both the CP and the LS approaches managed to obtain high quality solu-
tions, as it can be seen on the instances for which an optimal NLP bound is
available. The CP approach performed usually better, with gaps as large as950

∼ 10% for the simplified model ANN1, and as large as ∼ 7% for the “full”
model ANN0, which is significant enough for this application. The performance
of the CP approach was also considerably more robust over different runs.

The difference in performance stems from two main reasons: first, the prop-
agation of Neuron Constraints often allows the CP solver to quickly terminate955

many iterations of the decomposition method. Second, the incorporation of ex-
pert knowledge in the selection of the cores to be relaxed allows one to steer the
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DT

CPmax LSmax SMTmax

# obj obj obj

0 29.60 (0.917) 27.70 (0.458) 23.60 (0.800)
1 33.60 (0.800) 32.40 (0.663) 24.80 (0.980)
2 28.70 (1.005) 28.10 (0.700) 22.50 (1.025)
3 25.10 (0.700) 25.10 (0.539) 18.10 (0.943)
4 23.30 (0.458) 23.50 (0.500) 15.00 (2.236)
5 30.50 (1.118) 29.00 (0.632) 23.30 (0.900)
6 39.10 (0.700) 36.90 (0.700) 26.20 (1.778)
7 28.60 (0.800) 27.90 (1.044) 23.00 (1.183)
8 32.90 (1.300) 30.70 (0.640) 24.10 (0.700)
9 37.30 (0.640) 34.90 (1.044) 25.80 (1.600)
10 35.60 (0.917) 33.20 (0.872) 24.10 (0.943)
11 24.30 (0.781) 24.00 (0.000) 15.00 (1.000)
12 33.10 (0.831) 31.30 (0.781) 24.00 (1.095)
13 24.00 (1.000) 24.00 (0.000) 17.40 (1.497)
14 29.60 (0.663) 28.60 (0.917) 23.20 (0.980)
15 32.90 (0.831) 30.80 (0.600) 23.70 (1.100)
16 25.10 (0.700) 24.70 (0.640) 17.20 (2.088)
17 38.90 (0.539) 36.60 (1.020) 26.90 (1.221)
18 26.40 (1.020) 25.20 (0.400) 21.80 (0.748)
19 32.90 (1.136) 31.80 (0.748) 24.70 (1.100)

Table 5: Results for the WDPmax

search toward promising regions of solution space.

Results for the WDPmax . Here we present the results for the second dispatching
problem from Section 3. As we anticipated, on this setting we have tested a960

single Empirical Model, i.e. the Decision Trees extracted in Section 7. We solved
the benchmark instances with LS, CP, and SMT. The CP and SMT approaches
make use of the decomposition method described at the beginning of Section 8.
Each instance was solved 10 times with different random seeds, and with a
time limit of 90 seconds. Again a time limit of 2 seconds was enforced on each965

iteration of the decomposition method.
Table 5 reports, like in previous cases, the average value of the problem

objective over the 10 runs and its standard deviation. Similarly to the WDPbal ,
propagation and domain knowledge allow the CP approach to perform generally
better than LS, although the gap is smaller on this problem. LS seems to be970

slighly more stable than CP, as highlighted by the standard deviation values.
The SMT approach was the worst performer, despite being based on the same

decomposition method as CP. The reason is that the Z3 solver had difficulties
in proving infeasibility when solving subproblems corresponding to an unlucky
selection of the relaxed cores. The CP approach, conversely, was often able to975

close these subproblems within the 2 seconds time limit.
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ACPI wACPI FEAT ANN0 ANN1

LS LS LS CP CP

# sim (%) sim (%) sim (%) sim (%) sim (%)

0 53.5 (14.3) 53.1 (8.3) 58.5 (7.7) 63.8 (6.3) 60.8 (7.0)
1 56.8 (11.1) 52.1 (10.8) 62.8 (7.5) 63.4 (6.7) 65.0 (7.5)
2 53.9 (13.8) 59.7 (9.0) 56.4 (9.1) 58.4 (7.7) 58.0 (8.5)
3 50.2 (13.7) 54.0 (9.2) 48.7 (7.8) 64.3 (7.0) 60.9 (9.1)
4 61.0 (10.8) 53.2 (8.1) 50.0 (8.5) 60.0 (7.2) 46.7 (10.7)
5 52.5 (13.2) 52.5 (8.4) 56.7 (7.6) 65.7 (6.7) 59.2 (7.9)
6 58.1 (12.5) 57.1 (10.6) 56.6 (8.1) 62.9 (7.3) 60.2 (9.1)
7 51.9 (13.3) 58.3 (8.9) 59.6 (8.5) 65.1 (6.4) 67.2 (7.0)
8 60.3 (11.1) 58.7 (8.7) 56.4 (10.5) 63.4 (6.5) 65.2 (7.7)
9 60.1 (11.1) 63.0 (10.1) 60.0 (7.2) 67.7 (5.7) 65.4 (6.6)
10 61.8 (11.6) 53.4 (12.0) 56.2 (9.0) 65.2 (6.7) 62.9 (7.9)
11 59.2 (11.8) 50.1 (8.4) 48.8 (8.3) 57.1 (6.1) 56.0 (10.3)
12 57.0 (11.9) 59.2 (9.2) 56.1 (9.8) 65.2 (7.8) 63.5 (8.3)
13 50.0 (11.0) 54.2 (7.8) 55.1 (8.4) 63.9 (6.4) 59.1 (8.5)
14 51.6 (14.9) 55.6 (8.7) 57.2 (8.9) 59.5 (7.7) 65.2 (7.3)
15 55.3 (11.6) 55.2 (10.1) 60.2 (9.6) 63.1 (7.3) 61.7 (7.1)
16 51.8 (12.1) 56.6 (8.3) 50.8 (7.9) 63.9 (8.0) 56.9 (9.6)
17 60.5 (12.3) 64.7 (9.8) 60.0 (7.2) 67.5 (6.2) 65.7 (8.0)
18 51.0 (12.8) 51.7 (9.0) 55.6 (8.0) 63.5 (6.8) 66.5 (7.3)
19 54.3 (12.5) 53.1 (10.8) 56.6 (8.4) 63.8 (8.3) 66.0 (8.5)

Table 6: Solution quality of several approaches as measured on the target system. The values
within square brackets are standard deviations of the efficiency of the platform cores (for a
single solution), rather than standard deviations taken over multiple runs.

8.4. Evaluation on the Real System

In this section, we compare the solutions provided by different approaches
in terms of their quality over the target system, i.e. the SCC simulator from
Section 3. By doing so, we evaluate at the same time both the optimization980

approach and the accuracy of the system model. This allows one to compare
radically different approaches designed to solve the same practical problem.
This evaluation is restricted to the WDPbal .

We compare solutions obtained using the ACPI, wACPI, FEAT, ANN0,
and ANN1 system models. For each of them, we employed the approach that985

worked best in terms of predicted solution quality, hence LS was used for ACPI,
wACPI, and FEAT, while CP was used for ANN0 and ANN1. Each instance
in the benchmark was solved only once, with a time limit of 90 seconds (and 2
seconds for each decomposition iteration).

The results for this experimentation are reported in Table 6. For each ap-990

proach we report the minimum (simulated) core efficiency as a percentage. We
also report between brackets the standard deviation of the core efficiencies (this
is not the standard deviation of the cost over different runs, as each instance is
solved only once). The reason for showing this standard deviation is that the
minimum core efficiency, when used as a quality measure of real solutions, is995
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Figure 7: Simulated efficiency values for LSbal(ACPI ).

not very robust w.r.t. approximation errors: a very well balanced solution with
a single large approximation error could appear as having very poor quality.
Adding the standard deviation allows one to detect this kind of situation.

The solution approaches based on ANN models obtained in general better
results than those with a linear objective, including the FEAT model for which1000

the coefficients were obtained via linear regression. The advantage is in terms of
both the minimum efficiency and the standard deviation. The results obtained
with the more accurate network (ANN0) tend in turn to be better than those
obtained with the simplified ANN1.

The results of the simulation for the ACPI and the ANN0 models can be1005

observed in detail in Figure 7 and Figure 8. Each subfigure corresponds to
an instance, and each tile within a subfigure corresponds to a core (we recall
that the platform has an 8 × 6 layout). Green/red tiles respectively denote
higher/lower efficiency values: a full red corresponds to 50% efficiency, while a
full green to 100%. The LSbal(ACPI) approach (Figure 7) is often able to obtain1010

fairly balanced workloads. However, the produced mappings do occasionally
lead to abnormally low efficiency for some cores. This happens even in cases
where the solution is close to optimal: by cross-checking the results with those
of Table 4, it is possible to see for example that very low efficiency values occur
on instance #15, where the cost function has value 2.76 against a bound of 2.80.1015

The efficiency maps from Figure 8, corresponding to the solutions provided by
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Figure 8: Simulated efficiency values for CPbal(ANN0 ).

CPbal(ANN0 ), are much more uniform.
By comparing the results of Table 6 with those from Table 4, it can be seen

that the predicted (minimum) efficiency levels tend to be 5-10% higher than
the real values. On this regard, there are two interesting facts to observe: first,1020

despite the significant error level, the CP solutions (with the ANN0 model) are
very well balanced in terms of efficiency: this suggests that the overestimation
tends to be similar over all cores. Second, the error level is of the same order
of the largest errors in the EM evaluation from Section 7. This strengthens the
idea that the optimizer may be attracted by solutions with a high predicted1025

quality, but also a large margin of error. This behavior, although certainly not
ideal, is actually not totally undesirable: in fact, it may provide a systematic
approach to make the Empirical Model more robust by including the simulated
solutions in the training set. This method may allow us to improve the model
robustness without the need to increase dramatically the training set size. We1030

leave the investigation of this idea as a topic for future research.

9. Concluding Remarks

We have proposed here a methodology (called Empirical Model Learning)
for merging Machine Learning and optimization by extracting decision model
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components from data, which may come from a simulator or from the real1035

system. Our emphasis is on defining techniques for embedding ML models in
Combinatorial Optimization, which should be designed so that the optimization
engine can exploit the ML model for boosting the search process.

We have discussed the main steps of the methodology, using as motivating
and running examples two thermal-aware workload dispatching problems. The1040

ML techniques adopted are Artificial Neural Network and Decision Trees that
have been encoded in Local Search, Constraint Programming, Mixed Integer
Non Linear Programming (only ANNs) and SAT Modulo Theory (only DTs).

Designing a good empirical model may still be a non-trivial task, but allows
for better accuracy w.r.t. to expert designed heuristics. Experiments show the1045

clear advantages of using a data-extracted model in terms of quality of the final
solutions. Constraint Programming has been shown to be particularly effective,
due to the expressive modeling language and the filtering algorithms.

Further improvements may be obtained by increasing the accuracy of the
Empirical Models: for example, using Instructions Per Clock rather than CPIs1050

allows to better characterize computation-intensive jobs, i.e. the most critical
for efficiency prediction. We have tested this approach and found that it leads
to significant improvements over ANN1, but not over ANN0.

The Empirical Model Learning approach enables the application of opti-
mization techniques to complex real world problems that used to be either very1055

hard or impossible to tackle. As a main benefit, the approach opens up new
application areas. In particular, EML may be instrumental in bridging the gap
between predictive and prescriptive analytics.

As a particular case, EML could be used to perform decision making over
a controlled system. In such a situation, EML allows one to use a high-level1060

optimizer to steer the behavior of the existing controller, with no need to know
its internal details and potentially without direct communication. This property
could be exploited to ease the integration with legacy systems, and to tackle
large scale problems via multi-level optimization.

Active learning could be incorporated in the EML approach by periodically1065

re-training the ML model to improve its accuracy. The same approach could be
employed to design self-adapting systems, capable of tracking changes in their
operating conditions. In principle, this could include also disruptive events, such
as the addition of new system components.

Finally, another interesting topic for future research concerns the relation1070

between predictive models and uncertainty: many Machine Learning models
are designed to deal with uncertain data, and can provide information (e.g.
probability distributions or confidence intervals) about the robustness of their
predictions. These capabilities could be exploited to design more robust and
reliable decision making systems for real world problems.1075
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