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Abstract
We study a setting where Electric Vehicles (EVs) can be hired to drive from
pick-up to drop-off points in a Mobility-on-Demand (MoD) scheme. The
goal of the system is, either to maximize the number of customers that are
serviced, or the total EV utilization. To do so, we characterise the opti-
misation problem as a max-flow problem in order to determine the set of
feasible trips given the available EVs at each location. We then model and
solve the EV-to-trip scheduling problem offline and optimally using Mixed
Integer Programming (MIP) techniques and show that the solution scales up
to medium sized problems. Given this, we develop two non-optimal algo-
rithms, namely an incremental-MIP algorithm for medium to large problems
and a greedy heuristic algorithm for very large problems. Moreover, we de-
velop a tabu search-based local search technique to further improve upon
and compare against the solution of the non-optimal algorithms. We study
the performance of these algorithms in settings where either battery swap
or battery charge at each station is used to cope with the EVs’ limited driv-
ing range. Moreover, in settings where EVs need to be scheduled online,
we propose a novel algorithm that accounts for the uncertainty in future
trip requests. All algorithms are empirically evaluated using real-world data
of locations of shared vehicle pick-up and drop-off stations. In our experi-
ments, we observe that when all EVs carry the same battery which is large
enough for the longest trips, the greedy algorithm with battery swap with
the max-flow solution as a pre-processing step, provides the optimal solu-
tion. At the same time, the greedy algorithm with battery charge is close to
the optimal (97% on average) and is further improved when local search is
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used. When some EVs do not have a large enough battery to execute some
of the longest trips, the incremental-MIP generates solutions slightly better
than the greedy, while the optimal algorithm is the best but scales up to
medium sized problems only. Moreover, the online algorithm is shown to be
on average at least 90% of the optimal. Finally, the greedy algorithm scales
to 10-times more tasks than the incremental-MIP and 1000-times more than
the static MIP in reasonable time.
Keywords: Mixed Integer Programming, Heuristic search, local search,
max-flow, Electric Vehicles, Shared Vehicles, Mobility on Demand

1. Introduction

In a world where over 60% of the total population will be living in, or around,
cities the current personal transportation model is not sustainable as it is
based almost entirely on privately owned internal combustion engine vehi-
cles. These vehicles cause high pollution (e.g., air and sound), and face low
utilization rates1 [52]. Electric Vehicles (EVs) can be an efficient alternative
to those using internal combustion engines when it comes to running costs
[17], environmental impact, and quality of driving. However, these advan-
tages come with a trade-off, as EVs have short ranges and long charging
times. To address such issues, cities typically resort to building a large num-
ber of charging stations with fast chargers, or battery swapping capabilities.
Now, such facilities are only worth building if there are enough EVs to use
them. However, drivers will not buy EVs if charging stations are not first
available, leading to a catch-22 situation.

In order to increase vehicle utilization, Mobility-on-Demand (MoD) schemes
have been advocated [30]. MoD involves vehicles that are used by either
individuals, or small groups of commuters, thus providing them with an al-
ternative from using their privately owned vehicles. Such systems have the
potential to reduce traffic congestion in urban areas, as well as the need for
large numbers of parking spots.2 By doing so, MoD also aims to achieve con-
siderably higher vehicle utilization rates compared to individually owned ones

1EVs can be used as energy storage devices when not being driven. In this way (renew-
able) energy utilization can increase. Thus, in the EVs domain the word utilization refers
to both the driving and the use of them as energy storage devices.

2Demand for travel is not reduced. However, the fact that multiple users end up using
the same cars means that there are fewer cars on the road and hence, less congestion (i.e.,
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(i.e., few vehicles will cover the transportation needs of many commuters).
Moreover, other advantages include the fact that car ownership is reduced, as
well as less up-front charges which means low-income people may be better
served.

Given the benefits of EVs and MoD schemes, in this paper we explore sce-
narios within which EVs could be used within MoD schemes, and consider
their associated optimisation challenges. By addressing these challenges, the
advantages of the two transportation modes would be combined [30, 10].
Moreover, the use of EVs in MoD schemes offer an opportunity to further
market EVs to potential car owners as they get to try the technology before
buying it. In this way, EV-equipped MoD schemes would help popularise
EVs, while at the same time having a positive impact in urban traffic condi-
tions as well as the environment.

To date, a number of MoD schemes, such as ZipCar3, or CarShare4 have
been proposed, albeit most of them using normal cars. However, EVs present
new challenges for MoD schemes. For example, EVs have a limited range that
requires them to either charge regularly or have their battery swapped when
they stop. Moreover, if such MoD schemes are to become popular, it is
important to ensure that charging/swap capacity is managed and scheduled
to allow for the maximum number of consumer requests to be serviced across
a large geographical area. In addition, in order for MoD schemes to be
economically sustainable, and given the higher cost of buying EVs compared
to conventional vehicles, it is important to have them working at maximum
capacity and servicing the maximum number of customers around the clock.

Against this background, we model the MoD scheme for EVs and develop
a number of algorithms to solve the problem of scheduling trips for MoD
consumers in order to maximize the number of trip requests serviced while
coping with the limited range of EVs. These algorithms attempt to deal
with the computational complexity of the scheduling problem in a number
of contexts (online v/s offline, with battery swap or battery charge, small-
sized or large problems). Thus, we first recast the scheduling problem as a
max-flow problem whose solution lets us determine the (upper limit) of trip
requests able to be executed given a set of available EVs. Then, we show how

this indirectly can improve congestion as it could reduce the number of cars parked at the
sides of the roads. Such parked cars create some congestion).

3http://www.zipcar.com/.
4http://www.enterprisecarshare.com/.
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the scheduling of trips in the MoD scheme is a highly combinatorial problem,
for which an optimal offline solution, where all demand is known in advance,
scales only up to medium sized problems (tens of EVs and hundreds of trips).
Thus, to cope with large problems, we also develop two near-optimal offline
solutions, namely an incremental MIP and a greedy heuristic, as well as
a tabu search-based local search technique to further improve the solution
quality of the non-optimal algorithms. Moreover, to tackle the online version
of the problem, where demand is not known in advance, we develop an online
scheduling algorithm. In all cases, and given the limited range of EVs, we
consider situations where they can either have their battery swapped (with
a fully charged one), or charged at the stations. The work presented here
has been initiated at [38] with basic versions of the MIP and the greedy
algorithms for battery swapping. Specifically, this paper advances the state
of the art as follows:

1. We provide a characterisation of the MoD scheme as a max-flow prob-
lem. By solving this problem, we are able to determine the set of all
feasible trips given a set of available EVs.

2. We propose an optimal Mixed Integer Programming (MIP) formulation
of the problem of scheduling EVs in a MoD scheme that maximizes the
number of completed tasks (i.e., trip requests from consumers) or the
EV utilization (i.e., number of time points each EV is travelling), either
using battery swap or battery charging at each station.

3. Given the average scalability of the optimal solution, we develop an
incremental-MIP and a greedy heuristic algorithm which are shown
to generate near-optimal solutions with considerably lower execution
times.

4. We propose a tabu search-based local search technique in order to fur-
ther improve the solution quality of the non-optimal algorithms.

5. We propose a battery swap optimization algorithm which minimizes
the number of necessary battery swaps in order to reduce the need for
spare batteries and thus, cost.

6. We propose an online algorithm for scheduling EV trips across the MoD
that can cope with uncertainty in the number of future trip requests.

7. Finally, using real-world data of shared vehicle stations in Washington,
DC we observe that when all EVs carry the same battery which is
large enough for the longest trips, the greedy algorithm with battery
swap in combination with the max flow provides the optimal solution.
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At the same time, the variation with battery charge is at 97% of the
optimal without the local search, and at 98.5% when local search is
used. Moreover, in case where some EVs do not have a large enough
battery to execute some of the longest trips, we observe that the greedy
algorithm does not provide the optimal solution anymore and that the
incremental MIP is the correct choice as it generates solution 0.5%
better than the greedy and with lower execution time, while the optimal
algorithm is the best but scales up to medium sized problems only.
Moreover, we show that when the objective is the maximization of
EV utilization, the utilization increases by 3.6% and the number of
completed tasks reduces by 1.5% on average. In addition, the online
algorithm is at least 90% of the optimal. In terms of scalability, the
greedy algorithm (without local search) scales to 10-times more tasks
than the incremental MIP and 1000-times more than the static MIP in
reasonable time.

When taken together, our algorithms and results establish the first bench-
marks for the study of EV scheduling algorithms in MoD schemes.

The rest of the paper is structured as follows: Section 2 discusses the
related work, Section 3 presents the model of a typical MoD scheme and Sec-
tion 4 presents the formulation of the problem as a max flow one. Section 5
presents the MIP formulation of the problem with battery swap (Section 5.1)
and with battery charge (Section 5.2), the incremental MIP scheduling al-
gorithm (Section 5.3), the greedy algorithm with battery swap (Section 5.4)
and battery charge (Section 5.5), the local search algorithm (Section 5.6)
and the battery swap optimization algorithm (Section 5.7). Moreover, Sec-
tion 6 presents the online scheduling algorithm and Section 7 describes our
empirical evaluation. Finally, Section 8 concludes and presents future work.

2. Related Work

In the problem we study in this paper, we have a set of locations which act as
pick-up and drop-off stations and a number of EVs available at each station.
Tasks (i.e., trip requests for a specific point in time) are collected by the MoD
company and an assignment of EVs to tasks is calculated. EV relocation is
not supported, thus the end location of one executed task is always the start
location of another. After the execution of each task, the EVs’ battery is
either replaced with a fully charged one, or charged. In this section, related
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work both in terms of the problem structure, as well as problem domain and
application is presented:

2.1. Vehicle routing and scheduling problems
Our work shares similarities with other vehicle routing and scheduling

problems such as bike sharing, rolling stock, aircraft scheduling, rental car
scheduling and ride sharing. For example, Raviv et al. [36], present algo-
rithms for the efficient repositioning of bikes in order to maximize customer
satisfaction in a bike sharing system. Agatz et al. [1] summarize a number of
optimization techniques for the problem of ride sharing, while Bistaffa et al.
[7] apply coalition formation techniques in order to calculate stable (from a
game-theoretic point of view) payments for a ride sharing setting. Moreover,
Budai et al. [9] present an optimal algorithm for the problem of rolling stock
balancing, while Bayen et al. [5] use MIP in order to optimally solve an
aircraft scheduling problem. Between these works and ours there are some
general similarities, such as the fact that optimization techniques as well as
greedy approaches are used, but the nature of our problem, and in particular
the need for charging or battery swapping between task execution, makes it
quite different from them.

In addition, similarities can also be found with problems such as the ca-
pacitated vehicle routing problem [14] (i.e., special case of the Vehicle Rout-
ing Problem [15], where each vehicle has a limited carrying capacity), the
project scheduling problem [51], and the machine scheduling problem [28].
Regarding the capacitated vehicle routing problem, our case is similar to the
extent that each EV has a limited capacity, but here, the EVs must not neces-
sarily serve all the customers, each task must be executed at a specific point
in time and the EVs have a limited range leading to charging or battery
swapping being necessary between tasks. As far as the project scheduling
problem is concerned, for an EV to execute a task, it must be in the right
location, the right time and it must have enough range in the battery. These
could be considered the skills of the EV (i.e., in the project scheduling prob-
lem there are skills). However, in contrast to the project scheduling problem,
here exactly one EV must execute one task and the starting time as well
as the duration of the task are fixed and they do not depend on the EV
that will execute it. Finally, regarding the machine scheduling problem, our
problem has a similar structure as, for example, all EVs are assumed to be
identical, each of them executing one task at a time and each task is exe-
cuted by one EV. The main difference, is that the execution of each task
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must start at a specific time point, and that after the execution of a task, an
EV may not be available to execute another task before it charges or swaps
the battery. Overall, the need for battery charging or swapping as well as
the strict order of task execution differentiate our problem compared to the
three aforementioned ones, and make it harder to find the optimal solution.

2.2. MoD with conventional vehicles
To date, a number of works have dealt with problems related to the

management of vehicles in MoD schemes. For example, Pavone et al. [33]
study a setting similar to ours where a finite number of customers, vehicles
as well as pick-up and drop-off stations exist. Due to the fact that the system
can, in some cases, become unbalanced (i.e., high number of vehicles at some
stations and low at others), the authors apply robotic rebalancing techniques.
In more detail, they assume that empty robotic vehicles can be autonomously
driven across stations in order to match the high demand. The authors
apply mathematical programming-based techniques to minimize the number
of necessary rebalancing trips. In addition, Smith et al. [45] study the same
problem but, instead of robotic vehicles, the authors assume that rebalancing
drivers exist. In doing so, they found, through empirical studies, that on some
occasions these rebalancing drivers themselves become unbalanced. In order
to solve this problem, they assume that customers can transport rebalancing
drivers across locations and they use mathematical programming to optimally
route them across the stations. In a slightly different vein, where robotic
autonomous driving vehicles exist, Zhang et al. [46] model a MoD system as
a closed Jackson network [44] with passenger loss. They show that an optimal
algorithm which minimizes the number of vehicles needing rebalancing while
achieving good vehicle availability throughout the network can be found by
solving a linear program. The authors evaluate and verify the effectiveness of
their approach in a realistic setting and they also discuss the environmental
benefits of such approaches, as they lead to a reduced need for vehicles.
In contrast to all three papers, here we do not use a-posteriori rebalancing
techniques. Instead, the decision making procedure for the selection of trips
to be executed also takes into account the proper distribution of the EVs
across the locations. In doing so, we have taken into consideration insights
from [6], where the authors show that leaving tasks unexecuted at a certain
time point, can lead to higher task execution in the future.

Looking at the vehicle sharing problem from a different perspective, Car-
penter et al. [12] focus on the problem of sizing vehicle pools (i.e., a number
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of vehicles at a single location) for a finite set of customers. The authors
aim to minimize the size of these pools, while still achieving high customer
satisfaction. They propose three analytical techniques to size a vehicle pool
for a finite population of customers, according to the pools’ busy period de-
mand. Moreover, they propose an additional heuristic sizing method, which
requires no prior data about pool demand. In the same vein, George et al.
[22] address the problem of determining the optimal fleet size for a vehicle
sharing company and derive analytical results for its relationship to vehicle
availability at each station in the company’s network of locations. Initially,
they formulate a closed queuing network model of the system and later they
develop a profit-maximizing optimization problem for determining the op-
timal fleet size. Similarly, Waserhole et al. [55] formulate the setting as
a closed queuing network model of the system with infinite buffer capacity
and Markovian demands. However, in this case the authors use pricing tech-
niques to incentivise customers not to choose trips that would unbalance the
system. In our case, we do not study the optimal number of vehicles at the
stations, but we have considered the case where the initial location of a fixed
number of vehicles is optimized in order to maximize customer satisfaction
(see Section 7.2).

In all works presented so far, internal combustion engine-based vehicles
are assumed, and hence they do not account for the limited range of EVs.
Thus, while balancing the load (i.e., number of pending requests across the
network) across the network (i.e., by choosing which trips to execute) serving
at the same time the maximum number of users, the amount of time spent
charging the vehicles is not taken into account.

2.3. Techniques for the management of EVs in MoD schemes
In recent years, there has been a significant interest within the research

community in addressing the challenges involved in deploying EVs. In this
vein, a significant number of AI-based approaches to solve EV-related prob-
lems have been proposed. According to [37], the majority of the existing
works consider three main problem categories: 1) Energy efficient EV rout-
ing and range maximization, where algorithms and mechanisms have been
developed to route EVs in order to minimize energy loss and maximize energy
harvested5 during a trip (e.g., [41], [47] and [48]). 2) Congestion management,

5EVs have the ability to convert heat produced under braking to electricity and re-
charge their batteries.
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where algorithms have been designed to manage and control the charging of
EVs, so as to minimize queues at charging points and the discomfort to the
drivers (e.g., [34], [16] and [49]). 3) Integration of EVs into the Smart Grid,
where a number of mechanisms have been developed to schedule and control
the charging of EVs (Grid to Vehicle - G2V) so that peaks and possible over-
loads of the electricity network can be avoided, while minimizing charging
cost. Other mechanisms have also been developed to utilize the storage ca-
pacity of the EVs (Vehicle to Grid - V2G) in order to balance the electricity
demand, or to ease the integration of intermittent renewable energy sources
to the grid (e.g., [54], [53], [50], [29], [39] and [40]).

Although AI techniques have been applied to EV-related problems for
privately owned vehicles, limited work have considered the management of
EV activities in an MoD scheme. For example, Cepolina and Farina [13]
study the use of single-sitter compact-sized EVs in a MoD scheme operating
in a pedestrian zone. The vehicles are shared throughout the day by different
users and similarly to the majority of the works presented so far, one way trips
are assumed. However, here the authors also assume open ended reservation
to exist (i.e., the drop-off time is not fixed), thus adding one more dimension
to the problem. Given this, they propose a methodology to optimize the fleet
size and its distribution among the stations so as to maximize the number of
serviced customers while minimizing cost using a random search algorithm.
Finally, Doppers and Iwanowski [18] aim to map EVs to customers based on a
set of criteria such as the priority of the mobility needs, the state of battery
of each EV and the charging time. In so doing, they model the problem
of assigning EVs to tasks in a MoD scheme with the well known quadratic
assignment problem [27] and they solve the problem using an ant-colony
optimization algorithm. In our case, the only criterion of selecting which
trips to execute is either the maximization of the total number of serviced
customers, or the maximization of EV utilization. However, in contrast to
these works, we study settings where different EV charging approaches are
used considering both traditional charging and battery swapping. Next, we
formally define the problem.

3. Problem Definition

We study a MoD setting where customers announce their intentions to drive
between pairs of locations at a particular time, a day ahead. After all in-
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tentions have been collected by the MoD company,6 it applies a scheduling
algorithm to assign EVs to tasks (i.e., trips across a set of locations). In
choosing the tasks it will execute, the MoD company aims to maximize ei-
ther the number of customers that will be serviced, or the utilization of the
EVs. We assume that EVs have a limited driving range which requires them
to have their battery either swapped [48], or charged at the stations that
are part of the MoD scheme. In a battery swap station the battery is not
recharged but instead it is replaced by a fully charged one. Battery swap is
an efficient alternative to battery recharging as it significantly reduces the
idle time of EVs. Battery swapping with privately owned vehicles raises the
problem of battery ownership, as once an EV unloads its battery it may never
get the same battery back again. However, in cases of shared EVs, such as
the one we study here this is not an issue as a single MoD company exists
and all batteries belong to it. Moreover, MoD schemes overcome the high
cost and the implementation complexity of battery swapping as they take
advantage of economies of scale by using a specific battery type for all EVs
(we assume all EVs are of the same model). Thus, the process of battery
swapping becomes easier and less expensive.

We denote by j ∈ A a set of EVs and by k ∈ L a set of locations which
are pick-up and drop-off stations, where each k ∈ L has a maximum capacity
ck ∈ N . We consider a set of discrete time points T ⊂ N , t ∈ T , where time
is global for the system and the same for all EVs. Moreover, we have a set
of tasks i ∈ ∆ where each task is denoted by a tuple 〈kstarti , kendi , tstarti , τi, bi〉
where kstarti and kendi are the start and end locations of the task, tstarti is
the starting time of the task, τi is its travel time (each task has also an
end time tendi = tstarti + τi), and bi is the energy cost of the task. We also
denote all tasks starting from location k at time point t as ∆st(t, k) = {i ∈
∆: tstarti = t, kstarti = k} and all tasks ending at location k and time point t
as ∆end(t, k) = {i ∈ ∆: tendi = t, kendi = k}. Note here, that one-way rental
is assumed, and therefore, start and end locations of a task are different.7

6We assume a single MoD company to operate all stations of the setting. Note, that
having multiple companies may induce some interesting strategic decision making chal-
lenges which we aim to study in future.

7We assume that customers drive the cars between start and end locations without
stopping or parking them during the trip. In case a user would like to set the start and
end location of a task to be the same, this would be equivalent to adding specific travel
times to each trip as opposed to computing the travel time from pairs of charging locations.
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One-way rental introduces significant flexibility for users, but management
complexities (e.g., complex decision making in choosing which customers to
service, and high importance of the initial location of EVs) [4].

Each EV j has a current location at time point t, denoted as kj,t, and
this location changes only when the EV executes a task (i.e., an EV cannot
change its location without executing a task). Here, we assume that at
time point t = 0 all EVs are at their initial locations kinitialj,t=0 ∈ L, (the
initial location can either be fixed, or optimized at run time) and that their
operation starts at time point t ≥ 1. Moreover, each j has a current battery
level bt,j ∈ N , a maximum range τmaxj , a fixed consumption rate conj (unit
of energy/ time point) and therefore, a remaining driving range in terms of
time τt(j) = [bt,j/conj] ∈ N , as well as a fixed charging rate chj. For a task i
to be accomplished, at least one EV j must be at location kstarti at time point
tstarti . At any t, each EV should either be parked at exactly one location, or
traveling between exactly one pair of locations. Henceforth, index j stands
for EVs, k for locations, t for time points and i for tasks (see also Table 1).
Where required to simplify the explanation, we slightly abuse notation to
denote that some quantities are dependent on others (they are functions -
e.g., τt(j)), whereas others are independent (these can be identified solely by
indices - e.g., j).

In this paper we mainly study this offline setting and then we propose
a preliminary solution to an online setting based on our insights from the
offline one. In the following section we present a formulation of the problem
as a max-flow one.

4. Formulation as a Maximum Flow Problem

In this section, we formulate the EV to task allocation problem as a max-
flow problem [24] and we solve it using MIP. By using this approach we aim
to remove the tasks that are impossible to be executed, thus reducing the ex-
ecution time and increasing the solution quality of the scheduling algorithms
presented in the following section. All pick up and drop off locations are
considered to be the nodes of the network and the execution of tasks is the
flow in and out of each node. The initial location of each EV is a source node
and the end location of each EV is a sink node. In our case we have many
sources and many sinks. Thus, it is a multi-source multi-sink maximum flow
problem and can be transformed into a maximum flow problem as follows:
Given a network N = (V,E) with a set of sources S = s1, ..., sn and a set of
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Notation Explanation
j EV
k Location
ck Capacity of k
t Time point
i Task
kstarti Start location of task i
kendi End location of tasks i
tstarti Starting time point of task i
tendi Ending time point of task i
τi Travel time of task i
bi Battery cost of task i
τmaxj Maximum range of EV j

bt,j Battery level of EV j at time point t
conj Consumption rate of EV j
chj Maximum charging rate of EV j
τt(j) Driving range in terms of time
prkj,t,k True if EV j is parked at location k at time t (boolean)
εj,i,t True if EV j is working on task i at time t (boolean)
λi Task i accomplished (boolean)
bchj,t Charging rate of EV j at time point t

Table 1: Notations used in problem definition and algorithms

sinks T = t1, ..., tm instead of a single source and sink node, we are to find the
maximum flow across N. We transform the multi-source multi-sink problem
into a maximum flow problem by adding a consolidated source connecting to
each vertex in S and a consolidated sink connected by each vertex in T (also
known as supersource and supersink) with infinite capacity on each edge.

In this formulation, we have one decision variable, namely λi ∈ {0, 1}
denoting whether a task i is accomplished or not and the objective is the
maximization of executed tasks (Equation 1). Alternatively, the utilization
of the EVs (i.e., total traveling time) can also be maximized (Equation 2).
This is achieved under the constraint that for each location, the inflow is
always greater or equal to the outflow (Equation 3). Given that an EV
changes location only after executing a task, for each location k and time
point t, the number of tasks that started from k any time point prior to t,
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must be less or equal to the tasks that ended at k any time point prior to
t, plus the EVs whose initial location was equal to k (i.e., no task can be
executed without the existence of at least one EV).

max
∑
i∈∆

(λi) (1)

max
∑
i∈∆

(λi × τi) (2)

∑
i∈∆:tstart

i <t,kstart
i =k

(λi) ≤
∑

i∈∆:tend
i <t,kend

i =k
(λi) +

∑
j∈A:kinit

j =k
1,∀t,∀k (3)

The outcome of this procedure is the set of tasks that can be executed
assuming that battery swap is being used and that (a) all EVs start with the
same battery level and (b) a fully charged battery is capable of executing the
longest trip. In fact, if (a) and (b) hold, the max flow algorithm returns the
optimal solution in terms of the number of completed tasks. This can easily
be verified given the following reasons: every task i has a source location
kstarti and a destination kendi . Moreover, it has a fixed time of departure tdepi
and a fixed duration τi. In the max flow algorithm, the duration of a task
also contains the time for the battery swap. Given that all EVs carry the
same battery which is fully charged at the beginning of each task, any EV
can execute any task. Thus, a task can be executed if and only if at least one
EV exists at kstarti the time point tdepi . Equation 3 assures that no task will
be considered executed if not enough EVs exist at the source location of the
task the time of departure. Thus, given the objective function (Equation 1
or Equation 2), the solver will select to execute the tasks that lead to the
maximization of the total number of completed tasks or the EV utilization
respectively. In case where either (a), or (b), or both do not hold, then
the max flow algorithm will provide the theoretical upper limit in terms of
completed tasks. This is true due to the fact that this algorithm assumes
all EVs to have the same capabilities. Thus, if an EV is assigned to a task
that it cannot actually execute, this task and possibly some future ones will
not be executed. The same holds for the case of battery charging, as the
charging takes longer time compared to battery swapping. We will refer to
this algorithm as MaxFlow.

In the case where the initial location of the EVs is not given as input, but it
should be optimized, the above formulation is updated as follows: One more
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decision variable, namely initLocj,k ∈ {0, 1}, denoting whether location k is
the initial location for EV j is added. Moreover, Equation 4 which constrains
each EV to have exactly one initial location is added to the formulation, and
Equation 3 is updated by using the pre-defined decision variable and becomes
Equation 5. We will refer to this algorithm as MaxFlowInit

∑
k∈L

initLocj,k = 1,∀j (4)

∑
i∈∆:tstart

i <t,kstart
i =k

(λi) ≤
∑

i∈∆:tend
i <t,kend

i =k
(λi) +

∑
j∈A

∑
k∈L

(initLocj,k),∀t,∀k (5)

The max flow algorithm calculates the optimal set of tasks to be executed.
However, the task execution schedule for each EV is not calculated. Thus,
this algorithm is used as a pre-processing step in order to determine the
tasks to be executed. Then, any of the scheduling algorithms described in
the following section has to be used in order to calculate the task execution
schedule for each EV. As can be seen in Sections 7.1 and 7.2 it improves the
scalability of the optimal scheduling algorithm and the solution quality of
the greedy one.

5. Offline Scheduling Algorithms for MoD Schemes

In this section, we tackle the problem defined in Sections 3 and 4 in the
particular context where the demand for trips at each station is known in
advance. We term this problem the offline problem, as the algorithm is run
to pre-determine all trips for the day ahead. In Section 5.1 we present the
MIP formulation of the problem with battery swap and in Section 5.2 the one
with battery charge. Then, in Section 5.3 the incremental MIP scheduling
algorithm and in Section 5.4 the greedy algorithm with battery swap and in
Section 5.5 the one with battery charge. Finally, in Section 5.7 we present
the battery swap optimization algorithm.

5.1. Optimal Scheduling with Battery Swap
The aim of the MoD scheme is to maximize either the number of tasks that
are completed (a.k.a. customer satisfaction) (Equation 6) or the total num-
ber of time points that EVs are traveling (a.k.a. EV utilization) (Equation 7)
(i.e., the objective functions can be used alternately). To achieve this, we
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present an optimal solution based on Mixed Integer Programming (MIP)8

(solved using IBM ILOG CPLEX 12.6.2), where we use battery swapping
to cope with the EVs’ limited range. MIP techniques have been particu-
larly useful to solve such large combinatorial problems (e.g., combinatorial
auctions [42], [3], travelling salesman problem [19]). Also, such a solution
can be used as a benchmark for more customized algorithms (as we do in
this paper in Section 5.6 and Section 6). We will refer to this algorithm as
Off-Opt-Swap. Note that in case the max flow algorithm returns the opti-
mal set of tasks to be executed, this algorithm simply calculates the EV to
task execution schedule. However, if the max flow returns the upper limit
in terms of executed tasks, this algorithm also decides which of these tasks
can actually be executed. In more detail, we define three binary decision
variables: 1) λi ∈ {0, 1} denoting whether a task i is accomplished or not, 2)
εj,i,t ∈ {0, 1} denoting whether EV j is executing task i at time t or not, and
3) prkj,t,k ∈ {0, 1} denoting whether j is parked at time point t at location
k or not. Moreover, a set of constraints is used:

Objective functions:

max
∑
i∈∆

(λi) (6)

max
∑
j∈A

∑
i∈∆

∑
t∈T

(εj,i,t) (7)

Subject to:

• Completion constraints:

∑
j∈A

∑
tstart
i ≤t<tend

i

εj,i,t = τi × λi,∀i (8)

∑
j∈A

∑
tstart
i >t,t≥tend

i

εj,i,t = 0,∀i (9)

εj,i,t+1 = εj,i,t∀j,∀i, ∀t : tstarti ≤ t < tendi − 1 (10)

8Other optimization techniques could also be applied here. However, the aim of this pa-
per is not to study different optimization techniques, but to establish the first benchmarks
to a problem that has not been previously solved.
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∑
tstart
i ≤t<tend

i

εj,i,t ≤ τtstart
i

(j),∀i, ∀j (11)

• Temporal, spatial, and routing constraints:

∑
k∈L

prkj,t,k = 1−
∑
i∈∆

εj,i,t,∀j,∀t (12)

2×
∑
i∈∆

εj,i,tstart
i

=
∑
k∈L

∑
t∈T
|prkj,t+1,k − prkj,t,k| ,∀j (13)

prkj,tstart
i −1,kstart

i
≥ εj,i,tstart

i
,∀i, ∀j (14)

prkj,tend
i ,kend

i
≥ εj,i,tend

i
,∀i,∀j (15)

∑
j∈A

(prkj,t,k) ≤ c(k),∀k,∀t (16)

prkj,t=0,k = kinita ,∀j,∀k (17)

εj,i,t=0 = 0,∀j,∀i (18)

• Cut constraints:

∑
j∈A

prkj,t,k =
∑
j∈A

prkj,t−1,k +
∑

∆st(t,k)
λi −

∑
∆end(t,k)

λi,∀t, ∀k (19)

The completion constraints ensure the proper execution of tasks. Thus,
for each executed task, the time travelled must be equal to the duration of
the trip concerned9 (Equation 8), while, at the same time no traveling must
take place when a task is not executed (Equation 9). Moreover, each task
is executed by only one EV at a time (Equation 10 together with Equa-
tion 13). Now, for an EV to execute a task, its full range, calculated based

9In case a user would like to set the start and end location of a task to be the same, this
would be equivalent to adding specific travel times to each trip as opposed to computing the
travel time from pairs of charging locations. Otherwise Equation 3 of the MIP formulation
would not work properly.

16



on the battery level at the starting time of the task, must not be violated
(Equation 11) (i.e., in case trip requests are not within the range of a single
battery load, the solver will not schedule them). We assume all EVs to have
a fixed average consumption, and that each time an EV reaches a parking
station a fully charged battery is swapped into it, while the number of swaps
is minimized a posteriori (Section 5.7 presents a battery swap minimization
algorithm).

The temporal, spatial and routing constraints ensure the proper place-
ment of the EVs over time. Equation 12 requires that for each time point at
which an EV is executing a task, this EV cannot be parked at any location
and also assures (together with Equation 10) that at each time point, each
EV executes at most one task. Moreover, Equation 13 ensures that no EV
changes location without executing a task (the sum of all changes of EVs’ lo-
cations as denoted in prk decision variable, must be double the total number
of tasks that are executed). Note that, this constraint is linearized at run
time by CPLEX10.

Now, whenever a task is to be executed, the EV that will execute this task
must be at the task’s starting location one time point before the task begins
(Equation 14), and similarly, whenever a task has been executed, the EV
that has executed this task must be at the task’s end location the time point
the task ends (Equation 15). Moreover, at every time point, the maximum
capacity of each location must not be violated (Equation 16). Finally, at
time point t = 0, all EVs must be at their initial locations (Equation 17),
which also means that no tasks are executed at t = 0. Note that, in case
Equation 17 is removed, the solver will decide on the optimal initial location
of each EV given a specific set of tasks waiting to be executed.

Equation 19 ensures that for every location, the total number of EVs
at charging stations changes only when EVs depart or arrive to execute a
task, or after executing tasks. Despite the fact that this constraint is covered
by Equation 13, when added to the formulation, it significantly speeds up
the execution time. For example, for a setting with 8 locations, 15 EVs,
60 time points and 70 tasks, constraint 13 reduces the average execution
time from 450 seconds to less than 200 seconds. In fact, it is known that
the introduction of additional cut constraints into a MIP problem may cut
off infeasible solutions at an early stage of the branch and bound searching

10This is usually done by adding two extra decision variables and two extra constraints.
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process and thus reduce the time to solve the problem [20].
By using battery swapping, an EV can have full range in just a few

minutes. However, such battery swap schemes impose high costs and imple-
mentation complexity. Thus, in the next section, a variation of the optimal
solution where, instead of battery swap, a more traditional battery charge
scheme is used is presented.

5.2. Optimal Scheduling with Battery Charging
Here, the problem of scheduling EVs in a MoD scheme is formulated using
fast battery charging (we will refer to this algorithm as Off-Opt-Charge).
In addition to the decision variables and the constraints presented in the
previous section, we define one continuous variable namely bchj,t ∈ [0, ch(j)]
which denotes whether an EV j is charging at time point t and at which
charging rate (i.e., the charging rate can be any between 0 and the maximum
charging rate - ch(j)11, as well as 2 completion constraints.

bchj,t ≤
∑
k∈L

prkj,k,t × ch(j),∀j,∀t (20)

0 ≤ bj,t=0 +
t∑

t′=0
bchj,t′ −

∑
i∈∆

t∑
t′′=tstart

i

εi,j,t′′ × con(j) ≤ 100,∀j,∀t (21)

Equation 20 ensures that each EV j can charge only while being parked.
When an EV is parked, it can charge with a charging rate up to its maximum
one. However, when it is driving and prkj,k,t = 0 it cannot charge. The charg-
ing takes place at any time point chosen by the solver as long as the avail-
able range will not compromise the task execution ability. At the same time,
Equation 21 ensures that the battery level of an EV j never exceeds 100%
and never goes below 0% (i.e., bj,t=0 is the initial battery level, ∑t

t′=0 bchj,t′ is
the amount of battery charged and ∑

i∈∆
∑t
t′′=tstart

i
εi,j,t′′×con(j) is amount of

energy consumed). Thus, no EV j will execute a task i for which it does not
have enough range, nor will it charge more than its battery capacity. Note
that Equation 21 replaces Equation 11.

11Not using the maximum charging rate can prolong the life time of the battery. More-
over, the available energy could be limited and the highest charging rate could not be
available, as for example limited energy from renewable sources in used (however we do
not study this case in this paper)).
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The solutions presented so far calculate the optimal schedule for the EVs.
However, as we show later in Sections 7.1 and 7.7, they have quadratic time
complexity and are mainly usable for small and medium sized problems (less
than 300 tasks and 20 EVs). For this reason, algorithms that can calculate
solutions close to the optimal, but with a low computational complexity, are
essential. In the next section, an algorithm which incrementally calls the
MIP for each EV is presented.

5.3. Incremental MIP Scheduling Algorithm
MIP problems are known to be NP-Hard in the worst case [25]. A widely
employed strategy to overcome the computational difficulty for the solution
of large MIP models is based on the idea of decomposition [20]. The de-
composition approach divides a large and complex problem, which may be
computationally expensive or even intractable when formulated and solved
directly as a single MIP model, to smaller sub-problems, which can be solved
much more efficiently. Usually, decomposition approaches only lead to subop-
timal solutions. However, they substantially reduce the problem complexity
and the solution time, which makes it possible to apply MIP based techniques
to large real-world problems.

Algorithm 1 Incremental MIP Scheduling Algorithm.
Require: ∆ and A and L and T and ∀i ∈ ∆, τi, and ∀j ∈ A, kinitialj , τmaxj ,

and ∀k ∈ L, ck.
1: completedTasks← ∅
2: for ∀j ∈ A do
3: Call Optimal(∆, j)
4: {Optimal: Off-Opt-Swap or Off-Opt-Charge}
5: Return Schedule for j and set of latest completed tasks
6: {Once the MIP has been solved, update the set of completed tasks with

the new completed tasks }
7: completedTasks← completedTasks+ newTasks
8: ∆← ∆− newTasks
9: end for

10: Return completedTasks

Based on the idea of decomposition, we present an offline scheduling
algorithm, which incrementally calls and solves the MIP formulation of the
problem. Note that some insights were also taken from [8] and in particular
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from the discussion on the planning of completely independent agents. The
intuition behind this algorithm is the following: Given that the dimension of
the problem that affects the execution time the most is the number of EVs
(see Section 7.1), we solve the MIP problem for each EV separately. Thus,
the MIP formulation is solved sequentially (see Algorithm 1), for each EV
within the list of available EVs. In more detail, after the set containing all
completed tasks is initialized to the empty one (line 1), the optimal algorithm
is called for each EV 12 (lines 2-9): Every time the schedule for one EV is
calculated (line 6), the sets for the completed tasks and the remaining tasks
are updated accordingly (lines 7, 8). At the end of this procedure, the set that
contains the completed tasks is returned (line 10). Note that this algorithm
works both with battery swap and battery charge. We will refer to the one
with battery swap as Off-Incr-Swap and to the one with battery charge as
Off-Incr-Charge.

The incremental MIP algorithm achieves near optimal solutions with rel-
atively small execution time (see Section 7.1). However, for problems with
more than a few thousands EVs and tasks, the execution time increases.13

Given that greedy algorithms based on heuristic search have proven to be
effective in similar highly combinatorial problems [35], in the next section,
such greedy algorithms are presented.

5.4. Greedy Scheduling with Battery Swap
Given that EVs change locations only when being driven by customers, the
tasks that an EV will be able to execute in the future are directly related
to the ones it has already executed in the past (i.e., the end location of one
task will be the start location for the next one). In large settings, normally
not all tasks can be executed. Thus the selection of the ones to execute is
of great importance, since each decision can affect future task execution. In
the case of our MIP formulation, the solver finds the optimal schedule for
EVs that maximises the number of tasks executed, or the EV utilization.
However, the scalability of that algorithm is average. For this reason, here
we present a greedy algorithm which applies a one-step look ahead heuristic
search mechanism. This algorithm achieves, as we show later, near optimal

12We have experimented with various orderings of the EVs, but without significant effect
on the execution time or the solution quality.

13This algorithm can consume a lot of memory. Thus, efficient memory management in
the implementation of the algorithm is crucial. We used methods provided by CPLEX.
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performance and scales to thousands of EVs and tasks. We will refer to this
algorithm as Off-Greedy-Swap.

For each time point t and for each station k, we consider the number of the
available EVs, as well as the number of the remaining tasks to be executed.
Given that all tasks to be executed are known in advance, if the number of
available EVs is greater than, or equal to the number of tasks remaining to
be executed, we can safely assume that enough EVs are available to execute
all tasks (note that more EVs may arrive later after executing tasks). In this
case, each task is executed according to its starting time.

In the case where the number of EVs is lower than the number of the
remaining tasks, we need to carefully choose which of the tasks need to be
executed in the current time point, so that more tasks can be executed in
the future. To this end, we employ a one-step look ahead heuristic criterion.
The intuition behind this heuristic is to give priority to the tasks that lead
to destinations where either 1) high number of tasks remain to be executed,
or 2) many tasks are about to be executed soon, or 3) both. In this way, the
EVs do not remain idle for long time (i.e., it combines customer satisfaction
and EV utilization).

At each time point, we select all tasks i that should start being executed
at this time point. Based on the initial location k of a task i, we calculate the
score in Equation 22. In calculating the sum, we take into consideration the
number of EVs that already exist at the destination. However, we remove
the ones that will depart before the arrival of the EV at k. Thus, we come
up with a score for each location (i.e., sck = {k, scorek} ∈ R) and we select
to execute the tasks that lead to locations with the highest score. The sum
guarantees that both locations with tasks which are about to be executed
soon and locations with high numbers of remaining tasks will get a high
score. Example (see Figure 1): In the destination of a given task, there are
five tasks remaining to be executed with departure times: 5, 7, 8, 9, 12. If
the task is executed, the EV will arrive at the destination at time point 7.
Thus, it may also be able to execute one of tasks 8, 9, 12. Moreover, 3 EVs
already exist at the destination. If these EVs take care of 5,7, 8, then the
new EV could be able to execute tasks 9 and 12. For this reason the score is
calculated only using 9 and 12.

scorek =
∑

(1/∆t),∆t = tdepi − tarrj , (∀j,∀i at the destination after tarrj )
(22)
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Figure 1: Greedy heuristic- scorek calculated for remaining tasks only.

The greedy scheduling formulation that is presented here, consists 1) of a
pre-processing phase and 2) of the main scheduling algorithm (Algorithm 4)
which applies a task execution algorithm.

Algorithm 2 Initialization of sets and variables.
Require: ∆ and A and L and T and ∀j ∈ A, ljinit.
1: for all ( k ∈ L) do {Initialize to the empty sets. }
2: ∆k ← ∅, CTk,t ← ∅
3: end for
4: for all ( i ∈ ∆) do {Populate ∆k. }
5: ∆kstart

i
← ∆kstart

i
+ i

6: end for
7: for all ( k ∈ L and t ∈ T and i ∈ ∆) do {Populate CTk,t. }
8: if (kstarti == k AND tstarti == t) then
9: CTk,t ← CTk,t + i

10: end if
11: end for
12: for all ( k ∈ L and t ∈ T ) do {Populate Rt,kstart

i
}

13: Rt,kstart
i

= |CTk,t′ | for t′ ≥ t
14: end for
15: for all (j ∈ A and k ∈ L and t ∈ T ) do {Initialize prkj,t,k }
16: prkj,t,k = kinitj

17: end for
18: for all ( k ∈ L and t ∈ T ) do {Initialize evst,k }
19: evst,k = ∑

j(prkj,t,k)
20: end for
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Pre-processing
During the pre-processing phase, the initialization of the sets and the

variables takes place (see Algorithm 2). In more detail, sets ∆k ⊆ ∆ and
CTk,t ⊆ ∆k are created and initialized to the empty set (line 2). Then, all
tasks starting at location k ∈ L are assigned to set ∆k (line 5), and for each
location k and time point t, CTk,t (line 9) is populated with all tasks to be
executed at t. Moreover, the set Rt,kstart

i
(line 13) containing the number of

tasks remaining to be executed from each location and each time point t,
is created and initialized. Finally, variable prkj,t,k (line 16) which holds the
initial location of each EV, and variable evst,k (line 19) which counts the
number of EVs parked at each location, are initialized. In the next section,
the steps for the assignment of an EV to a task are presented.

Task Execution
Each time an EV j is assigned to a task i, Algorithm 3 is called and a

number of actions take place: Initially, EV j is set to be working on task i,
by changing the value of variable εj,i,t from 0 to 1 for the duration of the trip
(line 1) (variables εj,i,t, prkj,t,l and λi are also used here). Then, the parked
location k of j is updated based on the end location kendi of the task and the
arrival time tcurrent + τi (lines 3, 4). Finally, the total number of completed
tasks is increased by one (line 6), and the total number of EVs parked at the
start and end location of the trip are updated accordingly (lines 8, 9). Note
that following the same modeling of the problem as in the MIP formulation
(Equation 15), once an EV arrives at a destination, it stays there for at least
one time point which is used for the necessary battery swap.

Algorithm 3 Task execution.
1: εj,i,t′ = 1 , ∀t′ ≥ t, t′ ≤ t+ τi {j is assigned to i.}
2: {Parked location of agent j is updated.}
3: prkj,t′,kstart

i
= 0 , ∀t′ ≥ t, t′ < t+ τi

4: prkj,t′,kend
i

= 1 , ∀t′ > t+ τi
5: {The number of completed tasks is increased by one.}
6: taskSum← taskSum+ 1
7: {Number of EVs at start and end locations is updated.}
8: evst,kstart

i
← evst,kstart

i
− 1 , ∀t′ ≥ t

9: evst,kend
i
← evst,kend

i
+ 1 , ∀t′ > t+ τi

10: Return ε , prk , taskSum , evst,kend
i

, evst,kstart
i
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Algorithm 4 Greedy Scheduling Algorithm - Battery Swap.
Require: ∆ and A and L and T and ∀i ∈ ∆, τi, and ∀j ∈ A, kinitialj , τmaxj , and
∀k ∈ L, ck.

1: for all (t ∈ T ) do
2: for all (k ∈ L) do {If available EVs at start, ≥ total task number.}
3: if (evst,kstart

i
≥ Rtstart

i ,kend
i

) then
4: for all (i ∈ CTk,t) do
5: If (evst+τi,kend

i
< ckend

i
), search for an j to execute i:

(prkj,t,k = 1 AND τj,tstart
i
≥ τi)

6: If an EV is found, execute task.
7: end for
8: {If available EVs at start < total task number.}
9: else
10: {Calculate scorek using Equation 22 and assign to sck.}
11: for all (k ∈ L) do
12: sck = {k, scorek}.
13: end for
14: Sort sck in descending order based on scorek.
15: for all (k ∈ sck) do
16: for all (i ∈ CTk,t) do
17: {If the end location of the task is equal to the location at the sorted score

array, then this task should be executed.}
18: if (kendi == k) then
19: for all (j ∈ A) do
20: If evst+τi,kend

i
< ckend

i
, Search for an j:

(prkj,t,k = 1 AND τj,tstart
i
≥ τi)

to execute the first task in CTk,t (then remove tasks
from list).

21: If an EV is found, call Algorithm 3.
22: end for
23: end if
24: end for
25: end for
26: end if
27: end for
28: end for
29: Return ε , prk , taskSum

24



The Off-Greedy-Swap Algorithm
Here, we elaborate on the key steps of the greedy algorithm (Algorithm 4).

For all i ∈ CTk,t awaiting to be executed at the current time point, the
following steps are executed repetitively for each task:

1. If the number of available EVs with enough range is greater than the
number of tasks remaining to be executed, starting from this location,
then all tasks are set to be executed sequentially (lines 3-8). For each
task, if its execution does not lead to a violation of the maximum
capacity of the destination location (waiting queues do not exist), then,
once there exists an EV that is parked at the current location, it is
assigned to the task and the latter is executed by calling Algorithm 3.
If no such EV exists, the task is not completed.

2. If the number of the EVs parked at the current location and have
enough range is less than the tasks remaining to be executed (lines 9-
21), the scores for the end location of each task are calculated. Then,
sck in descending order based on scorek (lines 10-14). If the execution
of the task does not violate the maximum capacity of the destination
location, the tasks with the higher scores are executed based on EV
availability. Once there exists an EV that is parked at the current
location, it is assigned to the task and the latter is executed by calling
Algorithm 3. Otherwise, the task is not completed.

The execution of Algorithm 4 generates a schedule for all EVs as well as
for the total number of completed tasks. In case where after the max flow
algorithm (Section 4), the Greedy algorithm gets as input a set of tasks that
all of them can be executed, the problem of scheduling EVs to tasks becomes
a simple resource allocation problem. In this case, the heuristic function is
not used as enough EVs to execute all tasks always exist (i.e., lines 9-21 of
Algorithm 4 are never executed). Thus, at every time point EVs are simply
assigned to the tasks.

Next, the analysis of the average case time complexity of the greedy
algorithm is presented.

Complexity Analysis – Battery Swap
While the algorithm is greedy, some steps such as the sorting of scorek,

can be computationally costly. Hence, in what follows, we elaborate on the
complexity of key steps of this algorithm.
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Theorem 1. (Complexity class of Algorithm 4)

The average case complexity of Algorithm 4 is |∆|×|L|×|A|+ |T |×|L|2×
log|L|+ |L|2 × |T |.

Proof. For lines 1 and 2 of Algorithm 4, the number of iterations is fixed
to |T |×|L|. Now, for each t and lk the iterations for line 4 depend on |CTk,t|.
However, for all T and L they are always equal to |∆|. The calculation of
the scores (lines 10-13), depend on |L| × |CTk,t| (line 12), and the sorting
of scorek (line 14) on |L| × log|L| + |L| (i.e., |L| × log|L| for the sorting of
scorek and |L| of the update of the order of locations). The selection of the
tasks and the selection of the EVs to execute the selected tasks (lines 15-25)
depend on |L| × CTk,t × |A|. Thus, the computational cost is given by the
following equation:

Cost = |T |×|L|×(CTk,t+|L|×CTk,t+|L|×log|L|+|L|+|L|×CTk,t×A) (23)

which is equal to:

Cost = |T |×|L|×CTk,t(1+|L|+|L|×|A|)+|T |×|L|×(|L|×log|L|+|L|) (24)

In the average case, where tasks and EVs are equally distributed across
locations and time points, CTk,t = |∆|

|T |×|L| and Equation 29 becomes:

Cost = |T |×|L|× |∆|
|T | × |L|

×(1+|L|+|L|×|A|)+|T |×|L|2×log|L|+|L|2×|T |

(25)
which is equal to:
Cost = |∆| × (1 + |L|+ |L| × |A|) + |T | × |L|2 × log|L|+ |L|2 × |T | (26)

Finally, as |A| >> 1 and |L| >> 1 Equation 26 becomes:

Cost = |∆| × |L| × |A|+ |T | × |L|2 × log|L|+ |L|2 × |T | (27)

Therefore, the complexity increases proportionally (linearly) with the number
of tasks and EVs, and quadratically with the number of locations times log|L|
times the time points and quadratically with the number of location times the
number of time points. Therefore, the average case complexity of Algorithm 4
is O(|∆| × |L| × |A| + |T | × |L|2 × log|L||L|2 × |T |). These results are also
verified experimentally (see Section 7.1).

In the next section, a variation of the greedy scheduling algorithm, where
battery charge, instead of battery swap is used, is presented.
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5.5. Greedy Scheduling with Battery Charging
In this section, we present Algorithm 5 which uses battery charge instead of
battery swap. Algorithm 5 works similarly to Algorithm 4, but there is one
main difference: instead of swapping batteries after each task is completed,
the battery level is monitored and updated for each EV based on its status
(i.e., parked or traveling) (lines 27-36). In other words, as an EV travels, the
battery discharges, while when an EV is parked the battery level may increase
if charging takes place. For this reason, variable bj,t ∈ {0, 100} is used in order
to capture the level of battery charge at each EV and each time point. In case
energy is needed and when being parked at any location, energy is charged
into the EV (lines 29-31), whereas when traveling, the battery is discharged
(lines 31-33). In order to decide on the charging schedule of an EV, we use
one of the algorithms presented in [39]. According to this algorithm, and
assuming that an EV needs n units of energy, the charging takes place in the
first n time points after the arrival of the EV to the station, during which
enough available chargers exist and enough energy can be provided from the
grid. In contrast to the Off-Opt-Charge, here the charging rate is fixed to
the maximum one, however this does not affect the task execution ability of
the algorithm (i.e., the greedy is always using the maximum rate, while the
optimal is using it only when is needed. Given that it is optimal and has full
knowledge of future demand, if there is no need to use maximum charging
rate, it does not do so). The problem of efficient load balancing across the
electricity network is not studied in this paper, and therefore the use of more
advanced charging scheduling algorithms will be considered in future work.
Also, in contrast to Algorithm 4, in order to decide whether an EV can
execute a task or not, its current range and not its maximum range (as was
happening in the case of battery swap where a fully charged battery was
swapped into the EV) is compared with the energy demand of the upcoming
task (lines 5 and 20). We will refer to this algorithm as Off-Greedy-Charge.

Complexity Analysis – Battery Charge
Here the complexity class of Algorithm 5 is calculated.

Theorem 2. (Complexity class of Algorithm 5)

The average case complexity of Algorithm 5 is O(|∆| × |L| × |A|+ |T | ×
|L| × (|L| × log|L|+ |L|+ |A|)).
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Algorithm 5 Greedy Scheduling Algorithm - Battery Charge.
Require: ∆ and A and L and T and ∀i ∈ ∆, τi, and ∀j ∈ A, kinitialj , τmaxj , and
∀k ∈ L, ck.

1: for all (t ∈ T ) do
2: for all (k ∈ L) do {If available EVs at start, ≥ total task number.}
3: if (evst,kstart

i
≥ Rtstart

i ,kend
i

) then
4: for all (δi ∈ CTk,t) do
5: If evst+τi,kend

i
< ckend

i
, search for an j to execute i: (prkj,t,k = 1

AND bj,t ≥ τi)
6:
7: If an EV is found, execute task.
8: end for
9: {If available EVs at start < total task number.}
10: else
11: {Calculate scorek using Equation 22 and assign to sck.}
12: for all (k ∈ L) do
13: sck = {k, scorek}.
14: end for
15: Sort sck in descending order based on scorek.
16: for all (k ∈ sck) do
17: for all (i ∈ CTk,t) do
18: {If the end location of the task is equal to the location at the sorted score

array, then this task should be executed.}
19: if (kendi == lk) then
20: for all (j ∈ A) do
21: If evst+τi,kend

i
< ckend

i
, Search for an j:

(prkj,t,k = 1 AND bj,t ≥ τi) to execute the first task
in CTk,t (remove tasks from list).

22: If an EV is found, call Algorithm 3.
23: end for
24: end if
25: end for
26: end for
27: end if
28: {For all EVs the battery state is updated, based on whether the EV is driving

or not, and based on whether energy is needed}
29: for all (j ∈ A) do
30: if

∑
k∈L prkj,t,k = 1 AND bj,t + 1 ∗ ×chj ≤ 100 then

31: bj,t = bj,t−1 + 1 ∗ ×chj
32: else
33: bj,t = bj,t−1 − 1 ∗ ×conj
34: end if
35: end for
36: end for
37: end for
38: Return ε , prk , taskSum
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Proof. Following a similar thinking as in the previous case, the computa-
tional cost is:

Cost = |T |×|L|×(CTk,t+|L|×CTk,t+|L|×log|L|+|L|+|L|×CTk,t×|A|+|A|)
(28)

which is equal to:

Cost = |T |×|L|×CTk,t(1+|L|+|L|×|A|)+|T |×|L|×(|L|×log|L|+|L|+|A|)
(29)

In the average case, where tasks are equally distributed across locations
and time points, CTk,t = |∆|

|T |×|L| and Equation 28 becomes:

Cost = |T |×|L|× |∆|
|T | × |L|

×(1+|L|+|L|×|A|)+|T |×|L|×(|L|×log|L|+|L|+|A|)

(30)
and as |A| >> 1 and |L| >> 1 it is equal to:

Cost = |∆| × |L| × |A|+ |T | × |L| × (|L| × log|L|+ |L|+ |A|) (31)

Therefore, the average case complexity of Algorithm 5 is O(|∆| × |L| ×
|A|+ |T |× |L|× (|L|× log|L|+ |A|)). Note, that the average case complexity
of Algorithm 5 is higher compared to the one of Algorithm 4. However as we
show in Section 7.1, the practical difference is very small.

In the next section, a local search technique to further improve the solu-
tion quality of the non-optimal algorithms is presented.

5.6. Local search algorithm
Local search can be used on problems that can be formulated as finding

an optimal solution among a number of candidate solutions. Local search
algorithms move from solution to solution in the space of candidate solutions
(the search space) by applying local changes, until a solution deemed optimal
is found or a stopping condition is met. Local search is a well established
technique to improve the solution provided by a non-optimal algorithm. In
our case, we need a local search algorithm in order to improve an initial
solution that was calculated very fast by the greedy algorithm. Thus, we
developed a tabu search-based algorithm. Tabu search is a meta-heuristic
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technique which includes as a subroutine a local search procedure which is
appropriate for the problem being solved. This subroutine runs iteratively
and finds new solutions in the neighborhood of a current solution. A key
characteristic of tabu search is that it does not require each new trial solution
to be better than the current one. In this way the algorithm can escape
from local minima [24]. Tabu-search was preferred over alternative local
search methods (e.g., simulated annealing) because 1) its representational
characteristics better match our problem formulation and 2) it is known
to outperform other local search algorithms in terms of solution quality /
robustness and computation time [31]. It has also been proved to perform
well in problems with similarities to ours, such as the TSP and the QAP
problems [23], [32]. In what follows, we present the formulation of our tabu
search-based algorithm for the MoD problem:

1. Local search procedure: At each iteration, select the neighboring solu-
tion that leads to the maximum number of serviced tasks (or maximum
EV utilization).

2. Neighborhood structure: An immediate neighbor of the current trial
solution is one that is reached by changing the task assignment of one
EV.

3. Form of tabu moves: All EVs and their assigned tasks.
4. Addition of a tabu move: We iterate over all EVs and we calculate

the task-to-EV assignment using any of the Off-Opt-Swap or Off-Opt-
Charge to solve the problem. The EV and its assignment that leads to
higher number of total serviced tasks is added to the tabu list.

5. Maximum size of the tabu list: The number of EVs (i.e., for each EV,
at most one tabu move exists - for some EVs it may not contain any
move).

6. Stopping rule: A number of iterations without any improvement in the
current solution.

Algorithm 6 presents the local search procedure for the MoD scheme. This
algorithm takes as input the task-to-EV assignment as this is calculated by
the Greedy algorithm. Then all tasks that have been assigned to an EV
are added to set EV sTasksMapj. All tasks that were not assigned to any
EV are added to set TasksUnexecuted (lines 2-12). Then, Off-Opt-Swap
or Off-Opt-Charge is called for each EV and for all tasks that were initially
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assigned to that EV plus the ones that were not assigned to any EV.14 The
completed tasks for each EV, as calculated by the optimal algorithm, are
added to currentSolution variable. After all EVs have been examined, the
one that leads to higher increase in the number of executed tasks and is not
in the tabu list, is selected and the current solution is updated based on
the assignment of that EV. Also, this assignment is added to the tabu list.
This procedure continues until at least n iterations over all EVs have finished
without any improvement in the current solution. In that case we assume
that the solution cannot further improve and the algorithm terminates (lines
13-25). In the next section, a battery swap optimization algorithm which
applies to all scheduling algorithms using battery swap, is presented.

5.7. Battery Swap Optimization
The algorithms that make use of battery swap, calculate the schedule of each
EV assuming that after every stop a fully charged battery is swapped into
it. However, battery swap at each station may not actually be necessary
as the vehicle might have enough energy to execute more tasks. Moreover,
frequent battery swapping demands higher volumes of available batteries at
the stations, thus increasing the cost for the MoD company [56]. For these
reasons, we present an optimal scheduling algorithm which takes as input
the EV’s travelling schedule taskExecj,t ∈ {0, 1} and minimizes the number
of battery swaps a posteriori.

We formulate the problem of the battery swap minimization using MIP
techniques and we solve it optimally. We denote two decision variables:
1) swapj,t ∈ {0, 1} which is a binary decision variable on whether EV j
swaps its battery at time point t. 2) btj,t ∈ {0, rangej} which is an integer
decision variable on the battery level of each EV at each time point. The
value of btj,t must always be between 0 and the maximum range of the EV
and CPLEX will limit the values within this range. The objective function
(Equation 32) which consists of the sum of all battery swaps for all EVs, is
minimized subject to three constraints: No EV can swap its battery when
executing a task (Equation 33), while the initial battery level of each EV
must be equal to its full range (i.e., task execution starts with a fully charged
battery) (Equation 34). Moreover, at each time point, the battery level of

14We believe that the unassigned tasks along with the already assigned tasks could be
a source of improving the solution for one EV alone.
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Algorithm 6 Local search algorithm.
Require: εj,i,t, A, L, T
1: bestSolution = εj,i,t
2: for all (i ∈ ∆) do
3: Executed = False
4: for all (j ∈ A) do {Collect the tasks executed by each EV }
5: if εj,i,tstart

i
= 1 then

6: EV sTasksMapj ←− EV sTasksMapj + δi
7: Executed = True
8: else{Collect the unexecuted tasks }
9: tasksUnexecuted←− tasksUnexecuted+ δi
10: end if
11: end for
12: end for
13: while !(No improvement for n rounds) do
14: for all (j ∈ A) do
15: Call MIP for EV sTasksMapj ∪ TasksUnexecuted
16: Assign number of completed tasks in currentSolutionj
17: end for
18:
19: Find the assignment that maximizes the number of completed tasks. If this

max assignment not in the tabu list, let it be currentSolutionk
20: Update EV sTasksMapk and TasksUnexecuted
21: tabuListk = EV sTasksMapk
22: if (currentSolutionk > bestSolution) then
23: bestSolution = currentSolutionk
24: end if
25: end while
return bestSolution
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each EV must be equal to the level the previous time point, plus full range
if a battery was swapped into the EV and minus the energy consumed while
driving (Equation 35) (i.e., CPLEX will limit the values of btj,t between 0
and rangej).

Objective functions:

min
∑
j

(
∑
t

(swapj,t)),∀j,∀t (32)

Subject to:

swapj,t + taskExecj,t ≤ 1,∀j,∀t (33)

btj,t=0 = rangej,∀j (34)

btj,t = btj,t−1 + swapj,t−1 × rangej − taskExecj,t × consj,∀j,∀t (35)

Having discussed a number of offline approaches to solving the EV allo-
cation in MoD schemes, we next turn to the online problem. In particular,
we address the problem of coping with unknown future trip requests.

6. Online Scheduling Algorithm

So far, we assumed complete knowledge of future customer demand to exist.
However, as this assumption does not always hold in reality, here we present
an algorithm which has the ability to effectively cope with the uncertainty
in future demand.

This algorithm uses concepts related to the Model Predictive Control
(MPC) [11] approach. In more detail, assuming that the MoD company has
full knowledge of the demand for only a small number of tasks ∆fix ⊆ ∆,
the remainder of (usually longer term) future demand is stochastic in nature
and, to some degree, can be captured using a probability distribution learnt
from historical data - expected set of tasks, ∆exp. Note that the start time
of all expected tasks is after the execution of the latest task in the fixed
set. Given these two sets of tasks, the aim is to calculate a schedule for
the execution of the fixed tasks, such that it leads to higher probability of
executing more tasks in the future. To achieve this, two steps are followed
(see also Algorithm 7):
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• Step 1: a set of expected tasks is calculated and a plan for the execution
of both fixed and expected tasks is calculated (line 3).

• Step 2: the execution plan related to the fixed tasks remains unchanged
and a number η ∈ H of sets of expected tasks (i.e., ∆exp) are iteratively
sampled to calculate the average expected number of executed tasks
(lines 4-7).

Algorithm 7 Tasks Scheduling Algorithm with Uncertainty.
1: for ∀r ∈ Rounds do
2: Sumr = 0 and Averager = 0
3: Call Optimal with ∆fix + ∆exp

4: for ∀η ∈ H do
5: Keep schedule for ∆fix unchanged and call Optimal with ∆exp(η).
6: Sumr = Sumr + ∑ (λ∆exp) {Number of completed tasks for each
η is added to Sumr.}

7: end for
8: Averager = Sumr/|H|.
9: end for

10: Return Schedule for ∆fix where Averager = argmax(Average)

This procedure (steps 1 and 2) is executed for a number of rounds r ∈ R.
Then, the schedule of the fixed tasks that leads to a higher expected utility
(number of tasks expected to be executed) is selected. The fixed tasks that
have been scheduled to be executed can definitely be executed, under the
assumption that no overbooking from the side of the stations, nor booking
cancellations from the side of the customers exists. If a booking is canceled,
then the schedule may not be feasible anymore. However, we do not study
this scenario in this paper.15 Moreover, a longer time period for the fixed
tasks usually leads to higher number of executed tasks, but also leads to
higher waiting time for future EVs to announce their request. This algorithm
works both with battery swap and battery charge. We will refer to the
battery swap variation as On-Swap and to the one with battery charging

15If a booking cannot be covered (for example in a real-world implementation where
traffic conditions don’t permit it) we could either pay a compensation or ask users to
provide a larger time window for the departure time.
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as On-Charge. In the next section, we present a detailed evaluation of all
algorithms.

7. Evaluation

Here we evaluate our algorithms on a number of settings in order to determine
their ability to handle potentially large numbers of tasks, locations and EVs.
To this end, we use real locations of pick-up and drop-off points owned by
ZipCar16 in Washington DC, USA which are available as open data,17 while
the distance and duration of all trips18 were calculated using Google maps
(see Figure 2). Car station locations too close to each other were ignored and
8 stations were selected19. Note, that Washington DC is one of the cities with
the highest traffic congestion in the USA20 [43]. MoD can reduce congestion
as it reduces the demand for parking spots (such parked cars create some
congestion). Therefore, a MoD scheme would fit perfectly in such a setting
as it has the potential to reduce the congestion caused by privately owned
vehicles. The evaluation of our algorithms is executed in six main parts:
• EXP1: The execution time and the scalability of the max flow, the op-

timal, the incremental MIP, the greedy and the local search algorithms
are evaluated.

• EXP2: The performance of the algorithms in terms of the average
number of completed tasks and the EV utilization is evaluated.

• EXP3: The sensitivity of the max flow algorithm is analyzed.

• EXP4: The efficiency of the battery swap optimization algorithm is
evaluated.

• EXP5: The performance of the online algorithm against the optimal
offline one is evaluated.

• EXP6: The correctness of the optimal and greedy algorithms is verified.

16http://www.zipcar.com/find-cars/dc.
17http://opendata.dc.gov/datasets/.
18combinations of some locations acting as start or end points for a trip.
19All data regarding the locations and the trips used in the following experiments can

be found here http://intelligence.csd.auth.gr/files/datasets/ev/AIJ-data.zip.
20http://mobility.tamu.edu.
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Figure 2: Locations of pick-up and drop-off locations.

All experiments were executed in the following setting: 1) one time point
was selected to be equal to 15 mins, and in total 58 time points exist (i.e.,
equivalent to the execution of the MoD service from 7:00 to 18:00). 2) For
the optimal algorithms, the objective function that maximizes task execution
(Equation 6) is used (i.e., maximization of completed tasks), unless otherwise
stated, and 3) tasks can be formulated based on one of 56 possible trips
(i.e., the trips are the combinations of the 8 locations that form the MoD
scheme. However, locations too close to each other were ignored). Trips were
categorized into three groups: 1) from suburbs to the city centre, 2) around
the city centre, and 3) from the city centre to the suburbs. These groups
were selected according to our intuition of the expected flow of traffic within
the city over the day. Also, we have divided the day into three sessions: 1)
morning, 2) noon, and 3) afternoon. In the morning session the majority of
the trips come from group 1 (i.e., 60% of the tasks are from group 1 and
40% from the rest), in the noon session they come from group 2 i.e., 60%
of the tasks are from group 2 and 40% from the rest), and in the afternoon
session they come from group 3 (i.e., 60% of the tasks are from group 3 and
40% from the rest). Within each session, tasks are selected using a uniform
distribution (i.e., tasks selected with equal probability). Start times of tasks
within each group were drawn from a uniform distribution (i.e., for morning
session start times are between 1− 12 (mean = 6.5 and σ = 3.17), for noon
between 12 − 36 (mean = 24 and σ = 6.9) and for the afternoon between
36 − 50 (mean = 43 and variance = 4.04). Also, conj = 10 and chj = 25,
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Algorithm Short name
MIP with battery swap Off-Opt-Swap
MIP with battery charge Off-Opt-Charge
Greedy with battery swap Off-Greedy-Swap
Greedy with battery charge Off-Greedy-Charge
Greedy with battery swap and local search Off-Greedy-Swap-LS
Greedy with battery charge and local search Off-Greedy-Charge-LS
Incremental-MIP with battery swap Off-Incr-Swap
Incremental-MIP with battery charge Off-Incr-Charge

Table 2: Names of the main algorithms used in the evaluation

i.e., for each time point that an EV is working the battery level is reduced
by 10 units of energy, and for each time point an EV is charging the battery
level is increased by up to 25 units of energy (fast battery charging). The
average range of an EV is currently at around 150km. We assume an average
speed of 40km/hour which means that an EV can drive for 3.75 hours. In
our evaluation setting, one time point is equal to 15 minutes, and 3.75 hours
equal to 15 time points. Thus, conj = 10% of battery for each time point.
A fast charger can fully charge an EV at around one hour. Thus, chj = 25%
of the battery for each time point. Both conj and chj are configuration
parameters and can be selected by the user. Note, that all experiments were
executed on a Windows PC with an Intel i7-4790K CPU and 16 GB of RAM
running at 2400MHz.

7.1. EXP1: Execution Time and Scalability
Execution time and scalability are typical metrics for scheduling algorithms.
Hence, in this set of experiments, we vary the number of tasks and measure
the execution time of the Off-Opt-Swap, the Off-Opt-Charge, the Off-Incr-
Swap, the Off-Incr-Charge, the Off-Greedy-Swap, the Off-Greedy-Charge,
the Off-Greedy-Swap-LS and the Off-Greedy-Charge-LS (Table 2).

7.1.1. Improvement in execution time with pre-processing
Here, we evaluate the improvement in execution time for the Off-Opt-

Swap and Off-Opt-Charge when the MaxFlow algorithm is used as a pre-
processing step. As can be seen in Figure 3, when the pre-processing step is
used, the execution time decreases significantly. For example, for 200 tasks,
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the execution time for the Off-Opt-Swap is reduced by 62.9%, and for the Off-
Opt-Charge by 60.8%. This is due to the fact that the MaxFlow algorithm
prunes the set of tasks. Thus, for the rest of the experiments, we always
use the optimal algorithm in combination with the pre-processing step. Note
that improvement in execution time is achieved also for the greedy algorithm,
but in this case it is very small due to the fact that the execution time was
already low.

(a) Battery swap (b) Battery charge

Figure 3: Execution Time with and without pre-processing.

Regarding the pre-processing step itself, the execution time is found to
be very low. For example, in a setting with 100 EVs and up to 3000 tasks
we see that the execution times of both variations of the MaxFlow algorithm
increase linearly (i.e., R2 = 0.9971 for the MaxFlow and R2 = 0.992 for the
MaxFlowInit).21 As can be seen in Figure 4 both have very low execution
time as for 3000 tasks both execute in well under 0.35 seconds with the
variation where the initial location is optimized always being the slowest,
because one more constraint and one more decision variable exists. The
optimization of the initial location of EVs, leads to an increase in average
task execution. However, doing so can create other problems. For example,
relocation of vehicles may be needed prior to the beginning of the operation
of the MoD company which incurs some extra cost. Thus, in the following
experiments we focus in the case where the initial location is not optimized.

21We use MATLAB’s Curve Fitting Toolbox. Note that the findings and the reported
values of R2 are guaranteed to be true only for the settings and experiments presented in
this paper.
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Figure 4: Execution Time Max Flow (100 EVs).

7.1.2. Scalability across varying (small to medium) task sizes
In a setting with 15 EVs and up to 300 tasks, in the case of battery swap

and as can be seen in Figure 5, the greedy algorithm is 10 times faster than
the incremental-MIP and 1000 times faster than the optimal. The rate of
growth of the greedy algorithm is linear, while for the other two algorithms
the rate is quadratic (see Table 3). The linear time complexity of the greedy
is related to the pre-processing step which prunes all infeasible tasks (see
bottom of Section 5.4). The number of tasks shown on the x-axis of the
following figures is based on the number of tasks after the pre-processing
step. Thus, each point of the plot is the centroid of the execution times
of multiple experiments for various actual numbers of tasks. In the case
of the incremental-MIP, the pre-processing step leads to a lower number of
executed tasks and as will be discussed in the next subsection it is not used
in the rest of the experiments. However, here we plot the execution time in
combination with the pre-processing step to have a fair comparison with the
other algorithms. Regarding the incremental-MIP, we have investigated the
use of cut constraints to improve the scalability of this algorithm. In fact,
we added two cut constraints: 1) For the tasks that overlap in time, only one
of them can be executed. 2) The tasks that are isolated (i.e., they are not
in the EV’s initial location and there are no tasks leading to that location),
are not executed (i.e., decision variable set to zero). The addition of these
extra constraints has reduced the MIP pre-processing time, but not the total
execution time. For example, in a setting with 2000 tasks and 45 EVs, the
MIP pre-processing time has been reduced from 0.352 secs to 0.345 secs, but
the total execution time has been increased from 22296.4 secs to 23390 secs.
Thus, we decided not to use these extra constraints.

In the case of battery charge and as can be seen in Figure 6, all algorithms
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Figure 5: Execution time with battery swap- (15 EVs) - centroids of average values.

Algorithm Trend R2

Off-Opt-Swap Quadratic 98.42%
Off-Greedy-Swap Linear 92.13%
Off-Incr-Swap Quadratic 99.35%

Table 3: All algorithms- battery swap trend (15 EVs).

behave similarly to the battery swap, but the average execution time of all
of them is higher (see also Table 4). In the case of battery charge, we also
plot the execution time of the greedy algorithm in combination with the
local search technique. This combination leads to higher execution times
compared to the incremental-MIP, but lower compared to the optimal. In
fact, the execution time of the Off-Greedy-Charge-LS initially increases but
as the number of tasks increases beyond 120, the execution time decreases.
This can be explained by the fact that given the number of EVs remains stable
and the number of tasks increases, the greedy algorithm already calculates
a schedule which covers most of the EVs’ availability and for this reason the
local search cannot improve the solution a lot. Thus, it terminates sooner
compared to other settings where the space for improvement is larger. As
will be described in Section 7.2, when the Off-Greedy-Swap is combined with
the MaxFlow and under some assumptions, it provides the optimal solution.
Thus, there was no point to combine the local search with battery swap.
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Figure 6: Execution time with battery charge- (15 EVs) - centroids of average values.

Algorithm Trent R2

Off-Opt-Charge Quadratic 99.24%
Off-Greedy-Charge Linear 96.75%
Off-Greedy-Charge-LS Quadratic 79.62%
Off-Incr-Charge Quadratic 98.64%

Table 4: All algorithms- battery charge trend (15 EVs).

7.1.3. Scalability across varying large task sizes
Here we assume the full range of some EVs (i.e., 20% of the available

EVs) not to be long enough to execute some of the longer trips. Thus, the
MaxFlow provides the upper limit of all feasible tasks (see more details on
this in Section 7.2) (i.e., the Off-Greedy-Swap does not provide the optimal
solution any more). We choose a setting with 100 EVs and up to 3000 tasks.
For such settings the optimal algorithm does not scale, and the low execution
times of the incremental and the greedy algorithms make them the preferable
options. When battery swap is used and as can be seen in Figure 7, the Off-
Greedy-Swap is 1000 times faster than the Off-Incr-Swap and 10000 times
faster than the Off-Greedy-Swap-LS. It is interesting to notice that when
local search is used, the execution time initially increases but then, for more
than 1300 tasks starts decreasing (see also Table 5). The explanation is
similar to the one given in the previous subsection.
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Figure 7: Execution time with battery swap- (100 EVs) - centroids of average values.

Algorithm Trend R2

Off-Greedy-Swap Quadratic 98.47
Off-Greedy-Swap-LS Quadratic 91.48
Off-Incr-Swap Quadratic 95.48

Table 5: All algorithms- battery swap trend (100 EVs).

When battery charge is used and as can be seen in Figure 8, the execution
times of all algorithms follow a similar trend (see also Table 6). However,
in contrast to battery swap, for large number of tasks the Off-Incr-Charge
has higher execution time compared to Off-Greedy-Charge-LS. This can be
explained by the fact that Off-Opt-Charge, which is used as part of both
algorithms, is more time consuming compared to Off-Opt-Swap and similarly
to the previous case, for large numbers of tasks, the local search algorithm
terminates earlier. Note, that in the case of Off-Greedy-Swap-LS the time is
second degree polynomial but the x2 term is negative. However, in the case of
Off-Greedy-Charge-LS it is positive. This can be explained by the fact that
in the case of battery charging (as we will see in Section 7.2) the space for
improvement is bigger. Thus, the local search technique runs for longer time.
Note that for much larger numbers of tasks we expect the execution time to
start dropping as well. We next evaluate the execution time by varying the
rest of the dimensions (i.e., EVs, time points and locations).
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Figure 8: Execution time with battery charge- (100 EVs) - centroids of average values.

Algorithm Trend R2

Off-Greedy-Charge Quadratic 99.54
Off-Greedy-Charge-LS Quadratic 92.58
Off-Incr-Charge Quadratic 96.1

Table 6: All algorithms- battery swap trend (100 EVs).

7.1.4. Scalability across other dimensions
In this section, we evaluate our algorithms in terms of execution time

while varying the other dimensions of the problem (i.e., EVs, time points
and locations). As can be seen in Figures 9, 10, 11 and in Table 7 in all cases
the execution times for the Off-Opt-Swap and the Off-Incr-Swap increase
quadratically. However, when the locations vary, the term of x2 is negative
(i.e., execution time initially increases and then decreases). This can be ex-
plained due to the fact that when the number of locations increases, but the
number of EVs remains unchanged, the tasks spread around too much and
fewer of them can be executed making the problem easier to solve. In terms
of the Off-Greedy-Swap, when varying the number of EVs and time points,
the execution time increases linearly, while when varying the number of lo-
cations it increases quadratically. Thus, the theoretical complexity analysis
presented in Section 5.4 is verified. The results for battery charge are similar.
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EVs Time points Locations
Algorithm Trend R2 Trend R2 Trend R2

Off-Opt-Swap Quadratic 98.39% Quadratic 99.1% Quadratic 97.9%
Off-Greedy-Swap Linear 98.29% Linear 91% Quadratic 98.49%
Off-Incr-Swap Quadratic 98.32% Quadratic 99.9% Quadratic 92.17%

Table 7: Variable dimensions - all algorithms- battery swap

Figure 9: Execution Time MIP (100 Tasks) - Variable number of EVs.

Figure 10: Execution Time MIP (100 Tasks) - Variable number of time points.

7.2. EXP2: Completion of tasks and EV utilization
Here we evaluate all algorithms in terms of average task completion and

average EV utilization. In so doing, we have two main scenarios: In the
first one we assume that all EVs carry the same battery which, when fully
charged, is large enough to execute even the longest task. In the second one
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Figure 11: Execution Time MIP (100 Tasks) - Variable number of locations.

we assume that some EVs carry a smaller battery (or a not-fully charged
one) and are not able to execute some of the longest tasks.

In the case where all EVs carry the same battery and as can be seen in
Figures 12 and 13, when the Off-Greedy-Swap is used after the pre-processing
step (i.e., MaxFlow algorithm), it always provides the optimal solution (see
explanation in Section 5.4). In contrast, when the Off-Greedy-Charge is used
after the pre-processing step, it provides a solution close to the optimal (i.e.,
97% of the optimal for 300 tasks). This can be explained by the fact that
battery charging is more time consuming compared to the battery swap and
not all EVs have full range once they are about to start executing a task.
However, when the local search algorithm is used, having as input the solution
of the greedy algorithm, the performance of the Off-Greedy-Charge improves
and reaches 98.5% of the Off-Opt-Charge. It is interesting to note that when
the greedy algorithm is combined with the MaxFlow, the improvement in the
number of completed tasks, compared to the case where the MaxFlow is not
used and for a setting with 200 tasks, is 26.2% for the Off-Greedy-Swap and
24% for the Off-Greedy-Charge. Regarding the incremental-MIP algorithm,
in all cases performs worse compared to both the optimal and the greedy
algorithms. For example, for 300 tasks it is at 96.34% of the Greedy-Swap
and the Off-Opt-Swap and at 98.74% of the Greedy-Charge without local
search and at 97.27% when its solution is improved with local search. When
it is used in comparison with the MaxFlow, the results are even worse. This
could be explained by the fact that the MaxFlow provides the optimal set
of tasks given the full set of EVs. Thus, when this is broken down into sub-
problems the solution deteriorates. Thus, in this experimental setting, the
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incremental-MIP is not used.

Figure 12: Completed tasks (15 EVs) - Offline algorithms.

Figure 13: % Efficiency compared to the optimal (15 EVs).

For a larger setting with 100 EVs and up to 4000 tasks, the performance
of the algorithms remains similar. The Off-Greedy-Swap in combination with
the MaxFlow provides the optimal solution, while the Off-Greedy-Charge is
very close to the optimal. In fact, for 4000 tasks the Off-Greedy-Charge is
at 99.6% of the optimal, and when the local search is applied, the efficiency
increases to 99.75% of the optimal. The better performance of the Off-
Greedy-Charge, compared to the smaller setting, can be explained by the
fact that for very large numbers of tasks, the options for the greedy algorithm
are many and it is not very sensitive on the optimal selection of each task.
The fact that the Off-Greedy-Charge does not reach the absolute optimal
was expected due to its myopic nature (i.e., local heuristic).
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Given the performance of all algorithms, we argue that when battery
swap is used, the Off-Greedy-Swap in combination with the MaxFlow is the
appropriate solution for all problem sizes as it provides the optimal solution
with very low execution time. Whereas, when battery charge is used, the
combination of the Off-Greedy-Charge with the MaxFlow and the use of local
search afterwords leads to the best solution especially for large problems.
However, for small problems (i.e., tens of EVs and few hundreds of tasks)
the Off-Opt-Charge is the best choice as it provides the optimal solution in
reasonable time (even if it slower compared to the others).

Figure 14: Completed tasks (100 EVs) - Offline algorithms.

Figure 15: % Efficiency compared to the optimal (100 EVs).

Now, when trying to maximize the EV utilization (i.e., using as objective
function Equation 7) and as can be seen in Figure 16, we observe an aver-
age 3.6% increase in EV utilization, while the average number of completed
tasks is decreased by 1.5%. In other words, the difference between the two
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objective functions in terms of EV utilization and task completion are small.
However, in settings where tasks with longer duration also exist, we expect
this difference to increase, as the solver would have more options to fill the
travelling schedule of the EVs with long tasks. Note that in all cases the
differences between the battery swap and the battery charge variations in
terms of completed tasks are very small. For example, for 15 EVs and 200
tasks both the Off-Opt-Swap and the Off-Opt-Charge executed on average
119,6 tasks (see also Figure 17). On some rare occasions, we have noticed
some very slight differences (1 or 2 tasks). This can be explained by the fact
that fast charging is used, thus making the delay compared to the battery
swap small (i.e., at most 3 time points, as opposed to 1 time point).

Figure 16: EV utilization (15 EVs) - % time points occupied.

Figure 17: Completed tasks Off-Opt-Swap VS Off-Opt-Charge (15 EVs).

The MaxFlow algorithm treats all EVs equally and assumes that all of
them can execute any task. However, when some EVs (i.e., 20% of the avail-
able EVs) carry smaller batteries and cannot execute some of the longest
tasks, then the set of tasks returned by the MaxFlow is the upper limit of
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the tasks that can be executed. An interesting question is how the scheduling
algorithms perform in this case. In a setting with up to 200 tasks and 15 EVs
and as can be seen in Figure 18, the Off-Opt-Swap always achieves the best
performance (i.e., 11% better performance compared to the greedy for 200
tasks). Note that when the MaxFlow returns the upper limit of tasks to be
executed, the Off-Greedy-Swap and as was expected, does not provide the
optimal solution anymore. The Off-Greedy-Swap-LS and the Off-Incr-Swap
have similar performance with the greedy being slightly ahead for smaller
number of tasks, while the incremental-MIP matches the performance of the
greedy for larger number of tasks. Now, in a setting with up to 3000 tasks
and 100 EVs and as can be seen in Figure 19, the performance of the Off-
Greedy-Swap is at 99.5% of the Off-Greedy-Swap-LS when 3000 tasks exist.
Moreover, the Off-Incr-Swap performs initially worse compared to the greedy
algorithm, but for more than 1000 tasks, it has an advantage. However, for
more than 2500 tasks it starts leveling off. Note that the standard devia-
tion of the Off-Incr-Swap is higher compared to the Off-Greedy-Swap. Also
note that the incremental-MIP algorithm is not used in combination with
the local search because the execution time increases 10-times on average,
and the solution quality improves by less than 0.3% on average. Given the
execution time of the incremental and the greedy algorithms combined with
local search, we argue that for a setting where the EVs carry different battery
types, and when the number of tasks is larger that 1000, the incremental-MIP
is the appropriate solution. As can be seen in Figure 20, the performance
for battery charge is similar. We next discuss the sensitivity of the MaxFlow
algorithm.

Figure 18: Completed tasks (15 EVs) - Offline algorithms with battery swap.
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Figure 19: Completed tasks (100 EVs) - Offline algorithms with battery swap.

Figure 20: Completed tasks (100 EVs) - Offline algorithms with battery charge.

7.3. EXP3: Sensitivity of the MaxFlow
Here, we evaluate the MaxFlow algorithm in a setting where we fix the

number of tasks to be completed to 500, and vary the number of EVs as well
as the number of the locations of the pick-up and drop-off points in order to
determine how the EV-to-task-allocation problem is affected by the change in
the number of EVs and locations. Note that here synthetic data on locations
are used. Given that the number of tasks to be completed remains fixed, one
could expect that by increasing the number of EVs, the number of completed
tasks would also increase. In the case where the number of locations remains
fixed this is indeed the case (see Figure 21). However, in the case where the
number of locations increases we observe an opposite trend. Interestingly,
when 40 EVs and 10 locations exist, the number of completed tasks is actually
higher compared to the case where 100 EVs and 60 locations exist. This is an
interesting observation which can be explained as follows: 1) as the number
of locations increases, the average number of EVs at one location at t = 0,
decreases and therefore, the probability of an EV being able to execute a
future task starting from a given location decreases, and 2) as the number of
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locations increases, the number of all possible trips increases exponentially,
and therefore, EVs tend to spread around too much. Thus, similarly to the
previous point, the probability of an EV being able to execute a future task
decreases. Thus, the optimization of the number and the location of the
pick-up and drop-off points is an important problem to be solved by any
MoD company [21] as it is related to the cost of a possible MoD deployment
(i.e., number and locations of stations), as well as its performance in terms of
serviced tasks and profit. Our algorithms and experimental results can help
towards this. We next discuss the efficiency of the battery swap optimization
algorithm.

Figure 21: Sensitivity of the MaxFlow.

7.4. EXP4: Battery Swap Optimization
Here, we evaluate our proposed battery swap optimization algorithm against
a setting where no such optimization takes place, based on the tasks assigned
by the scheduling algorithms to each EV. In doing so, we assume all EVs to
carry the same battery type, which has a discharge rate conj = 10 (i.e.,
at each time point, 10% of the battery is discharged) and the average trip
duration to be 2 time points. The battery swap minimization algorithm is
shown to achieve a reduction of up to 87.5% (see Figure 22) in the number
of necessary battery swaps. Its execution time is well under half second
even for large settings. Overall, the minimization of the battery swaps is
an important task in order to reduce the cost of battery swapping in a real
world deployment. Note that this algorithm can be applied to all scheduling
algorithms which use battery swap. In the next section, the optimal offline
algorithm is evaluated against the online one.
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Figure 22: Number of battery swaps with and without optimization.

7.5. EXP5: Online VS Offline Scheduling- Task Execution
Given that full knowledge of future demand is not always possible, here
the online algorithm (Algorithm 7) is evaluated against the optimal one.
We choose η = 15 and r = 5 (reminder: η represents the number of sets
of expected tasks, and r the number of rounds- see Section 6), as these
numbers were observed to provide a good balance between performance and
execution time. Also, the day is divided into three periods, (i.e., morning,
noon, afternoon) and for each round the tasks for one period are fixed, while
for the rest are drawn from a distribution (i.e., at first the morning tasks are
fixed while noon and afternoon tasks come from the distribution. They are
generated from a uniform and a Gaussian distribution: 50% of tasks come
from a uniform distribution and 50% come from a Gaussian distribution,
while mean and σ are selected in this way so as the tasks to come from
future session (i.e., noon, or afternoon and based on the current time point).

As can be seen in Figures 23 and 24, the Online algorithm has an ac-
ceptable performance: for a setting with up to 100 tasks, the performance
achieved by this algorithm in terms of average task completion, is no less
than 90% compared to the optimal offline. Note, that future tasks come 50%
from a Gaussian distribution, while the remaining 50% come from a uniform
distribution. Thus, we also show that our methodology can efficiency handle
tasks coming from different distributions. Also, the execution time for each
η is similar to the times presented for the optimal offline algorithms for the
same number of tasks. Thus, based on the number and the types of com-
puters the MoD company possesses, η and r can be chosen accordingly so
as better accuracy in the prediction to be achieved,22 while the schedule to

22High numbers of η and r lead to better accuracy. However, they demand more com-
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be calculated within the available time (i.e., the schedule of the tasks must
be decided before the actual execution of them). In the next section, the
correctness of the MIP and greedy algorithms is verified.

Figure 23: Offline Optimal VS Online algorithm.

Figure 24: Online efficiency compared to optimal offline.

7.6. EXP6: Correctness of the MIP algorithm
In order to verify the correctness of both the MIP and greedy algorithms

we conducted a number of experiments. We created a set of tasks, that
could be executed by a single EV (i.e., the end location of one task was the
start location of the next one). Then we run both algorithms for this set of
tasks and both gave us the optimal solution. Then we expanded the set of
tasks (with known outcomes) and we observed that the MIP returned the
optimal solution. The greedy could provide the optimal solution up to a
certain number of EVs and tasks, but for larger numbers (i.e., more than
20 tasks and more than 1 EV) it was giving sub-optimal solutions as was

putational power. Thus, parallel execution is preferable
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expected. In the next section, issues related to the time complexity of the
MIP formulations of the problem are discussed.

7.7. Discussion on the Computational Complexity of the Offline Optimal So-
lution

The MIP formulation for the offline optimal algorithm is solved using
CPLEX. CPLEX uses the Branch & Cut optimization method [26] which
is, in turn, based on a Branch & Bound search algorithm. Initially, at the
root node the problem is solved as a linear program using, e.g., simplex, or
the shifting optimizer algorithm (this approach was first introduced by IBM
under the name SPRINT approach [2]). Then, if a solution exists but not all
variables are integral, Branch and Bound begins by choosing a non-integral
variable and fixing its value to the two closest (upper and lower) integers and
resolving the problem with the remaining variables. According to [57], the
average case complexity of the branch & bound algorithm is polynomial in the
depth of the search tree, when the expected number of the children of a node
that has the same cost as their parent, is at least 1. If a MIP problem has d
variables, then the search space of Branch & Cut consists of the combination
of all the possible splits of the problem variables, which accounts to a binary
tree with depth d and 2d nodes. In all our experiments we have observed in
the CPLEX log that the value of the objective function at the root node of
the Branch & Cut starts with the optimal value. Therefore all branches in
the search tree lead to nodes that have the same cost with the root node.
Due to this observation, we expect that the computational complexity of the
algorithm should be polynomial to the number of variables of the problem.
Thus, we next calculate the number of decision variables and examine their
correlation to the execution time.

For Off-Opt-Swap, the number dswap of variables is given by the following
equation: dswap = |∆| + |∆| × |A| × |T | + |A| × |L| × |T | where |∆| is the
total number of tasks, |A| is the total number of EVs, |T | is the total number
of time points that the day is divided in, and |L| is the total number of
locations (pick-up and drop-off points) (i.e., the problem has four dimensions
in total). Decision variable λδi

has 1 dimension namely |∆|, decision variable
εj,i,t has 3 dimensions namely |A|, |∆| and |T | and decision variable prkj,t,k
has 3 dimensions namely |A|, |T | and |L|. In order to verify our expectation
that the problem grows in polynomial time, we plot the time to solve the
MIP problem against the number of the variables dswap of each problem
calculated using the above equation. Each time we vary one dimension of
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the problem and hold the rest fixed (see Figures 25, 26, 27 and 28). Note
that the number of decision variables is after the pre-processing step. For ∆,
A and T our results verify (in all cases we observe R2 > 95%) that the time
complexity is O(d2

swap). Therefore, the complexity according to the problem
size is O((∆ + ∆ × A × T + A × L × T )2) = O(∆2 + ∆2 × A2 × T 2 + A2 ×
L2 × T 2 + 2×∆2 ×A× T + 2×∆×A× L× T + 2×∆×A2 × L× T 2) ∼=
O(A2 × T 2 × (∆2 + L2)). Interestingly though, for the L dimension of the
problem although the execution time remains second degree polynomial in
the number of decision variables, the coefficient for x2 gets negative values
(see Figure 28). As has been explained earlier (see Section 7.2), when the
number of locations increases, the EVs spread around too much and their
ability to execute tasks is reduced. Therefore, many infeasible tasks exist
and the execution time drops. Thus, we can conclude to the result that the
time complexity of the MIP formulation is not related solely to the number
of decision variables but also to the hardness of the problem to be solved.
Next, we evaluate the complexity of the variation with battery charge.

Figure 25: Variable number of tasks and fixed other dimensions - Off-Opt-Swap.

For the Off-Opt-Charge, the number dcharge of variables is given by the
following equation: dcharge = |∆|+|∆|×|A|×|T |+|A|×|L|×|T |+|A|×|T | (i.e.,
decision variable λδi

has 1 dimension namely |∆|, decision variable εj,i,t has 3
dimensions namely |A|, |∆| and |T |, decision variable prkj,t,k has 3 dimensions
namely |A|, |T | and |L| and decision variable bchj,t has 2 dimensions namely
|A| and |T |). We executed the same experiments as in the case of Off-Opt-
Swap and the results also verify (in all cases we observe R2 > 96%) that for
∆, A and T the time complexity is O(d2

charge). Therefore, the complexity
according to the problem size is O((∆ + ∆×A×T +A×L×T +A×T )2) =
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Figure 26: Variable number of EVs and fixed other dimensions - Off-Opt-Swap.

Figure 27: Variable number of time points and fixed other dimensions - Off-Opt-Swap.

Figure 28: Variable number of locations and fixed other dimensions - Off-Opt-Swap.

O(∆2 +2×∆2×A×T+2×A×L×T×∆+2×A×∆×T+∆2×A2×T 2 +2×
∆×A2×L×T 2 +2×∆×A2×T 2 +A2×L2×T 2 +2×A2×L×T 2 +A2×T 2) ∼=
O(A2 × T 2 × (∆2 + L2)). For dimension |L|, the results are similar to the
ones discussed in the previous paragraph.

In fact, as can be seen in Section 7.1, all the measurements of the exe-
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cution times have revealed a quadratic time complexity, which is consistent
with the above analysis. In the next section, the main results, observations
and conclusions are summarized.

7.8. Summary of Key Results
To summarize, in our experimental evaluation we observe that when all

EVs carry the same battery which is large enough for the longest trips, the
greedy algorithm with battery swap in combination with the max flow pro-
vides the optimal solution. At the same time, the variation with battery
charge is at 97% of the optimal without the local search, and at 98.5% when
local search is used. Moreover, in case where some EVs do not have a large
enough battery to execute some of the longest trips, we observe that the
greedy algorithm does not provide the optimal solution anymore and that
the incremental-MIP is the correct choice as it generates solution 0.5% better
than the greedy and with lower execution time, while the optimal algorithm
is still the best but scales up to medium sized problems only. Moreover,
we show that when the objective is the maximization of EV utilization, the
utilization increases by 3.6% and the number of completed tasks reduces by
1.5% on average. In addition, we proposed a battery swap minimization al-
gorithm, which is applied a-posteriori to an already existing task execution
schedule and minimizes the necessary battery swaps, thus also minimizing
cost. Finally, we also proposed an online algorithm which takes into con-
sideration the uncertainty in future demand and verified that it has good
performance.

Generally speaking, the performance of these algorithms depends on the
number of EVs, the number of pick-up and drop-off locations, and as a con-
sequence of this, the number of all possible trips.

8. Conclusions and Future Work

In this paper, we have studied the problem of scheduling a set of shared
EVs in an MoD scheme and initially characterize the problem as a max
flow one to determine the set of feasible tasks, given the available EVs at
each location. Later, we proposed an MIP formulation to solve it optimally.
Given that this solution scales only up to medium sized problems, we also
proposed two non-optimal algorithms. The first one is an incremental MIP
solution, which calls the MIP incrementally for each EV. The second is a
greedy scheduling algorithm which scales up to thousands of tasks and EVs.
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Finally, we developed a tabu search-based local search technique to improve
the solution quality of the non-optimal algorithms. In all cases, either battery
swap or battery charge is used to cope with EVs’ limited range. In our
experiments, we observe that when all EVs carry the same battery which is
large enough for the longest trips, the greedy algorithm with battery swap
in combination with the max flow provides the optimal solution. At the
same time, the variation with battery charge is close to the optimal and is
further slightly improved when local search is used. When some EVs do
not have a large enough battery to execute some of the longest trips, the
incremental MIP generates solutions slightly better than the greedy, while
the optimal algorithm is the best but scales up to medium sized problems
only. Moreover, the online algorithm is shown to be on average at least 90%
of the optimal. When taken together, our algorithms and results establish
the first benchmarks for the study of EVs in MoD schemes and can be used
as benchmarks for future research.

Future work will look into possible relocation mechanisms for the EVs,
in order to further improve the task completion rates. Such mechanisms
could be based on crowd-sourcing techniques where available drivers from
the crowd could drive EVs across locations (as discussed in Section 2). In
a similar vein, car pooling where multiple customers will ride the same EV
could also be considered. In addition to these, we aim to investigate market-
based techniques to incentivise customers to execute trips which improve the
numbers of tasks executed. Moreover, given all the vagaries of an online
implementation have not been factored in, we aim to further expand the
online algorithm. Dealing with cancellations, predicting delays in travel, etc
are issues that should be dealt with in a real-world deployment. Thus, we
consider to improve and extend the online algorithm in a number of ways: 1)
We aim to introduce probability distributions regarding future demand, or
use machine learning techniques in order to have a better forecast of future
demand and increase the number of executed tasks. 2) We aim to investigate
the use of dynamic pricing techniques in order to balance the requests across
the stations [39]. 3) We aim to introduce relocation drivers in order to cope
with the case where bookings are being canceled. In this way the schedule
of future tasks would remain feasible. 4) We aim to introduce the notion
of "acceptable risk" regarding a schedule for future tasks by using chance
constraints (tuning the constraints in a human-understandable way is then
another research question).
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