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Abstract

Relation extraction is the task of identifying predefined relationship between entities,

and plays an essential role in information extraction, knowledge base construction,

question answering and so on. Most existing relation extractors make predictions for

each entity pair locally and individually, while ignoring implicit global clues available

across different entity pairs and in the knowledge base, which often leads to conflicts

among local predictions from different entity pairs. This paper proposes a joint infer-

ence framework that employs such global clues to resolve disagreements among local

predictions. We exploit two kinds of clues to generate constraints which can capture

the implicit type and cardinality requirements of a relation. Those constraints can be

examined in either hard style or soft style, both of which can be effectively explored

in an integer linear program formulation. Experimental results on both English and

Chinese datasets show that our proposed framework can effectively utilize those two

categories of global clues and resolve the disagreements among local predictions, thus

improve various relation extractors when such clues are applicable to the datasets. Our

experiments also indicate that the clues learnt automatically from existing knowledge

bases perform comparably to or better than those refined by human.
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1. Introduction

Identifying predefined relationship between pairs of entities is crucial for many

knowledge base related tasks, such as automatic knowledge base construction/population,

factoid question answering, information extraction and so on, all of which have been

popular topics in the field of artificial intelligence [1]. In the literature, the relation

extraction task (RE) is usually investigated in a classification style, where relations

are simply treated as isolated class labels, while their definitions or background infor-

mation are sometimes ignored. Take the relation Capital as an example, we usually

hold an agreement implicitly that this relation will expect a country as its subject and

a city as object, and in most cases, a city can be the capital of only one country. In a

knowledge base, such clues about a relation’s requirements are usually defined as the

domain and range of a relation, which are no doubt helpful for improving relation ex-

traction. For instance, [2, 3, 4] all explicitly modeled the expected types of a relation’s

arguments with the help of a knowledge base’s type taxonomy and obtained promising

results for various information extraction tasks.

However, properly capturing and utilizing such typing clues are not trivial. One of

the hurdles here is the lack of off-the-shelf resources and such clues often have to be

coded by human experts. Many knowledge bases do not have a well-defined typing

system, let alone fine-grained typing taxonomies with corresponding type recognizers,

which are crucial to explicitly model the typing requirements for arguments of a re-

lation, but rather expensive and time-consuming to collect. Similarly, the cardinality

requirements of arguments, e.g., a person can have only one birthdate and a city can

only be labeled as capital of only one country, should be considered as a strong indi-

cator to eliminate wrong predictions, but has to be coded manually as well. Therefore,

except expensive explicit treatment, it would be a better choice to implicitly mine such

requirements from data.
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On the other hand, most previous relation extractors process each entity pair1 lo-

cally and individually, i.e., the extractor makes decisions solely based on the sentences

containing the current entity pair and ignores other related pairs, therefore has dif-

ficulties to capture possible disagreements among different entity pairs. However,

when looking at the output of a multi-class relation predictor globally, we can easily

find possible incorrect predictions such as a university locates in two different cities,

two different cities have been labeled as capital for one country, a country locates

in a city and so on. Suppose we have two entity pairs, <Richard Fuld, USA> and

<USA, Washington>. The extractor predicts that the relation between the first pair

is Nationality and the relation between the second one is LocationCity. It is easy

to find that one of the two predictions should be incorrect, since the first prediction

considers USA as a country but the second claims that USA locates in a city. We may

also find such disagreements inside an entity pair, e.g., the extractor may predict a rela-

tion Capital for the second entity pair according to another instance, which obviously

disagrees with the previous prediction LocationCity.

Resolving those disagreements mentioned above can be considered as a kind of

constrained optimization tasks, e.g., optimizing the local predictions with global con-

straints among them, which can be captured by mining relation background related

clues from the knowledge base. Based on those clues, we can discover the disagree-

ments among the local predictions and generate constraints to resolve those conflicts.

In this paper, we will address how to derive and exploit two categories of clues: the

expected types and the cardinality requirements of a relation’s arguments, to im-

prove the performance of relation extraction. We propose to perform joint inference

upon multiple local predictions by leveraging implicit clues that are encoded with re-

lation specific requirements and can be learnt from existing knowledge bases. Specifi-

cally, the joint inference framework operates on the output of a sentence level relation

extractor as input, derives different types of constraints from an existing KB to implic-

itly capture the expected type and cardinality requirements for a relation’s arguments,

and jointly resolve the disagreements among candidate predictions. We obtain 5 types

1we will use entity pair and entity tuple exchangeably in the rest of the paper
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of constraints in total, where three of them correspond to the type requirements and the

rest ones relate to the cardinality requirements. We formalize this procedure as a con-

strained optimization problem, which can be solved by many optimization frameworks.

The constraints we generated are also flexible to be utilized in either hard style or soft

style. We use integer linear programming (ILP) as the solver and evaluate our frame-

work on both English and Chinese datasets. The experimental results show that our

framework can improve various relation extraction models, not only traditional feature

based ones but also modern neural networks based. We find that the global clues can

be learnt automatically from a knowledge base with better or comparable performance

to those refined manually, which can be effectively investigated in either hard style or

soft style formulations. Our framework can outperform the state-of-the-art approaches

when such clues are applicable to the datasets.

In the rest of the paper, we first review related work in Section 2, and in Section 3,

we describe our framework in detail. Experimental setup and results are discussed in

Section 4. We conclude this paper in Section 5.

2. Related Work

The task of relation extraction can be divided into two major categories: sentence-

level (or mention-level) and entity pair level (or bag-level). The former predicts what

relation a pair of entities may hold within the given sentence, and the latter focuses on

identifying the relationship between an entity pair based on one or multiple sentences

containing that entity pair. The entity pair level relation extraction task is more common

in the literature, especially for the knowledge base construction related tasks, such as

knowledge base population (KBP) [5] or automatically knowledge base construction

(AKBC) [1].

Since traditional supervised relation extraction methods [6, 7, 8] require manual an-

notations and are often domain-specific, nowadays many efforts focus on open informa-

tion extraction, which can extract hundreds of thousands of relations from large scale of

web texts using semi-supervised or unsupervised methods[9, 10, 11, 12, 13, 14]. How-

ever, these relations are often not canonicalized, therefore are difficult to be mapped to
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an existing KB.

Distant supervision (DS) is a semi-supervised relation extraction framework, which

can automatically construct training data by aligning the triples in a KB to the sentences

which contain their subjects and objects, and this learning paradigm has attracted much

attention in information extraction tasks [15, 16, 2, 17, 18, 19, 20, 21]. DS approaches

can predict canonicalized relations (predefined in a KB) for large amount of data and do

not need much human involvement. Since the automatically generated training datasets

in DS often contain noises, there are also research efforts focusing on reducing the

noisy labels in the training data [22, 23], or utilizing human annotated data to improve

the performance [24, 25]. Most of the above works put their emphasis on resolving or

reducing the noises in the DS training data, but mostly focus on the extraction mod-

els themselves, i.e., improving the local extractors, while ignoring the inconsistencies

among many local predictions.

As far as we know, few works have managed to take the relation specific require-

ments for arguments into account implicitly, and most existing works make predictions

locally and individually, lacking in global considerations for inconsistency among lo-

cal extractors. The MultiR system allows entity tuples to have more than one relations,

but still predicts each entity tuple locally [18]. [19] propose a two-layer multi-instance

multi-label (MIML) framework to capture the dependencies among relations. The first

layer is a multi-class classifier making local predictions for single sentences, the output

of which are aggregated by the second layer into the entity pair level. Their approach

only captures relation dependencies, while we learn implicit relation backgrounds from

knowledge bases, including argument type and cardinality requirements. [26] construct

a set of relation topics, and integrate them into a relation detector for better relation

predictions. [27] propose to use latent vectors to estimate the preferences between

relations and entities. These can be considered as the latent type information about

the relations’ arguments, which is learnt from various data sources. In contrast, our

approach can learn implicit clues from existing KBs, and jointly optimize local pre-

dictions among different entity tuples to capture both relation argument type clues and

cardinality clues. [3] utilize relation cardinality to create negative samples for distant

supervision while we use both implicit type clues and relation cardinality expectations
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to discover possible inconsistencies among local predictions. [2, 3, 4] propose to ex-

plicitly use the type information in distantly supervised relation extraction, which rely

on existing typing resources and may have difficulties when the knowledge bases do

not have fine types or sophisticated named entity taggers. In contrast, we try to im-

plicitly mine both type and cardinality clues from <subj, relation, obj> triples without

using fine typing tools or resources, which are then used to resolve the disagreements

among local predictions.

In recent years, neural networks (NN) based models, such as PCNN [20], have been

utilized in the relation extraction task, and the attention mechanism is also adopted to

further reduce the noises within a sentence bag (that is, all the sentences containing

an entity pair) [21]. [28] exploit class ties between relations within one entity tuple,

and obtain promising results. However, those approaches still pay less attention to ex-

ploiting the possible dependencies between relations globally among all entity pairs.

In contrast, our framework learns implicit clues from existing KBs, and jointly opti-

mizes local predictions among different entity tuples to capture both relation argument

type clues and cardinality clues. Specifically, this framework can lift various existing

extractors, including traditional extractors and NN extractors.

There are also works which first represent relations and entities as embeddings

in a KB, and then utilize those embeddings to predict missing relations between any

pair of entities in the KB [29, 30]. This task setup is different from ours, since we

focus on extracting relations between entity pairs from the text resources, while they

mainly make use of the structure information and descriptions of a KB to learn latent

representations.

The idea of global optimization over local predictions has been proven to be help-

ful in other information extraction tasks. [31] and [32] use co-occurrence statistics

among relations or events to jointly improve information extraction performances in

ACE tasks, while we mine existing knowledge bases to collect global clues to solve

local conflicts and find the optimal aggregation assignments, regarding existing knowl-

edge facts. There are also works which encode general domain knowledge as first

order logic rules in a topic model [33]. The main differences between their approach

and our work are that our global clues can be collected from knowledge bases and our
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instantiated constraints are directly operated in an ILP model.

Most existing works in distantly supervised relation extraction focus on improving

the performance locally, including designing sophisticated traditional or neural net-

work models, incorporating explicit type information, reducing noisy instances in the

training data, or utilizing extra human annotated data, etc. Different from previous

works, we propose to implicitly exploiting the relation requirements to discover the

disagreements among the unreliable local predictions, and formalize the procedure as a

constrained optimization problem, which can resolve those disagreements and achieve

a globally optimal assignment.

3. The Framework

Our framework takes a set of entity pairs and their supporting sentences as its in-

put. We first train a preliminary sentence level extractor which can output confidence

scores for its predictions, e.g., a maximum entropy or a neural network based model,

and use this local extractor to produce local predictions. In order to implicitly capture

the expected type and cardinality requirements for a relation’s arguments, we derive

two kinds of clues from an existing KB, which are further utilized to discover the dis-

agreements among local candidate predictions. Our objective is to maximize the over-

all confidence of all the selected predictions, as well as to minimize the inconsistencies

among them. Figure 1 shows an overview of our proposed framework.

3.1. Obtaining Candidate Relations

Since we will focus on extracting relations predefined in a structured KB, we follow

the distant supervision paradigm to collect our training data guided by this KB, and

train a local extractor accordingly, e.g., using an maximum entropy model, a neural

network model, or other existing extractors. Given a sentence containing an entity pair

t (from a set of entity tuples T ), the model will output the confidence of this sentence

representing certain relationship r (from a predefined relation setR) between the entity

pair. Note that, due to the noisy nature of the training data, we admit that the resulting

prediction is not fully reliable. But we still have a good chance to find the correct
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Generating candidate relations

USA, New York

USA, 

Washington D.C.

Sentence1

Sentence2

…
Sentencen

Sentence1

Sentence2

…
Sentencen

Capital

LargestCity

LocationCity

Capital

LocationCity

Obtaining the clues

Argument type requirements
Argument cardinality 

requirements

Subject v.s. Subject

(LocationCity, Capital)

Object v.s. Object

(LocationCity, LocationCountry)

Subject v.s. Object

(LocationCity, Nationality)

Unique Subject  Given Object

BirthDate

Unique Object Given Subject

Capital

Finding the disagreements among local predictions

USA, New York

USA, 

Washington D.C.

Capital

LargestCity

LocationCity

Capital

LocationCity

Integer Linear Programming

Objective function

Constraints

Solving the problem and 

obtaining the resul ts

USA, New York

USA, 

Washington D.C.

Capital

LargestCity

LocationCity

Capital

LocationCity

×

√

√
×

Figure 1: An overview illustration of our framework. The framework includes four main steps: generating

the candidate relations, obtaining the clues, finding the disagreements among the local predictions, and using

an integer linear programming framework to solve the problem and obtain the final results.
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prediction ranked in the second or third, we thus select top three predictions as the

candidate relations for each entity pair in order to introduce more potentially correct

output.

On the other hand, we should discard the predictions whose confidences are too low

to be true. We set up a threshold of 0.1. For an entity tuple t, we obtain its candidate

relation set by combining the candidate relations of all its sentence-level mentions, and

represent it as Rt. For a candidate relation r ∈ Rt and a tuple t, we define Mr
t as all

t’s sentence-level mentions whose candidate relations contain r. Now the confidence

score of a relation r ∈ Rt being assigned to tuple t can be calculated as:

conf(t, r) =
∑

m∈Mr
t

score(m, r) (1)

where score(m, r) is the confidence of a mention m representing relation r output by

our preliminary extractor.

Traditionally, both lexical features and syntactic features have been investigated in

the relation extraction task. Lexical features are the word chains between the subjects

and objects in the sentences, which are usually too specific to frequently appear in the

test data. For instance, a long lexical feature ”PERSON was an American politician

who was born on August 19, 1946 in LOCATION” extracted from the training set may

be unlikely to exist in any sentence of the testing set, thus might be useless in predicting

the relation BirthPlace in the future. On the other hand, the reliability of syntactic

features depends heavily on the quality of dependency parsing tools, which may limit

the usage of such kind of features in the languages which do not have high quality

parsing toolkits.

Generally speaking, we expect more potentially correct relations to be put into the

candidate relation set for further consideration, i.e., we expect recall-oriented prelimi-

nary local extractors. So, in addition to lexical and syntactic features, traditional feature

based extractors can benefit from incorporating n-gram features, which are considered

as more ambiguous and bring higher recall. In the neural network category, the NN

extractors[20, 21] take advantage of word embeddings and convolutional architectures

to naturally support recalling more potentially correct results.
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3.2. Disagreements among the Candidates

The candidate relations we obtained from local extractors inevitably include incor-

rect predictions, since they are often predicted individually, e.g., within one entity pair.

One way to identify those incorrect predictions is to find any disagreements among

local predictions, which could be resolved by discarding the local predictions that lead

to the disagreements. This can help us to obtain more accurate predictions, with more

global coherence. Therefore, our clues should be in a form of A-and-B-should-not-

happen-together. Theoretically, our framework can deal with any sort of clues in such

a form. In this paper, we will discuss two kinds of them in detail.

As discussed earlier, we will exploit from the knowledge base two categories of

clues that implicitly capture relations’ backgrounds: their expected argument types

and argument cardinalities, based on which we can discover two categories of dis-

agreements among the candidate predictions, summarized as argument type inconsis-

tencies and violations of arguments’ uniqueness, which have been rarely investigated

before. Next, we will discuss them in detail, and describe how to learn the clues from

a KB afterwards.

3.2.1. Implicit Argument Types Inconsistencies:

Generally, the argument types of correct predictions should be consistent with each

other. Given a relation, its arguments sometimes are required to be certain types of

entities. If the local predictions among different entity tuples require the same entity to

belong to different and contradictory types, we call this situation as argument type in-

consistency. Take <USA, New York> and <USA, Washington D.C.> as an example.

In Figure 2, <USA, New York> has a candidate relation LargestCity which restricts

USA to be either countries or states, while <USA, Washington D.C.> has a prediction

LocationCity which requires an organization as its subject. These two local predictions

lead to a disagreement in terms of USA’s type because the latter expects USA to be

an organization located in a city, which warns that at least one of the two candidate

relations is incorrect.

Besides the disagreement between the subjects of two candidate relations, from

Figure 2, we can observe two more situations: the first one is that the objects of the

10



USA, New York

Capital: 0.5 ×

LargestCity: 0.4  

LocationCity: 0.05 ×

New York University, New York

LocationCity: 0.8  

FoundationPlace: 0.15  

USA, Washington D.C

Capital: 0.95  

LocationCity: 0.03 ×

Germany, Washington D.C.

Capital: 0.3 ×

Richard Fuld, USA

Nationality: 0.7  

BirthPlace: 0.2  

Columbia University, New York

LocationCountry: 0.5 ×

LocationCity: 0.3  

Cou

Crer

Cro

Csr

Csr

Csu

Figure 2: Different types of disagreements we investigate among the candidate relations. Each arrow link

two local relations that conflict with each other. The color of an arrow indicates the type of the clue we use

to discover the disagreement, and the caption of an arrow shows its subtypes.
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two candidate relations are inconsistent with each other, for example <New York Uni-

versity, New York> with the prediction LocationCity and <Columbia University, New

York> with the prediction LocationCountry. The second one is that the subject of

one candidate relation does not agree with another prediction’s object, for example

<Richard Fuld, USA> with the prediction Nationality and <USA, New York> with

the prediction LocationCity. Although we have not assigned explicit types to these en-

tities, we can still exploit the inconsistencies implicitly with the help of shared entities.

Note that the implicit argument typing clues here mean whether two relations can share

arguments, but not enumerate what types explicitly their arguments should have.

Formally, these problematic relation pairs can be divided into the following three

subcategories. We represent the relation pairs (ri, rj) that are inconsistent in terms of

subjects as Csr, the relations pairs that are inconsistent in terms of objects as Cro, the

relation pairs that are inconsistent in terms of one’s subject and the other one’s object

as Crer.

It is worth mentioning that disagreements inside an entity tuple are also considered

here. For instance, an entity tuple <USA, Washington D.C.> in Figure 2 has two

candidate relations, Capital and LocationCity. These two predictions are inconsistent

with each other with respect to the type of USA. They implicitly consider USA as

“country” and “organization”, respectively.

3.2.2. Violations of Arguments’ Uniqueness:

The second kind of disagreement regards the argument cardinality requirements for

a relation. Given a subject, some relations should have unique objects. For example,

in Figure 2, given USA as the subject of the relation Capital, we can only accept one

possible object, because there is great chance that a country only have one capital. On

the other hand, given Washington D.C. as the object of the relation Capital, we can

only accept one subject, since usually a city can only be the capital of one country or

state. If these are violated in the candidates, we could know that there may be some

incorrect predictions. We represent the relations expecting unique objects as Cou, and

the relations expecting unique subjects as Csu.
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3.2.3. Other Types of Clues

In addition to the two types of clues discussed above, there could be some other

types of clues, in the form of A-and-B-should-not-happen-together, applicable to this

task. For example, one may design a kind of clues with respect to the numerical values

of different relations’ arguments, e.g., one person’s BirthDate should be earlier than

his DeathDate, which can be easily transformed to a constraint regarding whether two

local predictions can be correct at the same time.

Such type of clues are surely useful if they are applicable to the datasets. However,

there are few such cases in our current datasets, we will leave further investigations as

an interesting direction for future work.

3.3. Obtaining the Global Clues

Now, the issue is how to obtain the clues used in the previous subsection. That is,

how we determine which relations expect certain types of subjects, which relations ex-

pect certain types of objects, etc. These knowledge can be definitely coded by human,

or learnt from a KB.

Most existing knowledge bases represent their knowledge facts in the form of

(<subject, relation, object>) triple, which can be seen as relational facts between en-

tity tuples. Usually the triples in a KB are carefully defined by experts. It is rare to find

inconsistencies among the triples in the knowledge base. The clues are therefore learnt

from KBs, and further refined manually if needed.

Given two relations r1 and r2, we query the KB for all tuples bearing the relation

r1 or r2. We use Si and Oi to represent ri’s (i ∈ {1, 2}) subject set and object set,

respectively. We adopt a modified Kulczynski similarity coefficient (K) [34] to estimate

the dependency between the argument sets of two relations:

K(A,B) = log
1

2
(
count(A ∩B)

count(A)
+
count(A ∩B)

count(B)
) (2)

where count(A∩B) is number of the entities in bothA andB, count(A) and count(B)

are the numbers of the entities in A and B, respectively. For any pair of relations from

R × R, we calculate four scores: K(S1, S2), K(O1, O2), K(S1, O2) and K(S2, O1).

To make more stable estimations, we set up a threshold κ for K(). If K(S1, S2) is
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lower than the threshold, it means there is a good chance that r1 and r2 cannot share a

subject, and we should generate a clue for them. Otherwise, we will consider that r1

and r2 can share a subject. Things are similar for the other three scores. The threshold

is set to -3 in this paper.

We can also learn the uniqueness of arguments for relations. For each pre-defined

relation in R, we collect all the triples containing this relation, and count the portion

of the triples which only have one object for each subject, and the portion of the triples

which only have one subject for each object. The relations whose portions are higher

than the threshold will be considered to have unique argument values. This threshold

is set to 0.8 in this paper.

One issue for the learning strategy is when a relation has only a small amount of

instances in the KB, the learnt clues about that relation can be inevitably noisy, which

may bring errors to the final predictions. Here, we should take different application

scenarios into account, to balance the human crafted clues and the automatically ob-

tained ones. For example, during the initial stage of knowledge base population, i.e.,

when the KB is still small, we can first utilize manually crafted clues for new relations

and existing relations with only a small number of instances. As we accumulate more

and more relation instances and populate them into the KB, we can move onto the

automatically learnt clues.

3.4. Integer Linear Program Formulation

As discussed above, given a set of entity pairs and their candidate relations output

by a preliminary extractor, our goal is to find an optimal configuration for all those

entities pairs jointly, solving the disagreements among those candidate predictions and

maximizing the overall confidence of the selected predictions. It has been proven that

this problem is the reduction from an NP-complete problem, minimum vertex cover,

which means it is an NP-hard problem2. Many optimization models can be used to

obtain the approximate solutions. In this paper, we propose to solve the problem by

2https://en.wikipedia.org/wiki/Integer programming
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using an ILP tool, IBM ILOG Cplex3.

3.4.1. Objective Function

For each tuple t and one of its candidate relations r, we define a binary decision

variable drt ∈ {0, 1}, indicating whether the candidate relation r is selected by the

solver. Our objective is to maximize the total confidence of all the selected candidates,

and the objective function can be written as:

max
∑

t∈T ,r∈Rt

(conf(t, r) + max
m∈Mr

t

score(m, r))drt (3)

where conf(t, r) is the confidence of the tuple t bearing the candidate relation r, Mr
t

is the set of t’s sentence-level mentions whose candidate relations contain r. The first

component is the original confidence scores of all the selected candidates, and the sec-

ond one is the maximal mention-level confidence scores of all the selected candidates.

The latter is designed to encourage the model to select the candidates with higher in-

dividual mention-level confidence scores, which, to some extent, coincides with the

distant supervision assumption. For example, in an entity pair t, 5 mentions are pre-

dicted as r1 with 0.2 confidence score by the local extractor, and another mention is

predicted as r2 with a confidence 0.9, we would like to encourage the model to select

the latter.

3.4.2. Constraint Generation

Now we formulate the clues we have collected into constraints to help resolve the

disagreements among the candidate relations. Note that the formulation can be in either

hard style or soft style.

The hard-style formulation will generate hard constraints based on those clues,

which means if there are two predictions violating the constraints, we will have to

discard the one which may result in a smaller objective, e.g., the one with lower con-

fidence. For example, given two predictions which indicate that a country is also an

organization locating in a city, there is a good chance that one of the predictions is

incorrect and should be eliminated.

3www.cplex.com
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On the other hand, the soft-style formulation allows a constraint to be violated,

to some extent, with a continuous value as a kind of penalty. This is designed under

the observation that some of the clues we have generated can be violated in certain

situations. For example, in most cases an actor will not be a politician, but Arnold

Schwarzenegger is both an actor and a politician. Thus, allowing the constraints to be

violated with certain penalty can deal with such rare situations, and potentially avoid

eliminating true positive samples according to one strict hard constraint. Intuitively,

one should expect a higher penalty for very rare situations, and a smaller penalty for a

constraint with several exceptions.

3.4.3. Hard Style Formulation

Here we describe how to formally take into consideration the two kinds of dis-

agreements, i.e., implicit argument types inconsistencies and violations of arguments’

uniqueness, in a hard style. For the sake of clarity, we describe the constraints derived

from each scenario of these two disagreements separately.

The subject-relation constraints avoid the disagreements between the predictions of

two tuples sharing a subject. These constraints can be represented as:

dr
ti

ti + dr
tj

tj ≤ 1 (4)

∀ti, tj : subj(ti) = subj(tj) ∧ (rti , rtj ) ∈ Csr

where ti and tj are two tuples in T , subj(ti) is the subject of ti, rti is a candidate

relation of ti, rtj is a candidate relation of tj .

The object-relation constraints avoid the inconsistencies between the predictions of

two tuples sharing an object. Formally we add the following constraints:

dr
ti

ti + dr
tj

tj ≤ 1 (5)

∀ti, tj : obj(ti) = obj(tj) ∧ (rti , rtj ) ∈ Cro

where ti ∈ T and tj ∈ T are two tuples, obj(ti) is the object of ti.

The relation-entity-relation constraints ensure that if an entity works as subject and

object in two tuples ti and tj , respectively, their relations should agree with each other.

16



The constraints can be designed as:

dr
ti

ti + dr
tj

tj ≤ 1 (6)

∀ti, tj : obj(ti) = subj(tj) ∧ (rti , rtj ) ∈ Crer

The object uniqueness constraints ensure that the relations requiring unique objects

do not bear more than one object given a subject.∑
t∈Tuple(r),subj(t)=e

drt ≤ 1 (7)

∀e, r : r ∈ Cou

where e is an entity, Tuple(r) are the tuples whose candidate relations contain r.

Similarly, the subject uniqueness constraints ensure that given an object, the rela-

tions expecting unique subjects do not bear more than one subject.∑
t∈Tuple(r),obj(t)=e

drt ≤ 1 (8)

∀e, r : r ∈ Csu

3.4.4. Soft Style Formulation

To utilize the constraints in a soft style, we give each constraint a non-negative

penalty of violating it. The higher the penalty is, the more confident we are that the

corresponding constraint should not be violated. An extreme case is that the constraint

has a penalty of infinite, which means this constraint should not be violated at all,

working as a hard constraint. Again, our aim is to find an optimal solution which max-

imizes the objective function (Equation 3) as defined in Section 3.4.1, and minimizes

the penalty of violating the constraints at the same time.

We then rewrite the objective function (Equation 3) to accommodate constraints in

a soft style. For each hard constraint dr
ti

ti + dr
tj

tj ≤ 1 discussed in Section 3.4.3, we

define a new decision variable, dr
ti ,rtj

ti,tj , which will be 1 if the constraint is violated

(that is, when both dr
ti

ti and dr
tj

tj are 1), and 0 otherwise. Note that each dr
ti ,rtj

ti,tj is still

a binary decision variable, but each one will be associated with a continuous penalty

of violating the corresponding constraint. However, for the constraints generated from
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the second category of clues (violations of argument uniqueness), it is difficult to fit

them linearly into the objective function4.

Therefore, in this paper, we only transform the constraints from implicit argument

types inconsistencies into soft constraints. Starting from Equation 3, we take into ac-

count the penalty values of violating the soft constraints, and formulate the total penalty

as a new component of the objective, which can be defined as:

max(
∑

t∈T ,r∈Rt

(conf(t, r) + max
m∈Mr

t

score(m, r))drt −
∑

dr
ti ,rtj

ti,tj p(rti , rtj ))

∀ti, tj : subj(ti) = subj(tj) ∧ (rti , rtj ) ∈ Csr

∀ti, tj : obj(ti) = obj(tj) ∧ (rti , rtj ) ∈ Cro

∀ti, tj : obj(ti) = subj(tj) ∧ (rti , rtj ) ∈ Crer

The penalty values p(rti , rtj ) of violating the constraints should be calculated based

on the clues from which they are generated. However, it is impossible to manually

assign proper penalty values for each of those clues, so we stick on the automatically

generated clues for the soft constraints. There could be many ways to automatically

obtain the penalty values, and one straightforward method is to use the K scores of the

clues from which those constraints are generated:

p(rti , rtj ) = −αK(rti , rtj ) (9)

where the parameter α adjusts the weights of the penalty of violating the constraints,

and K(rti , rtj ) is calculated based on the argument sets of the two relations as de-

scribed in Section 3.3. Since the K scores are negative and the penalty values are

usually considered as positive, we thus add a minus sign in the equation.

In order to restrict the decision variable dr
ti ,rtj

ti,tj to be 1 only when both dr
ti

ti and

4For a constraint like
∑

t∈Tuple(r),obj(t)=e

drt ≤ 1, it will be violated when more than one drt equal to 1.

We need a decision variable similar with dr
ti ,r

tj

ti,tj
to represent the violation of the constraint. However, it is

impossible to use a linear combination of several linear constraints to make the decision variable act as we

expect.
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dr
tj

tj are 1, we need to add the following new constraints:

dr
ti ,rtj

ti,tj ≤ dr
ti

ti (10)

dr
ti ,rtj

ti,tj ≤ dr
tj

tj (11)

dr
ti

ti + dr
tj

tj ≤ d
rti ,rtj

ti,tj + 1 (12)

∀ti, tj : subj(ti) = subj(tj) ∧ (rti , rtj ) ∈ Csr

∀ti, tj : obj(ti) = obj(tj) ∧ (rti , rtj ) ∈ Cro

∀ti, tj : obj(ti) = subj(tj) ∧ (rti , rtj ) ∈ Crer

No matter how we formalize those constraints, hard or soft, the ILP based joint

optimization framework helps us combine the confidence from local extractors and the

implicit relation background encoded in the global consistencies among entity tuples

together. After the optimization problem is solved, we will obtain a full configuration

per each candidate relation, which will help us eliminate incorrect candidates.

4. Experiments

We will compare our proposed framework with both traditional and neural net-

works based state-of-the-art relation extractors on different datasets in different lan-

guages. Specifically, these experiments are designed to address the following ques-

tions: (a) whether our proposed framework can effectively handle the global inconsis-

tency among local predictions? (b) whether our framework can work with automati-

cally obtained clues, except manually designed clues? (c) how differently the frame-

work performs with hard-style or soft-style constraints?

Next, we will introduce the datasets, describe the baseline models used for com-

parisons, and present the results in detail.

4.1. Datasets

We evaluate our approach on three datasets, including two English datasets and one

Chinese dataset.

The first English dataset, Riedel’s dataset, is the one used in [35, 18, 19], with the

same training/test split as previous works. It uses Freebase as the knowledge base,
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covering 52 Freebase relations in total, and the New York Time corpus [36] as the text

corpus, including about 281,000 entity tuples, 552,000 sentences in the training set,

about 96,000 entity tuples, and 172,000 sentences in the testing set.

We construct another English dataset, the DBpedia dataset, by mapping the triples

in DBpedia [37] to the sentences in the New York Time corpus. We map 51 different

relations to the corpus and result in about 134,000 sentences with 50,000 entity tuples

for training, and 53,000 sentences with 30,000 entity tuples for testing.

For the Chinese dataset, we derive knowledge facts and construct a Chinese KB

from the Infoboxes of HudongBaike5, one of the largest Chinese online encyclopedias.

We collect four national economic newspapers in 2009 as the text corpus. 28 different

relations are mapped to the corpus, resulting in 60,000 entity tuples, 120,000 sentences

for training, and 40,000 tuples, 83,000 sentences for testing.

We obtain two kinds of global clues, regarding implicit argument types inconsisten-

cies and violations of arguments’ uniqueness, respectively, for all three datasets. Each

clue in the first category is a pair of relations, e.g., <country, nationality> is a clue

from Csr, which means it is unlikely that the two relations can share subjects. Each

clue in the second category is a single relation who requires unique argument values.

For example, capital is a relation from Cou, indicating that we can only accept one

object given a specific subject for relation capital.

The Riedel’s dataset is produced from a much earlier version of Freebase which we

cannot access now, thus can not obtain any clues automatically. We therefore manually

collect clues for this dataset only. The numbers of the clues manually and automatically

obtained for those datasets are listed in Table 1. We list the manually obtained clues

for the DBpedia and Chinese datasets in the Appendix.

As for the number of the generated constraints on each dataset, if we consider all

the predefined relations as candidates, there would be a huge number of constraints

which only depend on the number of entity pairs and what clues we have. However, in

practice we could select candidates from the top predictions of the local extractors as

discussed in Section 3.1, thus the number of the constraints will also be related to the

5www.baike.com
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Table 1: The number of the clues on the three datasets.

Dataset Manual Clues Automated Clues

The 1st Category The 2nd Category The 1st Category The 2nd Category

Riedel’s 58 11 - -

DBpedia 65 8 676 18

Chinese 60 12 1341 28

local extractors. Generally speaking, the extractors that are more confident with their

predictions will result in less candidates, and also less constraints.

We also notice that, given thousands of different relations in the DBpedia or Hudong-

Baike KB, we only manage to map dozens of different relations from the corpora we

used. In order to extract other types of relations, one may need to collect different

resources in the future.

4.2. Baselines and Competitors

For a thorough examination, we compare with both traditional RE models and mod-

ern neural networks based RE models.

1. MaxEnt: Maximum Entropy [38] is a widely used baseline extractor in distantly

supervised RE, which usually takes both lexical and syntactic features as input.

In our experiments, we also incorporate N-gram based lexical features for an

expectation of higher recall.

2. MultiR: is a novel joint model that is designed to deal with the overlap between

multiple relations [18].

3. MIML-RE: follows a two-step paradigm, which first uses a multi-class classi-

fier to make latent predictions for the mentions, which are then fed to a bunch

of binary classifiers to decide whether the entity pair holds the corresponding

relation. MIML-RE is one of the state-of-the-art traditional feature based RE

systems [19].

4. NN-avg: is a variant of the PCNN model in [20], where the embedding of an

entity pair is obtained by averaging the embeddings of the sentences containing

this pair. It is also used as a baseline extractor in [21].
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5. NN-att: utilizes the attention mechanism to weight each sentence inside a bag6,

while calculating the embedding for an entity pair [21]. NN-att is currently

one of the state-of-the-art neural network RE algorithms.

Note that all the above models are originally designed to output entity pair level pre-

dictions.

Our general framework will take sentence level predictions as input, resolve the

inconsistencies among them and finally output the entity pair level results. We thus

collect the sentence level predictions from MaxEnt, MultiR, NN-avg and NN-att7,

feed them to our framework, and compare our proposed method with their originally

designed integration schemes as well as other existing integration methods.

1. Mintz++: is the baseline integration mechanism described in [19], which obtains

multi-label outputs for an entity tuple by OR-ing all its local predictions. A

similar approach is also adopted in MultiR.

2. NN-avg-bag: In neural network based models, one simple approach of integra-

tion is to average the embeddings of a bag’s all sentences into one bag-level

embedding, which is then used to obtain the bag-level predictions [21].

3. NN-att-bag: designs an attention mechanism to adaptively assign different weights

for different sentences inside a bag, according to their importances for a candi-

date relation [21].

Following previous works [35], we use the Precision-Recall Curve (P-R Curve)

as the evaluation criterion in our experiments. For each model, we rank all final pre-

dictions (in the entity pair level) in a descending order according to their confidence

scores. In the ranked list, we compute precision/recall at each position, and then plot

the P-R Curve for this model. Usually, the closer the curve is to the upper right corner,

the better performance the model has.

6We call all the sentences containing an entity pair as a bag for that entity pair.
7We can not find local predictions from MIML-RE
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(b) The Chinese Dataset
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(c) The Riedel’s Dataset

Figure 3: The results of the MaxEnt extractor on three datasets.

4.3. Applying to Different Extractors

Our main question is whether our proposed framework can handle the global in-

consistencies among the local predictions from sentence-level relation extractors. We

examine both traditional feature-based extractors (MaxEnt and MultiR) and neural net-

works based extractors (NN-avg and NN-att) within our framework with hand crafted

global clues. For each dataset we manually select around 60 relation pairs to capture

the clues about argument types inconsistencies, and then include all the relations with

unique argument values inR. We first compare our framework with the Mintz++ style

integration, which has been proved to be very competitive in [19].

The MaxEnt Extractor. Firstly, we feed both our framework and a Mintz++ style in-

tegrator with the MaxEnt’s sentence-level predictions. As we can see in Figure 3, com-

pared with the MaxEnt-Mintz++, our framework MaxEnt-ILP-Manual wins MaxEnt-

Mintz++ at almost every recall point, performing consistently better in both the DBpe-

dia dataset and the Chinese dataset. Our ILP based framework takes the same sentence-

level local predictions as MaxEnt-Mintz++, but helps filter out incorrect predictions

from the local MaxEnt extractor, leading to higher precisions.

However, in the Riedel’s dataset, our framework cannot improve the performance.

We manually investigate the dataset, and find that this dataset is dominated by three

BIG relations:

/location/location/contains, /people/person/nationality and /people/person/place lived,

which cover about two-thirds of the entity tuples in total, and make the output of the

local extractor bias even more to these BIG relations. Specifically, we find that about
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Table 2: Details of the improvements by our ILP framework in the DBpedia and Chinese datasets.

Datasets # of eliminated # of corrected # of introduced w.r.t. Mintz++

DBpedia 268 61 1426

Chinese 1506 14 283

two-thirds of the local predictions are covered by one relation, /location/location/contains.

These biased local predictions actually prevent us from collecting useful constraints

from different kinds of clues. The reasons are twofold. Firstly, the type requirements

of this relation are too general, e.g., it is not helpful at all to identify the difference be-

tween a city and a country since both of them can act as both subject and object for the

relation /location/location/contains. Secondly, most entities are predicted to associate

with only one relation, thus there will not be any disagreement among them, and we

are not able to correct any wrong predictions, either. Other relations in this dataset may

have some disagreements among local output, but they are too few to be captured by

manually coded clues. Therefore, in this dataset, we cannot resolve the wrong local

predictions by implicitly capturing the type requirements.

In order to better illustrate how the proposed framework actually works to improve

performances, we compare the outputs of our framework and Mintz++, and investigate

how many incorrect predictions are eliminated and corrected by our framework on the

DBpedia and Chinese datasets. We also examine how many correct predictions are

newly introduced by ILP, which are predicted as NA by the Mintz++ style integration.

The results summarized in Table 2 show that our framework can not only eliminate

the incorrect predictions from local extractors, but also introduce more correct predic-

tions, which are originally ranked the 2nd and 3rd in the local predictions, at the same

time. We also find an interesting result: in the DBpedia dataset, our ILP framework is

more likely to introduce correct predictions, while in the Chinese dataset, it tends to

reduce more incorrect predictions. This agrees with what is shown in the P-R curves:

in the DBpedia dataset, our framework extends longer along the recall axis, while in

the Chinese dataset, it improves the precision significantly. It is also worth mentioning

that the predictions being corrected are much less than the ones being eliminated or
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(b) The Chinese Dataset
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(c) The Riedel’s Dataset

Figure 4: The results of the MultiR extractor on the three datasets.

newly introduced on both datasets. This is mainly because that when correcting a pre-

diction, our framework should first identify an incorrect prediction for an entity pair,

eliminate it, and pick out the next best prediction with a high enough confidence and

mostly compatible with the constraints, at the same time.

The MultiR Extractor. MIML-RE and MultiR are two state-of-the-art models among

traditional relation extractors. However, the MIML-RE model can only output entity-

pair level results, we thus fit MultiR’s sentence-level extractor into our framework.

As we can see in Figure 4, in both the DBpedia and Chinese datasets, our ILP op-

timized MultiR outperforms original MultiR in most parts of the curves. Note that,

original MultiR adopts an integration scheme very similar to Mintz++ to merge their

sentence-level predictions into entity-pair level. We think the reason is that our frame-

work makes use of global clues to discard incorrect predictions, while the original

MultiR does not.

In addition, the improvements by our framework are not as high as in the Max-

Ent case, possibly due to the fact that the sentence-level MultiR does not perform well

in these two datasets. Furthermore, the confidence scores output by MultiR are not

normalized to the same scale, which makes it difficult in setting up a reasonable con-

fidence threshold to select the candidate predictions and contributing to the objective

function. As a result, we only use the top one result as the candidate, since including

top two predictions without thresholding the confidences empirically leads to inferior

performances, indicating that a probabilistic local extractor is more suitable for our

framework. We also notice that our framework, again, does not bring significant im-
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(b) The Chinese Dataset
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(e) The Chinese Dataset
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Figure 5: The results of ILP optimized NN models on the three datasets. (a)-(c) are results from NN-avg,

while (d)-(f) are from NN-att.

provement in the Riedel’s dataset, possibly due to the same reasons as discussed in

previous section.

The Neural Network Extractors. Now we feed our framework with the sentence-level

output from two neural network relation extractors, the average based model (NN-avg)

and the attention based (NN-att) [21].

From Figure 5 we can observe that, in the Chinese dataset, our ILP framework

performs better than the Mintz++ style integrated NN extractors. However, in the DB-

pedia dataset, the NN improvement is not as significant as in the traditional models.

One possible reason is that the result of NN extractors is considered as more accurate

and confident than the traditional models, resulting in less constraints and less improve-

ments accordingly. And again, there are still no improvements for both NN models in

the Riedel’s dataset.

From the above discussion, we find that our proposed framework can effectively

work with different local relation extractors, both traditional feature based and neural

network based, and improve the overall extraction performance when such global clues
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(b) The Chinese Dataset

Figure 6: Performance of automatic clues and manual clues with MaxEnt extractor.

are applicable to the datasets. And for the datasets where we fail to generate useful

constraints, e.g., the Riedel’s dataset, our framework does not hurt the performance.

4.4. Automatically and Manually Obtained Clues

Now we will investigate the difference between the manually obtained clues and

automatically generated ones. The manually obtained clues can only be formulated

into constraints in the hard style, while the automatically generated clues can be used

in both hard style and soft style. Considering that the MultiR extractor does not perform

as well as the MaxEnt and NN extractors, we only list the results of MaxEnt and NN

extractors in the following.

Results on the MaxEnt Extractor. We first compare the performance of the manual

clues in the hard style (Manual), automatic clues in the hard style (Auto-Hard) and

automatic ones in the soft style (Auto-Soft) when they are applied to the output of the

MaxEnt extractor.

In Figure 6, we can observe that the results with automatically obtained clues, no

matter in hard or soft style, are comparable to those with manually refined clues. This

indicates that the automatically collected clues can help to handle the inconsistencies

among local predictions as manually refined clues do, and are shown to be effective in

our framework.

We also find that the soft style formulation performs slightly better than the hard

style on both datasets. We think the reason is that the automatically collected clues in
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a soft style formulation can take more unusual situations into consideration, while the

hard style is well-directed according to the annotators.

0 0.1 0.2 0.3 0.4 0.5 0.6

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

 

 
NN−avg−Mintz++
NN−avg−ILP−Manual
NN−avg−ILP−Auto−Hard
NN−avg−ILP−Auto−Soft

(a) The DBpedia Dataset

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

 

 
NN−avg−Mintz++
NN−avg−ILP−Manual
NN−avg−ILP−Auto−Hard
NN−avg−ILP−Auto−Soft

(b) The Chinese Dataset
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(d) The Chinese Dataset

Figure 7: Performance of automatic clues and manual clues with neural network based extractors.

Results on the Neural Network Extractors. As shown in Figure 7, in both datasets, the

automatically collected clues can improve the NN models better than, or comparably

to, the manually obtained ones. We also notice that in the Chinese dataset, the auto-

matic clues can help NN-att to obtain more improvement against manual clues. After a

careful check over the outputs, we find that in this dataset, most incorrect predictions in

the output with manual clues belong to three relations, where, unfortunately, the man-

ually obtained clues do not fully cover the clues about those relations, thus cannot help

find enough disagreements to generate useful constraints. On the other hand, those in-

volved relations are well covered by the automatically obtained clues. This points out

the main shortcoming for manually collected clues that it requires more deep human
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Figure 8: Performance of the simple rule-based strategy and the ILP solver with the MaxEnt extractor.

involvement, and largely relies on the annotators’ expertise.

By comparing the soft and hard style formulations with the automatic clues in Fig-

ure 7, we can see that both of them can effectively deal with the global inconsistencies

among the output of NN extractors, and perform comparably to each other.

4.5. Comparing ILP with A Simple Rule-based Solution

As we can see in many ILP solutions, with the increasing number of entity pairs and

candidate relations, the number of variables and constraints encoded for ILP will in-

crease dramatically. As an alternative, one can also design a simple rule-based method

to utilize our obtained clues. For instance, we can design the selection rule as: if two

or more local predictions conflict with each other, we simply reserve the one with the

highest confidence.

Results on the MaxEnt Extractor. We first compare this simple rule-based strategy

with ILP using MaxEnt model as the local extractor. As we can see in Figure 8, both the

simple rule-based strategy and the ILP framework significantly improve over the base-

line method in both datasets. And, in the DBpedia dataset, our ILP solution performs

slightly better than the rule-based strategy when the recall is in the low region, and as

the recall becomes higher, the improvement from the ILP solution becomes larger. And,

surprisingly, on the Chinese dataset, the rule-based strategy achieves slightly higher

precision in the low recall region, but when the recall becomes higher, the ILP solution

obtains better performance again.
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Figure 9: Performance of the simple rule-based strategy and the ILP solver with the neural network based

extractors.

Results on the NN Extractor. As is shown in Figure 9, when we use the NN models,

both avg and att, as the preliminary extractor, on both datasets, our ILP based frame-

work performs better than, or comparable to, the rule-based solution. All the results

above indicate that compared with the simple heuristic technique, our ILP framework

is more stable and works better in most situations, especially when the problem is

complex and possibly hard to solve heuristically.

4.6. Comparing with the State of the Arts

In previous subsections, we have demonstrate the effectiveness of our framework

with different local extractors and the global clues, collected either manually or au-

tomatically. Next, we compare our framework with both traditional and neural net-

work state-of-the-art extraction models. Considering the fact that the automatic clues
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(b) The Chinese Dataset

Figure 10: Performance of our framework and traditional state-of-the-art extractors.

performs consistently better than or comparably to the manual ones, we will use the

framework with automatically collected clues for detailed comparison and analysis.

Traditional Extractors. We first compare our ILP optimized MaxEnt with the tradi-

tional state-of-the-art extractors, MultiR and MIML-RE in Figure 10.

Compared with MultiR, our ILP framework obtains better results in both datasets.

Especially in the Chinese dataset, the precision is improved around 10-16% at the same

recall points. Our proposed solution performs better compared to MIML-RE in the

English dataset, and outperforms MIML-RE in the Chinese dataset, except in the low-

recall part (<10%) of the P-R curve. This shows that encoding the relation background

information into a simple MaxEnt model can outperform state-of-the-art traditional

models.

Neural Network Extractors. Regarding the neural networks category, we build our so-

lutions by optimizing two sentence-level NN extractors with our proposed ILP frame-

work, and compare with the full state-of-the-art NN extractors [21].

As shown in Figure 11, in the Chinese dataset, our framework outperforms the orig-

inal full models, NN-avg-bag and NN-att-bag, significantly on both averaging network

or attention network, while in the DBpedia dataset, our framework performs compa-

rably to the attention network, and slightly worse than the averaging network. The

main difference between our solution and those two state-of-the-art models is that our
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Figure 11: Performance of our framework and the state-of-the-art neural networks based extractors.

framework focuses on exploring the global clues among different entity pairs and elim-

inating wrong predictions, while the state-of-the-art NN extractors focus on how to bet-

ter merge different sentence-level mentions within an entity pair, e.g., averaging those

mentions or attentively weighting them to represent the context between this entity pair.

It would be an interesting direction to investigate how to combine their advantages in a

unified framework, which we leave for future work.

4.7. Impacts of Different Constraints

Our ILP based framework exploits two kinds of constraints, regarding the argu-

ment type inconsistencies and violations of arguments’ uniqueness, respectively,

to address the global inconsistencies among local predictions, which are designed to

implicitly encode relation requirements. We thus investigate the impact of those con-

straints used in the ILP framework.
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For the sake of clear and concise representation, we follow [19], to use the peak F1

score (highest F1 score) as the evaluation criterion.

The baseline, No-Constraint, is a variant of our framework without any constraints.

It is different from Mintz++, since we use the approach in Section 3.1 to summarize

the confidence scores of each relation and obtain the top 3 relations as the final re-

sults. It can help us to collect more potentially correct results. Note that No-Constraint

has better or comparable F1 scores compared with Mintz++ in both datasets: in the

DBpedia dataset Mintz++ is 34.7% and No-Constraint is 35.2%, while in the Chinese

dataset they are both 44.4%. As shown in Table 3, in the DBpedia dataset, the highest

F1 score increases from 35.2% to 38.3% with the help of both kinds of clues, while in

the Chinese dataset, all constraints contribute to an improvement of 8.4%.

In the DBpedia dataset, the constraints with respect to the implicit argument type

inconsistencies (SR+RO+RER) can improve the F1 score from 35.2% to 37.7%, while

in the Chinese dataset, the absolute improvement is as high as 5.0%. The constraints

targeting violations of arguments’ uniqueness (OU+SU) can increase the F1 score by

1.5% and 5.1% on the DBpedia and Chinese dataset, respectively. Using constraints

derived from only one kind of clues can also improve the performance, but not as well

as using both of them.

We also examine how each sub-type of the constraints can improve the results. As

shown in Table 3, the Sub-Rej (SR), Rel-Obj (RO) and Rel-Entity-Rel (RER) con-

straints (obtained from the Csr, Cro and Crer clues in Section 3.4.3) can improve the

F1 score by 1.1%, 1.6%, 1.2%, respectively, in the DBpedia dataset, and 0.9%, 2.2%

and 3.6%, in the Chinese dataset. As for the two sub-types obtained according to ar-

guments’ uniqueness, the improvements of Obj-Unique (OU) and Subj-Unique (SU)

(obtained from the Cou and Csu clues in Section 3.4.3) in the DBpedia and Chinese

datasets are 1.3% and 0.6%, 5.2% and 0.0%, respectively. From the results we can see

that almost all sub-types of those constraints can contribute to the improvements on

both datasets. Note that OU works better than SU, and SR leads to less improvement

compared to RO and ERE. This is mainly because we have more OU constraints than

SU, e.g., there are 1,372 OU constraints but only 358 SU constraints in the DBpedia

dataset, and more RO/ERE constraints than SR, e.g., we generate about 10,000 SU
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Table 3: Results of different combinations of constraints on the DBpedia dataset and the Chinese dataset.

Method DBpedia Chinese

P(%) R(%) F1(%) P(%) R(%) F1(%)

No-Constraint 34.1 36.3 35.2 43.3 45.7 44.4

Subj-Rel (SR) 36.5 36.1 36.3 45.1 45.6 45.3

Rel-Obj (RO) 37.0 36.6 36.8 48.0 45.4 46.6

Rel-Entity-Rel (RER) 35.4 37.5 36.4 46.8 49.3 48.0

Obj-Unique (OU) 35.3 37.8 36.5 50.3 48.8 49.6

Subj-Unique (SU) 35.3 36.3 35.8 43.3 45.6 44.4

SR+RO+RER 36.3 39.1 37.7 49.7 49.1 49.4

OU+SU 35.7 37.7 36.7 50.3 48.8 49.5

All-Constraints 37.5 39.1 38.3 52.8 52.9 52.8

constraints, 24,000 RO constraints and 70,000 RER constraints in the DBpedia dataset.

This indicates that more constraints may help discover more disagreements among lo-

cal predictions, thus may yield better results.

4.8. Other Factors

Here, we discuss four main factors in our framework, i.e., the size of the clues, the

number of candidate relations, the threshold for learning the clues, and the weight of

the soft penalty, which will affect the effectiveness or efficiency of our method. For the

sake of brevity, here we will take an ILP optimized MaxEnt model with automatically

learnt soft-style constraints (MaxEnt-ILP-Auto-Soft) as an example, and analyze its

performance on the DBpedia dataset.

The Size of Clues. We first investigate the impact of the size of clues. In the experi-

ments, we add clues into the framework according to their related relations’ proportions

in the local predictions, and generate constraints based on those clues. For example, in

the DBpedia dataset, the two biggest relations, Country and birthPlace, take up about

30% in the local predictions. We thus add the clues that are related to these two re-

lations, and then move on to new clues related to other relations according to those
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Figure 12: The performance of MaxEnt-ILP-Auto-Soft in the DBpedia dataset under different number of

relations involved in the constraints. X-axis is the number of relations, and Y-axis is the peak F1 score

(highest F1 score).
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Figure 13: The efficiency of MaxEnt-ILP-Auto-Soft v.s. the number of the relations on the DBpedia dataset.

In both (a) and (b), X-axis is the number of the relations. In (a), Y-axis is the number of the decision variables

and the constraints, while in (b), Y-axis is the running time of our model measured in seconds.

relations’ proportions.

As shown in Figure 14, the clues related to more local predictions would poten-

tially solve more inconsistencies, thus are more effective. Adding the first two or three

relations improves the performance significantly, and as more relations are added, the

performances keep increasing until approaching the plateau.

A related efficiency issue is that when we introduce more clues, the numbers of the

decision variables and the constraints, as well as the running time of the model would

increase, as illustrated in Figure 13(a) and Figure 13(b). Specifically, the numbers of

decision variables and constraints dramatically increase at first, and then with a slower
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growth. The reason is straightforward: we first add the relations with large proportions,

which may bring more decision variables and constraints. As for the running time of

the algorithm, along with more relations introduced, the model becomes more complex,

and the time cost keeps increasing. Finally, the increase slows down and the running

time almost stays still.

From the previous results we can observe that the running time of the optimization

model is mostly affected by the numbers of the constraints and decision variables in-

troduced to the model. More clues make the model perform better, but less efficient. In

practice, users can trade off between the performance and the efficiency of our frame-

work. For example, we can see from Figure 14 that the performance does not improve

much after incorporating more than 20 relations, which means that we can prune the

clues unrelated to the top 20 relations and maintain a reasonable performance.

We also notice that, due to the capacity of the ILP solver, our model cannot deal

with too many relations at the same time. If there are too many relations involved, e.g.,

thousands of relations, there might be billions of constraints generated, and the running

time will grow dramatically as well. One possible solution is to limit the maximum

number of relations processed in one model. Then, how to properly split thousands

of relations into several optimization models to achieve the globally best performance

becomes an other interesting direction for future work.

The Number of Candidate Relations. In our framework, we select the top n local pre-

dictions for each entity pair as the candidates for the following optimization procedure.

As shown in Figure 14, we vary n from 1 to 4 to show its impact to the extraction

performance. We can observe that as n increases from 1 to 3, the precision of our

framework does not improve much, but the recall increases dramatically. This indi-

cates that selecting more candidates may help us collect more potentially correct pre-

dictions. However, obtaining 4 candidate relations can only bring a small improvement

in recall compared to using 3 candidates. On the contrary, it makes the model more

complex, since that will bring more constraints. To confirm, we investigate the local

predictions in different datasets, and find that more than 80% of the correct predictions

are among the top 3. Thus, we finally select the top 3 predictions as the candidates in
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Figure 14: The performance of MaxEnt-ILP-Auto-Soft v.s. the number of candidate relations on the DBpedia

dataset.
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Figure 15: The performance of MaxEnt-ILP-Auto-Soft v.s. the threshold of learning the clues on the DBpe-

dia dataset.

our framework.

The Threshold for Learning the Clues. As discussed in Section 3.3, when our model

automatically collects the clues, it is crucial to set up a proper threshold κ since it will

determine the quality of the obtained constraints. Intuitively, as the threshold κ gets

larger, the number of collected clues will increase, but often lead to more constraints

of lower quality. Figure 15 shows the performance of our framework as κ varies from

-1 to -4 (represented as MaxEnt-ILP-thre1, MaxEnt-ILP-thre2, MaxEnt-ILP-thre3 and

MaxEnt-ILP-thre4). When comparing MaxEnt-ILP-thre1 and MaxEnt-ILP-thre2, we

can see that their precisions are competitive within the low-recall region. After the

recall is higher than 0.2, the precision of MaxEnt-ILP-thre2 is higher than MaxEnt-

ILP-thre1, and the final recall of MaxEnt-ILP-thre2 is also better than MaxEnt-ILP-
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Figure 16: Performance of soft constraints v.s. the weight of the constraints. X-axis is the weight of the soft

penalty, while Y-axis is the peak F1 score.

thre1. We think the reason may be that the low quality clues learnt from κ = −1 often

hurt the correct predictions. The performance of MaxEnt-ILP-thre3 is better than both

MaxEnt-ILP-thre1 and MaxEnt-ILP-thre2, indicating that κ = −3 can derive higher

quality clues than -1 and -2. As the threshold is set to -4, the precision becomes lower

almost at all recall points, since κ = −4 will lead to much fewer clues than MaxEnt-

ILP-thre3, thus can only eliminate fewer incorrect predictions.

The Weight for the Soft Penalty. There is a parameter α in the soft style formulation

(Equation 9), which controls the importance of soft constraints. Intuitively, the larger α

is, the more penalty we will obtain when we violate the constraints. When the penalty

is large enough, it will be very expensive to violate a constraint, and we will not benefit

anything from violating a constraint. That will make a constraint work as a hard one.

Figure 16 shows how our framework performs as α increases from 0 to 10.

We can see that as α increases from 0, the performance first improves significantly,

and then almost stays still. This indicates the performance of the soft constraints is not

sensitive to the parameter α.

5. Conclusions and Future Work

In this paper, we explore the global clues derived from structured knowledge bases

to help resolve the disagreements among local relation predictions, thus reduce the

incorrect predictions and improve the performance of relation extraction. Two kinds
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of clues, including implicit argument type information and argument cardinality infor-

mation of relations are investigated. Those clues can be used to generate constraints

in either hard style or soft style, both of which can be explored effectively in a con-

strained optimization framework, e.g., integer linear programming. Our framework

outperforms the state-of-the-art models if we can find such clues in the knowledge

base and they are applicable to the dataset. Furthermore, our framework is scalable for

various local extractors, including traditional models and the modern neural network

models. Additionally, we show that the clues can be learnt automatically from the KB,

and lead to comparable or better performance to manually refined ones.

In the future, we will investigate how to incorporate new types of clues in our

framework, and extend our framework to a large-scale relation extraction scenario. In

terms of modeling, we would like to study a unified framework to combine the global

clues among different entity pairs and the local information within an entity pair, which

are currently treated in isolation.
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Appendix: Details about the DBpedia and Chinese Datasets

5.1. The DBpedia Dataset

There are in total 51 relations used to construct our DBpedia dataset, as summarized

in Table 4.

As discussed in Section 3.2, we mainly examine two categories of clues, implicity

argument types inconsistancies and violations of aruments’ uniqueness. The former

could be roughly divided into three subcategories, Csr, indicating a pair of relations

are inconsistent regarding their subjects, Cro, indicating the inconsistency regarding

their objects, and Crer referring the inconsistency in terms of one relation’s subject and
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Table 4: The 51 relations used to build the DBpedia dataset.

region residence birthPlace primeMinister influenced

child division recordLabel almaMater deathPlace

country formerTeam currentPartner associatedBand successor

keyPerson knownFor locationCountry stateOfOrigin product

location coachedTeam locatedInArea foundationPerson type

hometown leaderName nationality subsidiary owner

garrison team locationCity foundationPlace partner

occupation vicePresident regionServed draftTeam spouse

employer debutTeam parentCompany headquarter capital

state president owningCompany influencedBy city

associatedMusicalArtist

the other one’s object. The latter one, violations of aruments’ uniqueness, focused on

the argument cardinality requirements for a relation. Specifically, Cou means a relation

expects unique object, while Csu indicates a relation requires unique subject for a given

object.

We list the clues manually designed for the DBpedia dataset in Table 5.

5.2. The Chinese Dataset

As summarized in Table 6, there are 28 relations used to construct our Chinese

dataset. There are also two categories of clues manually annotated for the Chinese

dataset, including 5 subcategories, as listed in Table 7.
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Table 5: The manual clues designed for the DBpedia dataset.

Csr

<country, capital>, <country, birthPlace>, <country, nationality>, <capital, deathPlace>,

<country, deathPlace>, <capital, birthPlace>, <country, residence>, <team, location>,

<state, birthPlace>, <state, deathPlace>, <state, nationality>, <leaderName, residence>,

<city, hometown>, <capital, birthPlace>, <capital, deathPlace>, <capital, state>

<team, associatedMusicalArtist>, <country, hometown>

Cro

<country, capital>, <country, state>, <country, team>, <country, city>,

<country, state>, <city, state>, <nationality, capital>, <nationality, state>,

<nationality, city>, <city, team>, <leaderName, team>, <location, team>,

<state, team>, <almaMater, nationality>, <almaMater, city>, <almaMater, country>,

<city, leaderName>, <nationality, team>, <country, locationCity>,

<state, locationCity>, <locationCountry, locationCity>, <locationCountry, state>,

<nationality, locationCity>, <locationCountry, city>

Crer

<country, country>, <capital, capital>, <team, team>, <country, birthPlace>,

<city, birthPlace>, <region, birthPlace>, <country, deathPlace>, <city, deathPlace>,

<country, nationality>, <nationality, country>, <city, region>, <country, city>,

<almaMater, nationality>, <country, state>, <city, capital>, <nationality, country>,

<locationCountry, country>, <country, residence>, <leaderName, team>,

<city, residence>, <president, team>, <team, nationality>, <team, debutTeam>

Cou

nationality, country, capital, state, stateOfOrigin, locationCountry

Csu

capital, subsidiary
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Table 6: The 28 relations used to construct the Chinese dataset.

所属洲 国籍 籍贯 著名景点 首都 所属地区

下辖地区 名人 法人 毕业院校 创建地点 总部所在地

生产厂商 执政党 政党 现任领导人 校长 导演

知名企业 作者 出生地 知名校友 主场 代表队员

主演 主编 品牌 上市市场

Table 7: The manual clues designed for the Chinese dataset.

Csr

<国籍,下辖地区>, <国籍,所属洲>, <国籍,首都>, <国籍,现任领导人>,

<国籍,下辖地区>, <国籍,首都>, <首都,籍贯>, <所属洲,籍贯>,

<著名景点,国籍>, <下辖地区,国籍>, <所属地区,国籍>, <著名景点,籍贯>,

<籍贯,所属洲>, <籍贯,代表队员>, <籍贯,执政党>, <籍贯,所属地区>,

<国籍,执政党>, <国籍,创建地点>, <所属洲,创建地点>, <著名景点,创建地点>

Cro

<国籍,所属洲>, <国籍,毕业院校>, <国籍,首都>, <国籍,现任领导人>,

<国籍,所属洲>, <著名景点,所属洲>, <首都,所属洲>, <籍贯,毕业院校>,

<籍贯,所属洲>, <首都,毕业院校>, <执政党,现任领导人>, <校长,主场>,

<品牌,主演>, <上市市场,主演>, <校长,导演>, <代表队员,校长>,

<代表队员,导演>, <主演,校长>, <生产厂商,执政党>, <政党,首都>

Crer

<所属洲,所属洲>, <所属洲,国籍>, <所属洲,著名景点>, <所属洲,首都>,

<所属洲,所属地区>, <所属洲,下辖地区>, <国籍,国籍>, <国籍,著名景点>,

<国籍,所属地区>, <国籍,下辖地区>, <著名景点,所属洲>, <著名景点,国籍>,

<著名景点,著名景点>, <著名景点,首都>, <著名景点,所属地区>, <首都,所属洲>

<著名景点,下辖地区>, <首都,国籍>, <首都,首都>, <首都,下辖地区>

Cou

所属洲,首都,生产厂商,主场,政党,创建地点,国籍,籍贯

Csu

首都,执政党,现任领导人,品牌
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