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Abstract

Many classical planning frameworks are built on first-order languages. The first-order expressive
power is desirable for compactly representing actions via schemas, and for specifying quantified
conditions such as ¬∃xblocks_door(x). In contrast, several recent epistemic planning frameworks
are built on propositional epistemic logic. The epistemic language is useful to describe planning
problems involving higher-order reasoning or epistemic goals such as Ka¬problem.

This paper develops a first-order version of Dynamic Epistemic Logic (DEL). In this framework,
for example, ∃xKx∃yblocks_door(y) is a formula. The formalism combines the strengths of DEL
(higher-order reasoning) with those of first-order logic (lifted representation) to model multi-agent
epistemic planning. The paper introduces an epistemic language with a possible-worlds semantics,
followed by novel dynamics given by first-order action models and their execution via product
updates. Taking advantage of the first-order machinery, epistemic action schemas are defined to
provide compact, problem-independent domain descriptions, in the spirit of PDDL.

Concerning metatheory, the paper defines axiomatic normal term-modal logics, shows a Canon-
ical Model Theorem-like result which allows establishing completeness through frame characteriza-
tion formulas, shows decidability for the finite agent case, and shows a general completeness result
for the dynamic extension by reduction axioms.

Keywords: epistemic planning, planning formalisms, multi-agent systems, term-modal logic, dy-
namic epistemic logic

1 Introduction

Most classical planning languages are first-order. Standard formalisms like PDDL [59] and ADL [70],
for example, are first-order. One major reason for using a first-order language over a propositional
one is that variables can be used to describe actions compactly. For instance, in the PDDL description
of BlocksWorld, the action schema stack(X, Y) uses variables X and Y to represent generic blocks and
state the preconditions and effects of all actions of the form: “put block X on top of block Y”. This
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is possible because the action of stacking block A on block B has the same type of effects as the
action of stacking block C on D; only the names of the blocks are different. Action schemas use
variables to exploit this repeated structure in actions, resulting in action representations whose size
is independent of the number of objects in a domain. While stack(X, Y) describes the preconditions
and effects of performing a stack action on any two blocks, regardless of total number of blocks, with
a propositional language each stack action has to be represented by a separate model, yielding n2− n
propositional models for a domain with n blocks. Generally, given an action schema with k variables
and n constant symbols standing for domain objects, the schema has up to nk different instantiations,
each requiring a separate model in a propositional representation.

Dynamic Epistemic Logic (DEL) has proved to be a very expressive framework for epistemic planning,
i.e., planning explicitly involving e.g. knowledge or belief. DEL uses the language of propositional
epistemic logic to describe the knowledge or belief held by a community of agents. This language
is built from a set of propositional atoms, standard logical connectives, and modal operators Ki for
each agent i in a fixed set of agent indices I = {1, . . . , n}. An example of a formula is K1 p ∧ K2K1 p,
which expresses that agent 1 knows the propositional atom p and that agent 2 knows that agent 1
knows p. Actions in DEL are described by so-called action models [6, 7] or variants thereof. Action
models describe preconditions and effects of events, and provide a rich framework for representing
the agents’ uncertainty about such events. However, as action models are based on the propositional
epistemic language, propositional DEL cannot achieve the generality of action schemas. Variabilized,
general descriptions are not possible, so one action model is required for each action. Hence, while
propositional DEL adds a great deal of expressivity to planning, this comes at a cost in terms of
representational succinctness.

This paper presents a DEL-based epistemic planning framework built on epistemic term-modal logic.
The underlying language is first-order and includes modalities indexed by first-order terms. Exam-
ples of formulas include Kc on(A, B) (agent c knows that block A is on block B), Kc∃x on(x, B) (c
knows that there is a block on top of B) and ∀yKy∃x on(x, B) (all agents know that there is a block on
top of B). Term-modal languages thus extend the expressive power of first-order modal languages by
treating modal operators both as operators and as predicates.

In addition to higher-order knowledge expressions, the first-order apparatus of epistemic term-
modal logic allows for domain descriptions in terms of objects and relations, as well as abstract rea-
soning via variables and quantification. The term-modal aspect ensures that these first-order aspects
also extend to agents and their knowledge. Importantly, the presence of variables enables the defi-
nition of epistemic action schemas. Epistemic action schemas can be exponentially more succinct than
standard DEL event models (see Section 5.3). Moreover, epistemic action schemas provide an action
representation whose size is independent of the number of agents and objects in the domain. We
consider the development of this epistemic planning framework our first main contribution.

Our second main contribution is the development of term-modal logic, its dynamic extension and
the metatheory for both. Many papers have been dedicated to term-modal logic and its metatheory
(see Section 9.3 for a detailed review), but due to the many complications that may arise in such gener-
alized first-order modal systems, no general completeness results have been shown. In this paper, we
define a rich but well-behaved semantics that allow us to define axiomatic normal term-modal log-
ics and show a Canonical Model Theorem-like result that allow completeness results through frame
characterization formulas. Adding reduction axioms to the term-modal logics then allow us to show
completeness for the dynamic extension.

The paper progresses as follows. Section 2 presents SelectiveCommunication used as running ex-
ample of epistemic planning. Section 3 presents term-modal logical languages and Section 4 de-
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fines state representations: first-order Kripke models where the agent set is a part of the domain of
quantification. Section 5 introduces action representations (action models) and how these may be
succinctly represented as action schemas. The action representations are used in Section 6 to define
epistemic planning problems and related notions, and an example describing a term-modal planning
domain and problem using a ‘PDDL-like syntax’ is there given. Section 7 details how to extend the
term-modal language to allows reasoning about actions, Section 8 turns to axiomatic systems and
metatheory, while Section 9 turns to related work on epistemic planning, dynamic epistemic logic
and term-modal logic, respectively. Section 10 contains final remarks and open questions. All proofs
may be found in Appendix A.

2 A Running Example

Throughout the paper, we illustrate the planning formalism with a simple running example in a vari-
ant of the SelectiveCommunication (SC) domain, adapted from [46]. Here we describe it informally, but
it will serve as an example for the various formal notions throughout the paper. In the SC(n, m, k, `)
domain, there are n agents. Each agent is initially in one of m rooms arranged in a corridor. There are
k boxes distributed in the rooms, each having one of ` available colors. See Figure 1 for an example.
Agents can perform four types of actions:

• Move(agent, room1, room2): agents can move from a room to a contiguous room, by going right
or left. In this adaptation of the domain, we model the move actions as partially observable: if
agent α is in room ρi and moves to room ρj, only the agents in either of the rooms can see that
α’s location has changed.

• SenseLoc(agent, agent_or_box, room): while in a room, agents can sense the location of other
agents or boxes in that room. Other agents in the room notice the sensing action.

• SenseCol(agent, color, box, room): agents can sense the color of a box when they are in the same
room as the box. Other agents in the room notice the sensing action.

• Announce(agent, color, box, room): agents can make announcements concerning the colors of
boxes. If α makes an announcement in a room, all agents in the same room or in a contiguous
room will hear what was announced. α can use announcements to ensure that some agents get
to know the truth value of some ϕ while the remaining agents do not.

A specific choice for the parameters n, m, k, ` yields an instance of the SC domain. For exam-
ple, SC(3, 4, 1, 2) is the instance of SelectiveCommunication involving three agents (α1, α2 and α3), four
rooms (ρ1, ρ2, ρ3 and ρ4), one box (β1) and two possible colors for the box (e.g., red and green). Figure
1 depicts a possible state of the environment in this domain.

A possible goal g = g1 ∧ g2 ∧ g3 in this domain is given by the conjunction of the following sub-
goals:

• g1: α1 and α2 know the color of β1

• g2: α1 knows that α2 knows the color of β1

• g3: α1 knows that α3 does not know the color of β1
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ρ1 ρ2 ρ3 ρ4

α1
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α2 α3

Figure 1: A depiction of a possible state in SC(3, 4, 1, 2), where a red box β1 is in room ρ2.

That is, g requires α1 to learn the color of β1 and privately communicate this information to α2. I.e.,
the goal is epistemic; it requires α1 to achieve first-order knowledge about the environment (g1) as well
as higher-order knowledge about what others know (g2 and g3).

The nature of a plan for achieving g depends on the initial state as well as the assumptions made
about the planning problem. For illustrative purposes, we consider a simple problem. Suppose that
only α1 can act and that the initial state s0 satisfies the following conditions:

• c1: each agent knows the location of all agents and the box β1.

• c2: no agent knows the color of β1 (which is in fact red).

• c3: conditions c1 and c2 are common knowledge among the agents.

In this case, α1 can easily reach a state satisfying g from s0. The following plan achieves g: α1 moves to
ρ2, α1 senses the color of β1, α1 announces the color of β1. Of course, more initial uncertainty, or allowing
other agents to act (sequentially or in parallel), results in more complex tasks. Such tasks can be
defined with the formalism presented in this paper; however, for a first take on the formalism, this
toy problem will be considered.

For additional examples, in [54] we use the framework to model social networks with epistemic
dynamics.

3 Language

As term-modal logical languages include first-order aspects, they are parameterized by a signature
specifying the non-logical symbols and their type—i.e., the constants and relation- and function sym-
bols, and the sort and order of arguments (agent or object) they apply to. Also variables are here
assigned a type.

Notation 1. For a vector v = (x1, ..., xn), let len(v) denote its length, let vi denote its i’th element, i.e.,
vi := xi, and let v|k denote its restriction to its prefix of length k, i.e., v|k := (x1, ..., xk).

Definition 1. A signature is a tuple Σ = (V, C, R, F, t) with V a countably infinite set of variables, and
C, R and F countable sets of respectively constants, relation symbols and function symbols with the
one requirement that {=} ⊆ R. Finally, t is a type assignment map that satisfies

1. For x ∈ V, t(x) ∈ {agt, obj} such that both V∩t−1(agt) and V∩t−1(obj) are countably infinite.

2. For c ∈ C, t(c) ∈ {agt, obj}.
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3. For r ∈ R,

(a) for some n ∈N, t(r) ∈ {agt, obj, agt_or_obj}n, and

(b) for =∈ R, t(=) = (agt_or_obj, agt_or_obj).

4. For f ∈ F,

(a) for some n ∈N, t( f ) ∈ {agt, obj, agt_or_obj}n × {agt, obj}, and

(b) if t( f )|n = (t(t1), ..., t(tn)), then t( f (t1, ..., tn)) = t( f )n+1.

Identity is treated as a relation symbol; for it, infix notation is used with = (a, b) written a = b.

Example 1 (Signature for SelectiveCommunication). The following signature Σ = (V, C, R, F, t) can be
used to specify the SC(n, m, k, `) domain introduced in Section 2:

• Variables V = {x?, x, y, z, x1, x2, x3, . . . }.

• Constants C = Agentscon ∪ Roomscon ∪ Boxescon ∪ Colorscon, where Agentscon = {a1, . . . , an},
Roomscon = {r1, . . . , rm} Boxescon = {b1, . . . , bk} and Colorscon = {c1, . . . , c`}.

• Relation symbols R = {In,Color,Adj,=} where In(x, y) states that agent or box x is in room y,
Color(x, y) states that box x has color y and Adj(x, y) states that room x is adjacent to room y.

• Function symbols F = ∅.

• Type assignment t with constant types t(x) = agt for x ∈ Agentscon, t(x) = obj for
x ∈ Roomscon ∪ Boxescon ∪ Colorscon, relation types t(In) = (agt_or_obj, obj), and t(Color) =
t(Adj) = (obj, obj).

Definition 2. The set of terms T of a signature Σ = (V, C, R, F, t) is given by the grammar

t ::= x | c | f (t1, ..., tn)

for x ∈ V, c ∈ C and f ∈ F, provided that t1, ..., tn ∈ T and t( f )|len(t( f ))−1 = (t(t1), ..., t(tn)).
A term is ground if it does not contain any variables; it is free if all its terms are (i) variables or (ii)

function symbols all whose arguments are free terms.

By the definitions of type assignments and terms, it is the case that for all t ∈ T, t(t) ∈ {agt, obj}.
This allows for a uniform definition of formulas in term-modal languages:

Definition 3. Let Σ = (V, C, R, F, t) be a signature. Let t1, ..., tn ∈ T and r ∈ R with t(r) =
(t(t1), ..., t(tn)), let † ∈ T with t(†) = agt, and let x ∈ V. The language L is then given by the
grammar

ϕ ::= r(t1, ..., tn) | ¬ϕ | ϕ ∧ ϕ | K† ϕ | ∀xϕ

An atom is a formula obtained by the first clause. An atom is ground if all its terms are ground; it is
free if all its terms are free. Denote by GroundAtoms(L) and FreeAtoms(L) the set of all ground and
free atoms in L, respectively.
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Throughout, the standard Boolean connectives as well as >, ⊥ and ∃ are used as meta-linguistic
abbreviations as usual. We abbreviate inequality expressions of the form ¬(t1 = t2) by (t1 6= t2).
Free and bound variables may be defined recursively as usual with the free variables of Kt ϕ the free
variables of ϕ plus the variables in t. A formula is a sentence if it has no free variables. With ϕ ∈
L, t ∈ T, x ∈ V, t(x) = t(t) and no bound variables of ϕ occurring in t, the result of replacing all
occurrences of x in ϕ with t is denoted ϕ(x 7→ t).

Remark 1. Kt ϕ is read as “agent t knows that ϕ”. Epistemic expressions are only well-defined when
t is an agent term. The language L neither enforces nor requires a fixed-size agent set, in contrast
with standard epistemic languages, where the set of operators is given by reference to some index
set. Fixed-size agent sets are discussed throughout.

4 State Representation

In planning frameworks based on epistemic logic, states are often represented using possible-worlds
models, tracing back to the work of Hintikka [40] and Kripke [50]. The standard epistemic interpre-
tation of such models—employed here in all examples—is one of indistinguishability, as follows. A
model contains a set of worlds, each representing a physical state of affair. For each agent, a model
contains a binary relation on the set of worlds. Under the indistinguishability interpretation, this
relation is taken to be an equivalence relation. If two worlds are related for agent α, then α cannot
distinguish them given her current information. I.e., they are informationally indistinguishable for α.
Hence, when α in fact is in some world w, she cannot tell which of the worlds related to w she is in
fact in. The set of worlds indistinguishable from w for agent α is therefore sometimes referred to as
agent α’s range of uncertainty (at w). The term information cell is used to cover the same, and a world in
α’s range of uncertainty is said to be considered possible by α (at w). An agent’s range of uncertainty
determines its knowledge: an agent knows ϕ in world w if ϕ is true in all the worlds in the agent’s
range of uncertainty at w. For instance, if the agent has no information about two blocks A and B, and
therefore cannot tell whether one of them is stacked on the other or not, she will consider at least three
worlds possible: one in which A is indeed stacked on B, one in which it is not, and one in which B
is stacked on A. Possible-worlds models represent also all levels of higher-order knowledge. E.g. agent
α knows that agent β knows ϕ if α does not consider it possible that β considers it possible that ϕ is
false.

A possible-worlds model is formally defined as a structure in general called a Kripke model. Kripke
models need not enforce any properties on the agents’ relations. Our results hold for the general case,
with equivalence relations a special case. Under the indistinguishability interpretation, Kripke mod-
els are often called epistemic models or epistemic states. For a thorough explanation of the components
of a Kripke model, we refer the reader to [8, 28]. When the context makes it clear, such a structure may
simply be called a model. A model consists of a frame and an interpretation. Two things differentiate
the frame used here from the standard, propositional version. First, a frame here contains a constant
domain of elements existing in each world. Working with distinct agents and objects, the domain
is a disjoint union of two sets, the agent domain and the object domain. Second, the accessibility
relations over worlds are directly associated with elements in the agent domain. The agent domain
thereby makes reference to an index set—as used in non-term-modal logical frames—redundant. The
definition of a frame is thereby self-contained.

Definition 4. A frame F is a triple F = (D, W, R) where
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1. D := Dagt_or_obj := Dagt∪̇Dobj, called the domain, is the disjoint union of the non-empty sets
Dagt and Dobj, called the agent domain and the object domain, respectively.

2. W is a non-empty set of worlds.

3. R is a map associating to each agent i ∈ Dagt a binary accessibility relation on W. I.e.,
R : Dagt −→ P(W ×W).

Write Ri for R(i), write wRiw′ for (w, w′) ∈ Ri and write Ri(w) for {w′ ∈ W : wRiw′}. If |Dagt| = n
and |Dobj| = m, (n, m ∈ N), say F is of size (n, m). Denote by F the class of all frames and by F(n,m)

the class of all frames of size (n, m).

For propositional modal logic, a frame is augmented by a valuation assigning an extension of
worlds to each propositional symbol. In the first-order and term-modal cases, each non-logical sym-
bol is assigned an extension in the domain. Here, this extension is assigned world-relatively for both
relation symbols, function symbols and constants. In particular the last is note-worthy: the constants
are thereby non-rigid—they may refer to different objects (and agents!) in different worlds. The non-
rigidity of constants allows for uncertainty about identity cf. the example of Section 6.2 and play an
important role concerning the validity of frame-property characterizing axioms, cf. Section 8.1.4.

Constants that do not vary with worlds—so-called rigid constants—often come in handy when
referring to agents. A rigid constant provides a syntactic name for a semantic agent. Rigid constants
are a special case: a constant c may be forced rigid by assuming its interpretation I(c, w) to be constant
over all worlds, i.e., by I(c, w) = I(c, w′) for all w, w′ ∈W.

Definition 5. Let a signature Σ = (V, C, R, F, t) and a frame F = (D, W, R) be given. An interpretation
of Σ over F is a map I satisfying for each w ∈W:

1. I(=, w) is the set {(d, d) : d ∈ D}.

2. For c ∈ C, I(c, w) ∈ Dt(c).

3. For r ∈ R, I(r, w) ⊆ ∏
len(t(r))
i=1 Dti(r).

4. For f ∈ F, I( f , w) ⊆ ∏
len(t( f ))
i=1 Dti( f ) such that I( f , w) is a (possibly partial) map: i.e.,

if (d1, ..., dk, dlen(t( f ))), (d1, ..., dk, d′len(t( f ))) ∈ I( f , w), then dlen(t( f )) = d′len(t( f )).

With F = (D, W, R) a frame and I an interpretation of Σ over F, the tuple M = (D, W, R, I) is a model.
Both w ∈ F and w ∈ M states that w ∈ W. When w ∈ M, the pair (M, w) is a pointed model with w
called the designated world.

Satisfaction for all formulas without variable occurrences may be defined over pointed models. To
specify satisfaction for the full language, variables must also be assigned extension. Letting variable
valuations be world independent—or rigid—trans-world identification of objects and agents may be
made using suitable bound variables, cf. e.g. the de re knowledge in Example 2.

Definition 6. Let a signature Σ = (V, C, R, F, t) and a frame F = (D, W, R) be given. A valuation of
Σ over F is a map v : V −→ D such that v(x) ∈ Dt(x). An x-variant v′ of v is a valuation such that
v′(y) = v(y) for all y ∈ V, y 6= x.
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Jointly, an interpretation and a valuation assigns an extension to every term t of Σ relative to every
world of a frame. The following involved, but uniform, notation will be used throughout to denote
the extension of terms:

Definition 7. Let a signature Σ = (V, C, R, F, t), a model M = (D, W, R, I) and a valuation v be given.
The extension of the term t ∈ T in M under v is

JtKI,v
w =


v(t) if t ∈ V

I(t, w) if t ∈ C

d with (d1, ..., dn, d) ∈ I( f , w) if t = f (t1, ..., tn)

For exactly the terms t with t(t) = agt, RJtKI,v
w

is then an accessibility relation in M. The extension
of terms thus play a key role in the satisfaction of modal formulas:

Definition 8. Let Σ = (V, C, R, F, t), M = (D, W, R, I) and v be given. The satisfaction of formulas of
L is given recursively by

M, w �v r(t1, ..., tn) iff (Jt1K
I,v
w , ..., JtnKI,v

w ) ∈ I(r, w) for all r ∈ R, including =.
M, w �v ¬ϕ iff not M, w �v ϕ.
M, w �v ϕ ∧ ψ iff M, w �v ϕ and M, w �v ψ.
M, w �v ∀xϕ iff M, w �u ϕ for every x-variant u of v.
M, w �v Kt ϕ iff M, w′ �v ϕ for all w′ such that (w, w′) ∈ RJtKI,v

w
.

Example 2 (Epistemic model for SC(3, 4, 1, 2)). Figure 2 depicts an epistemic model M0 = (D, W, R, I)
for the initial state s0 described in Section 2.

ρ1 ρ2

wred

ρ3 ρ4

α1

β1

α2 α3
α1, α2, α3

ρ1 ρ2

wgreen

ρ3 ρ4

α1

β1

α2 α3

Figure 2: (M0, wred), a pointed epistemic model for the initial state s0 described in Section 2. The
agents are uncertain about the color of β1, which may be red (wred) or green (wgreen). This is captured
by the edge linking wred and wgreen. Reflexive edges are not drawn. The name of the actual world,
wred, is marked with boldface letters.

Formally, the model M0 = (D, W, R, I) has

• D = Dagt∪̇Dobj, with Dagt = {α1, α2, α3} and Dobj = Roomsobj ∪ Boxesobj ∪ Colorsobj, where
Roomsobj = {ρ1, ρ2, ρ3, ρ4}, Boxesobj = {β1} and Colorsobj = {Red, Green}.

• W = {wred, wgreen}.

• R(αi) = W ×W, for i ∈ {1, 2, 3}.
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• The interpretation of all constants is the same in wred and wgreen, i.e., all constants are rigid:
I(ai, u) = αi, I(ri, u) = ρi, I(bi, u) = βi, I(green, u) = Green and I(red, u) = Red for all u ∈W.

• The interpretation of the predicates is as follows: I(In, u) = {(α1, ρ1), (α2, ρ3), (α3, ρ4), (β1, ρ2)},
for all u ∈ W, I(Color, wred) = {(β1, red)}, I(Color, wgreen) = {(β1, green)}. The interpretation
of the Adj predicate is as expected.

Following the semantics from Definition 8, it can be seen that M0, wred �v ∀x(KxIn(b1, r2)), i.e.,
every agent knows the location of box β1. Similarly, every agent knows that all agents know this,
since M0, wred �v ∀y∀x(KyKxIn(b1, r2)). Moreover, the agents know that the box has a color, but not
what color it is. They thus have what is called de dicto knowledge of the coloring of the box, but
not de re knowledge. Agent α3’s de dicto knowledge is captured by M0, wred �v Ka3∃xColor(b1, x),
while its lack of de re knowledge is captured by M0, wred �v ¬∃xKa3Color(b1, x). Finally, agent α3
has de re knowledge of the box, or as Hintikka [40] puts it, α3 knows what the box is, captured by
M0, wred �v ∃xKa3(x = b1).

5 Action Representation

In automated planning, a distinction is often drawn between action schemas, which describe classes of
actions in a general way, and ground actions, which represent a specific action with a fixed set of agents
and objects [36, 80]. Action schemas use so-called action parameters or variables, which are instantiated
into constants to define an action. For example, a schema may be used to represent all actions of the
form ‘agent x tells y that object z has color u’, where x, y, z and u are variables standing for agents and
objects. A corresponding ground action is obtained by replacing all free variables by names referring
to specific agents and objects. For example, a schema instance could be ‘ann tells bob that box1 has
color red’.

In DEL, the descriptions of concrete actions are called action models. That is, DEL action models
correspond to a ground action in classical planning. Following the DEL naming conventions, models
of concrete actions will be called action models, whereas variabilized models in the spirit of PDDL
will be called action schemas. Action models and action schemas, as well as a suitable notion of
schema instantiation relating the two, are introduced next.

5.1 Action Models

Formally and intuitively, action models are closely related to Kripke models. Where Kripke models
contains worlds and relations, action models instead contain events and relations. Under the standard
epistemic interpretation, the relations again represent indistinguishability and are again assumed to
be equivalence relations. Again, this is a special case of the models introduced here.

The DEL-style action models we add to the term-modal logic setting include preconditions ([6, 7]),
postconditions ([11, 15, 27]) as well as edge-conditions similarly to [13]. Preconditions specify when
an event is executable (e.g., a precondition of opening the door is that it is closed.) Postconditions
describe the physical effects of events (e.g., the door is open after the event). Edge-conditions are
used to represent how an agent’s observation of an action depends on the agent’s circumstances. For
example, the way in which an agent αi observes an action performed by agent αj may depend on αi’s
proximity to αj or to the objects affected by the action (e.g., to αi, the events of opening and closing
the door are distinguishable if αi can see or hear the door, but else not). Edge-conditions provide a
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general way to describe actions whose observability is context-dependent. The epistemic effects of
an action model is encoded by the product update operation by which action models are applied to
Kripke models (defined below).

In more detail, the components of term-modal action models (Def. 9 below) play the following
roles. E represents the set of events that might occur as the action is executed. Q is a map that assigns
to each edge (e, e′) ∈ E × E an edge-condition: a formula with a single free variable x?. Given a
model M describing the situation in which the action is applied, an agent α cannot distinguish e from
e′ iff the edge-condition from e to e′ is true in M when the free variable x? is mapped to α. Intuitively,
if the situation described by the edge-condition is true for α, the way α is observes the action does
not allow her to tell whether e or e′ is taking place. The precondition restricts the applicability of
an event e to those states satisfying the precondition formula pre(e). Precondition formulas contain
no free variables to ensure that their effects are conditional only on the model, but not the variable
valuation. The postcondition post(e) describes the physical changes induced by the event. If both
pre(e) and post(e)(r(t1, . . . , tn)) are true in a state s of a model M, then the event e occurs, and after its
occurrence, r(t1, . . . , tn) is true in the updated version of s. That is, r(t1, . . . , tn) is a conditional effect of
event e with condition post(e)(r(t1, . . . , tn)).

The language used to state pre- and postconditions in action models is an extension of L, denoted
LAM, to be introduced in Section 7. This extended language has formulas of the form [A, e]ϕ, which
are interpreted as: ‘after event e of action A, ϕ holds’. This type of formula makes it possible to
mention other actions in the pre- and postconditions of actions, i.e., to express syntactically some de-
pendencies or interactions between actions. However, the action model construction does not require
or depend on the use of LAM rather L, so the reader can safely ignore the details of LAM for now.

Definition 9. An action model A is a tuple A = (E, Q, pre, post) where

1. E is a non-empty, finite set of possible events.

2. Q : (E× E)→ LAM, where for each pair (e, e′) the formula Q(e, e′) has exactly one free variable
x?.

3. pre : E → LAM is a map that assigns to each event e ∈ E a precondition formula with no free
variables.

4. post : E→ (GroundAtoms(L)→ LAM) is a map that assigns to each event e ∈ E a postcondition
for each ground atom.

It is required that post(e)(= (t, t)) = > for each event e, to preserve the meaning of equality. A pair
(A, e) consisting of the action and an event from E is called a pointed action.

Notation 2. Let A = (E, Q, pre, post) be an action model. We denote by dom(post(e)) the set of atoms
for which post(e)(r(t1, . . . , tk)) 6= r(t1, . . . , tk). We denote any post(e) that maps every atom to itself
by id (the identity function). When convenient, we add the superscript “A” to the components of A,
so that A = (EA, QA, preA, postA).

To ensure that postcondition functions are finite objects, each post(e) is often required to be only
finitely different from the identity function. That is, dom(post(e)) is required to be finite. This allows
for a finite encoding of postconditions, as only pairs with post(e)(ϕ) 6= ϕ need to be stored in memory.
Especially in planning, it should be possible to write down a sequence of symbols that completely
specifies any given action model in the language. For the sake of generality, we do not impose this
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restriction in the definition of an action model. But for all practical purposes, this standard restriction
will be needed.

Notation 3. Let A = (E, Q, pre, post) be an action model. When A is illustrated as a labelled graph, for
each node e ∈ E, we write the precondition and postconditions for e as a pair 〈pre(e); post(e)(ψ1) =
ϕ1 ∧ · · · ∧ post(e)(ψn) = ϕn〉. We write postconditions such as post(e)(ϕ) = > ∧ post(e)(ψ) = ⊥
using the notation ϕ ∧ ¬ψ (indicating that the action makes ϕ true and ψ false unconditionally). In
graphs, we omit the postconditions for atoms ϕ with post(e)(ϕ) = ϕ.

We do not include the edge-conditions for reflexive loops in illustrations, but always assume that
for all e ∈ E, Q(e, e) = (x? = x?), to the effect that all agents retain reflexive relations following up-
dates. When two events e, e′ are connected by a line without arrowheads labeled by a single formula
ϕ, this means that Q(e, e′) = Q(e′, e) = ϕ, retaining symmetry.

Example 3 (Action models for SC(3, 4, 1, 2)). Figures 3, 4 and 5 depict graphically the action mod-
els for the three actions in the plan from in Section 2, i.e., the following movement, sensing and
announcement actions: α1 moves to ρ2, α1 senses the color of β1, α1 announces the color of β1.

em : 〈In(a1, r1) ∧ Adj(r1, r2);
In(a1, r2) ∧ ¬In(a1, r1)〉

e′m : 〈>; id〉

∀x(In(x?, x)→ (x 6= r1 ∧ x 6= r2))

Figure 3: Move(a1, r1, r2), the action model for α1 moving from ρ1 to ρ2. Event em describes what
is actually taking place (in the drawing for the model, the actual event is marked with a double
circle). The precondition formula says that α1 is in ρ1 and that ρ2 is next to ρ1. The action changes
α1’s location to ρ2, as captured by the postcondition. The event e′m describes the situation in which
nothing happens. This is how the action looks to any agent that is neither in the room α1 is currently
in, nor in the room the agent is moving to. The edge-condition linking the two events captures this
observability constraint.
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es : 〈In(a1, r2) ∧ In(b1, r2) ∧ Color(b1, red); id〉 e′s : 〈In(a1, r2) ∧ In(b1, r2) ∧ ¬Color(b1, red); id〉

e′′s : 〈>; id〉

∀x(In(x?, x)→ x 6= r2)
∀x(

In(
x? , x)

→
x 6=

r 2)
∀x(In(x ?, x)→

x 6=
r2 )

Figure 4: SenseCol(a1, red, b1, r2), the action model for α1 sensing in room ρ2 whether box β1 is red
or not. Event es describes what is actually taking place, i.e., α1 seeing that the box is red. The action is
a purely epistemic action, i.e., it does not change the physical state of the environment, and therefore
the postcondition post(es) is id. e′s represents the event in which α1 sees that the box is not red, while
e′′s represents the event in which nothing happens. The agents that are not in ρ2 cannot observe what
α1 is doing. More precisely, they cannot distinguish between α1 seeing that the box is red, α1 seeing
that it is not red, and α1 doing nothing. This is captured by the edge-conditions.

ea : 〈In(a1, r2) ∧ Ka1Color(b1, red); id〉 e′a : 〈>; id〉

∀x(In(x?, x)→ (x 6= r2 ∧ ¬Adj(x, r2)))

Figure 5: Announce(r1, red, b1, r2), the action model for α1 announcing that β1 is red while in room
ρ2. Event ea describes what is actually taking place. The precondition formula pre(ea) says that α1
is in ρ2 and that a1 knows that the color of β1 is red. Event e′a describes the event in which nothing
occurs. This is what the announcement looks like to any agent that cannot hear the announcement.
An agent αi cannot hear α1’s announcement if αi is neither in α1’s room nor in a room that is adjacent
to it. This is captured by the (identical) edge-conditions Q(ea, e′a) and Q(e′a, ea).

5.2 Product Update

Having defined epistemic models and action models, we introduce an operation that computes the
epistemic model M′ reached by applying action A in model M. The operation is a first-order variant
of product update [7]. Under the indistinguishability interpretation, the core epistemic intuition is that
to tell two worlds apart after an update, either the agent could tell them apart beforehand, or it could
tell them apart by something happening in one, but not the other. In slightly more detail: Assume
that after an update, a model contains worlds (w, e) and (w′, e′), representing that event e occurred
in world w, and e′ occurred in w′. Then (w, e) is indistinguishable from (w′, e′) for agent α iff α
found both w and w′ indistinguishable and events e and e′ indistinguishable. Formally, (term-modal)
product update is defined below. An explanatory remark follows the definition.

Definition 10. Let M = (D, W, R, I) and A = (E, Q, pre, post) be given. The product update of M and
A yields the epistemic model M⊗ A = (D′, W ′, R′, I′) where
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1. D′ = D

2. W ′ = {(w, e) ∈W × E : (M, w) �v pre(e)},

3. For each i ∈ Dagt, (w, e)R′i(w
′, e′) iff wRiw′ and M, w �v[x? 7→i] Q(e, e′),

4. I′(c, (w, e)) = I(c, w) for all c ∈ C, I′( f , (w, e)) = I( f , w) for all f ∈ F, and I′(r, (w, e)) =
(I(r, w) ∪ r+(w)) \ r−(w), where:

r+(w) :={(Jt1KI,v
w , . . . , JtkKI,v

w ) : (M, w) �v post(e)(r(t1, . . . , tk))}
r−(w) :={(Jt1KI,v

w , . . . , JtkKI,v
w ) : (M, w) 6�v post(e)(r(t1, . . . , tk))}

If (M, w) �v pre(e), (A, e) is applicable to (M, w). If (A, e) is applicable to (M, w), the product update
of the two yields the pointed epistemic model (M⊗ A, (w, e)). Else it is undefined.

Remark 2. The components of the updated model are as follows. The domain of the updated model
D′ is unchanged, since action models change the state of agents and objects, but do not introduce or
remove them. A state (w, e) is in the updated set of states W ′ if, and only if, e is applicable in w, i.e.,
if (M, w) satisfies the precondition pre(e). As pre(e) has no free variables by construction, the set of
worlds W ′ is independent of the assignment v. The state (w, e) represents the state reached by taking
event e in state w. Agent α cannot distinguish (w, e) from (w′, e′) if (1) α cannot distinguish w from
w′, which is the case if wRαw′; and (2) α cannot distinguish e from e′ given its circumstances in w,
which is the case if the edge-condition Q(e, e′) is true for agent α at (M, w) when x? is mapped to
α, i.e., when M, w �v[x? 7→i] Q(e, e′). Since actions do not change the denotation of ground terms, I′

agrees with I in this respect. The extension of relations is changed according to event postconditions.
If the condition post(e)(r(t1, . . . , tk)) is true at (M, w), then the tuple (Jt1K

I,v
w , . . . , JtkK

I,v
w ) is added to

the extension of r at (w, e), and it is removed otherwise.

Example 4 (Product updates for SC(3, 4, 1, 2)). Starting from the initial epistemic model (M0, wred)
from Example 2, we model the effects of applying the actions in α1’s plan. First, α1 moves right. This
action yields the new pointed model (M0 ⊗Move(a1, r1, r2), (wred, em)), depicted in Figure 6.
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(wred, em)

ρ1 ρ2 ρ3 ρ4

α1

β1

α2 α3
α1, α2, α3

α1, α2, α3

α2, α3α2, α3

ρ1 ρ2

(wgreen, em)

ρ3 ρ4

α1

β1

α2 α3

ρ1 ρ2

(wgreen, e′m)

ρ3 ρ4

α1

β1

α2 α3

ρ1 ρ2

(wred, e′m)

ρ3 ρ4

α1

β1

α2 α3

Figure 6: The pointed model (M0⊗Move(a1, r1, r2), (wred, em)), representing the state after α1 moves
into room ρ2. Edges in the reflexive-transitive closure of the indistinguishability relations are omitted.
At this point, α2 and α3 are uncertain about the location of α1. More precisely, they cannot tell whether
α1 stayed in room ρ1 or moved to ρ2.

The second step is sensing the color of β1. This action yields the model (M0 ⊗Move(a1, r1, r2)⊗
SenseCol(a1, red, b1, r2), (wred, em, es)), depicted in Figure 7.
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(wred, em, es)

ρ1 ρ2 ρ3 ρ4

α1

β1

α2 α3
α2, α3

α1, α2, α3

α2, α3

α1, α2, α3

α2, α3

α2, α3 α2, α3

ρ1 ρ2

(wgreen, em, e′s)

ρ3 ρ4

α1

β1

α2 α3

ρ1 ρ2

(wgreen, e′m, e′′s )

ρ3 ρ4

α1

β1

α2 α3

ρ1 ρ2

(wred, e′m, e′′s )

ρ3 ρ4

α1

β1

α2 α3

(wred, em, e′′s )

ρ1 ρ2 ρ3 ρ4

α1

β1

α2 α3

(wgreen, em, e′′s )

ρ1 ρ2 ρ3 ρ4

α1

β1

α2 α3

Figure 7: The pointed model (M0 ⊗Move(a1, r1, r2)⊗ SenseCol(a1, red, b1, r2), (wred, em, es)), repre-
senting the state after α1 senses that β1 is red while in room ρ2. Edges in the reflexive-transitive
closure of the indistinguishability relations are omitted. Note that, in the actual world, (wred, em, es),
α1 does not face any uncertainty. In particular, Ka1Color(b1, red) is true at (wred, em, es). On the other
hand, α2 and α3 have not observed any of α1’s actions. That is, α1 may or may not have moved,
and it may or may not have sensed whether β1 is red. As a result, it holds at (wred, em, es) that
∀x(x 6= a1 → ¬KxIn(a1, r2) ∧ ¬KxColor(b1, red)).

Finally, α1 announces in room ρ2 that the color of β1 is red. The result of this action is the
model (M0 ⊗Move(a1, r1, r2) ⊗ SenseCol(a1, red, b1, r2) ⊗ Announce(a1, red, b1, r2), (wred, em, es, ea)),
depicted in Figure 8.
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(wred, em, es, ea)

ρ1 ρ2 ρ3 ρ4

α1

β1

α2 α3
α3

α1, α2, α3

α2, α3

α1, α2, α3

α3

α3 α2, α3

α2, α3

ρ1 ρ2

(wgreen, em, e′s, e′a)

ρ3 ρ4

α1

β1

α2 α3

ρ1 ρ2

(wgreen, e′m, e′′s , e′a)

ρ3 ρ4

α1

β1

α2 α3

ρ1 ρ2

(wred, em, es, e′a)

ρ3 ρ4

α1

β1

α2 α3

(wred, em, e′′s , e′a)

ρ1 ρ2 ρ3 ρ4

α1

β1

α2 α3

(wgreen, em, e′′s , e′a)

ρ1 ρ2 ρ3 ρ4

α1

β1

α2 α3

(wred, e′m, e′′s , e′a)

ρ1 ρ2 ρ3 ρ4

α1

β1

α2 α3

Figure 8: The pointed model representing the state after α1 announces that β1 is red while at room ρ2,
(M0 ⊗Move(a1, r1, r2) ⊗ SenseCol(a1, red, b1, r2) ⊗ Announce(a1, red, b1, r2), (wred, em, es, ea)). Edges
in the reflexive-transitive closure of the indistinguishability relations are omitted. Note that, in the
actual world, (wred, em, es, ea), α1 and α2 do not face any uncertainty; there are no outgoing edges from
the actual world for these agents. The goal g as stated in Section 2 holds in the actual world: both α1
and α2 know the color of β1, α1 knows that α2 knows this, and α1 knows that α3 does not know this.

5.3 Succinct Representation of Actions via Epistemic Action Schemas

We introduce epistemic action schemas, which represent sets of actions in a general way, as done in
common planning formalisms such as PDDL. Schemas use variables to describe actions, rather than
constant symbols. These variables denote arbitrary agents and objects and are used to describe their
roles with respect to a type of action, such as the roles of speaker and listener in an action of type
‘announcement’.

As anticipated in Section 3, a major reason for introducing schemas is that they result in action
representations whose size is independent of the number of agents and objects in a domain. For
the SelectiveCommunication domain SC(n, m, k, `), there are n · m · k · ` · 2n−1 possible announcement
actions, since each of the n agents could, in each of the m rooms, announce about each of the k boxes,
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that it is of one out of ` colors, with one out of the 2n−1 subsets of the other agents hearing the
announcement. Representing all actions requires n ·m · k · ` · 2n−1 standard DEL action models, i.e.,
one model per action. Variants of standard DEL models such as edge-conditioned models [13] fare
substantially better, since the set of hearers is implicitly represented in such models, but n · m · k · `
models are still required to represent the set of announcements. Other variants of DEL are also more
succinct than standard DEL action models, e.g. the symbolic models of [22, 87]. However, all these
announcements can be compactly represented with a single epistemic action schema, as shown below
in Example 5.

Moreover, epistemic schemas open up the possibility of applying well-known techniques such as
least commitment or partial order planning [90] to epistemic problems. These approaches use the notion
of a partially instantiated action, such as Move(B, x, C), where x is a variable whose substitution has
not yet been chosen. If specifying a binding constraint for x is unnecessary at the current point in
the planning process, it is often advantageous to delay this commitment until later, i.e., until other
necessary parts of the plan are discovered that further constrain what x should be. Other approaches
to lifted planning, such as hierarchical task networks (HTNs) ([36], ch. 11) similarly exploit partial
substitutions to optimise the search for solutions. For an epistemic version of lifted HTN planning,
the epistemic schemas defined here could play the role of primitive tasks.

An epistemic action schema a(x1, . . . , xn) is defined using an action name a and a parameter list
(x1, . . . , xn), as done e.g. in PDDL. The parameter list fixes a finite set of agents and objects involved
in the execution of the action. Schemas are required to follow a STRIPS-like scope assumption; all
variables referenced in the preconditions or postconditions of an action schema must appear in the
action’s parameter list. Any agent or object unmentioned in the parameter list is assumed to be
unrelated to the action’s pre- and postconditions.

Definition 11. An epistemic action schema is of the form a(~x) = (E, Q, pre, post) where

1. a is the action name and ~x ∈ Vn is a finite parameter list.

2. E is a non-empty, finite set of events.

3. Q : (E× E) → LAM is an edge-condition function, where the formula Q(e, e′) has a free variable
x? of type agt, and possibly other free variables all in ~x.

4. pre : E→ LAM assigns to each event a precondition formula with all free variables in ~x.

5. post : E → (FreeAtoms(L) ⇀ LAM) assigns to each event a partial postcondition function such
that if y1, . . . , ym all occur in ~x, then post(e)(r(y1, . . . , ym)) has all free variables from ~x; else,
post(e)(r(y1, . . . , ym)) is undefined.

dom(post(e)) denotes the set of atoms for which post(e)(r(t1, . . . , tk)) 6= r(t1, . . . , tk).

The postcondition for each event e is defined as a partial function, with all atoms whose arguments
are not a subset of those ocurring in ~x left unaffected. Since the parameter list is required to be finite,
this yields a finite encoding of postconditions.

Note that the parameter list of a schema may include agent variables. Just like any other action
parameter, these variables can appear in the preconditions or effects of the schema. This is in line
with what occurs in multi-agent extensions of PDDL such as MAPL or MA-PDDL [19, 49]. Such
variables are included to enable the schematization of actions also with respect to agents. In this
paper, we adopt the epistemic operators from term-modal logic, indexed by agent variables, to achieve
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schematization with respect to agents when formalizing epistemic planning. In order to be able to
express epistemic pre- or postconditions relative to an agent variable x in an action schema, it is
necessary to use the variable in the scope of a modal operator. For example, if an action has e.g.
a precondition that requires agent x to know P(y, z), we need the term-modal formula KxP(y, z) to
express this constraint in a schematic way.

Example 5 (Action schemas for SC(n, m, k, `)). Figures 9, 10 and 11 depict graphically the action
schemas for the movement, sensing and announcement actions described in the example from Section
2. The schemas have the same structure as the action models from Example 3, but the conditions are
now expressed in a general way, via free variables for agents, boxes and colors.

em : 〈In(x, y) ∧ Adj(y, z);
In(x, z) ∧ ¬In(x, y)〉

e′m : 〈>; id〉

∀x1(In(x?, x1)→ (x1 6= y ∧ x1 6= z))

Figure 9: Move(x, y, z), the action schema for agent x moving from room y to room z.

es : 〈In(x1, x4) ∧ In(x3, x4) ∧ Color(x3, x2); id〉 e′s : 〈In(x1, x4) ∧ In(x3, x4) ∧ ¬Color(x3, x2); id〉

e′′s : 〈>; id〉

∀x(In(x?, x)→ x 6= x4)
∀x(

In(
x? , x)

→
x 6=

x 4)
∀x(In(x ?, x)→

x 6=
x4 )

Figure 10: SenseCol(x1, x2, x3, x4), the action schema for x1 sensing in room x4 whether box x3 has
color x2.

ea : 〈In(x1, x4) ∧ Kx1Color(x3, x2); id〉 e′a : 〈>; id〉

∀x(In(x?, x)→ (x 6= x4 ∧ ¬Adj(x, x4)))

Figure 11: Announce(x1, x2, x3, x4), the action schema for x1 announcing that x3 has color x2 while
in room x4.

As usual in planning, schemas can be instantiated into concrete actions via grounding substitu-
tions. Schema instantiation is defined as follows. Let a(x1, . . . , xn) be a schema and σ : {x1, . . . , xn} →
C be a grounding substitution, i.e., a mapping from variables into constants. For a formula ϕ, let ϕσ
be the result of replacing each occurrence of a free variable y in ϕ by σ(y).
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Definition 12. Let a(x1, . . . , xn) = (E, Q, pre, post) be an action schema and let σ : {x1, . . . , xn} → C be
a grounding substitution. The action model induced by σ is a(σ(x1), . . . , σ(xn)) = (E′, Q′, pre′, post′)
where

1. E′ = E.

2. for each e, e′ ∈ E, Q′(e, e′) = Q(e, e′)σ

3. for each e ∈ E, pre′(e) = pre(e)σ .

4. for each e ∈ E,

post′(e)(r(t1, . . . , tn)σ) =

{
post(e)(r(t1, . . . , tn))σ if post(e)(r(t1, . . . , tn)) is defined
r(t1, . . . , tn)σ otherwise.

Example 6. The announcement model A1 in Figure 5 is the ground action of schema S1 from Figure
11 induced by the substitution σ = {x1 7→ a2, x2 7→ r3, x3 7→ b1, x4 7→ green}.

6 Problems, Plans and Solutions

This section defines first-order epistemic planning tasks. An epistemic planning task consists of an initial
state, a set of actions, and a goal to be achieved. To solve an epistemic planning task, one may take
either an external or and internal perspective [3]. The external perspective is the view of the system
designer, who knows the precise initial state and actual effect of every action. The internal perspec-
tive is the view of an in-system agent, who has uncertainty about the state of the world and there-
fore uncertainty about the effects of executed actions. In the DEL planning framework, an external
planning task is defined as a special case of a classical planning task (as in, e.g., [4, 17]). Follow-
ing [36], any classical planning domain can be described as a state-transition system T = (S ,A, γ)
where S is a finite or recursively enumerable set of finite states, A is a finite set of actions and
γ : S × A ⇀ S is a partial, computable state-transition function. A classical planning task is a triple
(T, s0, SG), where T is a state-transition system, s0 ∈ S is the initial state and SG ⊆ S is the set of
goal states. A solution to a classical planning task (T, s0, SG) is a plan consisting of a finite sequence of
actions a1, a2, . . . , an such that (1) For all i ≤ n, γ(γ(. . . γ(γ(s0, a1), a2), . . . , ai−1), ai) is defined, and (2)
γ(γ(. . . γ(γ(s0, a1), a2), . . . , an−1), an) ∈ SG. Epistemic planning tasks can be defined as special cases
of classical planning tasks, as follows.

Definition 13. Let A be a finite set of action schemas. A (first-order) epistemic planning task based on A
is a triple P = (s0,A, ϕG) where the initial state s0 is a finite epistemic state with a finite domain, A is
the set of all ground instances of the schemas in A, and the goal formula ϕG is a sentence of L. Any
epistemic planning task (s0,A, ϕG) induces a classical planning task ((S ,A, γ), s0, SG) given by:

- S := {s0 ⊗ a1 ⊗ · · · ⊗ an | n ∈N, ai ∈ A}

- SG := {s ∈ S | s � ϕG}

- γ(s, a) := s⊗ a if a is applicable in s, else undefined.

A solution to an epistemic planning task is a solution to the induced classical planning task.
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All the ingredients in this definition of an external planning task can come from the formalism
presented here. Note that the planner-modeler in such a task is not one of the agents in the domain
Dagt. The planner-modeler has access to the actual states si, i.e., to pointed models (M, w) where w
is the actual world.

Formalisms of internal epistemic planning based on DEL are often defined from the external plan-
ning model, either by adding structure to the models or making small modifications. For example,
[2] represents internal perspectives using information cells, which are defined from the accessibility
relations of an epistemic model. An alternative involves using multi-pointed models or adding a set of
so-called designated points to the epistemic model, with each point describing a world that the agent
considers as possible from its internal perspective (see e.g. [15]). A third approach uses a belief state
representation of the agent’s internal view as primitive and then defines an epistemic model from it
[46]. The approach in [3] offers two different flavors of internal view, both defined on the basis of a
standard epistemic model. These various notions of internal perspective, as well as their associated
planning tasks, may be upgraded to our framework without major modifications. We believe that the
simplest way to add internal perspectives to the present would be to adopt the approach proposed
by Bolander and Andersen [16]. Save for the fact that such models are multi-pointed, the core seman-
tics remains the same. We therefore envision no major difficulty in bringing the internal perspective
into our formalism; similarly defined multi-pointed structures should suffice. We do not develop the
detail here.

6.1 Decidability of the Plan Existence Problem

Having defined first-order epistemic planning tasks, a natural first question is whether the corre-
sponding plan existence problem is decidable. We follow Aucher and Bolander [4] in defining the
plan existence problem:

Definition 14. Let n ∈ N. PlanEx(n) is the problem: “Given a (first-order) epistemic planning task
P = (s0,A, ϕG) where s0 is an n-agent epistemic state, does P have a solution?”.

For propositional DEL, the corresponding problem is undecidable in general [16]. This entails
that the unrestricted first-order problem is undecidable as well, since first-order epistemic planning
extends propositional DEL planning. However, decidable and reasonably expressive fragments of
propositional DEL planning have been found, such as single-agent planning and multi-agent plan-
ning with non-modal preconditions. In [55], we show that the corresponding first-order fragments are
also decidable. In that paper, bisimulations for the term-modal models presented here are introduced,
and shown to have standard model-theoretic properties. Such bisimulations are key in proving the
decidability results, as they allow us to show that the state spaces for certain planning fragments are
finitely representable, up to bisimulation. We state the main results here and refer the reader to [55]
for details.

Theorem 1 ([55]). PlanEx(1) (single-agent planning) is decidable.

Theorem 2 ([55]). If all actions have non-modal preconditions, then PlanEx(k) is decidable, for k ≥ 1.

6.2 An Example with a PDDL-like Description

With the above, the dynamic term-modal planning framework of the paper has been introduced.
This section contains a second example, using its different components in one place. The example
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also serves to illustrate how uncertainty about names may play a role in epistemic planning, and
how a term-modal planning domain and an associated planning problem may be described using
a ‘PDDL-like syntax’. This description is meant as an indication of how such definitions could be
standardized with a PDDL flavor, but no attempt is made at a precise syntax.

6.2.1 The MachineMalfunction (MM) Domain

In the MM(n, m, k) domain, there are n + m agents supervising k machines, the agents’ tasked to
ensure that machines function correctly at all times, where a choice of n, m and k fixes the universe
of the domain. The agents have different roles: n of the agents are monitoring the machines for
potential malfunctions, while the remaining m agents are system administrators, that from behind a
terminal may solve any malfunction by issuing a reboot command to the affected machine. To reboot a
machine, admins need to know its serial number, which a monitor may be uncertain about. Hence, the
optimal sequence of actions to fix a malfunction problem will depend on how the knowledge of serial
numbers is distributed amongst agents. Finally, company policy dictates epistemic preconditions for
the actions: monitoring agents are only allowed to report machine as malfunctioning once they know
that it is malfunctioning. To avoid deadlock, the requirement for admins is weaker: they may reboot
any machine once they know some machine is malfunctioning.

The remainder of this section concerns an external epistemic planning task MM_task := (s0; A; ϕg)
in MM(1, 2, 2), i.e., with one monitor, two admins, and two machines.

6.2.2 Initial State and Goal

Figure 12 depicts the the pointed epistemic model s0 := (M0, w0) := ((D, W, R, I), w0), the initial
state of MM_task.
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Figure 12: The pointed epistemic model s0 = (M0, w0), the initial state of MM_task. The agent
domain Dagt comprises three agents, α1, α2 and µ, for simplicity only depicted as edge labels. Agents
α1 and α2 are admins, while µ is a monitor. There are two machines, depicted as a box and a ball;
beneath them are the constants that denote them in that world. In w0, the box machine is denoted
in-system by the serial number sn1, but colloquially as box, etc. In all worlds, the constants a1, a2 and
m1 denote respectively α1, α2 and µ. The red coloring specifies malfunction. The monitor can observe
malfunctions, while the admins cannot. Neither the monitor nor the newly employed admin α2 know
the serial numbers, but α1 does. They all know the colloquial descriptions. The monitor knows that
both admins face uncertainty about the malfunction, and that α1 knows the serial numbers while α2
does not.

We aim for a simple example. Hence, the administrator/monitor roles are not formally specified,
but could straightforwardly be assigned using predicates.

Before stating the available actions, specify the goal of MM_task to be that some agent knows that
all machines are not malfunctioning. I.e.,

ϕg := ∃xKx∀y¬Malfunction(y)

With this goal achieved, the agent knowing that no malfunction occurs can announce this to the
remaining agents to achieve that this becomes known to all, but for simplicity, we have omitted this
aspect.

The initial state s0 and the goal ϕg may then be described in a ‘PDDL-like syntax’, as it would
appear in a problem file, cf. Figure 13.
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(define (problem machine-malfunction-p1)
(:domain machine-malfunction)
(:universe

Alpha1 Alpha2 - admin_agent
Mu - monitoring_agent
Box Ball - machine)

(:constants
sn1 sn2 box ball - machine_id
m1 - monitoring_agent_id
a1 a2 - admin_agent_id)

(:init
(:actual_world w0

:constant_map ((sn1 Box) (sn2 Ball) (box Box) (ball Ball) (m1 Mu) (a1 Alpha1) (a2 Alpha2))
:atoms ((malfunction sn1) (malfunction box)))

(:world w1
:constant_map ((sn2 Box) (sn1 Ball) (box Box) (ball Ball) (m1 Mu) (a1 Alpha1) (a2 Alpha2))
:atoms ((malfunction sn2) (malfunction box)))

(:world w2
:constant_map ((sn1 Box) (sn2 Ball) (box Box) (ball Ball) (m1 Mu) (a1 Alpha1) (a2 Alpha2))
:atoms ())

(:world w3
:constant_map ((sn2 Box) (sn1 Ball) (box Box) (ball Ball) (m1 Mu) (a1 Alpha1) (a2 Alpha2))
:atoms ())

(:edges
:Alpha1 ((w0 -- w2) (w1 -- w3))
:Alpha2 (all)
:Mu ((w0 -- w1) (w2 -- w3)))

(:goal (exists (?a -agent_id) (knows (?a) (forall (?o - object_id) (not (malfunction ?o)))))))

Figure 13: A ‘PDDL-style syntax’ description of the initial state s0 and the goal ϕ0. A universe of
agents and objects is defined using the keyword : universe, with constants denoting this domain
declared the keyword : constants. The : init keyword precedes the description of the initial state,
which comprises worlds and edges between worlds. Each world is declared with a keyword : world
and encompasses a : constant_map stating what each constant refers to as a list of pairs (constant,
entity), as well as a list of true ground : atoms (where the closed-world assumption holds). The actual
world is defined with the : actual_world keyword. The indistinguishability relation for agents is
specified with the : edges keyword. For each agent, a set of pairs of worlds in the relation is listed,
whose reflexive-transitive closure defines the full relation. Finally, the : goal keyword declares the
goal.

6.2.3 Available Actions as Action Schemas and Domain Definition

To finalize the specification of the external epistemic planning task MM_task, the available actions of
reporting malfunctions rebooting machines must be defined. To this end, we use the action schemas
depicted graphically in Figure 14.
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em : 〈KxMalfunction(y); id〉
er1 : 〈Kx∃zMalfunction(z);¬Malfunction(y)〉 er2 : 〈>; id〉

x? 6= x

Figure 14: Left: Malfunction(x, y), the action schema for agent x announcing that they know that y is
malfunctioning. Right: Reboot(x, y), the action schema for agent x rebooting machine y, an action that
x is permitted to do only if x knows that some malfunction is occurring, and which is done privately:
other agents than x are uncertain about its execution.

Continuing with the ‘PDDL-like syntax’, Figure 15 describes the MachineMalfunction domain. The
figure is suggestive of a possible approach to standardizing domain definitions, but again, no formal
specification of the syntax is attempted.

;; machine-malfunction domain.
(define (domain machine-malfunction)

(:types admin_agent_id - agent_id
monitoring_agent_id - agent_id
serial_number - machine_id
machine_id
agent_id)

(:predicates (malfunction ?o - machine_id))
(:action MALFUNCTION

:agent ?s - monitoring_agent_id
:parameters (?o - machine_id)
(:actual_event em

:precondition (knows (?s) (malfunction ?o))
:postcondition (id))

(:edge-conditions
:em -- em (= ?x* ?x*)))

(:action REBOOT
:agent ?a - admin_agent_id
:parameters (?n - serial_number)
(:actual_event er1

:precondition (knows (?a) (exists (?x - object) malfunction (?x)))
:postcondition ((malfunction ?n if FALSE))

(:event er2
:precondition (TRUE)
:posttcondition (id))

(:edge-conditions
:er1 -- er1 (= ?x* ?x*)
:er2 -- er2 (= ?x* ?x*)
:er1 -- er2 (not (= ?x* ?a)))

Figure 15: A domain definition for the MM domain in a ‘PDDL-style syntax’. Each action schema
includes an : agent executing it as well as the schema’s : parameters list. The possible events com-
prised in the action and their corresponding edge-conditions are listed next. The actual event is
defined with the : actual_event keyword, under which pre- and postconditions are listed. Postcon-
ditions are given as a list of statements of the form “ground_atom if condition”. A similar : event
keyword is used for non-actual events. The keyword edge-conditions lists, for each pair of events,
its edge-condition, via a line of the form event1–event1(edge-condition). Both the MALFUNCTION and
the REBOOT schemas have epistemic preconditions, which can be schematized thanks to the variable-
indexed epistemic operators Kx.
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6.2.4 Plan and Execution

Given the initial state and actions of the external epistemic planning task MM_task, the goal ϕg =
∃xKx∀y¬Malfunction(y) may be achieved by the monitor agent reporting that the machine colloqui-
ally called box is malfunctioning, after which the administrator α1 may reboot that machine, by know-
ing its serial number sn1. I.e., the plan

π := Malfunction(m1, box)⊗ Reboot(a1, sn1)

achieves the goal. Figure 16 depicts the state updates resulting from executing plan π in the state s0.
In the final state, the goal formula is satisfied, as α1 knows that no robots is malfunctioning.

(w0, em) (w1, em)

sn1
box

sn2
ball

α2, µ

sn2
box

sn1
ball

(w0, em, er1) (w1, em, er2)

sn1
box

sn2
ball

α2, µ

sn2
box
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ball

sn1
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sn2
ball
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sn2
box

sn1
ball

α2, µ α2, µ

(w0, em, er2) (w1, em, er2)

Figure 16: Executing the plan π in s0. Left: The epistemic state s1 := s0 ⊗Malfunction(m1, box)
reached after µ reports that box is malfunctioning. All agents learn that a machine is malfunctioning.
However, α2 and µ are still unsure about the serial number of the malfunctioning robot, but α1 is not.
Right: The epistemic state s2 := s1 ⊗ Reboot(a1, box) reached after admin agent α1 reboots sn1. Since
α1 has rebooted sn1 privately, α2 and µ still do not know that all machines are functioning. However,
the goal is achieved: there is some agent that knows that all machines are functioning.

6.2.5 Knowing Who and Alternative Plans

There are other plans than π that would also solve the external epistemic planning task MM_task, but
π achieves the goal in the fewest number of steps.

The plan π is kept short by making admin α1 act and finally witness the existence criteria in the
goal ϕg. Admin α1 is well-suited to this purpose because α1 does not face uncertainty about the two
names box and sn1. For the both names, α1 knows who the names refer to, which in turn entails that in
s1, α1 knows what machine to reboot.

Any plan where admin α2, instead of α1, acts, will necessarily be longer, because α2 does not
know is uncertain about what serial number belong to which machine, and must therefore reboot
both machines. More specifically, then given s0, any successful plan must start with the announce-
ment Malfunction(m1, box) to the effect that the admins know of a malfunction, required for them
to execute reboots. From s0, this results in s1 of Figure 16. From there, both Reboot(a2, sn1) and
Reboot(a2, sn2) must be performed before α2 knows that no machine is malfunctioning. Hence, the
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two shortest successful plans in which only α2 reboots are

π′ := Malfunction(m1, box)⊗ Reboot(a2, sn1)⊗ Reboot(a2, sn2)

π′′ := Malfunction(m1, box)⊗ Reboot(a2, sn2)⊗ Reboot(a2, sn1)

Hence, the potential uncertainty introduced by the non-rigidity of constants may be consequential
for epistemic planning. In this simple example, the non-rigid serial numbers refers to objects, but as
also agent terms may be non-rigid, the presented framework allows modeling situations in which e.g.
an agent is uncertain about who a message must be delivered to, or planning in situations involving
‘code names’, known only to a strict subset of agents.

7 Languages for Actions

We define a language for reasoning about actions, denoted LAM. This language extends the basic
language L with action modalities with the form [A, e], where A is an action model and e is an event
from A. The language LAM has formulas of the form [A, e]ϕ, which are interpreted as: ‘after event
e of action A occurs, ϕ is true’. This language extension allows us to include formulas mentioning
other actions in the pre- and postconditions of some actions, as well as in goal formulas. It is thus
possible to define, e.g., a goal such as: “Achieve a state in which it is impossible to perform an action
that will result in ϕ”. With finitely many actions described by the models A = {A1, . . . , An}, such a
formula would be

∧
A∈A,e∈EA [A, e]¬ϕ.

The grammar of LAM is defined by double recursion, adapting a construction well known in the
DEL literature (see, e.g., appendix H in [8] or [28]).belll.R1.8.41

Definition 15. Let L0 = L, and let AM0 be the set of pointed action models whose precondition
formulas are all from L0. Define Lk+1 and AMk+1 as follows:

ϕ ::= r(t1, ..., t`) | ¬ϕ | ϕ ∧ ϕ | Kt ϕ | ∀xϕ | [A, e]ϕ (Lk+1)

where (A, e) ∈ AMk, and let AMk+1 be the set of pointed action models whose precondition formulas
are all from Lk+1. Lastly, define the language LAM and the set of action models AM as

LAM :=
⋃

k∈N

Lk, AM :=
⋃

k∈N

(AMk)

As with the formulas from the static language L, the formulas from LAM are evaluated over
epistemic models.

Definition 16. The satisfaction relation between epistemic models, assignments and formulas of LAM
is the smallest extension of � that satisfies:

M, w �v [A, e]ϕ iff M, w �v pre(e) implies M⊗ A, (w, e) �v ϕ

This extended satisfaction relation makes it possible to model-check conditions concerning ac-
tions. Given a pointed model (M, w), we may want to know whether a formula ϕ would hold
after a sequence of pointed action models (A1, e1), . . . , (An, en) has been executed. This can of
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First-order principles Modal and interaction principles
all propositional tautologies Kt(ϕ→ ψ)→ (Kt ϕ→ Ktψ) K
∀xϕ→ ϕ (y/x), for y free in ϕ UE ∀xKt ϕ→ Kt∀xϕ, for x not occurring in t BF
t = t, for t ∈ T Id (x 6= y)→ Kt(x 6= y) KNI

(x = y)→
(

ϕ(x)→ ϕ(y)
)

PS
(c = c)→ ∃x(x = c) ∃Id Inference rules
x 6= y, if t(x) 6= t(y) DD From ϕ, ϕ→ ψ, infer ψ MP

From ϕ, infer Kt ϕ KG
From ϕ→ ψ, infer ϕ→ ∀xψ, for x not free in ϕ UG

Table 1: Axiom schemata for the minimal normal term-modal logic K.

course be done by computing a sequence of product updates and checking whether M⊗ A1 ⊗ · · · ⊗
An, (w, e1, . . . , en) � ϕ. But, equivalently, we can check whether the corresponding formula holds at
(M, w), i.e., whether M, w � [A1, e1] . . . [An, en]ϕ. If ϕ is a goal formula and (A1, e1), . . . , (An, en) is a
plan, then model-checking such a formula corresponds to plan verification. Section 8.2.2 gives so-called
reduction axioms for LAM formulas, showing that any formula containing an action modality can be
expressed as a formula in the basic epistemic language L. Consequently, plan verification could be
treated as a problem of model-checking formulas of L in an initial state s0 = (M, w).

8 Axiomatic Systems and Metatheory

This section presents axiom systems for both static and dynamic term-modal logic. Metatheoretical
results include soundness and completeness, frame characterizations, and decidability results. All
proofs may be found in Appendix A.

8.1 Normal Term-Modal Logic

8.1.1 Axiom System

Table 1 contains the axioms and inference rules for the term-modal logic K. Some are common first-
order axioms, like Universal Elimination (UE), Reflexivity of Identity (Id), and the Principle of Substitu-
tion (PS). In a modal logical context, PS also has a modal feature: it is restricted to variables to allow
for non-rigid constants. If PS is assumed also for constants, (a = b)→ (Kt ϕ(a)→ Kt ϕ(b)) becomes a
theorem, valid only for rigid constants. Existence of Identicals (∃Id) is included to ensure that all con-
stants obtains an extension in the canonical models of Section A.1.2; Divided Domain (DD) is included
to enforce type-distinction between variables logically rather than syntactically. The modal and in-
teraction principles Distribution (K) and Knowledge of Non-Identity (KNI) are formulated as standard
while the Barcan Formula (BF) has a restriction in the term-modal case; the Barcan Formula ensures
constant domains: its validity implies non-growing domains, illustrated in the proof of soundness
(Section A.1.1), and its converse implies non-shrinking domains (and is provable in K, cf. e.g. [44, p.
245]). Knowledge of Non-Identity reflects the rigidity of variables. The inference rules Modus Ponens
(MP), Knowledge Generalization (KG) and Universal Generalization (UG) contain no surprises.
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Notice that nothing in the language or axioms of K specify the number of agents in the system.
The number of agents emerges as a definable frame characteristic, cf. Section 8.1.4.

8.1.2 Normality

In Section 8.1.3, we formally state that K is complete with respect to the class of all frames. The
axioms and inference rules sufficient for a complete system are close to standard axiomatizations of
first-order modal logic, cf. e.g. [18, 32, 44]. We take the close-to-standard format of the K axioms
to indicate the innocence of the term-modal extensions of the syntax and semantics. This is further
corroborated by the main result of this section, the Canonical Class Theorem on this page. In essence,
the theorem shows that any closed extension of K is complete with respect to the class of its canonical
models. The result thus justifies the following definition:

Definition 17. A set of formulas Λ ⊆ L is called a normal term-modal logic if, and only if, Λ contains
all axioms of Table 1 and is closed under the Table 1’s inference rules. The smallest normal term-modal
logic is denoted K.

8.1.3 Canonical Class Theorem and Completeness

In ordinary modal logic, each normal modal logic gives rise to a unique canonical model. In a similar
manner, each normal term-modal logic Λ gives rise to a class of canonical models, one for each Λ-
maximal consistent set. Section A contains the details of the construction, as well as the proof of the
following main theorem:

Theorem 3 (Canonical Class Theorem). Any normal term-modal logic Λ is strongly complete with respect
to its canonical class.

Mirroring the role of the Canonical Model Theorem of ordinary modal logic (see e.g. [12]), we
obtain the following corollary to Theorem 3:

Corollary 1 (Completeness). The logic K is strongly complete with respect to the class of all frames F.

K is also sound with respect to the class of all frames. Section A.1.1 contains the formal statement
and a proof sketch, with details given for the axiom K and the Barcan Formula.

8.1.4 Characterizing Frame Properties

The completeness result of Corollary 1 may be extended to more specific frame classes. Table 2 con-
tains an overview of axiom schemata and the frame conditions they characterize. For illustration,
proofs for 4 and N are given in Section A.1.3. From the Canonical Class Theorem and Table 2, com-
pleteness results for standard logics like KD45, S4 and S5 follow as corollaries.
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a, c 7→ α

b 7→ β

a 7→ α

b, c 7→ β

a, c 7→ α

b 7→ β

w w′ w′′

α β

Figure 17: A transitive model invalidating Kc(b = c) → KcKc(b = c) at w. With Dagt = {α, β}, all
relations are transitive. The notation a 7→ α specifies that α is the extension of the constant a in the
given world. In w, it holds that Kc(b = c) as c 7→ α in w and b, c 7→ β in w′ (in w, the knowledge
that (b = c) is held by agent α, as c 7→ α in w). World w′ satisfies Kc(b 6= c) as c 7→ β in w′ and
b 7→ β, c 7→ α in w′′ (in w′, the knowledge that (b 6= c) is held by β, as c 7→ β in w′). As a consequence,
w′ also satisfies ¬Kc(b = c). Hence, w does not satisfy KcKc(b = c)—that the agent named c (i.e., α)
knows that the agent named c (i.e., β) knows that (b = c).

Axiom Frame condition
∀x
(
Kx ϕ→ ϕ

)
T Reflexive

∀x(¬Kx⊥) D Serial
∀x
(
Kx ϕ→ KxKx ϕ

)
4 Transitive

∀x
(
¬Kx ϕ→ Kx¬Kx ϕ

)
5 Euclidean

∃x1, ..., xn

((∧
i≤n Kxi>

)
∧
(∧

i,j≤n,i 6=j xi 6= xj

)
∧ ∀y

(
Ky> →

∨
i≤n y = xi

))
N |Dagt| = n

∃x1, ..., xm

((∧
i,j≤m,i 6=j xi 6= xj

)
∧ ∀y

(∨
i≤m y = xi

))
M |D| = m

Table 2: Term-modal axiom schemata and the frame conditions they characterize.

The principles N and M are special to our term-modal treatment. N and M define domain sizes.
Nothing in the language or axioms of K specify the number of agents in the system: as in first-order
logic, the domain size is by default left unspecified. In ordinary epistemic logic, it is common to
assume a fixed, finite index set of agents. The domain size principles N and M similarly fixes domain
sizes: N fixes the agent domain to size n. It uses the Kx>-expressions to ensure that the bound
variables are all of type agt. With the quantifications thus ranging only over agents, N specifies
specifically the size of Dagt. This may be compared to M, which does not put constraints on the type
of the bound variables, thereby fixing only the size of the joint agent–object domain D. For details
concerning N, see Proposition 6 on 44.

The principles T, D, 4 and 5 deviate from their ordinary forms by being quantified. In standard
modal logic, the formula

Kc ϕ→ KcKc ϕ (1)

characterizes the class of transitive frames. This is not true here, as the constant c may be non-rigid:1

see Figure 17 for a transitive model invalidating (1). The invalidity arises as the extension of the c
is not fixed under scope of operators: in the consequent, the accessibility relation which the inner
occurrence of Kc quantifies over need not be the same as the accessibility relation of the outer. This
makes the appeal to transitivity void.2 The formulation in Table 2 avoids the non-rigidity problem,

1The non-rigidity of constants is reflected in K: Knowledge of Identity is provable for variables, but not for constants. I.e., K
proves (x = y)→ Kt(x = y), but not (a = b)→ Kt(a = b).

2In his 1962 [40], Hintikka argues that Kc ϕ → KcKc ϕ intuitively is valid only if c knows that she is c; i.e., that she knows
who c is. Hintikka argues that this is captured by ∃xKc(x = c), which makes c locally rigid for the agent: I(c, w′) = I(c, w) for

29



but does impose the criteria for all agents uniformly.

8.1.5 Heterogeneous Agents

Though treating all agents uniformly is common in epistemic logic, one may desire heterogeneous
agents. With the given setup, we do not believe this can be done at the level of frames. On the
level of models, one option to this end is to attribute epistemic criteria to subgroups using predicates;
a second is to introduce individual names. In either case, one may desire the defining criterion to
be rigid. However, full rigidity is not definable in general as models may be disconnected. Local
rigidity—invariance of interpretation over connected components—is definable by formulas of the
forms

∀x(r(x)↔ ∀yKyr(x)) (2)

∃x((x = a) ∧ ∀yKy(x = a)) (3)

The validity of (2) and (3) characterize features of interpretations: (2) ((3), resp.) is valid in a model
M = (D, W, R, I) iff for all w, w′ ∈ W, (w, w′) ∈ Rα for some α ∈ Dagt implies I(r, w) = I(r, w′)
(I(a, w) = I(a, w′), resp.). In conjunction with formulas of the forms

∀x(r(x)→ (Kx ϕ→ KxKx ϕ)) (4)
Ka ϕ→ KaKa ϕ (5)

one may obtain some individuated control over relation properties.

8.1.6 Decidability

Let Kn and Kn/m be the smallest normal extensions of K with, respectively, the domain size axiom N,
and both domain size axioms N and M under the proviso that m > n. Kn and Kn/m are then sound
and complete with respect to, respectively, the class of all frames with exactly n agents, and the class
of all frames with exactly n agents and exactly m− n objects. These finite domain properties are used
in the proof of items 1. and 2. of the below proposition, shown in Section A.1.4. Decidability results
from the literature are discussed in Section 9.3.

Proposition 1. Let Kn/m, Kn and K be given in L, based on the signature Σ. Let Lagt ⊆ L contain all
formulas containing only agent-terms, t ∈ t−1(agt).

1. For all ϕ ∈ L, it is decidable whether `Kn/m
ϕ or not.

2. a) For all ϕ ∈ Lagt, it is decidable whether `Kn ϕ or not. b) In general, it is undecidable.

3. In general, it is undecidable whether `K ϕ or not.

8.2 Dynamic Term-Modal Logic

8.2.1 Axiom System

Table 3 contains the axioms and inference rules for the dynamic term-modal logic AM. In Section
8.2.2, we formally state that K+ AM is sound and complete with respect to the class of all frames.

all w′ in RI(c,w)(w). Indeed, ∃xKc(x = c) ∧ Kc ϕ→ KcKc ϕ is valid on transitive frames.
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This completeness result may be extended to more specific frame classes, as was the case with K
(see Section 8.1.4). The completeness proof for K+ AM is by translation, a well-known approach in
DEL [7, 8, 28, 72]. The axioms in AM are so-called reduction axioms, which enable the translation of
formulas with action modalities into provably equivalent ones without any action modalities. Then
completeness follows from the known completeness of the static logic K. For a detailed description
of the reduction strategy to completeness, see e.g. [28].

Reduction axioms

[A, e]r(t1, ..., tn)↔ (pre(e)→ post(e)(r(t1, ..., tn))) Action and atom
[A, e]¬ϕ↔ (pre(e)→ ¬[A, e]ϕ) Action and negation
[A, e](ϕ ∧ ψ)↔ (([A, e]ϕ) ∧ ([A, e]ψ)) Action and conjunction
[A, e]Kt ϕ↔ ∧

e′∈E(Q(e, e′)[x? 7→ t]→ Kt[A, e′]ϕ) Action and knowledge
[A, e]∀xϕ↔ (pre(e)→ ∀x[A, e]ϕ) Action and quantification (Dynamic Barcan)
[A, e][A′, e′]ϕ↔ [(A, e) ◦ (A′, e′)]ϕ Action composition
Inference rules

From ϕ, infer [A, e]ϕ Action necessitation

Table 3: Axiom and rule schemata for the system AM.

The reduction axioms in AM are similar to those used in logics for epistemic actions, introduced by
[7]. Naturally, as dynamic term-modal logic is first-order, there are reduction axioms for formulas in-
volving quantifiers. Moreover, the axiom for formulas with the knowledge operator is non-standard.
Unlike standard action models, the ones presented here are edge-conditioned and use variable substi-
tutions, which require some modifications. A more detailed comparison of these axioms and standard
ones is provided in Section 9.2. The Action composition axiom appeals to action models of the form
(A, e) ◦ (A′, e′). This notation refers to the composition of (A, e) and (A′, e′), defined following [30],
but adapted to accommodate edge-conditions and first-order atoms:

Definition 18. Let A1 = (E1, Q1, pre1, post1) and A = (E2, Q2, pre2, post2) be given. The composition
of A1 and A2 is the action model A1 ◦ A2 = (E, Q, pre, post) where

1. E = E1 × E2

2. Q((e1, f1), (e2, f2)) = Q1(e1, f1) ∧ [A1, e1]Q2(e2, f2).

3. pre(e1, e2) = pre(e1) ∧ [A1, e1]pre(e2),

4. dom(post((e1, e2))) = dom(post1(e1)) ∪ dom(post2(e2)) and if r(t1, . . . , tk) ∈
dom(post((e1, e2))), then

post((e1, e2)(r(t1, . . . , tk)) =

{
post1(e1)(r(t1, . . . , tk)) if r(t1, . . . , tk) 6∈ dom(post2(e2))

[A, e]post2(e2)(r(t1, . . . , tk)) otherwise

8.2.2 Soundness and Completeness via Reduction Axioms

As anticipated in Section 8.2.1, K+ AM is sound and complete with respect to the class of all models.
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Proposition 2 (Soundness of K+ AM). K+ AM is sound with respect to the class of all models.

The soundness of K+ AM (Proposition 2) is established in the standard way, by showing the se-
mantic validity of the reduction axioms and inference rules. The proof is straightforward and there-
fore omitted.

Completeness follows as a corollary from a number of lemmas that are presented in Section A.2.

Corollary 2 (Completeness of K+ AM). K+ AM is complete with respect to the class of all models. More-
over, any extension of K+ AM obtained by adding axioms characterizing frame conditions is complete with
respect to the corresponding class of models.

9 Related Work

9.1 Epistemic Planning

Several articles on multi-agent epistemic planning have appeared recently. The existing work can be
organised along the following categories: modeling of epistemic planning, tractability and complex-
ity, and implementation and applications.

On the modeling side, multiple articles have presented formalisms for multi-agent epistemic plan-
ning based on DEL [2, 15, 58, 92]. These models are very expressive, capturing several key aspects
of multi-agent epistemic planning. These aspects include: epistemic actions and goals, higher-order
knowledge and belief, partial observability, etc. A thorough comparison of the present framework
with existing DEL formalisms is found in Section 9.2.

The rich expressivity of DEL comes at a cost, as planning problems specified in DEL are in general
computationally difficult to solve (more on this below). This has partly motivated the introduction
of simpler formalisms for epistemic planning. Some of these formalisms build on classical planning.
The model in [71] extends STRIPS to allow knowledge declarations in preconditions and postcondi-
tions. The framework is however restricted to single-agent planning, does not support higher-order
reasoning, and allows only a restricted form of quantification. The multi-agent planning frameworks
in [46, 61] follow a compilation approach, translating restricted fragments of epistemic planning into
classical planning languages.

The approaches in [42, 45] describe planning domains via a type of state-transition system ex-
tended with epistemic information, called a concurrent epistemic game structure (CEGS). This represen-
tation makes it easy to define multi-agent notions such as ‘joint action’ or ‘multi-agent plan’. How-
ever, the representation inherits some of the well-known problems of transition-system models, in-
cluding the lack of compact descriptions of actions and efficient heuristics that can avoid building the
full state-transition system when planning (see [14] for a discussion of these and other limitations).

The non-DEL formalism that most closely resembles the approach of this paper is the epistemic
game description language GDL-III [86]. The language is epistemic and first-order. A key feature of
this language is that only what agents can see and do has to be defined. This is done via declarations
that use the keywords Sees and Does, which loosely correspond to modalities. GDL-III has a simple
syntax and allows compact specifications of actions. For instance, the following GDL-III rules [9]
describe schematically communication actions which are similar to the ones from Example 5:

Sees(x, ia)⇔ Does(i, announce(z)) ∧Obs(i, x))

Sees(y, ϕ)⇔ Does(i, announce(ϕ)) ∧Obs(i, y) ∧ Listen(i, y) ∧ ϕ
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These two transition rules are interpreted as follows: if agent i announces z then any agent x ob-
serving i will receive the information ia. Any agent y that observes i and listens to i will learn the
content of the announcement, ϕ. Given the semantics of GDL-III, it follows that agents who only
see ia will know that i made an announcement but will not learn the content of the announcement.
Agents who observe i, however, will know that ϕ must be true. Moreover, if an agent x observes
agent i, does not listen to i, but knows that another agent y listens to i, then the semantics entails that
x will know that y will know the content of the announcement after it has been made. The model is
therefore schematic and context-sensitive, like the epistemic action schemas presented here. The syn-
tax of GDL-III is simpler than that of DEL when it comes to representing actions. However, as noted
in [31], specifying nested and higher-order knowledge is more difficult in GDL-III than in DEL, and
the formalism requires more involved semantics. The work in [31] provides a detailed comparison
of DEL and GDL-III, concluding that GDL-III offers a simpler syntax, while DEL provides simpler
semantics. In [31], it is shown that large fragments of GDL-III and DEL are equally expressive by
giving compilations between the two.

Concerning decidability and complexity, it was first shown in [15] that the general plan existence
problem in propositional DEL planning (i.e., deciding whether a plan exists given a multi-agent plan-
ning task) is undecidable. In fact, the problem is undecidable with two agents only, no common
knowledge, and no postconditions. In [52] it is shown that public actions are enough for undecidabil-
ity when the initial state meets certain technical conditions. That paper also identifies an undecidable
subclass of small epistemic planning problems comprising two agents, one action, six propositions
and a fixed goal. The undecidability results straighforwardly apply also to the present framework.

Although the general problem is undecidable, several papers have identified decidable fragments
of epistemic planning that are still reasonably expressive. Single-agent epistemic planning is decid-
able [15]. The multi-agent problem becomes decidable if actions are only allowed to have proposi-
tional preconditions (i.e., no epistemic formulas appear in the preconditions) [92]. The computational
complexity of this fragment belongs to (d + 1)-EXPTIME for a goal formula whose modal depth is d.
If actions are restricted to have propositional preconditions and no postconditions, the plan existence
problem becomes PSPACE-complete [21]. Stronger restrictions, such as allowing only private and
public announcements, bring the complexity down to NP-complete [17]. As mentioned in Section
6, in [55] we show that single-agent epistemic planning and multi-agent planning with non-modal
preconditions are also decidable in the term-modal, first-order case described in this paper, echoing
the results for propositional planning in [15, 92].

As for implementation and applications, a number of techniques and planners have been devel-
oped over the last decade. An approach that has gained popularity is the compilation approach.
The idea involves choosing a suitably restricted fragment of DEL that can be encoded in a classical
planning language. Epistemic problems are then translated into classical ones so that state-of-the-art
planners can be used to solve them efficiently. The compilations rely on different restrictions. The sys-
tem in [46] assumes that actions are public, physical actions are deterministic, and that all agents start
with a common initial belief on the set of worlds that are possible. The paper adopts a centralised per-
spective, with planning done off-line from the viewpoint of a single agent. In [47], the authors extend
this framework to cover on-line planning from the perspective of the agents themselves. The planner
in Muise et al. [61] requires a finite depth of nesting of modalities and no disjunctions. Cooper et al.
[23] use an encoding based on special variables describing what agents can see. The epistemic prob-
lems expressible with this restricted language are then encoded in PDDL and solved using the Fast
Downward planner [39]. As mentioned before, the PKS system in [71] encodes epistemic planning
using a STRIPS-like language. This language can describe single-agent, epistemic planning problems
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with conditional effects. The PKS system tries to solve these problems using an efficient but incom-
plete algorithm.

A small number of epistemic planners do not rely on compilation into classical planning. The
system MEPK [43] performs multi-agent epistemic planning from the third-person viewpoint. The
system can handle private actions and beliefs, as formalized with the modal logic KD45n. The systems
does not support arbitrary common knowledge but can deal with a weaker form of common knowl-
edge. Finally, Le et al. [51] present two forward planners, called EFP and PG-EFP, for multi-agent
epistemic planning. These planners can deal with unlimited nested beliefs, common knowledge, and
epistemic goals when the number of worlds in the initial state is not too large.

9.2 Dynamic Epistemic Logic

There is a vast and excellent literature on both epistemic logic and dynamic epistemic logic to which
the reader is referred for both technical and conceptual introductions—see e.g. [8, 10, 28, 32, 40, 60, 53].

The approach to modeling actions taken in this paper is based on the idea of action models applied
using product update as introduced first by Baltag, Moss and Solecki [7]. The reduction axiom approach
to proving completeness for logics with actions was first suggested by Plaza [72] for the case of truthful
public announcements. Our approach is the same, but for general actions models. It is based on [6, 8,
28].

The format of the action models presented here differs mainly in four aspects from those intro-
duced in [7]: our action models have postconditions; are first-order rather than propositional; accom-
modate term-modal relations; and have conditioned edges.

Our approach to postconditions is inspired by [11, 30]. From there, it is a straightforward gener-
alization to alter pre- and postconditions to allow updates of first-order Kripke models.

A substantial departure from the standard is the accommodation of term-modal relations and the
edge-conditioning. The definition avoids two problems for term-modal action models—one pointed
out by Kooi [48] and one concerning reduction axioms—by an adjustment of the propositional edge-
conditioned action models of Bolander [13].3

In the standard definition, an action model A for index set of agents I consists of a finite set of
events E = {e, ..., e′} and a map R : I → P(E× E), plus assignments of pre- and postconditions. In
the term-modal treatment, the set I is a proper part of the semantics of state representations. Adding
an operator [A, e] to the language thus conflates syntax and semantics, Kooi points out.

In considering reduction actions, we found that this problem runs deep. Consider the standard
reduction axiom for the modal operator:

[A, e]Ki ϕ↔

pre(e)→
∧

f :(e, f )∈Ri

Ki[A, f ]ϕ

 (6)

In (6), the agent index i links the occurrences of the modal operator Ki with the relation Ri used
in the quantifying conjunction. This link is broken in the term-modal treatment: the “i” indexing
the operators is a syntactic term, while the “i” indexing the relation is an element of a domain of
quantification. Without consulting an interpretation (or variable assignment), these two occurrences
are unlinked: there is no guarantee that Ri is the relation used in evaluating Ki ϕ.

3Both approaches result in context-sensitive actions: the distinguishability of two events depends on model to be updated.
See [13, 53, 77, 78, 79] for arguments to the effect that more context-sensitivity than what is present in standard action models
is desirable.
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To resolve the conflation problem, Kooi defines action models where accessibility relations over
events E are assigned to groups of agents on a per-application basis: With Φ a finite set of mutually
inconsistent and jointly exhaustive formulas with free variable x, each pointed model (M, w) and
variable valuation v defines a partition on the agent domain with cells {d ∈ Dagt : M, w �v[x/d] ϕ(x)}
for each ϕ(x) ∈ Φ; each agent in such a cell (group) is assigned the same accessibility relation using
a map S : Φ → P(E× E). In effect, the action model makes no direct reference to the agent domain,
thus avoiding the conflation problem.

Additionally, Kooi’s definition yields a solution to the problem of unlinked indices as the relations
of the action model may now be referred to using syntactical constructs. With Φ = {P1(x), ..., Pn(x)},
a suggestion for a reduction axiom could be

[A, e]Kt ϕ↔

pre(e)→
∧

k≤n

Pk(t)→
∧

f :(e, f )∈R(Pk)

Kt[A, f ]ϕ

 .

We obtain a similar solution by adjusting the edge-conditioned action model of Bolander [13]. In
an edge-conditioned action model, whether two events are related for some agent i ∈ I is condi-
tional on whether a given formula is satisfied in the pointed model on which the action is executed.
Formally, each agent-edge pair is assigned a condition by a map Q : I → (E× E→ L).

Inspired by both Bolander and Kooi, we use a map Q : E× E → L where Q(e, e′)(x?) has exactly
one free variable, x?. When the resulting action model is executed on a pointed model (M, w), an
edge is present for an agent α ∈ Dagt if M, w �v[x? 7→α] Q(e, e′)(x?). As the condition Q(e, e′)(x?) is a
formula, this approach allows the formulation of reduction axioms, cf. Section 8.2.1.

Our version of the Q function and Kooi’s approach S are equally general. Given an action model
(E, S, pre, post) with S : Φ → P(E × E), let Q : E × E → L be given by Q(e, e′) = ϕ such that
(e, e′) ∈ S(ϕ). Then Q emulates S: for all models M, M⊗ (E, S, pre, post) = M⊗ (E, Q, pre, post). Vice
versa, to emulate a map Q, for each A ⊆ E× E, let

ϕA :=
∧

ϕ∈Q(A)

ϕ ∧
∧

ψ∈Ψ
ψ (7)

with Ψ the largest subset of {¬ϕ : ϕ ∈ Q(E× E)\Q(A)} such that (7) is consistent. Then S : ϕA 7→ A
for each A ⊆ E× E is a Kooi map that emulates Q. We opt for the edge-conditioned formulation due
to its correspondence with the standard precondition maps pre : E→ L.

Finally, note that both may emulate standard action models over classes of models where each
agent α is designated by a rigid constant aα (as is conceptually implied by identifying agents with
indices). The standard map R : Dagt → P(E× E) may be emulated by the map Q : E× E → L with
Q(e, e′) =

∨
aα : (e,e′)∈Rα

(x = aα).

9.3 Term-Modal Logic

The term-modal treatment of epistemic operators as behaving both as modal operators and as first-
order predicates was suggested already by von Wright in his 1951 [88], though the direction was
not formally explored. Formally, Hintikka allowed the constructions in his 1962 [40], and the term-
modal aspects are used in discussions concerning the validity of Ka ϕ → KaKa ϕ, where Hintikka
notes that the schema is only valid if a knows who a is, captured by ∃xKa(x = a) (see also Section
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8.1.4 on frame characterizations). Semantically, Hintikka linked individuals and operators in [41] us-
ing world-relative first-order interpretations extended to assign alternatives to individuals in the do-
main of quantification, D. Work in philosophical logic followed Hintikka’s term-modal syntax—even
called “standard” by Carlson in 1988 [20]—but the semantic link did not pertain: [84] exemplifies a
pseudo-use. Carlson enforced the semantic link, using a partial map R : D −→ P(W ×W) to assign
accessibility relations to individuals. He further presents a Hintikka-style model set proof theory for
a three-valued Kripke-style semantics with non-rigid terms, varying domains and reflexive relations,
and shows completeness.

In computer science, a format similar to Carlson’s is frequently used when giving the semantics
for propositional epistemic logic, with the set of agents D treated as an index set instead of a domain
of quantification, even in the first-order case: e.g., in Fagin et al.’s first-order treatment [32], in a for-
mula like KAliceGovernor(Cali f ornia, Pete), both Cali f ornia and Pete are first-order terms, but Alice
is not—Alice is an agent. Here, then, agents and their names are equated.

The issue of equating agents and their names, and why this is unsatisfactory in many computer
science applications, is discussed at length by Grove & Halpern [38] and Grove [37]. They identify the
following inadequacies: systems that equate agents with their names cannot represent agent sets of
non-fixed size, do not allow for reference to agent groups, for non-rigid names, nor for indexical and
relative reasoning (using terms like “me” to express e.g. “the agent to the left of me”). In response, [38]
develops a propositional epistemic logic with indexical reference obtained by evaluating formulas
at agent-world pairs, on which [37] builds a first-order variant to additionally handle issues of de
dicto/de re-like reference scope, as well as multi-naming of agents. The latter is in effect a variant of
non-rigid constant, varying domain, term-modal logic with formulas evaluated at agent-world pairs.
Further, the language contains two sorts, one for agents (like our agt terms), and one for names.4

This allows explicit reasoning about naming. Adding a third sort to the present framework would
be unproblematic, but the indexical semantics would require in-depth re-working. Similarly would
varying agent domains require work, unless emulated by an existence predicate, cf. [33]. Beyond
this, the present framework tackles the issues raised in [37, 38]: agents and names are not equated by
the use of (non-rigid) constants of sort agt, that additionally allow for multi-naming; agents groups
may be denoted by predicates and relative properties by relations; finally, de dicto/de re distinctions are
expressible using quantification. However, beyond the formal difference and similarities, we would
find an in-depth philosophical comparison of the interpretation of the two frameworks interesting.
In [54], we illustrate the system presented here with examples that touch on several of the involved
issues.

One reason for sticking with ordinary modal operators even in a first-order setting is that term-
modal operators adds design choices and possible complications, as discussed by Lomuscio & Colom-
betti in their early contribution to the term-modal literature [57]. In constructing a term-modal ex-
tension of multi-agent KD45 with non-rigid terms, they discuss how to evaluate formulas Ba ϕ when
a is not an agent denoting term. Intuitively, Ba ϕ should be false, as only agents can truly hold be-
liefs, but—they remark—this would imply the invalidity of Ba(ϕ ∨ ¬ϕ). They conclude against a
two-sorted approach, as a similar problem surfaces for formulas BaBb ϕ when agent a believes that the
term b denotes a non-agent.5 Ultimately, Lomuscio & Columbetti opt for a partial logic with truth-value
gaps, letting the truth-value of Ba ϕ be undefined when a denotes a non-agent; they take a valid formula
to be sometimes satisfied, but never false. Their semantics are constant domain, and each element is, at

4Such two sorts are also used by Rendsvig in a quantified, but not term-modal, epistemic logic analysis of semantic compe-
tence in relation to Frege’s puzzle about identity [75, 76].

5This obstacle is avoided in the present paper by syntactically forcing all operator-subscripts to be of the agent-sort.
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each world, assigned a set of doxastic alternatives; an element is an agent in world w if it is assigned a
non-empty set. Hence, agenthood is world-relative. They present an axiom system—which includes a
term-modal Barcan formula ∀y(Bx ϕ(y)) → Bx∀y(ϕ(y)) and quantified frame-characterizing formu-
las like ∀x(Bx ϕ→ BxBx ϕ) like the present paper—and show soundness, citing [56] for details.

Bivalent systems are presented by Thalmann [85] and Fitting, Thalmann & Voronkov [34], with
these two works coining the label ‘term-modal logic’. In their setting, each world w is associated with
an inner domain D(w) of objects existing at w, with D(w) a subset of the outer domain D, for all w. The
inner domains are assumed increasing: if wRdw′ for some d ∈ D, then D(w) ⊆ D(w′). Further, terms
are assumed rigid and with an interpretation defined at every world (I(c) ∈ D(w) for all w ∈ W).
This combination seemingly6 eliminates the need for truth-value gaps, but the problems raised by
non-agents are not discussed. For several classic frame-conditions, [34, 85] presents both sequent and
tableau proof systems (K, D, T, K4, D4, S4).

Orlandelli & Corsi [63] also investigate sequent calculi for term-modal logics. Their semantics is
more general as they omit the increasing domain requirement, and—as they also consider Euclidean
frames—they also obtain completeness for more frame classes. The syntax is without constants, so
the rigidity/non-rigidity dichotomy is non-applicable. The semantics are bivalent. The combination
of varying domains and bivalent semantics is facilitated by the atomic formula satisfaction clause

M, w �v r(x1, ..., xn) iff (v(x1), ..., v(xn)) ∈ I(r, w),

with I(r, w) ⊆ Dn again with D the outer domain. E.g., with I(=, w) = {(d, d) ∈ D2 : d ∈ D}, the
formula (x = x) is satisfied in (M, w) even if v(x) /∈ w. However, as the quantifiers only range over
the inner domain of worlds, the semantics oddly make p(x) ∧ ∀y¬p(y) satisfiable.

In [48], Kooi introduces a dynamic term-modal logic, including a first-ever first-order version of
DEL action models. The language of [48] is first-order dynamic logic with wildcard assignment,
but where the set of first-order terms is also the set of atomic programs, the models for which are
constant agents-only domain with non-rigid terms (and very similar to our general case, but restricted
to agents-only). This language is more expressive than ordinary term-modal logic. The first-order
dynamic logic aspect implies that the validity problem is Π1

1 complete, eliminating hope for a finitary
proof system. However, the expressivity of the language allows the definition of a non-rigid common
knowledge. If not for our two-sorted domain, our language and semantics could be seen as a special
case of Kooi’s. Kooi’s action models are discussed in the next section.

Seligman & Wang [89] investigate a fragment Kooi’s system. The fragment allows only basic
assignment modalities to form a quantifer-free term-modal logic (without function symbols), a frag-
ment rich enough to express de dicto/de re distinctions and knowing who constructions in a setting
where names are not common knowledge. The main result is a complete axiomatization for the class
of S5 models. As Barcan-like formulas are not included in the investigated language fragment but
are the common characterizers of constant domain semantics, this result is quite non-standard. The
authors also discuss decidability: providing no hard results, they conclude “We are not that far from
the decidability boundary, if not on the wrong side.”

Corsi & Orlandelli [24] introduce a generalization of term-modal syntax to be able to express the
difference between de dicto and de re statements without invoking quantifiers. They introduce com-
plex term-modal operators |t : c

x|p(x) with the reading that t knows of c that (s)he is p(x). These are
6Seemingly, as we are confused about the satisfaction clause for atomic formulas [34, Def. 7, It. 1], stating that w, V 


R(t1, ..., tn) iff w 
 R(V(t1), ..., V(tn)) with V(ti) ∈ D, but no specification of the conditions for the right-hand condition, nor
any specification of how the relation symbol R is assigned extension. However, if this is assumed settled as ordinarily (as in
the present paper), the increasing domain assumption seems sufficient to obtain a well-behaved semantics, as is the case in
ordinary first-order modal logic. See e.g. [35] for an introduction and [44] for details.
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interpreted over so-called epistemic transition structures with double-domains. The resulting indexed epis-
temic logics are further investigated in [26, 25]. It would be interesting to know what the relationship
is to the also expressive language of Kooi [48].

Where the domain of Kooi [48] consists only of agents, Rendsvig [74] introduces a model with a
single-sorted language with non-rigid terms that denote elements in a constant domain containing
both agents and objects. As in [57], this requires an ad hoc solution to the semantics of formulas Ka ϕ
when a denotes a non-agent. The solution used is to then interpret Ka ϕ as a global modality. This
preserves the bivalence of the systems while making all operators normal. As a result, [74] presents a
canonical model theorem, facilitating completeness proofs for classic frame classes.

The semantics of this paper are based on Achen’s [1], which in turn is a two-sorted refinement of
[74]. What we consider an improvement of [1] over [74] is exactly the two-sorted approach: distin-
guishing between agent and object terms removes the need to define ad hoc semantics for knowledge
operators indexed by non-agents. Taking a two-sorted approach eliminates the possibility of model-
ing agents that are uncertain about whether a given term refers to an agent or an object, but results in
a system which we consider well-behaved.

Term-modal like, Naumov & Tao [62] present a propositional term-modal logic, but where op-
erators may be indexed by sets of terms, making ∃xK{x,a}ϕ a formula. Such operators are given a
distributed knowledge semantics in S5 models with constant agents-only domain and rigid terms for
which a complete axiom systems is presented.

Sawasaki, Sano and Yamada [81] consider a term-modal syntax where operators are indexed by a
sequence of terms making e.g. ∀x∀yK[x,y]R(x, y) well-formed, with the intended deontic reading that
x is obliged by y to ensure R(x, y). They present complete axiom system and sequent calculi.

Sedlar [82] also uses a rigid terms, agents-only constant domain semantics to represent an epis-
temic logic of evidence using a term-modal language as that presented here. Sedlar shows that his
term-modal framework is able to emulate monotonic modal logics and epistemic logics with aware-
ness, obtaining a decidability result for the fragment with no constants nor functions, but 0-ary pred-
icates and single unary predicate.

Several other authors have also looked at decidability issues for varieties of term-modal logics.
Kooi [48] points out that the monadic fragment of his system is undecidable by a result of Kripke [50].
As Kripke’s result concerns first-order modal logic in general (see e.g. [44, p. 271 ff.]), it applies to
broadly to term-modal logics, too. For term-modal logics, Padmanabha & Ramanujam [67] even show
that the propositional fragment is undecidable. As decidable, they identify the monodic fragment
(formulas using only one free variable in the scope of a modality). [65] considers model checking for
the fragment over a restricted model class and [64] presents a translation of the monodic fragment
(without identity) into FOML.

In [66], Padmanabha & Ramanujam further investigate a variable-free propositional bi-modal
logic with implicit quantification, with formulas [∀]ϕ and [∃]ϕ asserting that along all (resp. some) ac-
cessibility relations ϕ is necessary. These variable-free formulas thus correspond to the propositional
term-modal formulas ∀xKx ϕ and ∃xKx ϕ. The relevant logic is shown decidable, to be bisimulation-
invariant fragment of an appropriate two-sorted first-order logic, related to the ‘bundled fragment’
of term-modal logic. Model checking for the system is investigated in [69]. In [68] Padmanabha &
Ramanujam, turn to the two variable fragment of term-modal logic, which they show decidable. The
thesis [64] collects a selection of the mentioned results, and additionally presents a translation of TML
without identity into propositional TML.

For their own system, Orlandelli & Corsi [63] show two fragments decidable, the first propo-
sitional with quantifiers and operators occurring only in pairs of the forms ∃x[x] or ∀x〈x〉. This
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fragment simulates non-normal monotone epistemic logics. The second fragment allows expressing
1-ary groups’ higher-order knowledge about proposition symbols, e.g. with ∀x(p(x) → Kx(Kyq))
an allowed formula. Also Pliuškevičius & Pliuškevičienė [73] treats a fragment of propositional
term-modal logic, but with, term-modal operators for belief and mutual belief, allowing only pair-
wise quantifier-operator nestings (e.g., for p a propositional atom, ∀xBx∃yBy p is well-formed, while
∀x∃yBxBy p is not). For their agents-only constant domain KD45 semantics, they present a termi-
nating sequent calculus decision procedure. For further decidability results, it may be relevant to
consult Shtakser [83], who investigates propositional modal languages includes quantification over
modal operators and predicate symbols that take modal operators as arguments.

Beyond its main decidability result, Padmanabha & Ramanujam [68] also discusses translation of
term-modal logic into first-order modal logic. In a setting with no constants or function symbols, the
authors suggest a translation of TML into FOML with a single modality K and a new unary predicate
P, inductively translating Kx ϕ to K(P(x) → ϕ) and K̂x ϕ to K̂(P(x) ∧ ϕ). [68] omits the details, but
claims this translation produces FOML formulas equi-satisfiable with their TML originals. This sug-
gests that completeness results for term-modal logics may also be shown indirectly via translation
and application of well-known results for FOML (see e.g. [44]), instead of by the direct constructions
found in the Appendix.7 Whether a translation approach would work for the present framework
is an open question, but we have reservations concerning the general applicability of the suggested
translation. 8

10 Final Remarks

We conclude with open questions we see in relation to epistemic planning, and a summary of the
main contributions of the paper. The following are some possible avenues for future research:

1. Decidability and complexity. As presented in the literature review on epistemic planning with
propositional DEL (Section 9.1), results exist concerning the undecidability of several classes of
epistemic planning problems, but decidability and complexity results also exist. It is clear that
the negative results apply in the richer setting of this paper. In [55], we show that some of the
positive decidability results can be established in the decidable finite-agent setting of dynamic
term-modal logic (i.e., decidability for single-agent planning and multi-agent planning with
non-modal preconditions). It is an open question whether any other decidability results can be
extended as well, and the complexity of first-order epistemic planning has not been studied.

2. Reasoning about schematic actions. In extension to defining first-order variants of action models,
it was natural to define action schemas to obtain succinct action representations. These action
schemas are however not described by the dynamic languages and logics introduced. We find
it an interesting question how the languages and logics should be altered to obtain a logic of
action schemas. Constructing such a logic could possibly draw connections to recent work on
Arbitrary Public Announcemnet Logic and its generalizations, cf. e.g. [5, 29].

7We thank a reviewer for pointing this out.
8We hold a reservation as satisfiability is not generally preserved by the translation. In the class of TML models with

exactly 2 agents (characterized by axiom N for n = 2) wlog called α and β, with constants a and b locally rigid, but non-
identical (characterized by ∃x∃y((x 6= y) ∧ (x = a) ∧ (y = b) ∧ ∀zKz((x = a) ∧ (y = b)))), and satisfying for i, j ∈ {α, β}, i 6= j,
∀x, y, z ∈ W, if xRiy and xRjz, then yRiz (characterized by ∀x∀y(((x 6= y) ∧ K̂x>∧ K̂y ϕ) → KxK̂y ϕ)), the formula ∃x∃y((x 6=
y) ∧ K̂y> ∧ K̂xK̂x> ∧ KxKx¬K̂x>) is satisfiable. However, the translation of the latter is not satisfiable in the class of FOML
models characterized by the translation of the three former.
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3. Supporting other planning features. A possibly fruitful avenue for future research is to devise
a first-order probabilistic DEL framework for probabilistic epistemic planning. In the standard
planning literature, probabilistic PDDL is often used to support probabilistic effects, allowing
the specification of Markov decision processes [91]. There is a rich literature on probabilistic
propositional DEL on which a first-order setting for probabilistic epistemic planning could be
based (for an overview, see [8, Appendix L]). Other well-known planning features, such as
numeric fluents, temporal aspects, etc., could also be integrated.

Finally, we briefly recall what we see as the main contributions of the paper:

1. A first-order dynamic epistemic logic. The paper develops novel dynamics for a variant of term-
modal logic with the addition of first-order action models. It thereby generalizes propositional
DEL to a setting allowing full first-order epistemic reasoning about both objects and agents.

2. A compact epistemic domain definition language. As the epistemic planning formalism developed
builds on first-order logic, it allows for a compact specification of domain dynamics via epis-
temic action schemas. Such schematization is inspired by that used in PDDL, and to the best of
our knowledge, it provides the most compact representation of actions available in the DEL
framework. The setting conservatively extends propositional DEL, in the sense that it contains
it as a special case, inheriting the ingredients of the DEL planning framework.

3. Expressive, yet decidable axiom systems for reasoning about epistemic actions. On the reasoning side,
the paper develops static and dynamic axiom systems that are well-behaved. Although the
logical languages proposed are fairly expressive, it is shown that sound, complete and decidable
systems exist for several natural classes of models.

Acknowledgements

We sincerely thank the three anonymous reviewers for their insightful questions, comments and crit-
icisms: We appreciate your time and efforts.

The Center for Information and Bubble Studies is funded by the Carlsberg Foundation. RKR was
partially supported by the DFG-ANR joint project Collective Attitude Formation [RO 4548/8-1].

A Proof Appendix

A.1 Term-Modal Logic

This section establishes the results stated in Section 8.1. The logic K is well-behaved, with standard
techniques for establishing strong completeness carrying over from the propositional and quantified
modal logic cases. Therefore, the section presents only proof strategy, with non-standard elements
given special attention. Full details may be found in [1].

The involved notions are standard (see e.g. [12, 18, 44]), but we remark that a formula ϕ is valid
over a class of frames X iff for every frame F = (D, W, R) ∈ X, every interpretation I over F, every
world w ∈ W and every valuation v, it is the case that M, w �v ϕ. That ϕ is a semantic consequence of
the formula-set Γ over a class X is written Γ �X ϕ. For ϕ provable from the assumptions Γ in the logic
Λ, write Γ `Λ ϕ. In both cases, when Γ = ∅, it is omitted.
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A.1.1 Soundness

Proposition 3. The system K is sound with respect to the class F of all frames: for all ϕ ∈ L, if `K ϕ, then
�F ϕ.

Proof. The proof is standard: the axioms of K are shown valid over F and the rules of inference are
shown to preserve validity. To give a feel, arguments follow for the K axiom and the Barcan Formula.

K: Let M be a model based on an arbitrary frame F ∈ F, let w ∈ M and let v be a valuation; let
Kt>, ϕ, ψ ∈ L. To show that M, w �v Kt

(
ϕ → ψ

)
→
(
Kt ϕ → Ktψ

)
, assume M, w �v Kt

(
ϕ → ψ

)
. As

Kt> ∈ L, JtKI,v
w ∈ Dagt by assumption. Hence F contains an accessibility relation RJtKI,v

w
. Having fixed

the accessibility relation going though the term t to the agent domain, the argument is standard: By
the semantics of Kt, M, w′ �v ϕ → ψ for every w′ ∈ M with w′ ∈ RJtKI,v

w
(w). Hence M, w′ �v ¬ϕ

or M, w′ �v ψ. If all such w′ satisfies ϕ, M, w �v Kt ϕ; but then each w′ must also satisfy ψ, so
M, w �v Ktψ, and hence M, w �v Kt ϕ → Ktψ. Else, some such w′ satisfies ¬ϕ; then M, w �v ¬Kt ϕ, so
M, w �v Kt ϕ→ Ktψ.

BF: Let M, w, v, ϕ and t be as above. Pick a variable x 6= t and assume that M, w �v ∀xKt ϕ. Then for
all x-variants v′ of v, M, w �v Kt ϕ (i.e., intuitively, if x is free in ϕ so that Kt ϕ(x) defines a predicate,
all elements in the t(x)-domain of w fall in this predicate’s extension). From M, w �v Kt ϕ, it follows
that for all w′ ∈ RJtKI,v

w
(w), M, w′ �v′ ϕ (intuitively, as v′ is an arbitrary x-variant v, all t(x)-elements

existing in w′ fall in the extension of ϕ(x). This would not hold if elements could exist in w′ that do not
exist in w). As v′ is an arbitrary x-variant of v, it follows that M, w′ �v ∀xϕ (again, illegitimate if new
elements could spring to existence). As w′ was arbitrary from RJtKI,v

w
(w), finally M, w �v Kt∀xϕ.

A.1.2 Completeness

This section establishes that the system K is strongly complete with respect to the class F of all frames.
I.e.,

for all Γ ⊆ L, for all ϕ ∈ L, if Γ �F ϕ, then Γ `K ϕ.

This follows as a corollary of the section’s main result, the Canonical Class Theorem (Theorem 3)
which states that any normal term-modal logic is strongly complete with respect to its canonical class.

The theorem is establish by appeal to the following well-known9 proposition linking satisfaction
and completeness:

Proposition 4. A logic Λ is strongly complete with respect to a class of structure S iff every Λ-consistent set
of formulas is satisfiable on some s ∈ S.

By this proposition, a completeness proof can be undertaken as an existence proof: For a consistent
set of formulas Γ, a satisfying model from the appropriate class must be found. In the propositional
case, one model is constructed for all consistent sets simultaneously, giving rise to the propositional
Canonical Model Theorem (see e.g. [12]): any normal propositional modal logic is strongly complete
with respect to its canonical model.

The present proof cannot rely on single canonical model. As variables are semantically rigid and
any signature Σ includes identity, the same identity statements between variables are true across
all worlds of any model-valuation pair. A canonical model defined as usual would not satisfy this:

9See e.g. [12, p. 194].
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with consistent sets forming the basis of worlds, if two worlds are disconnected by all accessibility
relations, then they need not satisfy the same identity statements between variables. Hence, a rigid
variable valuation cannot be defined. Further, different K-consistent sets may give rise to different
domains. Hence, non-constant domains result, and the construction is thus not of the appropriate
class. Therefore, our construction is of a canonical model per consistent set, resulting in a canonical
class.

The construction contains first-order aspects irrelevant in the propositional case and term-modal
logical aspects irrelevant to the standard quantified case, but the approach is familiar: worlds are
maximally consistent sets that bear witnesses, ensured constructable by Lindenbaum-like lemmas;
domains are equivalence classes of variables induced by identity statements; and canonical accessi-
bility relations, interpretation and valuation are defined as expected. That the canonical accessibility
relations are well-defined requires an additional lemma, but a familiar Existence Lemma facilitates a
familiar Truth Lemma, which in combination with the above Proposition 4 yields the main result.

A.1.2.1 Canonical Worlds Fix a signature Σ = (V, C, R, F, t), its language L and a normal term-
modal logic Λ ⊆ L. When a set Γ ⊆ L is maximal Λ-consistent (defined as usual [12]), call Γ a Λ-mcs.

Maximal consistency does not suffice for a set to be a canonical world in the first-order case. It
must also be ensured that whenever a formula of the form ¬∀xϕ is included in Γ, then Γ must bear
witness to this “falsity” of ∀xϕ:10

Definition 19. A set Γ ⊆ L bears witnesses if for every ϕ ∈ L, for every variable x, there is some
variable y such that

(
ϕ(y/x)→ ∀xϕ

)
∈ Γ.

If a set Γ bear witnesses, then so does every super-set of Γ. If Γ is a Λ-mcs that bears witnesses and
contains ¬∀xϕ, then for some y ∈ V, ¬ϕ(y/x) ∈ Γ.

To ensure that every Λ-mcs can be extended to one bearing witnesses, countably infinite sets of
both agent and object variables beyond those in V are needed. Define the extended signature Σ+ as
(V+, C, R, F, t+) where V ⊆ V+, t+(x) = t(x) for all x ∈ V ∪ C ∪ R ∪ F and both (t+)−1(agt) ∩ V+\V
and (t+)−1(obj) ∩ V+\V are countably infinite. Let L+ be the term-modal language based on Σ+.
Then L ⊆ L+. The following two lemmas then ensure that the worlds of the canonical models are
constructable:

Lemma 1 (Lindenbaum). If Γ ⊆ L is Λ-consistent, then there is a Λ-mcs Γ
′

such that Γ ⊆ Γ
′
.

Lemma 2 (Witnessed). If Γ ⊆ L is Λ-consistent, then there is a set Γ+ ⊆ L+ such that Γ ⊆ Γ+ and Γ+

bears witnesses.

A.1.2.2 Canonical Models To avoid the issue remarked in this section’s introduction, a canonical
model is defined per Λ-mcs, ensuring that all worlds share its identity theory:

Definition 20. The sets Γ, Γ′ ⊆ L+ have the same identity theory if for all x, y ∈ V+, (x = y) ∈ Γ iff
(x = y) ∈ Γ′.

Definition 21. Let Λ ⊆ L be a normal term-modal logic. Let Γ ⊆ L be Λ-consistent and let Γ∗ ⊆ L+
be maximal Λ-consistent, witness bearing and such that Γ ⊆ Γ∗ (existing by Lemmas 1 and 2). The
canonical model for (Λ, Γ∗) is M(Λ,Γ∗) = (D, W, R, I) such that

10Witnesses bearing is called the ∀-property in [44, p. 257]; that the set is saturated is also used in the literature.
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1. D := Dagt∪̇Dobj :=
{
[x] : x ∈ (t+)−1(agt) ∩ V+

} ⋃̇ {
[y] : y ∈ (t+)−1(agt) ∩ V+

}
where [z] :=

{z′ ∈ V+ : (z = z′) ∈ Γ∗}.

2. W is the set of all maximal Λ-consistent, witness bearing sets of formulas from L+ that share
identity theory with Γ∗.

3. R : Dagt → P(W×W) such that for all α ∈ Dagt, (w, w′) ∈ R(α) iff for every formula Kx ϕ ∈ L+
with x ∈ α, if Kx ϕ ∈ w, then ϕ ∈ w′,

4. and

(a) I(r, w) =
{(

[x1], ..., [xn]
)
∈ ∏

len(t(r))
i=1 Dti(r) : r(x1, ..., xn) ∈ w

}
, for all r ∈ R;

(b) I( f , w) =
{(

[x1], ..., [xn]
)
∈ ∏

len(t( f ))
i=1 Dti( f ) : ( f (x1, ..., xn−1) = xn) ∈ w

}
, for all f ∈ F;

(c) I(c, w) =
{(

[x]
)
∈ Dt(c) : (c = x) ∈ w

}
, for all c ∈ C.

The canonical valuation v for (Λ, Γ∗) is given by v(x) = [x] for all x ∈ V+.

A.1.2.3 Lemmas: Uniformity, Existence and Truth The canonical model for (Λ, Γ∗) is a model
for L. Notably, the domain is well-defined by the identity theory sharing requirement and a two-
partition by the inclusion of the DD axiom. Further, I(c, w) is well-defined as for every world w, there
exists some x ∈ V+ for which (c = x) ∈ w. See [1] for details. Foremost, the map R is well-defined, as
is ensured by the following lemma:

Lemma 3 (Uniformity). Let Kx ϕ ∈ w ∈ W with v(x) = α. Then for all y ∈ V+ for which v(x) = v(y),
also Ky ϕ ∈ w.

Proof. Assume Kx ϕ ∈ w ∈ W with v(x) = α, and let v(x) = v(y). Then [x] = [y], so by identity
theory sharing assumption, (x = y) ∈ w′ for every w′ ∈ W; in particular, (x = y) ∈ w. By PS,
(x = y)→

(
Kx ϕ→ Ky ϕ

)
∈ w. By MP,

(
Kx ϕ→ Ky ϕ

)
∈ w and by MP again, Ky ϕ ∈ w.

As in the propositional case, the proof of the Truth Lemma below relies on the below Existence
Lemma. A proof for standard first-order modal logic may be found in [44]; details for term-modal
logic may be found in [1].

Lemma 4 (Existence). If w ∈W and ¬Kx ϕ ∈ w, then there exists a w′ ∈W such that (w, w′) ∈ RJxKI,v
w

and

ϕ ∈ w′.

Lemma 5 (Truth). For all ϕ ∈ L+, for all w ∈W, and for the canonical v, M(Λ,Γ∗), w �v ϕ iff ϕ ∈ w.

Proof. The proof proceeds by induction on the complexity of ϕ. For the quantified formulas, appeal
is made to w bearing witnesses. The negated modal case relies on the Existence Lemma. See [1] for
full details.
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A.1.2.4 Canonical Class Theorem The canonical models defined facilitate the application of
Proposition 4 to conclude strong completeness of Λ with respect to its canonical class:

Definition 22. The canonical class of models for the normal term-modal logic Λ is the set CΛ of
canonical models M(Λ,Γ∗) for Λ-consistent Γ ⊆ L.

Theorem 3 (Canonical Class Theorem). Any normal term-modal logic Λ is strongly complete with respect
to its canonical class.

Proof. By Proposition 4, it suffices to find for each Λ-consistent set Γ some s ∈ CΛ that satisfies Γ. One
such is (M(Λ,Γ∗), Γ∗), which exists by the Lindenbaum and Witnessed Lemmas. As Γ ⊆ Γ∗, the Truth
Lemma ensure that (M(Λ,Γ∗), Γ∗) �v Γ for v the canonical valuation.

Corollary 1 (Completeness). The logic K is strongly complete with respect to the class of all frames F.

Proof. A frame F ∈ F that satisfies the K-consistent set Γ is the frame of the canonical model M(K,Γ∗):
Γ is satisfied at Γ∗ under the canonical valuation.

A.1.3 Frame Characterization Proofs

For illustrative purposes, we show two of the claims made in Table 2, Section 8.1.4.

Proposition 5. For ϕ ∈ L, ∀x(Kx ϕ → KxKx ϕ) is valid on the frame F = (D, W, R) if, and only if, R(α) is
transitive for every α ∈ Dagt.

Proof. ⇐: Let M be build on the frame F in which Rα is transitive for all α ∈ Dagt. Let v be an arbitrary
valuation and assume M, w �v Kx ϕ. Then M, w′ �v ϕ for all w′ ∈ Rv(x)(w). For a contradiction,
assume M, w �v ¬KxKx ϕ. Then there exists a w∗ ∈ Rv(x)(w) such that M, w∗ �v ¬Kx ϕ, and hence
there exists a w∗∗ ∈ Rv(x)(w∗) such that M, w∗∗ �v ¬ϕ. But Rv(x) is transitive, so w∗∗ ∈ Rv(x)(w).
Hence w∗∗ satisfies both ϕ and ¬ϕ. On pain of contradiction, M, w �v KxKx ϕ. As v was arbitrary,
M, w �v ∀x(Kx ϕ→ KxKx ϕ). ⇒: By contraposition.

Proposition 6. The formula ∃x1, ..., xn

((∧
i≤n Kxi>

)
∧
(∧

i,j≤n,i 6=j xi 6= xj

)
∧ ∀y

(
Ky> →

∨
i≤n y = xi

))
is valid on the frame F = (W, D, R) if, and only if, |Dagt| = n.

Proof. Notice first that the formula, call it N, is only well-formed iff the variables x1, ..., xn, y are all of
type agt, ensured by them appearing as modal operator subscripts. This ensures that the quantifica-
tions range only over Dagt.
⇐: Assume given a pointed model (M, w) build on a frame F = (W, D, R) with |Dagt| = n.

Assume Dagt enumerated such that Dagt = {α1, ..., αn}. Let v be an arbitrary valuation. We argue
that M, w �v N. Let v′ be the valuation identical to v on all points, except for each i ≤ n, v′(xi) = αi.
Then M, w �v′

((∧
i≤n Kxi>

)
∧
(∧

i,j≤n,i 6=j xi 6= xj

)
∧ ∀y

(
Ky> →

∨
i≤n y = xi

))
, as it satisfies each

conjunct: First, M, w �v′
∧

i≤n Kxi>, trivially. Second, M, w �v′
∧

i,j≤n,i 6=j xi 6= xj as v′(xi) 6= v′(xj)

for all i, j ≤ n, i 6= j, by construction of v′. Third and finally, M, w �v′ ∀y
(
Ky> →

∨
i≤n y = xi

)
: as

y is of type agt, for any y-variant v′′ of v′, v′′ ∈ Dagt, but then v′′(y) = v′′(xi) for some i ≤ n, by
construction of v′, satisfying the antecedent.
⇒: Assume given a pointed model (M, w) build on a frame F = (W, D, R) with |Dagt| 6= n. Let

v be an arbitrary valuation. We argue that not M, w �v N, as (M, w) will falsify either the second
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or the third conjunct (the first conjunct is satisfied: as each variable xi is of type agt for all i ≤ n,
each Kxi> is satisfied at w under any valuation). If |Dagt| < n, then under any valuation v, (M, w)
will falsify the second conjunct: as each variable xi is of type agt, v(xi) ∈ Dagt for all i ∈ 1, ..., n.
But then v(xi) = v(xj) for at least two i, j ≤ n, i 6= j. But then M, w �v xi = xj, contrary to the
second conjunct. If |Dagt| > n, then under any valuation v, (M, w) will falsify the third conjunct, as
there exists a y-variant v′ of v such that v′(y) 6= v(xi) for any i ≤ n. The existence of this y-variant
v′ is ensured by |Dagt| > n, which implies that Dagt/v(xi) : i ≤ n 6= ∅, so that we can assume
v′y ∈ Dagt/v(xi) : i ≤ n.

A.1.4 Decidability

Proposition 7. Let Kn/m, Kn and K be given in L, based on the signature Σ. Let Lagt ⊆ L contain all
formulas containing only agent-terms, t ∈ t−1(agt).

1. For all ϕ ∈ L, it is decidable whether `Kn/m
ϕ or not.

2. a) For all ϕ ∈ Lagt, it is decidable whether `Kn ϕ or not. b) In general, `Kn ϕ is undecidable.

3. In general, `K ϕ is undecidable.

Proof. 1. Kn/m is sound and complete w.r.t. Fn/m. To check the validity of any ϕ ∈ L over Fn/m is
a finite procedure: Up to isomorphism, all F ∈ Fn/m share domain D = Dagt∪̇Dobj, |Dagt| = n,
|Dobj| = (m− n). There are finitely many non-logical symbols in ϕ; symbols not in ϕ are irrelevant
to its satisfaction. With D fixed, any w ∈ F will be assigned one of finitely many extensions of
ϕ’s non-logical symbols: thus, the maximal set of distinct ϕ-relevant worlds Wϕ is finite. As ϕ has
modal depth k, whether M, w �v ϕ depends on at most all worlds within k steps from w. Checking
whether M, w �v ϕ is thus a finite procedure for all formulas given the finiteness of D. Finally, up to
bisimulation, the set of graphs over Wϕ and {R(α), α ∈ Dagt} with maximal path length k is finite:
hence, the set of needed to be checked pointed models is finite. 2a. For any ϕ ∈ Lagt, ϕ is a theorem
of Kn iff it is a theorem of Kn/m, for any m > n. For such ϕ, to determine whether `Kn ϕ, we can
thus check whether `Kn/n+1

ϕ, which is decidable by 1. 2b and 3. General undecidability for Kn and
K follows as both contain unrestricted first-order logic for the arbitrary object domain.

A.2 Dynamic Term-Modal Logic: Completeness through Translation

The completeness proof for the dynamic logic K+ AM is based on a reduction argument. The argu-
ment relies on the existence of so-called reduction axioms for the dynamic language LAM. The axioms
used for this specific proof are listed in Table 3 and can be used to translate every formula from the
dynamic language LAM into a provably equivalent L-formula. Given this translation, the complete-
ness of the dynamic logic follows from the known completeness of the static logic K, established in
Corollary 1. The building blocks of the specific reduction argument required to prove completeness
for K+ AM are provided below.

First, we provide a translation that by finite iterative application to any formula in the dynamic
language LAM results in a formula from the static language L. The translation is left-to-right: a
formula occurring on the left is translated to the formula on the right.
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Definition 23. The translation τ : LAM → LAM is defined as follows:

τ((t1 = t2)) = (t1 = t2)

τ(r(t1, ..., tn)) = r(t1, ..., tn)

τ(¬ϕ) = ¬τ(ϕ)

τ(ϕ ∧ ψ) = τ(ϕ) ∧ τ(ψ)

τ(Kt ϕ) = Ktτ(ϕ)

τ(∀xϕ) = ∀xτ(ϕ)

τ([A, e]r(t1, ..., tn)) = τ(pre(e)→ postA(e)(r(t1, ..., tn)))

τ([A, e]¬ϕ) = τ(pre(e)→ ¬[A, e]ϕ)
τ([A, e](ϕ ∧ ψ)) = τ([A, e]ϕ ∧ [A, e]ψ)

τ([A, e]Kt ϕ) = τ(pre(e)→
∧

e′∈EA

(Q(e, e′)[x? 7→ t]Kt[A, e′]ϕ))

τ([A, e]∀xϕ) = τ(pre(e)→ ∀x[A, e]ϕ)

τ([A, e][A′, e′]ϕ) = τ([A, e ◦ A′, e′]ϕ)

Next, we adapt the formula complexity function introduced by [28].

Definition 24. The complexity c : LAM → N is defined as follows, where GA(L) abbreviates
GroundAtoms(L):

c(r(t1, ..., tn)) = 1
c(¬ϕ) = 1 + c(ϕ)

c(ϕ ∧ ϕ′) = 1 + max(c(ϕ), c(ϕ′))

c(Kt ϕ) = 1 + c(ϕ)

c(∀xϕ) = 1 + c(ϕ)

c([A, e]ϕ) = (4 + c(A)) · c(ϕ)

c(A) = max

 ⋃
e,e′∈E,r(t1,...,tn)∈GA(L)

{c(preA(e))} ∪ {c(postA(e)(r(t1, . . . , tn))} ∪ {c(Q(e, e′))}


A standard ordering lemma ensures that the right side of a given reduction axiom is indeed less

complex than the left side.

Lemma 6. For all ϕ, ψ and χ:

1. c(ψ) ≥ c(ϕ) if ϕ ∈ Sub(ψ) (where Sub(ψ) is the set of subformulas of ψ)

2. c([A, e]r(t1, ..., tn)) > c(pre(e)→ post(e)(r(t1, ..., tn)))

3. c([A, e]¬ϕ) > c(pre(e)→ ¬[A, e]ϕ))

4. c([A, e](ϕ ∧ ψ)) > c(([A, e]ϕ) ∧ ([A, e]ψ))

5. c([A, e]Kt ϕ) > c(pre(e)→ ∧
e′∈E(Q(e, e′)[x? 7→ t]Kt[A, e′]ϕ))
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6. c([A, e]∀xϕ) > c(pre(e)→ ∀x[A, e]ϕ)

7. c([A, e][A′, e′]ϕ) > c([A, e ◦ A′, e′]ϕ)

Proof. The proofs are straightforward, along the lines of those provided in [28, Chapter 7].

The complexity function c induces an ordering of LAM formulas which is used to prove the fol-
lowing Lemma, stating that the two sides of a reduction axiom are indeed provably equivalent.

Lemma 7. For all ϕ ∈ LAM: `K+AM ϕ↔ τ(ϕ).

Proof. The proof is by induction on the complexity c(ϕ). It is similar to the one provided in [28,
Chapter 7].

The completeness of K+ AM (Corollary 2) follows from the soundness of the dynamic proof sys-
tem, Lemma 7 and the completeness of the static sub-system (Corollary 1). The argument, which is
standard, is as follows.

Proposition 8. � ϕ implies `K+AM ϕ, for all ϕ ∈ LAM.

Proof. Suppose � ϕ. Since `K+AM ϕ ↔ τ(ϕ) (Lemma 7), we have � ϕ ↔ τ(ϕ) by the soundness
of the proof system K+ AM. Thus � τ(ϕ). The formula τ(ϕ) does not contain any action model
modalities. Given � τ(ϕ), by the completeness of K (Corollary 1), it follows that `K τ(ϕ). As K is
a subsystem of K+ AM, we thus have `K+AM τ(ϕ). Since `K+AM ϕ ↔ τ(ϕ) and `K+AM τ(ϕ), it
follows that `K+AM ϕ.

The completeness result for any system extending K+ AM with frame-characterizing axioms fol-
lows from the same type of argument.
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