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Abstract

To choose a suitable multiwinner voting rule is a hard and ambiguous task. Depending on
the context, it varies widely what constitutes the choice of an “optimal” subset of alternatives.
In this paper, we provide a quantitative analysis of multiwinner voting rules using methods
from the theory of approximation algorithms—we estimate how well multiwinner rules
approximate two extreme objectives: a representation criterion defined via the Approval
Chamberlin—Courant rule and a utilitarian criterion defined via Multiwinner Approval Voting.
With both theoretical and experimental methods, we classify multiwinner rules in terms
of their quantitative alignment with these two opposing objectives. Our results provide
fundamental information about the nature of multiwinner rules and, in particular, about the
necessary tradeoffs when choosing such a rule.

1 Introduction

A multiwinner rule is a voting method for selecting a fixed-size subset of alternatives, a so-called
committee. More formally, it is a function that—given (i) a set of candidates, (ii) preferences
of a population of voters over these candidates, and (iii) an integer k—returns a subset of
exactly k candidates. Multiwinner rules are applicable to problems from and beyond the political
domain, for instance for selecting a representative body such as a parliament or university
senate [Chamberlin and Courant, 1983, Faliszewski et al.,[2017]], shortlisting candidates (e.g.,
in a competition) [Barbera and Coelho, 2008]], designing search engines [Dwork et al., 2001,
Skowron et al.,|[2017]], building recommender systems [Skowron et al., 2016], and as mechanisms
for locating facilities [Feldman et al., 2016].

Ideally, a multiwinner rule should select the “best” committee, but the suitability of a chosen
committee strongly depends on the specific context. For instance, if voters are experts (e.g.,
judges in a sports competition) whose preferences reflect their estimates of the objective quality
of candidates, then the goal is typically to pick k& individually best candidates, e.g., those
candidates who receive the highest scores from judges. Intuitively, in this and similar scenarios,



the quality of candidates can be assessed separately, and a suitable multiwinner rule should
pick the k best-rated ones. On the contrary, if the voters are citizens and the goal is to choose
locations for k public facilities (say, hospitals), then our goal is very different: assessing the
candidates separately can result in building all the facilities in one densely populated area; yet,
it is preferable to spread them to ensure that as many citizens as possible have access to some
facility in their vicinity.

These two examples illustrate two very different goals of multiwinner rules, which can be
informally described by two principles [Faliszewski et al., 2017, [Lackner and Skowron, |2018a]:
The principle of diversity states that a rule should select a committee that represents the voters as
well as possible. Here, we mean by a representative of voter in a committee IV the one candidate
that the voter prefers most among those from V. Informally speaking, a committee represents
the voters well, if—on average—the voters are satisfied with their respective representatives in
the committee; this translates to choosing a hospital distribution that covers as many citizens
as possible. The principle of individual excellence suggests picking those candidates that
individually receive the highest total support from the voters; this translates to selecting a group
of best contestants in the previous example. In other words, according to the principle of diversity,
one should ensure that all voters are well-represented in the committee, whereas according to the
principle of individual excellence the goal should be rather selecting the strongest candidates
(paying no or little attention to individual voters). The focus for the former principle is on the
voters; for the latter on the candidates.

Many real-life scenarios do not clearly fall into one of the two categories. For example,
rankings provided by a search engine should list the most relevant websites but also provide
every user at least one helpful link. In such cases, a mechanism designer would be interested
in choosing a rule that guarantees a good representation of voters as well as some degree of
excellence of the chosen candidates, putting more emphasis on one of them depending on the
particular context.

Consequently, to choose a multiwinner voting rule in a principled fashion for a specific
application, it is essential to understand to which degree established multiwinner rules adhere to
one of these two principles. We propose two quantitative criteria that correspond to the principles
of diversity and of individual excellence, and provide a classification that clarifies the behavior
of well-known rules with respect to the two aforementioned principles. In this paper, we work in
the approval-based model, i.e., we assume that voters express their preferences by providing a set
containing their approved candidates. However, our approach is applicable to other preference
models as well.

1.1 Methodology

In this paper, we consider the following two criteria in the approval-based model: (1) The
utilitarian criterion counts the total number of approvals received by the selected candidates and
thus measures their total support. (2) The representation criterion counts the number of voters
represented by at least one member of the chosen committee, i.e., the number of voters with at
least one approved committee member.

We investigate how well certain rules perform in terms of the two criteria. We provide



their utilitarian and representation guarantees by measuring the ratio of the utilitarian and the
representation values achieved by the elected committees divided by the values achieved by
committees that are optimal for the respective criterion. Such guarantees can be viewed as
quantitative properties of voting rules. This approach is different from the traditional axiomatic
approach, which is qualitative: a voting rule can either satisfy a property (axiom) or not. Our
approach provides more fine-grained information and allows us to estimate the degree to which a
certain property is satisfied. With these methods, we understand voting rules as a compromise
between different (often contradictory) goals.

According to our model, there are two rules that—by definition—behave optimally with
respect to utilitarian and representation guarantees: Approval Voting (AV) and the Approval
Chamberlin—Courant (CC) rule, respectively. This opens another perspective to look at our
measures by an analogy to the concept of worst-case approximation often used in theoretical
computer science: the utilitarian and representation guarantees of a rule R describe how well R
approximates AV and CC, respectively.

Building upon the notions of utilitarian and representation guarantee, we conduct two main
types of analyses:

Worst-case guarantees: We derive theoretical upper bounds on how much an outcome of
the considered multiwinner rules can differ from the optimal solutions according to the repre-
sentation and the utilitarian criterion. We call these bounds the representation guarantee and
utilitarian guarantee, respectively. Our guarantees are given as functions of the committee
size k and return values between 0 and 1. Intuitively, a higher representation guarantee (resp.
utilitarian guarantee) indicates better performance in terms of the representation (resp. utilitarian)
criterion, where 1 means that the rule always returns an optimal committee according to the
respective principle. [Table 1|summarizes our results (the names of the rules listed in the table are
explained in [Section 2)). Our bounds of the utilitarian and the representation guarantee are mostly
asymptotically tight—they give accurate estimations when the size of the committee k is large.
For small values of £ the gaps between our lower and upper bounds become more significant.

Average-case performance: We complement the worst-case analysis with an experimental
study yielding average ratios for several datasets. In extensive experiments based on real-world
data and numerical simulations, we estimate how on average the outcomes of the considered
rules differ from the optimal committees with respect to the utilitarian and the representation
criterion.

Let us now explain in more detail our choice of criteria, i.e., the choice to use AV and
CC as cornerstones of our analysis, and the underlying assumptions we make. First, AV
embodies the ideas of utilitarian maximization (as in the classic works on collective utility
functions, see, e.g., the book by [Moulin| [[1988]]); CC is the most natural (and simplest) rule in the
approval-based model that maximizes representation. Second, AV and CC can be axiomatically
characterized by properties that capture the principle of individual excellence and the principle
of diversity [Lackner and Skowron, |2018a]. Third, both AV and CC are well-known, well-
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Table 1: Summary of worst-case guarantees for the considered multiwinner rules. The definitions
of the rules listed in the table are provided in The guarantees are functions of the
committee size k. A higher value means a better guarantee, with 1 denoting optimal performance.
In most cases we could only find (accurate) estimates instead of the exact values of the guarantees:
the “lower” and “upper” values in the table denote that the respective guarantee is between these
two bounds. The guarantees for the p-Geometric rule are visualized in [Figure 1| (page[I5)). The
column “Pareto” indicates whether the rule satisfies the Pareto efficiency axiom as discussed in

understood rules. Fourth, due to their orthogonal nature they are good choices for a two-
dimensional evaluation.

The rationale for using AV and CC is based on an important underlying assumption: we
assume that the amount of utility a voter derives from a committee IV is linear in the number
of candidates in W that the voter approves. Taking this utility-based viewpoint, the utilitarian
guarantee of a rule R measures the performance of ‘R with respect to utilitarian social welfare
(i.e., the sum of utilities). Furthermore, the representation guarantee measures a voting rule’s
effort to guarantee as many voters as possible non-zero utility. Thus, a voting rule with a high
representation guarantee ensures that the preferences of as many voters as possible are taken—at
least minimally—into account. In this light, the representation guarantee can be viewed as an
egalitarian criterion; we discuss this and other egalitarian criteria in more detail in Section[7]



1.2 Contribution
The most important findings of our analyses can be summarized as follows:

e Among the studied voting rules, we identify six rules that provide a particularly appealing
compromise between the utilitarian and representation criteria: Proportional Approval
Voting (PAV), its sequential variants seq-PAV and rev-seq-PAV, Phragmén’s sequential
rule, the 2-Geometric rule, and Sainte-Lagué Approval Voting (SLAV). These rules exceed
in both the worst-case and average-case analysis.

e The latter of these rules, Sainte-Lagué Approval Voting (SLAV), is a new approval-based
multiwinner rule. It is similar to PAV (in that it is a Thiele method, cf. Lackner and
Skowron| |2018a) but is based on the Sainte-Lagué apportionment method instead of
D’Hondt apportionment (as PAV does). This modification strengthens the representation
guarantee of SLAV compared to PAV, while slightly reducing its utilitarian efficiency as
observed in the experiments. Nonetheless, its (worst-case) utilitarian guarantee is of the
same (asymptotic) order as that of PAV, and it is significantly higher than that of CC.

e Subject to utilitarian and the representation guarantees, our results reveal major deficits
of prominent multiwinner rules: Monroe, its sequential counterpart, Phragmén’s leximin
rule (leximin-Phragmén), and Minimax Approval Voting (MAV). In particular, the contrast
between PAV and Monroe is noteworthy, as both are known as proportional rules [Aziz
et al.,[2017al Sanchez-Fernandez et al., 2017]. We note that one should judge multiwinner
rules from different angles and our criteria provide only one specific viewpoint; however,
if one considers the utilitarian and the representation guarantees as important objectives,
then the loss of the utilitarian and the representation guarantee of the aforementioned rules
is striking and speaks against the use of these rules.

e We observe that rules that are more expensive to compute—PAV, Monroe, CC, and leximin-
Phragmén are NP-hard [Skowron et al., 2016, |Aziz et al., 2015, |Procaccia et al., 2008, Brill
et al., 2017]—do not necessarily achieve a good compromise between AV and CC: while
PAV achieves an excellent compromise and CC is by definition optimal with respect to one
criterion, this is contrasted by Monroe and leximin-Phragmén, which are computationally
expensive without a clear benefit in this regard.

e Also the 2-Geometric rule achieves a very good compromise between the two criteria.
More generally, we show that the p-Geometric rule spans the whole spectrum from AV
to CC, controlled through the parameter p. Hence, by adjusting the parameter p, one can
obtain any desired compromise between utilitarian and representation guarantees.

e Finally, we show that while proportional rules tend to achieve a good compromise be-
tween utilitarian and representation objectives, proportionality does not yield an optimal
compromise: we find a non-proportional rule that provides better utilitarian and repre-
sentation guarantees than arbitrary proportional rules. Thus, proportionality should be
viewed as a third standalone criterion rather than as a compromise between utilitarian and
representation objectives.



At the end of the paper (Section 6)), we complement our results with an analysis of an
efficiency axiom, which can be viewed as an incarnation of Pareto efficiency in the context of
multiwinner elections. We say that a committee 1/; dominates a committee IV if each voter
approves as many members of W, as of I/, and some voter approves strictly more members of
W, than of W5. Pareto efficiency states that a rule should never select a dominated committee;
thus Pareto efficiency could be viewed as a basic requirement for any utilitarian rule. Since Pareto
efficiency appears to be very fundamental, it may come as a surprise that many known rules do
not satisfy this property (in particular, Monroe’s rule, the Phragmén rules, and all sequential
rules; see [Table I)). Further, we observe that Pareto efficiency is unsuitable to distinguish rules
with strong and weak utilitarian guarantees. We view this discrepancy as yet another argument
why analyzing utilitarian and representation guarantees of multiwinner rules is important for
better understanding their nature, and why a quantitative approach is required.

1.3 Related Work

Our work is based on the idea of approximation algorithms, where computationally hard problems
are solved by polynomial-time algorithms that can guarantee a certain (imperfect) solution
quality. In our paper, we study how well popular multiwinner rules can approximate other,
archetypical rules. Procaccia and Rosenschein| [2006] evaluate the quality of social choice
decisions (and so, the quality of voting rules) by analyzing how well voting rules based on
ordinal preferences can approximate optimal decisions based on cardinal utilities. The same
question for randomized social choice functions has been explored by Boutilier et al.| [2015]. In
a related facility-location model the idea of approximation is used to reason about the quality
of strategy-proof mechanisms [Procaccia and Tennenholtz, 2013]]. The work of Branzei et al.
[2013]] on the dynamic price of anarchy can also be viewed from such a perspective: to which
degree can the outcome of voting rules based on sincere preferences be approximated by the
same voting rules with insincere preference (obtained via “selfish” best-response dynamics)? In
a similar vein, Oren and Lucier| [2014] study the performance of online social choice procedures
in comparison to optimal (offline) procedures. Anshelevich et al. [2018] approximate an optimal
social choice in a metric model with voting rules using rankings as input, i.e., using limited
information.

The normative study of multiwinner election rules typically focuses on axiomatic analysis.
Recent work on the axiomatic analysis of approval-based rules has focused on particularly on
axioms describing proportionality [Aziz et al.,[2017a, Sanchez-Fernandez et al., 2017, Brill et al.,
2017, Skowron et al., 2017, |Aziz et al.| [2018a, Sanchez-Fernandez et al., 2016, [Lackner and
Skowron, 2018a], strategyproofness [Peters, 2018, |Lackner and Skowron, 2018b, Kluiving et al.,
2020] and monotonicity [Sanchez-Fernandez and Fisteus, [2019]. Similar axiomatic properties
for the ordinal model have been discussed by [Dummett [1984], Monroe| [1995]], Chamberlin
and Courant [1983]], [Elkind et al.| [2017b]], and |Aziz et al.| [2017b]; and for the model with
weak preferences by Baumeister et al.| [2016] and |Aziz and Lee| [2020]. For an overview of
multiwinner rules in general, with the focus on the ideas of individual excellence, diversity, and
proportionality, we refer the reader to a survey by |[Faliszewski et al.| [2017].

Another approach to understanding the nature of different multiwinner rules is to analyze how



these rules behave on certain subdomains of preferences, where their behavior is much easier to
interpret, e.g., on two-dimensional geometric preferences [Elkind et al., [2017/a], on party-list
profiles [Brill et al., 2018]], or on single-peaked and single-crossing domains [Aziz et al., 2017b].
Other approaches include analyzing certain aspects of multiwinner rules in specifically designed
probabilistic models [Laslier and Van der Straeten, [2016| [Koriyama et al., 2013} [Skowron, 2015,
Procaccia et al., 2012], quantifying regret and distortion in utilitarian models [Caragiannis et al.,
2017]], assessing their robustness [Bredereck et al., 2017]], and evaluating them based on data
collected from surveys [Rapoport et al.,|1988, Van der Straeten et al., 2018].

1.4 Structure of the Paper

In we provide basic definitions and introduce the multiwinner rules relevant for our
study. constitutes the core of our worst-case analysis, where we establish guarantees
for the quality of committees selected by multiwinner rules. The reader could wonder whether
proportionality can be viewed as an optimal compromise between utilitarian and representation
objectives. We disprove this thesis in [Section 4| and show that proportional rules cannot provide
as good utilitarian and representation guarantees as rules specifically designed to provide a
compromise between these two objectives. The average-case counterpart of our analysis, based
on numerical simulations and real-world datasets, is presented in [Section 5| In|Section 6, we
discuss Pareto efficiency as an example to highlight the difficulty of performing an analysis
similar to ours in a strict axiomatic framework. We conclude the paper with directions for future
research in[Section 7| Proof details and additional details concerning our experimental analysis
have been delegated to the appendix.

This work is based on the short paper titled “A quantitative analysis of multi-winner rules” that
appeared in the proceedings of the 28th International Joint Conference on Artificial Intelligence
(IJCAI 2019) [Lackner and Skowron, [2019].

2 Basic Definitions and Multiwinner Voting Rules

Foreacht € N, we let [t] = {1,...,t}. For aset X, we write S(X) to denote the powerset of
X, i.e., the set of all subsets of X. By S;(X) we denote the set of all k-element subsets of X.

LetC = {ci,...,cm}and N = {1,...,n} be sets of m candidates and n voters, respectively.
Voters reveal their preferences by indicating which candidates they like: by A(7) C C' we denote
the approval set of voter ¢ (that is, the set of candidates that ¢ approves of). For a candidate
c € C,by N(c) € N we denote the set of voters who approve c. Given a set of candidates
X C C, we write N(X) to denote the set of voters who approve at least one candidate in
X, thatis N(X) = {i € N : X N A(i) # 0}. We call the collection of approval sets
A= (A(1),A(2),...,A(n)), one per each voter, an approval profile. We use the symbol A to
represent the set of all possible approval profiles.

We call the elements of Sy (C) size-k committees. Throughout the paper, we use the symbol
k to represent the desired size of the committee to be elected. An approval-based committee
rule (in short, an ABC rule) is a function R: A x N — S(S;(C)) that takes as an input an



approval profile and an integer £ € N (the required committee size), and returns a set of size-k
committees For a given committee 1/ and a voter 7, we will often refer to the candidates in
W N A(i) as representatives of i in W (sometimes we will omit W when it will be clear from
the context). Below, we recall the definitions of ABC rules which are the objects of our study.

Multiwinner Approval Voting (AV). This rule selects k£ candidates which are approved by
most voters. More formally, for a profile A the AV-score of committee 1V is defined as
SCav (A, W) = 3" cw IN(c)|, and AV selects committees W that maximize sc,, (A, W).

Approval Chamberlin—-Courant (CC). For a profile A we define the CC-score of a commit-
tee W as sceo(A, W) = 3,y min (1,|W N A(3)]) = [N(W)]; CC outputs committees
W that maximize sc..(A, W). In words, CC aims at finding a committee 1V such that as
many voters as possible have their representatives in I/. The CC rule was first mentioned
by Thiele [Thiele, |1895], and then introduced in a more general context by Chamberlin
and Courant [[Chamberlin and Courant, |1983]].

Proportional Approval Voting (PAV). This rule [Thiele, 1895] selects committees with the
highest PAV-scores, defined as scy. (A, W) = > ..y h (W N A(i)]), where h(t) is the
t-th harmonic number, i.e., h(t) = >_!_, 1/i. By using the harmonic function h(-), voters
who already have more representatives in the committee get less voting power than those
with fewer representatives. While using other concave functions instead of h(-) would give
similar effects, the harmonic function is particularly well justified—it implies a number of
appealing properties of the rule [Aziz et al., 2017a, 2018a], and it allows one to view PAV

as an extension of the D’Hondt method [Brill et al., 2018, [Lackner and Skowron, 2018al].

p-Geometric. This rule [Skowron et al., 2016] is defined analogously to PAV but uses an
exponentially decreasing function instead of h(-). Formally, for a given parameter
p > 1 the p-Geometric rule assigns to each committee I/ the score scp_geom(A, W) =

Y ien ZLVZ? AG)| 7%, and picks the committees with the highest scores. Note that the

1-Geometric rule is simply AV.

Sainte-Lagué Approval Voting (SLAV). This is a rule that—to the best of our knowledge—
has not been mentioned in the literature so far. It is a straight-forward generalization
from the Sainte-Lagué (or Webster) apportionment method [Balinski and Young, [1982]
to the approval-based multiwinner setting in the same way that PAV can be viewed as an
extension of the D’Hondt apportionment method [Brill et al., 2018, |[Lackner and Skowron,
2018al]. The Sainte-Lagué apportionment method distinguishes itself by fairly treating
smaller and large parties, in contrast to D’Hondt which decides in favor of larger ones.
Sainte-Lagué Approval Voting is defined analogously to PAV: SLAV selects committees
with the highest SLAV-scores, defined as scga, (A, W) = >, .y s (|[W N A(i)|), where

s(t) = YL, Yai-1.

'Rules which for some profiles return multiple committees as tied winners are often called irresolute. In practice,
one usually uses some tie-breaking mechanism to single out a winning committee.




We remark that all of the aforementioned rules belong to the class of Thiele methods [Fal{
1szewski et al., 2017, [Lackner and Skowron, 2018al]. These are parameterized by a (non-
decreasing) function f : N — N. The score of a committee I/ subject to a profile A is defined as
SCpav (A, W) = > cn f (IW N A(i)]); the f-Thiele method returns committees with maximum
score. The following rules do not belong to this class.

Sequential CC/PAV/SLAV/p-Geometric. For each rule R € {CC,AV,PAV,SLAV,
p-Geometric}, we define its sequential variant, denoted as seq-R, as follows. We start with
an empty solution T = () and in each of the & consecutive steps we add to W a candidate
c that maximizes scg (A, W U {c}), i.e., the candidate that improves the committee’s score
most. We break ties with an arbitrary but fixed order among candidates.

Reverse Sequential CC/PAV/SLAV/p-Geometric. For eachrule R € {CC, AV, PAV,SLAV,
p-Geometric}, we define Reverse Sequential R, abbreviated as rev-seq-R, as follows.
Given an approval profile A, the rule starts with a full set of candidates W = (', and in
each step it removes from W the candidate ¢ that maximizes scg (A, W \ {c}). The rule
stops when there are k£ candidates left in W. As previously, we break ties with a fixed
order. In this paper, we only consider Reverse Sequential PAV.

Monroe. Monroe’s rule [Monroe, |1995]], similarly to CC, aims at maximizing the number of
voters who are represented in the elected committee. The difference is that for calculating
the score of a committee, Monroe additionally imposes that each candidate should be
responsible for representing roughly the same number of voters. Formally, a Monroe
assignment of the voters to a committee W is a function ¢: N — W such that each
candidate ¢ € W is assigned roughly the same number of voters, i.e., that |7/kx] <
|6~ (c)| < [7/k]. Let ®(W) be the set of all possible Monroe assignments to W. The
Monroe-score of W is defined as scyonroe (A, W) = maxgeam X _ien [{0(2)} N A(D)[;
the rule returns argmax; SCaionroe (4, W).

Greedy Monroe [Skowron et al., 2015, Elkind et al., 2017b]]. This is a sequential variant of
Monroe’s rule. It proceeds in £ steps: In each step it selects a candidate c and a group G
of |"/k| or [/k] not-yet removed voters?| so that | N () N G| is maximal; next, candidate
c is added to the winning committee and the voters from G are removed from further
consideration.

Phragmén’s Sequential Rule (seq-Phragmén). Perhaps the easiest way to define the family
of Phragmén’s rules [Phragmén, 1894, 1895, |1896, Janson, [2016, Brill et al., 2017]] is by
describing them as load distribution procedures. We assume that each selected committee
member c is associated with one unit of load that needs to be distributed among those
voters who approve c (though it does not have to be distributed equally). Seq-Phragmén
proceeds in £ steps. In each step it selects one candidate and distributes its load as
follows: let £;(i — 1) denote the total load assigned to voter j just before the i-th step

2To be precise, for n = k- |7/k| + ¢, the first ¢ groups of voters to be removed have size [7/k] and the remaining
k — c have size |"/k|.



(¢;(—1) = 0 for each j). In the i-th step the rule selects a candidate ¢ and finds a load
distribution {z;: j € N} that satisfies the following three conditions: (1) z; > 0 implies
that voter j approves ¢, (2) > jeN T = 1, and (3) the maximum load assigned to a voter,
maxen(¢;(i — 1) 4+ x;), is minimized. The new total load assigned to a voter j € N after
the i-th step is ¢;(i) = ¢;(i — 1) + z;.

Phragmén’s Leximin Rule (leximin-Phragmén) [Brill et al., 2017]. This is a variant of
Phragmén’s rules where committee members and their associated load distributions are
chosen simultaneously in a single step, i.e., by solving an optimization problem. Similarly,
as in the case of its sequential counterpart, the goal is to find a committee and an associated
load distribution that minimizes the load of the voter with the highest load. Phragmén’s
leximin rule uses a lexicographic tie-breaking if two committees have the same highest
load, then the second highest load is compared, etc. We refer the reader to the description
of Brill et al.| [2017]] for details.

Minimax Approval Voting (MAV) [Brams et al., 2007]. Given two subsets, X,Y C C, we
define the Hamming distance between X and Y as the size of their symmetric difference:
dpam (X, Y) = | X\ Y| + |V \ X|. MAV selects committees 11/ that minimize the largest
Hamming distance among all voters, i.e., MAV minimizes max;ex dypam (A(7), W).

3 Worst-Case Guarantees of Multiwinner Rules

Intuitively, the utilitarian objective cares about selecting candidates who receive the highest total
support from the population of voters, and the representation one cares mostly about representing
the minorities in the elected committee. The two objectives specify two important, but rather
opposite criteria in the design of multiwinner rules. Indeed, the Chamberlin—Courant rule and
Approval Voting—the rules that return optimal committees with respect to the representation
and the utilitarian objectives, respectively—can be viewed as two extreme points in the spectrum
of multiwinner rules [Brill et al., 2018|, [Elkind et al., 20174, [Faliszewski et al., 2017, [Lackner
and Skowron, 2018a]. We include a simple example which illustrates the difference between AV
and CC, and so between the two opposite criteria.

Example 1. Consider a profile where 30 voters approve candidates {cy, ca,c3}, 20 voters
approve {cy, cs, cg}, and 5 voters approve {c7,cs,co}. Let k = 3. For this profile AV selects
candidates W,, = {c1, ¢, c3}, while CC selects the committee W.. = {c1,c4,c7} (among
others). These two committees differ significantly: while W, has an (optimal) AV-score of 90,
committee W, has only an AV-score of 55. In contrast, W. has an (optimal) CC-score of 55,
while Wy, has only a CC-score of 30. An compromise between these committees would be,
e.g., {c1, ca, ¢4 }. This committee has an AV-score of 80 and a CC-score of 50, both values near
optimal. Note that this compromise committee can be viewed as proportional; we return to the

relationship between proportionality, AV-, and CC-scores in

In this section, we analyze the multiwinner rules from with respect to how well
they perform in terms of the utilitarian and the representation objectives. In our study we use

10



the established idea of approximation from computer science: we estimate how well a given
rule R approximates each of the two objectives. This differs from the typical use of the idea
of approximation in the following aspects: (1) We do not seek new algorithms approximating
a given objective function as well as possible, but rather analyze how well the existing known
rules approximate given functions (even if it is apparent that better and simpler approximation
algorithms exist, these algorithms might not share other important properties of the considered
rules). (2) We are not approximating computationally hard objectives with rules that are easier to
compute. On the contrary, we will be even investigating how computationally hard rules (such as
PAV, Monroe, etc.) approximate the algorithmically trivial AV rule.

Definition 1. Recall that for a profile A, sc.,(A, W) and sc..(A, W) denote the AV-score and
CC-score of committee W, respectively (i.e., the total number of approvals the committee garners
from the voters, and the total number of voters with representatives in the committee). The
utilitarian guarantee of an ABC rule R is a function k., : N — [0, 1] that takes as input an integer
k, representing the size of the committee, and is defined as:

MiNyy eRr(A,k) SCav (A, W)

(k) = inf -
R ( ) fllIElA maXWeSk(C) SCaV<A7 W)

Analogously, the representation guarantee of R is defined by

Minyer (k) SCec (A4, W)

(k) = inf ’
R ( ) /llrélA maxwes,(C) SCCC(A7 W)

The utilitarian and representation guarantees can be viewed as quantitative properties of
multiwinner rules. In comparison with the traditional qualitative approach (analyzing properties
which can be either satisfied or not), a quantitative analysis provides much more fine-grained
information regarding the behavior of a rule with respect to some normative criterion. In the
remaining part of this section we evaluate the previously defined rules against their utilitarian
and representation guarantees.

Clearly, the utilitarian guarantee of Approval Voting and the representation guarantee of the
Chamberlin—Courant rule are the constant-one function. We start by establishing the utilitarian
guarantee of CC and vice versa. As mentioned before, we focus on the presentation of our results
in the main text and thus defer most proofs to the appendix. A few proofs are presented here to
give a flavor of the involved arguments and constructions.

Proposition 1. The representation guarantee of AV is 1/k.

Proof. Consider an approval profile A, and let W, be an AV-winning committee for A. We know
that IW,, contains a candidate who is approved by most voters—Iet us call such a candidate cy,,y.
Clearly, it holds that sc..(A, Way) > | N (¢max)|- Further, for any size-k committee W C C we
have that sce.(A, W) < k|N(cupayx )|, which proves that the utilitarian guarantee of CC is at least
k.

To see that the representation guarantee cannot be higher than /k, consider a family of
profiles where the set of voters can be divided into % disjoint groups: Ny, Na, ..., Ni, with
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|INi| = z + 1 and |N;| = z fori > 2, for some large value x. Assume that m = k? and

that all voters from N; approve candidates c(;_1)x41,Ci—1)k+2- - -, Cik- For this profile AV
selects committee {cy, ..., c;} with a CC-score of x 4+ 1. An optimal CC committee is, e.g.,
{e1s rgy - - -, Ch(l—1)41 ), with a CC-score of kz + 1. O

Proposition 2. The utilitarian guarantee of CC and seq-CC is 1/r.

Proof. For an approval profile A let W, and W,, be committees winning according to CC
and AV, respectively. We will first prove that sc,, (A, We.) > % - SCay (A, W,y ). If it was not
the case, then by the pigeonhole principle, there would exist a candidate ¢ € W, such that
SCav (A, Wee) < scay(A4, {c}). However, this means that a committee that consists of ¢ and any
k — 1 candidates have higher CC-score than W, a contradiction. Thus, the utilitarian guarantee
of CC is at least /. For seq-CC, the same argument by contradiction applies as this candidate ¢
would have been chosen in the first round.

To see that this guarantee cannot be higher than 1/ consider the following profile: assume
there are x voters (x is a large integer) who approve candidates cy, . . ., ¢x. Further, for each
candidate ¢ 1, . . . , Coi, there is a single voter who approves only her. The CC-winning committee
is {1, Ckaq - - ., Cop_1} With the AV-score of = + k — 1. However, the AV-score of committee

{c1, .. ck} is a:k and for large enough z the ratio "”“2 L can be made arbitrarily close to

k. O]

and [2] give a baseline for our further analysis. In particular, we would expect
that “good” rules implementing a tradeoff between utilitarian and representation objectives

should have utilitarian and representation guarantees better than /.

We note that the representation guarantee of seq-CC is 1 — (1 — 1/k)* > 1 — 1/e ~ 0.63. This
follows from the fact that seq-CCis a (1 — (1 — 1/k)*)-approximation algorithm for CC [Lu and
Boutilier, 2011]. (The result from Lu and Boutilier follows from a more general approximation
result for submodular set functions by Nemhauser et al., |1978])

Let us turn our attention to Monroe’s rule, which is often considered a proportional rule. For
example, Monroe’s rule satisfies proportional justified representation [Sanchez-Fernandez et al.,
2017]. Hence, one could expect that this rule offers a good compromise between AV and CC.
Perhaps surprisingly, this is not the case: Monroe does not offer a better utilitarian guarantee
than CC. The same bounds hold for the Greedy Monroe rule.

Theorem 1. The utilitarian guarantee of Monroe and Greedy Monroe is 1/k, their representation

: 1 1 1
guarantee is between 5 and 5 + =

Let us now move to ABC rules offering asymptotically better guarantees than Monroe. As
we will see, the examination of such rules requires a more complex combinatorial analysis. We
start with PAV:

Theorem 2. The utilitarian guarantee of PAV is between 2+1 T and \2/, its representation
guarantee is between } and 1 + Kl—r

Proof of the utilitarian guarantee. To give a flavor of the proof techniques used in this paper,
we show that the utilitarian guarantee of PAV is at least equal to f Consider an approval

12



profile A and a PAV-winning committee W, ; let n = | N (W, )| denote the number of voters
who approve some member of W,,,,. For each i € N we set w; = |Wpa, N A(7)]. Let Wy,
be a committee with the highest AV-score. Without loss of generality, we can assume that
Way # Wiay. Now, consider a candidate ¢ € W,, \ W,,, with the highest AV-score, and let

= |N(c)| denote the number of voters who approve c. If we replace a candidate ¢’ € W,
with ¢, the PAV-score of 1W},,, will change by:

Aled) = 3 wilﬂ_ v oL

1EN s.t. c€A(4) 1EN s.t. /€A(4) Wi
and /¢ A(4) and c¢ A(4)
1 1 1 1
RIS DI DI
i: c€A(3) i: c'€A(d) i: {c,c/ }CA(7)

v

el D

i€N(c) +1 1EN()

Let us now compute the sum

ZM@ZZwlZZ—

c'€Wpav c¢'€Wpav i€EN(c c/€Wpav i€N(c
1
D e i DEED Dl
w; w;
i€EN(c) ' iEN ¢/ €EWpayNA(i)  *
(%)
1 _
= + 1 —_ n’
w.
iEN(c) °

noting that the expression () is 1 if W,y N A(7) # () and 0 otherwise. We know that for eachd €

W wehave A(c, ') < 0,andthus 3,y Ae,d) < 0. Consequently, k37 v () o L —n <0
and
1 n
< - 1
Z i1 7k M

w
1€N(c)

Now, recall that the inequality between the harmonic and arithmetic mean says that for all
positive values aq, . . ., a, it holds that:

—Z“z—z

We reformulate the inequality between the harmonic and arithmetic mean as:

11a7

z

1 2
Z;sz . @

i=1 i=1 i

13



By setting z = |N(c)| and a; = w; + 1 we get from inequalities (I]) and (2):

2

ne

1
Lyt |

> 3

This can be transformed to:

ﬁ(nc + ZiEN(c) wz) _ n ZiEN(c) Wi
Ne Ne

kne <

+ n.

Now, observe that sc,, (A, Way) < 3oy wi + kn, due to the choice of ¢ and sc,, (A, W,y ) =
Zie ~ w; by definition of w;. Let us consider two cases. If n < nc\/E, then we observe that:

SCaV(A7 Wav) < ZiEN wy; + knc -1 + knc
SCav(Aa WpaV) N ZieN Wy ZieN Wi
) N ien(e) Wi +7
<1+ —F
ZieN Wi
_ ' w; _ _
suﬁz’ew <o+ D <Vi2
T ZiGN Wi ZieN Wi Ne
<1 <1

On the other hand, if 7 > nc\/E, then:

SCaV(A, Wav) < ZiEN w; + knc -1 + knc
SCav(Aa WpaV) - ZiGN wy Zz‘eN Wi
kn. kn.
<14 e gy Bl oq 4 VE
n Ne

In either case we have that axAWea) > 1

This yields the required lower bound.

SCaV(Ayan) - 2+\/E.
The fact that the utilitarian guarantee of PAV is at most equal to L_\EEJ — = will follow from a
more general result in[Section 4| (Theorem 9). [l

While the utilitarian guarantees of SLAV and PAV are of the same order, SLAV gives a
considerably better representation guarantee.

Theorem 3. The utilitarian guarantee of SLAV is between Yoo and 5% LIS representation

; 3 2 1
guarantee is between : and 3 + 5.

However, we will show in through numerical experiments that PAV slightly
outperforms SLAV with respect to the utilitarian criterion.

For sequential PAV we can prove a utilitarian guarantee qualitatively similar to the one for
PAV. Concerning its representation guarantee, however, the gap between the lower and upper
bounds is large; finding a more accurate estimate remains an interesting open question.
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(a) utilitarian guarantee (b) representation guarantee

Figure 1: Guarantees for the p-Geometric rule for £ = 25 and varying p. In both subfigures, the
upper and the lower line depict the upper and lower bound from

1+ 1+
S5+ ST
0 w w : — k 0 w w : — k
1 25 50 75 100 1 25 50 75 100
(a) utilitarian guarantee (b) representation guarantee

Figure 2: Guarantees for the 2-Geometric rule for varying k. In both subfigures, the upper and
the lower line depict the upper and lower bound from

L. jts

Theorem 4. The utilitarian guarantee of sequential PAV is between ﬁ and LQWJ —

representation guarantee is between and + 5

l(k

The following theorem states guarantees for the p-Geometric rule. Let W(-) denote the
Lambert )V function, i.e., the function that is defined so as to satisfy z = W(z)ew(z) for each
z € R. The Lambert W function increases asymptotically slower than log.

Theorem 5. The utilitarian guarantee of the p-Geometric rule is between

W(klog(p)) g DWWWlog(p) 1
klog(p) + W(klog(p)) ke log(p) k'

its representation guarantee is between

—1
P=- and P

p P+ i

The guarantees of are visualized in[Figure Tl We can see that the p-Geometric
rules, for p € [1,00), form a spectrum connecting AV and CC (with p — 1 we approach AV
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and with p — oo we approach CC): by adjusting the parameter p one can control the tradeoff
between diversity and individual excellence. In addition, shows the dependence of
the bounds for the 2-Geometric rule on the parameter k; we see that the bounds become more
meaningful for growing k.

Finally, we consider seq-Phragmén, also a rule aimed at achieving proportional representation.
It achieves guarantees similar to PAV.

Theorem 6. The utilitarian guarantee of seq- Phragmen is between - \f+ - and m — E’ its

representation guarantee is between : and + 7=

2 4k 2"

The next result allows for an interesting comparison between seq-Phragmén and leximin-
Phragmén: in terms of utilitarian efficiency leximin-Phragmén is significantly worse than its
sequential counterpart, whereas the bounds on their representation guarantees are the same. We
see that—from the perspective of our two guarantees—the additional computational complexity
of leximin-Phragmén does not strengthen its performance (in contrast to PAV and sequential

PAV).

Theorem 7. The utllltarlan guarantee of leximin-Phragmén i lS , and its representation guarantee

is between 1 and + — 4k 5

Finally, we show that Minimax Approval Voting is particularly unfavorable with respect to
our two criteria.

Theorem 8. The utilitarian and the representation guarantee of Minimax Approval Voting is 0.

4 Proportionality as a Compromise?

In this section we investigate how proportionality relates to diversity and individual excellence,
as formalized by the representation and the utilitarian objectives, respectively. In an initial stage
of this study we conjectured that proportionality can be characterized as a certain compromise
between diversity and individual excellence. However, as we will argue below, proportionality
should be rather viewed as a third, independent objective. Indeed, we will construct an ABC rule
that is strictly better than any (linearly) proportional rule with regard to both its utilitarian and
representation guarantee.

For each a € [0, 1] we define a-CC-AV as a linear combination of CC and AV. For an
approval-based profile A, «-CC-AV first computes a size-[ k] subset W; C C' that maximizes
scee(A, W1) and then returns a set W of size k that (i) is a superset of W, and (ii) maximizes
SCayv (A4, V).

Proposition 3. The representation guarantee of a-CC-AV is at least «; its utilitarian guarantee
is at least 1 — a — k.

Proof. Consider an approval-based profile A, and let W be a committee returned by a-CC-AV
for A. Let W, be a committee returned by CC for the same profile. Note that W/, achieves at
least a W1l 1‘ -fraction of the CC-score of ... Hence

SCCC(A7 Wl) 2 % : SCCC(A7 WCC) Z &SCCC(A7 WCC)'
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Thus, also sce.(A, W) > asce.(A, We.). By the same reasoning, we get an analogous result for
the utilitarian guarantee. [

Let us now examine what utilitarian and representation guarantees a proportional rule can
achieve. We consider a very weak proportionality requirement, called weak proportionality,
as studied in the apportionment setting (cf. Balinski and Youngl 1982)). Weak proportionality
applies only to party-list profiles: approval profiles A in which for all voters 7, j € N it holds
that either A(i) = A(j) or A(i) N A(j) = 0; identical voters belong to “same party”.

Definition 2. We call a profile A a party-list profile if for each pair of voters i,j € N it holds
that either A(i) N A(j) = 0 or that A(i) = A(j). We say that N' C N is a party if it is a
maximal subset of N with A(i) = A(j) fori,j € N'.

Now, for such profiles, if there exist one or more committees that give each party a number
of representatives that is exactly proportional to the party’s support, then a proportional rule has
to select such a committee.

Definition 3. A party-list profile A is k-integral if for every party N' it holds that ki%/‘ is an

integer and that party N' has at least that many candidates (that is, |A(i)| > ki%l‘ forie N').

An ABC rule R satisfies weak proportionality if for every k € N, every k-integral party-list

profile A, and party N' it holds that every winning committee from R(A, k) contains exactly

—ki%/‘ candidates that are approved by N'.

Weak proportionality is strictly weaker than other proportionality axioms typically used for
ABC rules (such as extended and proportional justified representation [Sanchez-Fernandez et al.,
2017, /Aziz et al.| 2017a]]), and even weaker than lower and upper quota from the apportionment
setting [Balinski and Young, 1982]. Further, Balinski and Young [[1982] view this axiom as a
minimal requirement for an apportionment method. Thus, any ABC rule that generalizes one of
the established apportionment methods also satisfies weak proportionality; this holds in particular
for PAV, SLAV, their sequential and reverse-sequential versions, Monroe, and Phragmén’s rules
[Brill et al., 2018]].

Theorem 9. The utilitarian guarantee of a rule satisfying weak proportionality is at most
2 1. . : 3 3
wE T ® its representation guarantee is at most *; + g

Proof. Let R be a rule that satisfies weak proportionality. To see the upper bound on the
utilitarian guarantee, let us fix k£ and consider the following k-integral party-list profile A with
n = k voters. The first L\/Ej voters form a party and approve k£ candidates denoted as x4, . . ., Ty.
All remaining voters i, i > L\/EJ, form singleton parties and approve a single candidate v;.

Let W and W,, denote the committees returned by R and by AV, respectively. Weak
proportionality ensures that y;; € W for eachi > [v/k| and |W N {21, ..., 2:}| = |Vk]. Thus,

sean(A, W) = [VE] - |VE] + (k:— L\/EJ)-1§2I<:— IVE).
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On the other hand, one can observe that W, = {x1,..., 2z}, and s0 sc,y (A, Wyy) = L\/Ej - k.
As aresult we have:

SCaV(A7 W) < 2k — L\/EJ _ 2
SC&V<A7 Wav) - L\/EJ ‘ k B L\/EJ

To prove the upper bound on the representation guarantee, we construct a k-integral party-list
profile A with n = 2k voters. Let us first consider the case that k is even. The first k& voters
approve candidates X = {z1, ..., .}, i.e., they form a party. The other k voters are divided into
k singleton parties, each approving a different candidate from the set Y = {yy, ..., yx }. Weak
proportionality ensures that ¥/2 candidates need to be chosen from X. Thus, the CC-score of
a committee selected by R is at most equal to k& + % By selecting one candidate from X and
k — 1 candidates from Y we get a CC-score of 2k — 1. Thus, the representation guarantee is at
most equal to:

| =

k+5 3k 3,3
2%k —1 4k—2 4  8k—4’

If & is odd, the first & + 1 voters approve candidates X = {x1, ..., x4}, the other k — 1 voters
form singleton parties. Weak proportionality ensures that [*/2] candidates need to be chosen
from X. Thus, the CC-score of a committee selected by R is at most equal to (k + 1) + [¥/2].
We obtain an upper bound on the representation guarantee of:

(k+1)+ k2] (2k+2)+(k-1) 3 1 <3 3

2% — 1 4k — 2 4 4k — 4 8k —4°

]

These bounds yield that a«-CC-AV for o = 0.76 achieves a better utilitarian and representation
guarantee for all £ > 81 than any rule satisfying weak proportionality. In particular, the utilitarian
guarantee of a-CC-AV is superior: it guarantees a constant fraction of the optimal AV score.
We conclude that proportional rules can achieve a desirable compromise between diversity and
individual excellence (e.g., PAV), but this compromise is not optimal (as we have just seen) and
not all proportional rules achieve good utilitarian guarantees (Monroe is no better than CC).

S Average Performance: An Experimental Evaluation

To complement the theoretical analysis of we conducted numerical experiments
that aim at assessing (average-case) utilitarian ratios and representation ratios achieved by
several voting rules. These two ratios are per-instance analogues of utilitarian and representation
guarantees and are defined as follows: Given an ABC rule R and a profile A, the utilitarian ratio
and the representation ratio are defined as:

Miny er (k) SCav (A4, W) minyer (k) SCec (A4, W)

and ,
maxy es, (¢) SCav (4, W) maxypes, () SCec(A, W)

3)
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i.e., we compute the ratio between the optimal committee (according to AV and CC, respectively)
and compare it with the committees returned by R. In these experiments, we have calculated
the utilitarian and representation ratios for real-world and randomly generated profiles and
compared them for different ABC rulesﬂ We have used four datasets: profiles obtained from
preflib.org [Mattei and Walsh, 2013]] and three sets of profiles generated via probability
distributions (uniformly distributed, Mallows model, and Pélya’s urn model; see details below).

Datasets

The preflib dataset is based on preferences obtained from preflib.org. Since the preflib
database contains only very few approval-based datasets, we extracted approval profiles from
ranked ballots as follows: for each ranked profile and i € {1,...,20}, we generated an approval
profile assuming that voters approve all candidates that are ranked in the top ¢ positions. Among
these profiles, we restricted our attention to profiles where both the utilitarian ratio of CC and the
representation ratio of AV was at most 0.9 (assuming committee sizes k € {4,...,20}). This
step excluded profiles where an (almost) perfect compromise between the two criteria exists.
With this method, we obtained a total number of 364 preflib-based instances.

All three random datasets consist of 10,000 profiles with 100 candidates and 50 voters, each,
and the corresponding experiments use a committee size of k& = 20. Furthermore, as for the
preflib instances, we required that in the generated profiles CC has a utilitarian ratio of at most
0.9 and AV a representation ratio of at most 0.9.

For the uniform dataset, voters’ approval sets are of size 2—4 (chosen uniformly at random);
the approval sets of a given size are also chosen uniformly at random.

The Mallows dataset is based on Mallows model [Mallows, [1957]], a probability distribution
for rankings. Given a reference ranking o, the probability of a ranking 7 is

1
P(T) = E¢d(T’a) ,

where d denotes the Kendall-tau distance, ¢ is a parameter in (0, 1], and Z is chosen so that
the probability mass is 1. This model generates rankings that are likely to be similar to the
reference ranking o; the degree of similarity depends on parameter ¢. For each instance, we
chose ¢ uniformly at random from the interval (0, 1]. Each profile consisting of rankings was
transformed to an approval profile by selecting the top-: positions, ¢ being chosen uniformly at
random from {2, 3,4}.

Finally, the P6lya urn model (also refereed to as the Pélya-Eggenberger urn model) [Johnson
and Kotz, |1977, Berg, |1985] was used to generate a further dataset. For each profile, first the
size of approval sets was chosen uniformly at random from {2, 3, 4}. The Pélya urn model is
parameterized by a non-negative real «r, which we chose for each instance uniformly at random
from [0, 1]. At first, we consider an urn containing all approval sets of the chosen size; if d is
the size of approval sets the urn contains (120) sets. The profile is then created by subsequently
drawing approval sets from the urn uniformly at random, and then the urn is modified in the

following manner. The drawn approval set is returned to the urn and « - (120) additional copies

3The Python code for the experiments is available online [Lackner and Skowron, 2020].
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of this set is added to the urn. This procedure is repeated as often as required. The corresponding
profiles are likely to contain voters with identical approval sets.

Considered Rules

We considered the following ABC rules: AV, CC, seq-CC, PAV, seq-PAYV, rev-seq-PAV, SLAV,
seq-Phragmén, Monroe’s rule, MAV, as well as the 1.5-, 2-, and 5-Geometric rule. We used
resolute versions of these rules, i.e., we computed only one winning committee subject to an
arbitrary tie-breaking; this simplification allowed us to compute larger committees in reasonable
time. The utilitarian and representation ratio (cf. Equation [3]) for a rule R and profile A thus
simplify to

SCav (A, R(A, k) . scee(A, R(A,k))
SCaV<A7 Wav) SCCC(A7 ch) '

where W,, and W, are committees with maximum AV and CC score, respectively.

We could not include Phragmén’s leximin rule in our experiments as it is too time-consuming
to compute for reasonably sized instances. This is mainly due to the non-trivial (lexicographic)
tie-breaking required in its computation [Brill et al., 2017], which makes it difficult to solve
for ILP solvers. Further research is required to tackle this algorithmic problem. However,
we performed rudimentary experiments for smaller instances and expect the performance of
Phragmén’s leximin rule to be similar to Monroe (and thus inferior to seq-Phragmén, see below).

Results

Our results are displayed as boxplots in for the preflib dataset and in for the
uniform dataset. Since the results for the Mallows and the urn dataset are largely similar, we have

moved the corresponding plots to the appendix, Section |B| In these plots, the top and bottom of
boxes represent the first and third quantiles, the middle red bar shows the median. The dashed
intervals (whiskers) show the range of all values, i.e., the minimum and maximum utilitarian
or representation ratio. In addition, we use our results to rank the rules according to their mean
utilitarian and representation ratios and [3] below, and [3] in the appendix).
The differences between the means (and thus the ranking) are largely statistically significant
according to a paired t-test with significance level p = 0.01). Those differences that are not
statistically significant are marked with brackets in the tables.

The results for all four datasets are largely similar. The main difference between datasets is a
varying range of ratio values (per rule), while the relative comparison between rules remains
stable. Also([l'able 2|shows largely the same ranking for both datasets; the same holds for
Further note that the rankings differ only between datasets when mean differences are very small.
Consequently, the following conclusions hold for all considered datasets.

The main conclusion from the experiments is that the classification obtained from worst-case
analytical bounds also holds in our (average-case) experiments. PAV, seq-PAV, rev-seq-PAYV,
2-Geometric, and seq-Phragmén achieve very high utilitarian ratios, surpassed only by 1.5-
Geometric and AV itself. This is mirrored by our theoretical results as only PAV, seq-PAV, and
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Figure 3: Results for the preflib dataset (upper boxplot shows utilitarian ratios, the lower
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mean mean

1. AV 1.000 1. AV 1.000
2.  1.5-Geometric 0.982 2.  1.5-Geometric 0.984
3. seq-Phragmén 0.973 3. PAV 0.962
4. PAV 0.969 4. 2-Geometric 0.960
5. seq-PAV 0.967 } 5. seq-PAV 0.958
6. rev-seq-PAV 0.963 6. rev-seq-PAV 0.958
7.  2-Geometric 0.961 } 7. seq-Phragmén 0.957
8. SLAV 0.945 8. SLAV 0.931
9. 5-Geometric 0.910 9. 5-Geometric 0.902
10. Monroe 0.861 10. Monroe 0.872
11. seq-CC 0.788 11. seq-CC 0.830
12. CC 0.736 12. MAV 0.817
13. MAV 0.607 13. CC 0.806
(a) preflib dataset (b) uniform dataset

Table 2: Mean utilitarian ratios for the preflib and uniform dataset. The differences between
pairs of rules are statistically significant (paired t-test, p = 0.01), unless a pair is marked with a
bracket.

mean mean
1. CC 1.000 1. CC 1.000
2. 5-Geometric 0.997 2. 5-Geometric 0.998
3. seq-CC 0.991 3. Monroe 0.993
4. Monroe 0.989 | 4. SLAV 0.983
5. SLAV 0.986 5. seq-CC 0.975
6. rev-seqg-PAV 0970 | 6. rev-seq-PAV  0.953
7. 2-Geometric 0.966 7. seq-PAV 0.951
8. seq-PAV 0.963 ] 8. 2-Geometric 0.950
9. PAV 0.962 9. PAV 0.949
10. seq-Phragmén 0.951 ) 10. seq-Phragmén 0.948
11. 1.5-Geometric 0.938 11. 1.5-Geometric 0.917
12. AV 0.862 12. MAV 0.857
13. MAV 0.725 13. AV 0.836

(a) preflib dataset (b) uniform dataset

Table 3: Mean representation ratios for the preflib and uniform dataset. The differences between
pairs of rules are statistically significant (paired t-test, p = 0.01), unless a pair is marked with a
bracket.
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seq-Phragmén achieve a ©(1/v%) utilitarian guarantee. The utilitarian ratios of SLAV are slightly
below these rules. For 5-Geometric, Monroe, seq-CC, and CC we observe significantly lower
utilitarian ratios. Again, this is reflected in our worst-case analysis: these rules have a ©(1/k)
utilitarian guarantee. When considering all datasets, the mean utilitarian ratios can be ranked as
follows (rules in curly brackets appear in different orders in the datasets):

AV > 1.5-Geometric > {PAV, 2-Geometric, seq-PAV, rev-seq-PAV, seq-Phragmén}
> SLAV > {5-Geometric, Monroe} > {seq-CC, MAV, CC}.

This ranking is more fine-grained than the worst-case analysis but still compatible with the more
coarse classification obtained from sorting by worst-case bounds.

Now considering the representation ratios, we see almost optimal performance of seq-CC,
Monroe, 5-Geometric, and SLAV, and good performance of PAV, seq-PAYV, rev-seq-PAV, seq-
Phragmén, and 2-Geometric. Minor variations within these groups depend on the chosen dataset;
also note that not all differences are statistically significant (in particular in the preflib dataset).
As before, we can rank the rules according to their mean representation ratios and obtain the
following ranking that is consistent with all four datasets:

CC > 5-Geometric > {Monroe, SLAYV, seq-CC} > {seq-PAV, rev-seq-PAV, 2-Geometric}
> PAV > seq-Phragmén > 1.5-Geometric > {MAV, AV}.

When looking at the three Geometric rules considered here, we see in and [ the
transition from AV to CC as our theoretical findings predict (cf. [Figure I)): 1.5-Geometric is
close to AV, whereas 5-Geometric resembles CC; 2-Geometric performs very similarly to PAV.

Our results indicate that PAV, seq-PAYV, rev-seq-PAV, seq-Phragmén, and 2-Geometric provide
the best compromise between AV and CC. Note, however, among those seq-PAV, rev-seq-PAYV,
and seq-Phragmén are computable in polynomial time—which does not translate to inferior
performance. If a bit more emphasis is put on the representation criterion, then SLAV appears to
be the best choice. We did not investigate seq-SLAV, but expect a similar behavior (as it is the case
for PAV and seq-PAV). Also note that seq-PAV and rev-seq-PAV are virtually indistinguishable
in these experiments.

It is important to note that proportionality is not the explaining factor for the strong per-
formance of the aforementioned rules: while PAV satisfies the strong proportionality axiom
“extended justified representation” [Aziz et al., 2017al], seq-Phragmén satisfies the weaker vari-
ant “proportional justified representation” [Sanchez-Fernandez et al.,[2017], and seq-PAV and
rev-seq-PAV only satisfy the even weaker “D’Hondt proportionality” axiom [Brill et al., 2018],
2-Geometric is not proportional at all. This further corroborates our result from that
proportionality should not be viewed as an optimal compromise between AV and CC.

Sometimes the goal is not to balance the performance with respect to utilitarian and repre-
sentation ratios, but rather to put emphasis on one of them. If the desiderata is a high utilitarian
efficiency, our experiments recommend a p-Geometric rule with p < 2. On the contrary, if
much weight is put on representing the voters, then CC, seq-CC, Monroe, and p-Geometric rules
for p > 5 shine. These rules, however, severely lack in achieving utilitarian welfare. Thus, as
mentioned before, a recommendable choice is SLAV, which achieves very good representation
ratios and still very solid utilitarian ratios (much better than the aforementioned rules).
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6 A Pareto Efficiency Axiom

In this section, we provide a complementary axiomatic analysis concerning the principle of
individual excellence. This analysis should show that it is difficult to find axioms that can
separate those rules that fulfill this principle rather well and those that do not. Note that this is
exactly what we achieved with the concept of utilitarian guarantee (i.e., with a non-axiomatic
approach).

We approach this problem by formulating a weak version of Pareto efficiency, which states
that only Pareto optimal committees should be selected. Pareto optimality is usually defined
based on a notion of utility; we stick with our general assumption that voters derive utility from
the number of approved candidates in the committeeﬁ

TODO: change definition to survey-def. :ODOT

Definition 4. Consider a committee size k € N, two committees W1, Wy € S(C) and an
approval profile A € A. We say that W, dominates W5 in a A if for each voter i € N we have
that [WiNA(i)| > [WoN A(i)|, and if there exists a voter j such that |[W1NA(7)| > [WaNA(j)].
An undominated committee is Pareto optimal.

An ABC rule R satisfies Pareto efficiency if for each profile A € A and each committee
size k there exists no committee W € Si(C') that dominates each committee in R(A, k).

This axiom is rather weak since it requires that there must not exist a committee that
dominates all winning committee. An alternative would be to consider an axiom which requires
winning committees are Pareto optimal. We chose this weaker variant as we were looking for a
minimal axiom that could capture the idea of individual excellence.

As Pareto efficiency is often considered to be a minimal requirement and the chosen notion
of utility aligns with the principle of individual excellence, one could expect that this axiom is
satisfied by voting rules that fulfill this principle. However, our analysis shows that many sensible
rules do not satisfy this basic axiom, and those that satisfy it include individually excellent rules
as well as diverse rules.

First, we make the rather surprising observation that seq-Phragmén does not satisfy Pareto
efficiency.

Example 2. Consider the set of 36 voters, and five candidates, c1, . . ., cs. By N(c) we denote
the set of voters who approve c. Assume that:
N(ep) ={1,...,20}; N(eg) = {11,...,28}; N(e3) =11,...,10,29,...,36};
N(eq) ={21,...,36}; N(es) ={1,...,19}.

Phragmén’s sequential rule will select ¢, first, ¢, second, and c; third, yet committee {cy, c4, C5}
is dominated by {c1, c2, c3}.

We note that the violation of Pareto efficiency is not an artifact of the rule being sequential
(and so, in some sense “suboptimal’). The following example shows that also leximin-Phragmén

4We note that this specific variant of Pareto efficiency is the same as Pareto optimality for dichotomous
preferences with respect to the responsive set extension as studied by |Aziz and Monnot [2020].
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does not satisfy Pareto efficiency. In addition, the same example shows that Monroe’s rule does
not satisfy it either.

Example 3. Consider 24 voters, and four candidates, c1, . . ., cq, with the following preferences:
N(Cl) = {37722}7 N(CQ) = {1,2,23,24},
N(cs) ={2,...,12}; N(cg) = {13,...,23}.

Phragmén’s leximin rule and Monroe’s rule select {cs, ¢4}, which is dominated by {c;, cs}.

Greedy Monroe, seq-CC, and seq-PAV do not satisfy Pareto efficiency either. Intuitively, this
is due to their sequential nature; the corresponding example can be found in Appendix |C| All the
remaining rules that we consider satisfy Pareto efficiency.

Proposition 4. AV, CC, PAV, p-Geometric, and MAV satisfy Pareto efficiency.

Moreover, it is easy to see that all Thiele methods satisfy Pareto efficiency. Note that winning
committees according to CC and MAV may contain dominated committees (this does not violate
the Pareto efficiency axiom as stated above). For AV, PAV, and p-Geometric the stronger property
holds that any winning committee must be Pareto optimal.

Our conclusion from the above analysis can be summarized as follows. First, we observe
that some very sensible rules do not satisfy this basic form of Pareto efficiency—in particular,
none of the two variants of the Phragmén rule does. Second, we find this axiom is not really
related to the utilitarian efficiency of multiwinner rules, as it is satisfied, e.g., by CC but not by
seq-Phragmén. We believe that this analysis illustrates the problem of axiomatically separating
voting rules with strong and weak utilitarian guarantees, e.g., those with a utilitarian guarantee
of ©(1/vk) (such as AV, PAV, and seq-Phragmén) and those with a utilitarian guarantee of ©(1/x)
(such as Monroe and CC). In particular, an axiom that achieves such a separation cannot rely on
the notion of Pareto optimality.

7 Conclusions and Directions for Future Research

In this work, we assess qualities of multiwinner rules with respect to a utilitarian and a
representation-focused criteria. Our results can help to understand the landscape of multiwinner
rules, specifically how they behave with respect to these two contradictory goals.

We have mentioned briefly in the introduction that the representation guarantee can be viewed
as an egalitarian criterion. We want to discuss this claim and discuss other approaches to measure
how egalitarian an ABC rule is. A classic egalitarian criterion is to maximize the utility of the
least-satisfied voter [Moulin, [1988], or, in the setting of ABC rules, to maximize the number of
approved candidates in the committee for the voter with fewest of them [Aziz et al., 2018b]. If
we took this criterion, then none of the rules that we consider in this paper—except CC—would
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have a non-zero worst-case guaranteeE] Hence, the analysis of this criterion would not lead to
meaningful theoretical results as it does not help to distinguish standard ABC rules.

Another natural choice for an egalitarian criterion is to maximize the leximin welfare of
voters [Moulin, |1988], i.e., to first maximize the number of voters with at least one approved
committee member, then to break possible ties between optimal committees by maximizing the
number of voters with at least two approved committee members, etc. If we assume that we
cannot guarantee each voter an approved candidate in the committee, this criterion is exactly the
same as our representation guarantee. Therefore, we think it is justified to view the representation
guarantee as a somewhat egalitarian measure. Note that the leximin criterion itself is not suitable
as a basis for a quantitative guarantee as it does not rank committees by scores.

Our work can be extended in several directions. First, we have focused on approval-based
multiwinner rules—a natural next step is to perform a similar analysis for multiwinner rules
that take ranked ballots as input. Second, we have chosen AV and CC as extreme notions
that represent diversity and individual excellence. Another natural approach would be to look
at quantitative notions of proportionality: can such an approach encompass and extend the
“proportionality hierarchy” of D’Hondt proportionality [Lackner and Skowron, 2018a, Brill et al.,
2018]], justified representation [Aziz et al., 2017al], proportional justified representation [Sanchez-
Fernandez et al., 2017]], and extended justified representation [Aziz et al., 2017a]? Recent work
on voting rules approximating the core property [Fain et al., 2018} |Cheng et al., 2019, |Peters
and Skowron, |2019] and on measuring the average satisfaction of cohesive groups [[Sanchez-
Fernandez et al., 2017, |Aziz et al., [2018a, |Skowron et al., 2017, [Skowron, [2018]] can be seen
as steps in that direction. Third, our axiomatic analysis raises important questions: Does there
exist a natural variant of the Phragmén rule that is Pareto efficient? And is there a meaningful
axiomatic property that separates ABC rules with strong utilitarian or representation guarantees
from those with weak guarantees?

As we have noted in the introduction, we assume that there is a linear relation between
a voter’s utility and the number of approved committee members—this directly leads to the
definition of the utilitarian guarantee that is adopted in this paper. However, there are also
other well-grounded ways in which the utility of a voter can be defined. For example, one
can assume diminishing marginal utilities or one can consider utility functions that count not
only approved committee members but also non-approved non-selected candidates. The latter
kind of utility functions is used in the definitions of ordered weighted average (OWA) rules
that span the spectrum between AV and MAV [Amanatidis et al., 2015]], in the definition of
dissatisfaction counting rules [Lackner and Skowron, |2018b], and in the context of distance-
based belief merging [Konieczny et al., 2002, Konieczny and Pérez, [2002, Konieczny and Pérez,
2005, Haret et al., 2020]. When viewed from this perspective, the Approval Chamberlin—-Courant

5 Assume k is even, and consider a profile with n — 1 voters approving candidates C; = {ci, ..., cox}, and
one voter approving Cy = {¢ag+1, - - - , €3k }. If the number of voters n is sufficiently large, then all the rules that
we consider in this paper (all the rules listed in except for Approval Chamberlin—Courant rule, would
pick k candidates from C. Therefore, in this profile, the utility of the least-satisfied voter would be equal to zero.
Selecting #/2 candidates from C and %/2 from C5, would result in the utility of the worst-off voter equal to /2.
Thus, according to this criterion, the worst-case ratio of the quality of the elected committee divided by the quality
of the optimal committee is for almost all known rules equal to zero.
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rule could be interpreted as maximizing utilitarian social welfare when assuming a different
utility function: the utility of a voter equals one if she is represented by at least one member
of the elected committee, and zero otherwise. This is not the perspective we have taken in this
paper; we view the difference between AV and CC (and other Thiele rules) in the way in which
preferences of voters (and thus their utility functions) are aggregated rather than in the way the
utility of an individual voter is assumed to be. Analyzing the utilitarian welfare of multiwinner
rules assuming different kinds of utility functions (such as those mentioned here) is an interesting
direction for future research.
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A Proof Details from

Theorem (1} The utilitarian guarantee of Monroe and Greedy Monroe is 1/k, their representation
guarantee is between % and % + ﬁ

Proof of the utilitarian guarantee. First, let us consider the utilitarian guarantee of the Greedy
Monroe rule. To see the lower bound of 1/k, let A be an approval profile and let ¢ denote the
candidate who is approved by most voters. For the sake of clarity we assume that £ divides n;
the proof can be generalized to hold for arbitrary n. Clearly, for any committee ¥ it holds that
sCav (A, W) < E|N(¢)|. If IN(¢)| < %, then the Greedy Monroe rule in the first step will select
¢. Otherwise, it will select some candidate approved by at least 7 voters, and will remove 7 of
them from A. By a similar reasoning we can infer that in the second step the rule will pick a
candidate who is approved by at least min (%, |N(¢)| — %) voters; and in general, that in the
i-th step the rule will pick the candidate who is approved by at least min (%, |IN(¢)| — @)
voters. As a result, we infer that number of voters that have at least one approved candidate in
the chosen committee is at least

k

> min (7. v - ") < v

i=1
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Hence the utilitarian guarantee of Greedy Monroe is at least 1/k.

To see that the same lower bound holds for Monroe’s rule, we distinguish two cases; let W/
be a winning committee. If ¢ € W, then sccc(A, W) > |N(¢)| and we are done. If ¢ ¢ TV and
scco(A, W) < |N(¢)|, then there is a committee with a higher Monroe-score that contains ¢; a
contradiction.

Now, consider the following instance witnessing that the utilitarian guarantee of Greedy
Monroe is at most % Letn = k- (x + 1) and let A be a profile with n voters. Let W C C with
|W| =k and ci,...,c,. ¢ W. We define profile A as follows: we have = voters that approve
W U {c; } and one voter that approves only {c; }, we have = voters that approve W U {c,} and
one voter that approves only {c,}, etc. This defines in total k - (z + 1) voters. AV selects the

committee W with an AV-score of xk?; Greedy Monroe selects the committee {c; .. ., ¢} with
an AV-score of (z + 1)k. We have a ratio of (IH) , which converges to % for x — oo. The same
instance shows that the utilitarian guarantee of Monroe’s rule is at most % 0

Proof of the representation guarantee. We move on to proving bounds for the representation
guarantee. First, for the sake of contradiction let us assume that there exists a profile A where
the representation guarantee of Greedy Monroe is below % Let W, and W), be the committees
winning in A according to CC and Greedy Monroe, respectively. Let ¢ be an assignment
of the voters to the committee members obtained during the construction of Wj;; we say
that a voter is represented if it is assigned to a member of 1), who she approves of. Since
SCee(A, Wiy) < % -SCec(A, W), by the pigeonhole principle we infer that there exists a candidate
¢ € We. \ Wy, who is approved by z unrepresented voters, where:

S SCee(A, Wee) — scec (A, Wy) - 25Cee(A, War) — sCee(A, War)  sCee(A, War)

t= k = k N
Similarly, by the pigeonhole principle we can infer that there exists a candidate ¢ € W}, who
is represented by at most SC“(AT’WM) voters. Thus, Greedy Monroe would select ¢ rather than ¢/,
a contradiction. A similar argument can be made to show that the representation guarantee of
Monroe’s rule is > 3.

Now, consider the following approval profile. There are 2k + 1 candidates, ¢y, . .., Coxy1, and
2k disjoint equal-size groups of voters, N1, ..., Noi. For each i € [2k], candidate ¢; is approved
by all voters from NV,;. Candidate cy; 1s approved by all voters from N; U - - - U Nj. One of
the winning committees according to Monroe and Greedy Monroe is {c1, . . ., Ck—2, Ck+1, Cok+1}>
which has a CC-score of 7 4 (k — 1)g;. On the other hand, {cxy1,...,Cop—1,Cor41} has a

2k
CC-score of n — 7. Thus, the representation guarantee of Monroe and Greedy Monroe is at most:

n(k 1) k
T+ B k+1 1 1

mEah = AR

This completes the proof. ]

Theorem 2. The utilitarian guarantee of PAV is between SR and %~ N its representation

: 1 1
guarantee is between 5 and 5 + ;.
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Proof of the utilitarian guarantee. See main text. [

Proof of the representation guarantee. We first prove a lower bound of 1/2 for the representation
guarantee of PAV. Consider an approval-based profile A and a PAV winning committee W,
For each voter i € N we set w; = W,y N A(7)|. Let W, be a committee winning according
to the Chamberlin—Courant rule. For each two candidates, ¢ € W, and ¢ € W, let A(¢, ¢)
denote the change of the PAV-score of W), due to replacing c with ¢’. Recall from the proof of
PAV’s utilitarian guarantees that if we replace a candidate ¢’ € W, with ¢, the PAV-score of
Whav Will change by:

A(d,c) > Z

1EN(c)

_Z_

Wi 1€N(c) W

Let us now consider an arbitrary bijection 7: W,, — W, matching members of W, with the
members of ... We compute the sum:

Yo Az Y Y

cEWpav c'€EWec i€N(C)

-y Yo

c€EWpayv i€N(c) Wi

- > zw.il—z > o

K3 wl

Z

1EN (Wee)  EWeeNA(1) 1EN (Wpav) c€WpavNA(Z)
-~ 4 N——
zwilﬁ»l =1
1
2 Z w‘+1_’N(WpaV)‘Z Z 1_|N< paV)l
’iGN(WCC) ¢ iEN(WCC)\N(WPaV)

> [N(Wee) \ N(Wpay )| = [N (Whav)|
> [N(Wee)| = [N (Wpay )| = [N (Wpav)|
:|N(WCC)| 2|N( paV)l

Since Wy, is an PAV-optimal committee, we know that for each ¢ € W),,, it holds that
A(7(c),c) < 0. Consequently, > A(7(c),c) <0, and so we get that | Ny, | — 2| Nw,,.| <

‘NWCC |
0, Consequently, we get that [Ny, | > =5

PAV is at least equal to 1/2.

Now, we will prove the upper bound using the following construction. Let n, the number
of voters, be divisible by 2k. The set of candidates is X U Y with X = {zy,..., 2} and
Y = {y1,...,yx}. There are /2 voters who approve X. Further, for each i € [k], there are
voters who approve candidate y;. All committees that contain at least k£ — 1 candidates from
X are winning according to PAV, among them X itself. Committee X has a CC-score of 7/.
The optimal CC committee consists of a single candidate from X and (kK — 1) candidates from
Y —this would give a CC-score of § + (k—1)- 5 = n- 2”“ L. Thus, the representation guarantee
of PAV is at most equal to:

CEWpaV
, which shows that the representation guarantee of

2k 1 n 1
4k—2 2 4k—2
This completes the proof. [
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T'heorem I The utilitarian guarantee of SLAV is between TR and Sop ils representation
guarantee is between % and % + —gkl_ﬁ_

Proof of the utilitarian guarantee. Here, we only explain how the differences in comparison to
the proof for PAV. For the lower bound we get that:

1 1
Ale,d) 2 Z 2wi+1_ Z 2w; — 1

i€N(c) iEN()

And so:

1
/ _
E A(c,c)zklg 2wi+1—n.
i1€N(c)

' EWqlay

. We use the inequality between

3

1 — 1
Consequent.ly, k Zie_N(c) w1 — < Oand DoieN() T S
the harmonic and arithmetic mean:

2

1
S S NN S
N ) Wi +1 7 Y ien(e(Cwi + 1)

> S

From this it follows that:

kn, < + .
Ne Ne
Now, let us consider two cases. If i < n.4/*/2, then we observe that:
SCay (A, Way) < Y ien Wi + kng g kn.
SCaV(A7 WSlaV) o ZiEN Wi ZiEN Wy
20 N Wi | — _
——+n 2
<14t <2+ <\l yo
ZieN w; Uz
If 7 > n.\/*/2, then similarly as in the proof for PAV:
SCay (A, Way) < Y ien Wi + kng g kn.
SCaV(A7 Wslav) o ZiEN W; ZiEN W;

<14 knefn < 1+ V2k.

In either case we have that sgj;(é;%fv)) > 2+\1/ﬂ. This yields the required lower bound.
We adapt the construction used in the proof of to obtain a smaller upper bound

( 2L\3/EJ instead of L_\EEJ — %). We change the instance so that the first group consists of 2 L\/Ej

voters (these approve {1, ...,z;}); the remaining k — 2|k | voters independently approve
single candidates (voter ¢ approves ;). Towards a contradiction, assume that the first group
has more than L\/Ej approved candidates in the winning committee. For this committee, if we
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exchange one x candidate with a y candidate, the SLAV score for the first group decreases by at
most

1 1
A RS G ik

but the SLAV score of the voter approving the y candidate would increase by one. This is a
contradiction that to the assumption that the first group has more than L\/EJ approved candidates
in the winning committee. Now let W/ be a winning committee. As in the proof of
we see that

sear (A W) _ 2(VE| - [VE] + (k= [VE]) -1 _ 1 Lo 3
SCay (A, Way) — 2|Vk| - k Wkl 2lVE] 21VE]

]

Proof of the representation guarantee. As before, we will explain how to adapt the proof for
PAV. For the lower bound, we now have:

2. M@0z Z wl—l—l 2. Z2wl—1

c€Wglay ceWee ZEN c€EWilav ZEN
1 1
vy ¥ Loy oy L
ZEN(WC(‘) C EWCCmA 7‘EZ\[(VVslaV) CEWSIanA(
> 3,71 gw“f <1
1 1 w;
> _
D S D SR Cree ey
PEN (Wee)\N (Wilav) PEN (Wee)NN (Weay)

’N( slav)\N( )|

Now, observe that w; = 0 for each i € N(W¢.) \ N(Way) and that w; > 1 for each i €
N (W ) NN (Way). Further, through simple arithmetic calculations we can show that for

; > 1it holds that 5—~ — wi _ > _2 Thus, we can continue our calculations:
w; +1 2w; —1 3

D A(r(e),¢) = IN(Wee) \ N(Waay )| — |N< Witar) N N (Wee)| = |N (Watar) \ N(Wee)|

CEquav
- |N(W )| - _|N< slaV) M N(WCC>| - ‘N(WslaVN

5
_|N(Wsla\/)|-

> ‘N(WCC)’ - 3

. : 3|V
By the same reasoning as before we can infer that | Ny, | > %

For the upper bound we will use the following construction (similar as in the proof for PAV).
The set of candidates is X UY with X = {xy,...,z}and Y = {y1,...,yr—1}. Let z be an
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integer divisible by 2k — 1. There are z voters who approve X. Further, for each i € [k — 1],

there are ;= voters who approve candidate y;. Thus:

z 3k —2

n:z+(k—1)~2k_1:z-2k_1.

Committee X is winning according to SLAV (tied with other committees)—and X has a CC-
score of z. The optimal CC committee consists of a single candidate from X and all (k — 1)
candidates from Y —this would give a CC-score of n. Thus, the representation guarantee of
SLAV is at most equal to:

z 2k—1 2 1

“ 32 3 0r_¢

]

Theorem H The utilitarian guarantee of sequential PAV is between ﬁ% and LQWJ — %; its

representation guarantee is between and + 5=

log(k)

Proof of the utilitarian guarantee. Since seq-PAV satisfies lower quota [Brill et al., 2018]E] it
also satisfies weak proportionality. Hence the upper bound of m - follows from|Proposition 1

In the remaining part of the proof we will prove the lower bound.
For k = 1, seq-PAV is AV and hence the utilitarian guarantee is 1. For £ = 2, in the ﬁrst
step the AV-winner is chosen and hence we have a utilitarian guarantee for k = 2 is 3 2 5 f‘

Now assume that £ > 3. Let WpaV denote the first j candidates selected by sequentlal PAV; in
particular, Wéfi% = (). Let w; denote the candidate selected by sequential PAV in the jth step,
thus wj is the single candidate in the set Wil \ W Let T = |WI§§3, N A(i)]. Next, let W,y
be the optimal committee according to Approval Voting, and let s,, = scu, (A, Way).

If at some step j of the run of sequential PAV, it happens that the AV-score of Wég, which is
Y icn Tij» is greater or equal than S\a}, then our hypothesis is clearly satisfied. Thus, from now
on, we assume that for each j we have that ) .\ z;; < 577+ Also, this means that in each step

there exists a candidate ¢ from W,, \ W,., who is approved by n. > &“T?f > (] —
voters. Let n. = |N(c)|.
Let Ap; denote the increase of the PAV-score due to adding w;; to WISQ. Using the

inequality between harmonic and arithmetic mean, we have that:

73

2 2
1 n; n;

> >
Tijg 17 Dieni Tig TN 3% + e

| (#0-59)

(
Sav Sav. 1 — Sav (1
it -za) - G-

®An ABC rule R satisfies lower quota if for every k € N, every party-list profile 4, and party N it holds that

every winning committee from R(A, k) contains at least L i ]f,VI/‘J candidates that are approved by N'.
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1
Sav <1 - 7) Sav
1
2

+5 % N
0.56

Since this must hold in each step of sequential PAV, we get that the total PAV-score of Wék) must

be at least equal to & - ﬁ% = 2‘3\‘} Since the AV-score is at least equal to the PAV-score of any
committee, we obtain a contradiction and conclude that sc,, (A, VVpa ) > ;\af O]

Proof of the representation guarantee lower bound. Consider an approval profile A and let
Wspav and W, denote the winning committees in A according to seq-PAV and CC, respec-
tively. Let ngpay = SCee(A, Wipay) and nee = scec(A, Wee). The total PAV-score of Wy, is at
most equal to ngpavh(k) < ngpay(log(k) + 1). Thus, at some step sequential PAV selected a
committee member who improved the PAV-score by at most w On the other hand,
by the pigeonhole principle, we know that at each step of seq-PAV there exists a not-selected
candidate whose selection would improve the PAV-score by at least ““—=2** _ Consequently, we
get that

nspav (10g(k‘) + 1) > Nee — nspav
k - k '

TNec

After reformulation we have that ng,,, > Toa(hy 72

which completes the proof. 0

Theorem S, The utilitarian guarantee of the p-Geometric rule is between

W(klog(p)) g Wlos(p)) L
klog(p) + W(klog(p)) klog(p) k'
its representation guarantee is between
—1
— and b
p p+ k+2

Proof of the utilitarian guarantee. We use the same notation as in the proof of with
the difference that instead of W, (denoting a PAV winning committee) we will use W}, geom,
denoting a committee winning according to the p-Geometric rule. For each two candidates,
¢ € Wy geom and ¢ arbitrary, let A, (¢, ¢) denote the change of the p-Geometric score of W, _geom
caused by replacing ¢ with ¢/. We obtain:

s g (75 T, ()

! €Wp-geom €N (c) 1EN ! €WpavNA(%

2 ()20

1EN(c iEN
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22eN(c) Witne

. . e . 1 1 wl+1 1 ne .
By using Jensen’s inequality we get that ) . N (5) > (1—0 . Thus:
1\ S )"
A, (c,c) = kn, (—) — w; <_>
c’EVIZ p< ) p 1EZN p
p-geom
1 Zzenzt\] Wi 1
> kn, (—) - = W
p Pien
Since we know that > .y, Ap(c,¢’) <0, we have that:
1 1 S
- Z w; > kn, (—)
p p

iEN

Let us setr = %, and observe (similarly as in the proof of [Theorem 2J) that

iEN

SCay (A, Way)
SCav (A, Wh-geom)

<14

We have that pé > r. The equation pé = r has only one solution, r = W’Z%S&)). This gives
r < %&;D and proves that the utilitarian guarantee is greater than or equal to
W(klog(p))
klog(p) + W(klog(p))
Now, let us prove the upper bound on the utilitarian guarantee. Let z = %ﬁm; in

particular, by the properties of the Lambert function we have that z = pf. Consider the following
instance. Let  be a large integer so that |z - z| ~ xz. (Formally, we choose an increasing
sequence T so that zZ — |2z | — 0.) Assume there are |z - z| voters who approve candidates
B ={ci,...,c}. Additionally, for each candidate ¢ € D = {cy41, ..., cor} there are x distinct
voters who approve c. For this instance the p-Geometric rule selects at most (ﬂ members
from B: if more candidates from B were selected, then replacing one candidate from B with a
candidate from D would increase the p-Geometric-score by more than

e () () e ()

a contradiction. Thus, the AV-score of the committee selected by the p-Geometric rule would be
smaller than = - z - (1 + %) + kx = xz + 2kz. Thus, we get that the utilitarian guarantee of the
p-Geometric rule is at most equal to:

2kx + 2 1
xzk  k

21 2W(klog(r)
z k klog(p)

+
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Proof of the representation guarantee. Let A be an approval profile and let W, and W}, geom be
two committees winning according to the Chamberlin—Courant and p-Geometric rule, respec-
tively. Let np-geom = SCec(A, Wp.geom) and nge = scec(A, We.). We observe that:

1 1
SCp—geom(Aa Wp—geom) S np—geom (]_3 + }? + .. ) S np—geom '

and that:

1
SCp—geom<A7 ch) Z Nee * }_7

Consequently, from sc;.geom (A4, Wp-geom) = SCp-geom (4, W) we get that:

1
Np-geom * ]__—l > p- Scp—geom<A7 Wp—geom) > P - SCp-geom (Aa ch) > Neey

=

which gives the lower bound on the representation guarantee.

Now, let us prove the upper bound. Fix a rational number p and some large integer = such
that px is integer. First, let k& be even with & = 2k’. Let the set of candidates be {z1, ..., z;} U
{y1,...,yr}. There are k’ groups of voters who consists of px voters; in each group voters
approve some two distinct candidates from {zy,...,z;}. Additionally, there are k' groups
consisting of z voters who approve some distinct candidate from {y, ...,y }. It is easy to see
that for such instances the representation guarantee is at most equal to k,}f;% = %.

Now, let k£ be odd with k& = 2k’ + 1; the set of candidates is {1, ..., Zop ot U{y1,. ..,y }-
There are k' + 1 groups of voters who consists of px voters; in each group voters approve some
two distinct candidates from {z1, ..., Zow 2 }. Additionally, there are &’ groups consisting of x
voters who approve some distinct candidate from {y, . .., yx }. Now, we see that the for such
instances the representation guarantee is at most equal to

(K +L)pz p p p

T 2 k-
(k/+1)p$+k/37 p+1—k,—+1 p-f—l—k—Jrz p—l—k—H

The upper bound for the odd case is larger and hence prevails. U

1

— E,' its

Theorem @ The utilitarian guarantee of seq-Phragmén is between and

1 2

5vVEk+1 [VE]
. . 1 1 1

representation guarantee is between 5 and 5+ 7

Proof of the utilitarian guarantee. First, we will prove the lower bound of 5 \/%-&- - Consider an

approval profile A, and let Wae and W, be committees winning according to seq-Phragmén
and AV, respectively. W.l.o.g., we assume that Wp,.e 7# W,,. For iteration ¢ we will use the
following notation:

(1) Let wggrag be the candidate selected by seq-Phragmén in the ¢-th iteration. Further, let wl

be a candidate with the highest AV-score in W, \ {w&)rag, . ,w}(;_r;;}.
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@) Letn = |Nw® )|, and nl) = |N(wd)].

phrag — phrag

(3) Let ¢;(t) denote the total load assigned to voter j until ¢. The maximum load in iteration ¢ is
maX;en gj (t) .

(4) Let ) denote the total load distributed to the voters from N (wg,)) until iteration ¢, and

let mz(fv) denote the maximum load assigned to a voter from N (wg,)) until ¢, i.e., meV) =

HlaneN(wgl)) ﬁj (t)
We will use an argument based on a potential function ®: [0,¢] — R, which we maintain
during each iteration of seq-Phragmén. Let ®(0) = 0. In iteration ¢, we increase the potential

function by (5v/k + 1) - }(fﬁrag and decrease it by n'Y, i.c.,

n®,

o) =@t — 1)+ (5Vk+1)-n

Our goal is to show that ®(k) > 0. If we know that ®(k) > 0, we can infer that

phrag -

k

S (VE+L) i — > IN(e \>Z(5\/‘+ n an_ > 0.

t=1 cEWay

and hence the utilitarian guarantee of seq-Phragmén is lower-bounded by - f+ -

Let s be the first iteration where €5 > 3v/k; if £%) < 3v/k for all t € [k] then we set
s=k+ 1.
First, let us consider iterations ¢ < s and show that ®(¢) > (¢t — 1) + nl(f})lrag 2Vk. If

w® = wll), then O(t) =Pt —1)+ (5\/_) Let us assume w') £ wil). We first

phrag phrag phrag

show that m(t) < e‘w(j)rl For the sake of contradiction assume that ¢ is the first iteration after

which m{) > &“(jg L First note that this is only possible if indeed wl) + wl(fgrag.
(t) ®)

selecting way instead of wyp ..

However, by

: ()
it can be ensured that the load does not increase above =+ so
Nav

seq-Phragmén would have chosen wétv), a contradiction. Next, observe that after wgﬁra , has been
(t)

selected, the largest load assigned in total to a voter is at least equal to 1/n{}) . Yet, if way were

) (t)
selected, then the largest total load assigned to a voter would be at most equal to é‘"*”(j)rl. Thus,
Nav

it must hold that gav > 1/, which is equivalent to n{) < nl (f(t) + 1). It follows that

phrag

nlY) < nptgrag(S\/_ + 1). Consequently, we have that
(t) > bt — 1) + (5\/_ + 1) g — 1) 4)
t
> (5VE+1) g = (3VE+ 1) 0l = 1, -2V )

Now, we bound <I>(s —1). Letw = ws™ | ie., let w be a candidate with the highest AV-score

contained in Wy, \ {wphrag, . phrag} let n, = |N(w)|. Here, we divide our reasoning into
the following sequence of clalms
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(1) Observe that in step s, a candidate other than w is selected by seq-Phragmén and selecting
candidate w would increase the maximum load by at most !/n,. As a consequence, in each
iteration ¢ < s, the maximum load increased by at most 1/n,,.

(2) We will show that the following holds: if the maximum load in N (w) increases by at least
2/n,, between two iterations ¢; and ¢, < s, then the AV-score from voters in N (w) increased
between these two iterations by at least 3. Towards a contradiction, assume that this is not
the case, i.e., that between ¢; and ¢, the maximum load from voter in N (w) increases by at
least 2/n.,, and the load of more than nw/2 voters in N (w) does not increase. Without loss of
generality, assume that 5 is the first iteration for which our assumption holds. Then, if in ¢,
we selected w and distributed its load among these more than /2 voters whose load has not
yet increased, then the maximum load would increase by less than 2/n,,. This contradicts the
fact that seq-Phragmén does not choose w (by definition of w).

(3) Let us group the iterations of seq-Phragmén before s into blocks. The i-th block starts after
the (i — 1)-th block ends (the first block starts with the first iteration). Further, each block
ends right after the first iteration which increases the maximum load assigned to a voter from
N(w) by at least 2/n,, since the moment the block has started (thus, the last iterations may
not be part of a block). Thus, in each block the maximum load assigned to a voter from
N(w) increases by at least 2/n,,. Since in one step the load can increase by no more than
1/n,, in each block the maximum load assigned to a voter from N (w) increases by at most
2/ny + Yy = 3/n,. Consequently, since ) > 3vk k (and so, by the pigeonhole principle,
some voter from N (w) is assigned the load at least equal to 2 ) until s there are at least

vk blocks. By the previous point, the total AV-score of Voters increases in each block by at
least 7w/2. Since there are at least Vk blocks, we have that

Z nphrag V- /.
By Equation (3]), we have that

(s — 1) > VE -mwfo- 2VEk = kn,.

By choice of w, candidates not contained in W, are approved by at most n,, voters and hence
®(k) — (s — 1) > —kn,,. Hence ®(k) > 0. This concludes the lower bound proof.

For the upper bound we use the fact that seq-Phragmén satisfies the lower quota property [Brill
et al.,[2018]] and thus also weak proportionality; hence the upper bound from applies.
This completes the proof. [

Proof of the representation guarantee. We first prove the lower bound on the representation
guarantee of seq-Phragmén. Consider an approval profile A, and let W, be a committee
selected by seq-Phragmén for A; let W, be a committee maximizing the CC-score for A. Further,

foreachi, 1 <i <k, by Wéhrag we denote the first < candidates selected by seq-Phragmén. We

set e = [N(Weo)| and nl = IN(WD ).

phrag — phrag
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We will show by induction that for each ¢ it holds that 1(ohrag > L 4o For i = 0, the base step

of the induction is trivially satisfied. Now, assume that for some 7 we have néﬁrag > Zk’_‘;; and

we consider the (7 + 1)-th step of seq- Phragmén. Observe that there exists a not-yet selected

@
candidate ¢ who is supported by at least w% voters who do not have yet a representative in
w

phrag- Consider the following two cases:
Case 1: cis not selected in the (i + 1)-th step. After this step the maximum load assigned to

a voter is at least equal to Etll) , which is the number of chosen candidates divided by

phra;

the number of Voters that share their load. By selectlng c the load would increase to no
more than W Consequently, we have that <¢ o > n“ +1) This is equivalent to

nccinphrag Tlee— T -
(i+1) o (i+Dnee
phrag =— k+i+1 °

phrag phrag

(1) < () Nee—nly

Case 2: cis selected in the (i + 1)-th step. Then, n; ° > njy  + ——===%. After reformulat-

ing:

(@)
(i) Mec ~ Mphrag _
phrag k - (nCC

- nphrag) ’ T

(@)

phrag —

Necl . Neck
< Nee — 355 = i and

By the inductive assumption we have n.. — n

(i+1) < ncck; k—1 ncc(k — 1).

fee = nphrag_k+z ko ki
Consequently,
WD > g = Db D) melid D)y mlin D)
phrag k+i k+1 k+i+1

In both cases the inductive step is satisfied, which shows that our hypothesis holds. In particular,
for 7 = k, we have that E)h)ra g > iik = %= This proves the lower bound on the representation
guarantee of seq-Phragmén.

For the upper bound we use the same construction and argument as in the proof of the

representation guarantee of PAV (Theorem 2)). [

Theorem The uttlltarlan guarantee of leximin-Phragmén i lS , and its representation guarantee
is between % 5 and % 5+ 4k 3

Proof of the utilitarian guarantee. We first prove the lower-bound. Let W be a committee
selected by leximin-Phragmén and let c be a candidate approved by most voters. For the sake
of contradiction assume that the approval score of W is lower than | N (c)|, which in particular
means that ¢ ¢ . Take a candidate ¢ € W, and assume there are = voters who approve ¢
and do not approve ¢, |[N(¢’) \ N(c)| = x. Thus, since |[N(c) > N(W)|, there are more than z
voters who approve c and none of the candidates from I/. Now, consider a committee obtained
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from W by replacing ¢’ with ¢, and the load distribution constructed from the distribution for W/
as follows. The voters who approve both c and ¢’ get from ¢ the same load as they did from ¢'.
The same amount of load that was distributed from ¢’ to the = voters from N(¢) \ N(c) is now
distributed evenly among the voters from N(c) \ N(W). This gives a load distribution that is
more preferred according to leximin-Phragmén and leads to the contradiction with the optimality
of W.

For the upper bound consider a profile with m = 2k candidates, where n voters are divided
into k equal-size groups (we assume that n is divisible by k): N = Ny U Ny U ... U Ny. For
i € |k] candidate c¢; is approved by group N;. The remaining k candidates ({c;: k+1 < i < 2k})
are identical and each of them is approved by the first ?/x — 1 voters from N, the first ?/x — 1

voters from Ns, etc. For this profile leximin-Phragmén selects committee {c1, . . ., ¢x }, which in
total collects n approvals. On the other hand, committee {cx.1, ..., car} gets k(n — k) approvals.
Since n can be arbitrarily large, we get the ratio of /&. 0

Proof of the representation guarantee. We start by proving the lower bound. Let I/ be a com-
mittee returned by leximin-Phragmén, and let W, be a committee maximizing the CC-score.
Let ny = |[N(W)|, nec = |N(We)|, and for the sake of contradiction assume that 2ny < 7.
Observe that the maximal load assigned to a voter is higher than 2*/n... Let ¢ be a candidate who
assigns some positive amount of load to a maximally loaded voter. On the other hand, there
exists a candidate ¢’ € W, \ W who is approved by at least 7cc/2k voters from N (W) \ N(W).
By replacing ¢ with ¢’ in W we can remove the load assigned from ¢ (decreasing the load of at
least one voter who initially had load higher than 2*/»..) and instead spread the load from ¢’ to
the voters from N (W..) \ N(WW)—the total load of these voters will not exceed 2/n... Thus, the
new load distribution is preferred to the old one by leximin-Phragmén, a contradiction.

For the upper bound we use the same construction and argument as in the proof of the

representation guarantee of PAV (Theorem 2)). [

Theorem (8, The utilitarian and the representation guarantee of Minimax Approval Voting is 0.

Proof. Let us fix k, and consider the following instance with 4%k candidates. The first voter’s
approval set is A(1) = {cy,...,cs;}, the remaining n — 1 voters approve A(2) = ... =
A(n) = {¢sk+1,- - -, car }. For this profile MAV selects the committee consisting of k& candidates
from A(1). Indeed, such committees result in the maximum Hamming distance of 2k; selecting
less candidates from A(1) would result in the Hamming distance equal to at least 2k + 2.

This example shows that the utilitarian guarantee cannot be higher than ﬁ = (n—il) and
that the representation guarantee cannot be higher than % Since the number of voters n can be
arbitrarily large, we get that the two guarantees equal zero. [

B Further Experimental Details from

This section contains the plots and numerical data for the Mallows and urn datasets.
and [5| show the respective boxplots; and [6] show the average utilitarian and representa-
tion ratios.
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Figure 5: Results for the Mallows dataset (upper boxplot shows utilitarian ratios, the lower
representation ratios).
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Figure 6: Results for the urn dataset (upper boxplot shows utilitarian ratios, the lower representa-
tion ratios).
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mean mean

1. AV 1.000 1. AV 1.000
2. 1.5-Geometric 0.993 2. 1.5-Geometric 0.974
3. PAV 0.982 3. PAV 0.968
4. 2-Geometric 0.979 4. seq-Phragmén 0.968
5. seq-PAV 0.979 5. rev-seq-PAV 0.965
6. seq-Phragmén 0.978 6. seq-PAV 0.965
7. rev-seq-PAV 0.976 7.  2-Geometric 0.947
8. SLAV 0.960 8. SLAV 0.942
9. 5-Geometric 0.937 9. Monroe 0.883
10. Monroe 0.888 10. 5-Geometric 0.875
11. seq-CC 0.866 11. MAV 0.723
12. CC 0.793 12. CC 0.644
13. MAV 0.535 13. seq-CC 0.602
(a) Mallows dataset (b) urn dataset

Table 4: Mean utilitarian ratios for the Mallows and urn dataset. The differences between pairs of
rules are statistically significant (paired t-test, p = 0.01), unless a pair is marked with a bracket.

mean mean
1. CC 1.000 1. CC 1.000
2. 5-Geometric 0.999 2. 5-Geometric 1.000
3. Monroe 0.991 3. seq-CC 0.999
4. seq-CC 0.990 } 4. SLAV 0.985
5. SLAV 0.988 5. Monroe 0.983
6. rev-seq-PAV 0.969 6. 2-Geometric  0.971
7. seq-PAV 0.964 7. rev-seq-PAV 0.967
8.  2-Geometric 0.964 } 8. seq-PAV 0.967
9. PAV 0.963 9. PAV 0.965
10. seq-Phragmén 0.960 10. seq-Phragmén 0.960
11. 1.5-Geometric 0.944 11. 1.5-Geometric 0.951
12. AV 0.868 12. MAV 0.946
13. MAV 0.633 13. AV 0.860

(a) Mallow dataset (b) urn dataset

Table 5: Mean representation ratios for the Mallows and urn dataset. The differences between
pairs of rules are statistically significant (paired t-test, p = 0.01), unless a pair is marked with a
bracket.
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C Proof Details from

Example 4. Consider the following profile with 20 voters and 4 candidates, where:

N(Cl):{27710}7 N(CQ):{ll,,lg},
N(ez) ={6,...,15}; N(cs) ={2,3,4,16,17,18,19}.

For this profile and for k = 2 the Greedy Monroe rule first picks c3, who is approved by 10
voters, then removes these 10 voters, and picks cy. However, committee {cs, c4} is dominated by
{c1, ca}. The same example shows that seq-CC and seq-PAV do not satisfy Pareto efficiency.

Proposition[d AV, CC, PAV, p-Geometric, and MAV satisfy Pareto efficiency.

Proof. Let R € {AV, CC, PAV, p-Geometric}. For the sake of contradiction let us assume that
there exists k € N, profile A € A, and a committee W € S;(C') such that W dominates each
committee from R(A, k). In particular, this means that W has strictly lower score than some
committee W, € R(A, k). Thus, there exists a voter ¢ € N that assigns to W, a higher score
than to /. However, this is not possible since for each of the considered rules the score that ¢
assigns to a committee V' is an increasing function of |’ N A(i)|, a contradiction.

Now, consider MAYV, and towards a contradiction assume that there exists £ € N, profile A €
A, and a committee W € S;.(C) such that W dominates each committee from MAV (A, k). Con-
sider a committee W' € MAV (A, k). Since W dominates W’ for each voter ¢ € N it holds that
Aham (A7), W) < dpam(A(2), W’). Thus, max;en dnam (A7), W) < maxjen dpam (A7), W).
Consequently, W must be a winning committee according to MAV, and so, W must dominate
itself—a contradiction. 0
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