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TU Wien

dvorak@dbai.tuwien.ac.at

Monika Henzinger, Alexander Svozil
University of Vienna

monika.henzinger@univie.ac.at, alexander.svozil@univie.ac.at

Abstract

We consider planning problems for graphs, Markov decision
processes (MDPs), and games on graphs. While graphs rep-
resent the most basic planning model, MDPs represent inter-
action with nature and games on graphs represent interaction
with an adversarial environment. We consider two planning
problems where there are k different target sets, and the prob-
lems are as follows: (a) the coverage problem asks whether
there is a plan for each individual target set; and (b) the se-
quential target reachability problem asks whether the targets
can be reached in sequence. For the coverage problem, we
present a linear-time algorithm for graphs, and quadratic con-
ditional lower bound for MDPs and games on graphs. For
the sequential target problem, we present a linear-time algo-
rithm for graphs, a sub-quadratic algorithm for MDPs, and a
quadratic conditional lower bound for games on graphs. Our
results with conditional lower bounds establish (i) model-
separation results showing that for the coverage problem
MDPs and games on graphs are harder than graphs and for the
sequential reachability problem games on graphs are harder
than MDPs and graphs; and (ii) objective-separation results
showing that for MDPs the coverage problem is harder than
the sequential target problem.

Introduction

Planning models. One of the basic and fundamental algo-
rithmic problems in artificial intelligence is the planning
problem (LaValle 2006; Russell and Norvig 2010). The clas-
sical models in planning are as follows:

• Graphs. The most basic planning problems are graph
search problems (LaValle 2006; Russell and Norvig
2010).

• MDPs. In the presence of interaction with nature, the
graph model is extended with probabilities or stochastic
transitions, which gives rise to Markov decision processes
(MDPs) (Howard 1960; Puterman 1994; Filar and Vrieze
1997; Papadimitriou and Tsitsiklis 1987).

• Games on graphs. In the presence of interaction with
an adversarial environment, the graph model is extended
to AND-OR graphs (or games on graphs) (Mahanti and
Bagchi 1985; Hansen and Zilberstein 1998).
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Thus graphs, MDPs, and games on graphs are the fundamen-
tal models for planning.
Planning objectives. The planning objective represents the
goal that the planner seeks to achieve. Some basic planning
objectives are as follows:

• Basic target reachability. Given a set T of target vertices
the planning objective is to reach some target vertex from
the starting position.

• Coverage Objective. In case of coverage there are k differ-
ent target sets, namely, T1, T2, . . . , Tk, and the planning
objective asks whether for each 1 ≤ i ≤ k the basic target
reachability with target set Ti can be achieved. The cov-
erage models the following scenarios: Consider that there
is a robot or a patroller, and there are k different target lo-
cations, and if an event or an attack happens in one of the
target locations, then that location must be reached. How-
ever, the location of the event or the attack is not known in
advance and the planner must be prepared that the target
set could be any of the k target sets.

• Sequential target reachability. In case of sequen-
tial targets there are k different target sets, namely,
T1, T2, . . . , Tk, and the planning objective asks first to
reach T1, then T2, then T3 and so on. This represents the
scenario that there is a sequence of tasks that the planner
must achieve.

The above are the most natural planning objectives and have
been studied in the literature, e.g., in robot planning (Kress-
Gazit, Fainekos, and Pappas 2009; Kaelbling, Littman, and
Cassandra 1998; Choset 2005).
Planning questions. For the above planning objectives the
basic planning questions are as follows: (a) for graphs, the
question is whether there exists a plan (or a path) such that
the planning objective is satisfied; (b) for MDPs, the ba-
sic question is whether there exists a policy such that the
planning objective is satisfied almost-surely (i.e., with prob-
ability 1); and (c) for games on graphs, the basic ques-
tion is whether there exists a policy that achieves the ob-
jective irrespective of the choices of the adversary. The
almost-sure satisfaction for MDPs is also known as the
strong cyclic planning in the planning literature (Cimatti
et al. 2003), and games on graphs question represent plan-
ning in the presence of a worst-case adversary (Mahanti

Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018)

56



Obj/Model Graphs MDPs Games on graphs
Basic target O(m) O(m · n2/3) O(m)

Coverage objective O(m+
∑k

i=1 |Ti|) O(m · n2/3 + k ·m) O(k ·m)

Ω̃(k ·m) [Thm. 1,2] Ω̃(k ·m) [Thm. 3,4]
Sequential target O(m+

∑∑∑k
i=1 |Ti|) O(m · n2/3 +

∑∑∑k
i=1 |Ti|) O(k ·m)

[Thm. 6] [Thm. 5] Ω̃(k ·m) [Thm. 7,8]

Table 1: Algorithmic bounds where n and m are the number of vertices and edges of the underlying model, and k denotes the
number of different target sets. The Ω̃(·) bounds are conditional lower bounds (CLBs) under the BMM conjecture and SETH.
They establish that polynomial improvements over the given bound are not possible, however, polylogarithmic improvements
are not excluded. Note that CLBs are quadratic for k = Θ(n). The new results are highlighted in boldface.

and Bagchi 1985; Hansen and Zilberstein 1998) (aka ad-
versarial planning, strong planning (Maliah et al. 2014), or
conformant/contingent planning (Bonet and Geffner 2000;
Hoffmann and Brafman 2005; Palacios and Geffner 2007)).

Algorithmic study. In this work, we consider the algorith-
mic study of the planning questions for the natural plan-
ning objectives for graphs, MDPs, and games on graphs.
For all the above questions, polynomial-time algorithms
exist. When polynomial-time algorithms exist, proving an
unconditional lower bound is extremely rare. A new ap-
proach in complexity theory aims to establish conditional
lower bound (CLB) results based on some well-known con-
jecture. Two standard conjectures for CLBs are as fol-
lows: The (a) Boolean matrix multiplication (BMM) con-
jecture which states that there is no sub-cubic combinato-
rial algorithm for boolean matrix multiplication; and the
(b) Strong exponential-time hypothesis (SETH) which states
that there is no sub-exponential time algorithm for the
SAT problem. Many CLBs have been established based on
the above conjectures, e.g., for dynamic graph algorithms,
string matching (Abboud and Williams 2014; Bringmann
and Künnemann 2015).

Previous results and our contributions. We denote by n
and m the number of vertices and edges of the underlying
model, and k denotes the number of different target sets. For
the basic target reachability problem, while the graphs and
games on graphs problem can be solved in linear time (Beeri
1980; Immerman 1981), the current best-known bound for
MDPs is O(m · n2/3) (Chatterjee and Henzinger 2014;
Chatterjee et al. 2016). For the coverage and sequential tar-
get reachability, an O(k ·m) upper bound follows for graphs
and games on graphs, and an O(m · n2/3 + k · m) upper
bound follows for MDPs. Our contributions are as follows:
1. Coverage problem: First, we present an O(m +
∑k

i=1 |Ti|) time algorithm for graphs; second, we present
an Ω(k ·m) lower bound for MDPs and games on graphs,
both under the BMM conjecture and the SETH. Note that
for graphs our upper bound is linear time, however, if each
|Ti| is constant and k = θ(n), for MDPs and games on
graphs the CLB is quadratic.

2. Sequential target problem: First, we present an O(m +
∑k

i=1 |Ti|) time algorithm for graphs; second, we present
an O(m·n2/3+

∑k
i=1 |Ti|) time algorithm for MDPs; and

third, we present an Ω(k · m) lower bound for games on

graphs, both under the BMM conjecture and the SETH.
The summary of the results is presented in Table 1. Our
most interesting results are the conditional lower bounds for
MDPs and game graphs for the coverage problem, the sub-
quadratic algorithm for MDPs with sequential targets, and
the conditional lower bound for game graphs with sequen-
tial targets.
Practical Significance. The sequential reachability and cov-
erage problems we consider are the tasks defined in (Kress-
Gazit, Fainekos, and Pappas 2009, Section II. PROB-
LEM FORMULATION, 3) System Specification), where the
problems have been studied for games on graphs (Section
IV. DISCRETE SYNTHESIS) and mentioned as future work
for MDPs (Section I. INTRODUCTION, A. Related Work).
The applications of these problems have been demonstrated
in robotics applications. We present a complete algorithmic
picture for games on graphs and MDPs, settling open ques-
tions related to games and future work mentioned in (Kress-
Gazit, Fainekos, and Pappas 2009).
Theoretical Significance. Our results present a very inter-
esting algorithmic picture for the natural planning questions
in the fundamental models.
1. First, we establish results showing that some models are

harder than others. More precisely,
• for the basic target problem, the MDP model seems

harder than graphs/games on graphs (linear-time algo-
rithm for graphs and games on graphs, and no such al-
gorithms are known for MDPs);

• for the coverage problem, MDPs, and games on graphs
are harder than graphs (linear-time algorithm for graphs
and quadratic CLBs for MDPs and games on graphs);

• for the sequential target problem, games on graphs are
harder than MDPs and graphs (linear-time upper bound
for graphs and sub-quadratic upper bound for MDPs,
whereas quadratic CLB for games on graphs).

In summary, we establish model-separation results with
CLBs: For the coverage problem, MDPs and games on
graphs are algorithmically harder than graphs; and for the
sequential target problem, games on graphs are algorith-
mically harder than MDPs and graphs.

2. Second, we also establish objective-separation results.
For the model of MDPs consider the different objectives:
both for basic target and sequential target reachability the
upper bound is sub-quadratic and in contrast to the cover-
age problem, we establish a quadratic CLB.
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Related works on other models. In this work, our focus
lies on the algorithmic complexity of fundamental plan-
ning problems and we consider explicit state-space graphs,
MDPs, and games, where the complexities are polynomial.
The explicit model and algorithms for it are widely con-
sidered: (LaValle 2006)[Chapter 2.1 Discrete Feasible Plan-
ning], (Kress-Gazit, Fainekos, and Pappas 2009)[Section IV.
DISCRETE SYNTHESIS] and (Chatterjee and Henzinger
2014)[Section 2.1. Definitions. Alternating game graphs.].
In other representations such as the factored model, the com-
plexities are higher (NP-complete), and then heuristics are
the focus (e.g., (Hansen and Zilberstein 1998)) rather than
the algorithmic complexity. Notable exceptions are the work
on parameterized complexity of planning problems (see,
e.g., (Kronegger, Pfandler, and Pichler 2013)) and Condi-
tional Lower Bounds showing that certain planning prob-
lems do not admit subexponential time algorithms (Aghighi
et al. 2016; Bäckström and Jonsson 2017).

Preliminaries

Markov Decision Processes (MDPs). A Markov decision
process (MDP) P = ((V,E), 〈V1, VR〉, δ) consists of a finite
set of vertices V partitioned into the player-1 vertices V1 and
the random vertices VR, a finite set of edges E ⊆ (V × V ),
and a probabilistic transition function δ. The probabilistic
transition function maps every random vertex in VR to an
element of D(V ), where D(V ) is the set of probability dis-
tributions over the set of vertices V . A random vertex v has
an edge to a vertex w ∈ V , i.e. (v, w) ∈ E iff δ(v)[w] > 0.
Game Graphs. A game graph Γ = ((V,E), 〈V1, V2〉) con-
sists of a finite set of vertices V , a finite set of edges E and
a partition of the vertices V into player-1 vertices V1 and the
adversarial player-2 vertices V2.
Graphs. Graphs are a special case of MDPs with VR = ∅ as
well as special case of game graphs with V2 = ∅.
Remark 1. Note that a standard way to define MDPs is to
consider finite vertices with actions, and the probabilistic
transition function is defined for every vertex and action. In
our model, the choice of actions is represented as the choice
of edges at player-1 vertices and the probabilistic transition
function is represented by the random vertices. This allows
us to treat MDPs and game graphs in a uniform way, and
graphs can be described easily as a special case of MDPs.

Plays. A play is an infinite sequence ω = 〈v0, v1, v2, . . .〉 of
vertices such that each (vi−1, vi) ∈ E for all i ≥ 1. The set
of all plays is denoted with Ω. A play is initialized by placing
a token on an initial vertex. If the token is on a vertex owned
by a player (such as player 1 in MDPs, or player 1 or player 2
in game graphs), then the respective player moves the token
along one of the outgoing edges, whereas if the token is at
a random vertex v ∈ VR, then the next vertex is chosen ac-
cording to the probability distribution δ(v). Thus an infinite
sequence of vertices (or an infinite walk) is formed which is
a play.
Policies. Policies are recipes for players to extend finite
prefixes of plays. Formally, a player-i policy is a function
σi : V

∗ ·Vi 	→ V which maps every finite prefix ω ∈ V ∗ ·Vi

of a play that ends in a player-i vertex v to a successor vertex
σi(ω) ∈ V , i.e., (v, σi(ω)) ∈ E. A player-1 policy is memo-
ryless or stationary if σi(ω) = σi(ω

′) for all ω, ω′ ∈ V ∗ ·V1

that end in the same vertex v ∈ V1, i.e., the policy does not
depend on the entire prefix, but only on the last vertex.
Outcome of policies. Outcome of policies are as follows:
• In graphs, given a starting vertex, a policy for player 1

induces a unique play in the graph.
• In game graphs, given a starting vertex v, and policies
σ1, σ2 for player 1 and player 2 respectively, the out-
come is a unique play ω(v, σ1, σ2) = 〈v0, v1, v2, . . .〉,
where v0 = v and for all i ≥ 0 if vi ∈ V1

then σ1(〈v0, . . . , vi〉) = vi+1 and if vi ∈ V2, then
σ2(〈v0, . . . , vi〉) = vi+1.

• In MDPs, given a starting vertex v and a policy σ for
player 1, there is a unique probability measure over Ω
which is denoted as Prσv (·).

Objectives and winning. In general, an objective φ is a mea-
surable subset of Ω. A play ω ∈ Ω achieves the objective if
ω ∈ φ. We consider the following notion of winning:
• Almost-sure winning. In MDPs, a player-1 policy σ is

almost-sure (a.s.) winning from a starting vertex v ∈ V
for an objective φ iff Prσv (φ) = 1.

• Winning. In game graphs a policy σ1 is winning for
player 1 from a starting vertex v iff the resulting
play achieves the objective irrespective of the policy of
player 2, i.e., for all σ2 we have ω(v, σ1, σ2) ∈ φ.

Note that in the special case of graphs both of the above
winning notions requires that there exists a play from v that
achieves the objective.
Remark 2. In MDPs we consider a.s. winning planning for
which the precise transition probabilities of the transition
function δ does not matter, but only the support of the transi-
tion function is relevant. The a.s. winning notion we use cor-
responds to the strong cyclic planning problem. Intuitively,
if we visit a random vertex in an MDPs infinitely often then
all its successors are visited infinitely often. This represents
the local fairness condition (Clarke, Grumberg, and Peled
1999). Therefore, when we consider the MDP question only
the underlying graph structure along with the partition is
relevant, and the transition function δ can be treated as a
uniform distribution over the support.

We have defined the notion of objectives in general above,
and below we consider specific objectives that are natural
in planning problems. They are all variants of one of the
most fundamental objectives in computer science, namely,
reachability objectives.
Basic Target Reachability. For a set T ⊆ V of target set
vertices, the basic target reachability objective is the set of
infinite paths that contain a vertex of T , i.e., Reach(T ) =
{〈v0, v1, v2, . . .〉 ∈ Ω | ∃j ≥ 0 : vj ∈ T}.
Coverage Objective. For k different target sets, namely
T1, T2, . . . , Tk, the coverage objective asks whether for each
1 ≤ i ≤ k the basic target reachability objective Reach(Ti)
can be achieved. More precisely, given a starting vertex v,
one asks whether for every 1 ≤ i ≤ k there is a policy
σi
1 to ensure winning (resp., a.s. winning) for the objective

Reach(Ti) from v for game graphs (resp., MDPs).
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v1

v2

v3T = {v3}

Figure 1: Example illustrating the difference between MDPs
and Game Graphs for the reachability objective Reach(T ).

Sequential Target Reachability. For a tuple of vertex sets
T = (T1, T2, . . . , Tk) the sequential target reachability ob-
jective is the set of infinite paths that contain a vertex of T1

followed by a vertex of T2 and so on up to a vertex of Tk,
i.e., Seq(T ) = {〈v0, v1, v2, . . .〉 ∈ Ω | ∃j1, j2, . . . jk : vj1 ∈
T1, vj2 ∈ T2, . . . , vjk ∈ Tk and j1 ≤ j2 ≤ · · · ≤ jk}.
Example: Difference between MDPs and Game Graphs.
Let the graph G = (V,E) be defined as follows: Let
V = {v1, v2, v3} and E = {(v1, v2), (v2, v1), (v2, v3)}. Let
T = {v3} be a target set. We will now consider Reach(T )
for the MDP P = (G, 〈V1, VR〉, δ) and the game graph
Γ = (G, 〈V1, V2〉). Let V1 = {v1, v3} and V2 = VR = {v2}.
The example is illustrated in Figure 1. The adversary always
chooses to go to v1 and the target is never reached from v1.
On the other hand, if v2 is probabilistic whenever the token
is at v2 it is moved to v3 with non-zero probability. That is,
almost-surely the transition from v2 to v3 is taken eventually,
i.e. v3 is reached almost-surely. Thus, reachability in MDPs
does not imply reachability in game graphs.
Relevant parameters. We will consider the following param-
eters: n denotes the number of vertices, m denotes the num-
ber of edges and k will either denote the number of target
sets in the coverage problem or the size of the tuple of target
sets in the sequential target reachability problem.
Algorithmic study. In this work we study the above basic
planning objectives for graphs, game graphs (i.e., winning
in game graphs), and MDPs (a.s. winning in MDPs). Our
goal is to clarify the algorithmic complexity of the above
questions with improved algorithms and conditional lower
bounds. We define the conjectured lower bounds for condi-
tional lower bounds below.

Conjectured Lower Bounds

Results from classical complexity are based on standard
complexity-theoretical assumptions, e.g., P �= NP. Simi-
larly, we derive polynomial lower bounds which are based
on widely believed, conjectured lower bounds on well stud-
ied algorithmic problems. In this work the lower bounds we
derive depend on the popular conjectures below:

First of all, we consider conjectures on Boolean Ma-
trix Multiplication (Williams and Williams 2018)[Theorem
6.1] and triangle detection in graphs (Abboud and Williams
2014)[Conjecture 2], which are the basis for lower bounds
on dense graphs. A triangle in a graph is a triple x, y, z of
vertices such that (x, y), (y, z), (z, x) ∈ E. We will for the
rest of this work assume that vertices contain at least one
outgoing edge and no self-loops in instances of Triangle.

This can be easily established by linear time preprocessing.
See Remark 3 for a discussion of the term “combinatorial
algorithm”.

Conjecture 1 (Combinatorial Boolean Matrix Multiplica-
tion Conjecture (BMM)). There is no O(n3−ε) time com-
binatorial algorithm for computing the boolean product of
two n× n matrices for any ε > 0.

Conjecture 2 (Strong Triangle Conjecture (STC)). There is
no O(min{nω−ε,m2ω/(ω+1)−ε}) expected time algorithm
and no O(n3−ε) time combinatorial algorithm that can de-
tect whether a graph contains a triangle for any ε > 0,
where ω < 2.373 is the matrix multiplication exponent.

Williams and Williams (2018, Theorem 6.1) showed that
BMM is equivalent to the combinatorial part of STC. More-
over, if we do not restrict ourselves to combinatorial algo-
rithms, STC, still gives a super-linear lower bound.

Remark 3 (Combinatorial Algorithms). “Combinatorial”
in Conjecture 2 means that it excludes “algebraic meth-
ods” (such as fast matrix multiplication (Williams 2012;
Le Gall 2014)), which are impractical due to high associated
constants. Therefore the term “combinatorial algorithm”
comprises only discrete algorithms. Non-combinatorial al-
gorithms usually have the matrix multiplication exponent ω
in the running time. Notice that all algorithms for deciding
almost-sure winning conditions in MDPs and winning con-
ditions in games are discrete graph-theoretic algorithms and
hence are combinatorial, and thus lower bounds for com-
binatorial algorithms are of particular interest in our set-
ting. For further discussion consider (Ballard et al. 2012;
Henzinger et al. 2015).

Secondly, we consider the Strong Exponential Time Hypoth-
esis (SETH) used also in (Abboud and Williams 2014)[Con-
jecture 1] introduced by (Impagliazzo and Paturi 1999;
Impagliazzo, Paturi, and Zane 1998) for the satisfiability
problem of propositional logic and the Orthogonal Vector
Conjecture.
The Orthogonal Vectors Problem (OV). Given sets S1, S2 of
d-bit vectors with |S1| = |S2| = N and d = ω(logN), are
there u ∈ S1 and v ∈ S2 such that

∑d
i=1 ui · vi = 0?

Conjecture 3 (Strong Exponential Time Hypothesis
(SETH)). For each ε > 0 there is a k such that k-CNF-
SAT on n variables and m clauses cannot be solved in
O(2(1−ε)npoly(m)) time.

Conjecture 4 (Orthogonal Vectors Conjecture (OVC))).
There is no O(N2−ε) time algorithm for the Orthogonal
Vectors Problem for any ε > 0.

SETH implies OVC, which is an implication of a re-
sult in (Williams 2005) and an explicit reduction is given
in the survey article by Vassilevska-Williams (2018, Theo-
rem 3.1). Whenever a problem is provably hard assuming
OVC it is thus also hard when assuming SETH. For exam-
ple, in (Bringmann and Künnemann 2015)[Preliminaries, A.
Hardness Assumptions, OVH] the OVC is assumed to prove
conditional lower bounds for the longest common subse-
quence problem. To the best of the author’s knowledge, there
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is no connection between the former two and the latter two
conjectures.
Remark 4. The conjectures that no polynomial improve-
ments over the best-known running times are possible do
not exclude improvements by sub-polynomial factors such
as polylogarithmic factors or factors of, e.g., 2

√
logn.

Basic Previous Results

In this section, we recall the basic algorithmic results about
MDPs and game graphs known in the literature that we later
use in our algorithms.
Basic result 1: Maximal End-Component Decomposition.
Given an MDP P , an end-component is a set of vertices
X ⊆ V s.t. (1) the subgraph induced by X is strongly con-
nected (i.e., (X,E ∩ X × X) is strongly connected) and
(2) all random vertices have their outgoing edges in X , i.e.,
X is closed for random vertices, formally described as: for
all v ∈ X ∩ VR and all (v, u) ∈ E we have u ∈ X . A max-
imal end-component (MEC) is an end-component which is
maximal under set inclusion. The importance of MECs is
as follows: (i) first it generalizes strongly connected com-
ponents (SCCs) in graphs (with VR = ∅) and closed re-
current sets of Markov chains (with V1 = ∅); and (ii) in
a MEC X from all vertices u ∈ X every vertex v ∈
X can be reached almost-surely. The MEC-decomposition
of an MDP is the partition of the vertex set into MECs
and the set of vertices which do not belong to any MEC.
While MEC-decomposition generalizes SCC decomposition
of graphs, and SCC decomposition can be computed in lin-
ear time (Tarjan 1972, Theorem 13), there is no linear-time
algorithm for MEC-decomposition computation. The cur-
rent best-known algorithmic bound for MEC-decomposition
is O(min(n2,m1.5) = O(m · n2/3)) (Chatterjee and Hen-
zinger 2014, Theorem 3.6, Theorem 3.10).
Basic result 2: Reachability in MDPs. Given an MDP P
and a target set T , the set of starting vertices from which
T can be reached almost-surely can be computed in O(m)
time given the MEC-decomposition of P (Chatterjee et al.
2016, Theorem 4.1). Moreover, for the basic target reacha-
bility problem the current best-known algorithmic bounds
are the same as the MEC-decomposition problem, i.e.,
O(min(n2,m1.5)) = O(m · n2/3) (Chatterjee and Hen-
zinger 2014, Theorem 3.6, Theorem 3.10), and any im-
provement for the MEC-decomposition algorithm also car-
ries over to the basic target reachability problem.
Basic result 3: Reachability in game graphs. Given a game
graph Γ and a target set T , the set of starting vertices from
which player 1 can ensure to reach T against all policies of
player 2, is called player-1 attractor to T and can be com-
puted in O(m) time (Beeri 1980; Immerman 1981).

The above basic results from the literature explain the re-
sult of the first row of Table 1.

Coverage Problem

In this section we consider the coverage problem. First, we
present the algorithms, which are straightforward, and then
focus on the conditional lower bounds for MDPs and game

graphs, which establish that the existing algorithms cannot
be improved under the STC and the OVC.

Algorithms

We present a linear-time algorithm for graphs and quadratic
time algorithm for MDPs and game graphs. The results be-
low present the upper bounds of the second row of Table 1.
Planning in Graphs. For the coverage problem in graphs we
are given a graph G = (V,E), a vertex s ∈ V and target
sets T1, T2, . . . , Tk. The algorithmic problem is to find out if
starting from an initial vertex v the basic target reachability,
i.e., Reach(Ti), can be achieved for all 1 ≤ i ≤ k. The
algorithmic solution is as follows: Compute the BFS tree
starting from s and check if all the targets are contained in
the resulting BFS tree.
Planning in MDPs and Games. For both MDPs and game
graphs with k target sets, the basic algorithm performs k
basic reachability computations, i.e., for each target set Ti,
1 ≤ i ≤ k, the basic target reachability for target set Ti is
computed. (1) For game graphs, using the O(m)-time attrac-
tor computation (see Basic result 3), we have an O(k · m)-
time algorithm. (2) For MDPs, the MEC-decomposition fol-
lowed by k many O(m)-time almost-sure reachability com-
putations (see Basic result 2), gives an O(k ·m+MEC) time
algorithm.

Conditional Lower Bounds

We present CLBs for the coverage problem in MDPs and
game graphs (i.e., the CLBs of the second row of Ta-
ble 1). For MDPs and game graphs the CLBs complement
the quadratic algorithms from the previous subsection. The
CLBs are due to reductions from OV and Triangle.
Sparse MDPs. For sparse MDPs we present a conditional
lower bound based on OVC. To do that we reduce the OV
problem to the coverage problem in MDPs.

Reduction 1. Given two sets S1, S2 of d-dimensional vec-
tors, we build the MDP P as follows. The vertices V of the
MDP are given by a start vertex s, sets of vertices S1 and S2

representing the sets of vectors and vertices C = {ci | 1 ≤
i ≤ d} representing the coordinates of the vectors in the
OVC instance. The edges E of P are defined as follows: The
start vertex s has an edge to every vertex of S1. Furthermore
for each xi ∈ S1 there is an edge to cj ∈ C iff xi[j] = 1
and for each yi ∈ S2 there is an edge from cj ∈ S2 to yi
iff yi[j] = 1. The set of vertices is partitioned into player-1
vertices V1 = S1 ∪ C ∪ S2 and random vertices VR = {s}.

The reduction is illustrated in Figure 2 (the dashed edges
will be used later for the sequential target lower bounds).

Theorem 1. There is no O(m2−ε) or O((k · m)1−ε) (for
any ε > 0) algorithm to check if a vertex v has an a.s. win-
ning policy for the coverage problem in MDPs under Con-
jecture 4 (i.e., unless OVC and SETH fail).

Proof Sketch. Let P = (V,E, 〈V1, VR〉, δ) be the MDP
given by Reduction 1 with target sets Ti = {yi} for i =
1 . . . N . Notice that (a) when starting from s the token is
randomly moved to one of the vertices xi and thus player 1
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can reach each yj almost surely from s iff it can reach each
yj from each xi, and (b) the MDP P is constructed in such a
way that there is no path between vertex xi and yj iff the cor-
responding vectors are orthogonal in the OV instance. That
is, player 1 can reach all the target sets a.s. from s iff there
are no orthogonal vectors in S1 and S2. The MDP has only
O(N) many vertices and Reduction 1 can be performed in
O(N logN) time (recall that d = ω(logN)). The number
of edges m is O(N logN) and the number of target sets
k ∈ θ(N).

Dense MDPs. For dense MDPs we present a condi-
tional lower bound based on boolean matrix multiplication
(BMM). Therefore we reduce the Triangle detection prob-
lem to the coverage problem in MDPs.

Reduction 2. Given an instance of triangle detection, i.e.,
a graph G = (V,E), we build the following MDP P =
(V ′, E′, 〈V ′1 , V ′R〉, δ). The vertices V ′ are given as four
copies V1, V2, V3, V4 of V and a start vertex s. The edges
E′ of P are defined as follows: There is an edge from s to
every v1i ∈ V1 for i = 1 . . . n. In addition for 1 ≤ j ≤ 3
there is an edge from vji to v(j+1)k iff (vi, vk) ∈ E. The set
of vertices V ′ is partitioned into player-1 vertices V ′1 = ∅
and random vertices V ′R = {s} ∪ V1 ∪ V2 ∪ V3 ∪ V4.

The reduction is illustrated in Figure 3 (the dashed edges
will be used later for the sequential target lower bounds).

Theorem 2. There is no combinatorial O(n3−ε) or O((k ·
n2)1−ε) algorithm (for any ε > 0) to check if a vertex has
an a.s. winning policy for the coverage objective in MDPs
under Conjecture 2 (i.e., unless STC and BMM fail). The
bounds hold for dense MDPs with m = θ(n2).

Proof Sketch. Let P be the MDP given by Reduction 2 with
n target sets T1, . . . , Tn. The target set Ti = V1 \ {v1i} ∪
V4 \ {v4i} for i = 1 . . . n. Notice that (a) there is a triangle
in the graph G iff there is a path from some vertex v1i in
the first copy of G to the same vertex in the fourth copy of
G, v4i, and (b) a path starting in s satisfies the objective,
i.e., reaches all target sets a.s., unless it visits a vertex v1i
and also v4i. As each of these paths has non-zero probability
player 1 wins almost-surely from v iff there is no such path
iff there is no triangle in the original graph. Moreover, the
size and the construction time of graph G′ are linear in the
size of the original graph G and we have k = θ(n) target
sets.

Next, we briefly describe how the results for MDPs can
be extended to game graphs.
Reduction from OV. The random starting vertex in the reduc-
tion is changed to a player-2 vertex. The rest of the reduction
stays the same. The proof proceeds as before with the adver-
sary player 2 now overtaking the role of the random choices.

Theorem 3. There is no O(m2−ε) or O((k · m)1−ε algo-
rithm (for any ε > 0) to check if a vertex has a winning
policy for the coverage objective with k reachability objec-
tives in game graphs under Conjecture 4 (i.e., unless OVC
and SETH fail).

Reduction from Triangle. The random vertices in the reduc-
tion are now player-2 vertices. Notice that the resulting game
graph Γ has only player-2 vertices. Now if there is a path
starting from s that is not in the defined coverage objective
then player 2 would simply choose that one and thus player 1
still wins iff there is no such path, i.e., there is no triangle in
the original graph.

Theorem 4. There is no combinatorial O(n3−ε) or O((k ·
n2)1−ε) algorithm (for any ε > 0) to check whether a vertex
v has a winning policy for the coverage objective in game
graphs under Conjecture 2 (i.e., unless STC and BMM fail).
The bounds hold for dense game graphs with m = θ(n2).

Sequential Target Problem

We consider the sequential target problem in graphs, MDPs
and game graphs. In contrast to the quadratic CLB for
the coverage problem, quite surprisingly we present a sub-
quadratic algorithm for MDPs, which as a special case gives
a linear-time algorithm for graphs. For games, we present a
quadratic algorithm and a quadratic CLB.

Algorithms

The results below present the upper bounds of the third row
of Table 1.
Planning in MDPs. We first calculate the MEC-
decomposition of the MDP. Then each MEC is collapsed
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Algorithm 1: Sequential target Reachability for
MEC-free MDPs.

Input: MEC-free MDP P = (V,E, 〈V1, VR〉, δ) and
a tuple of target sets T = (T1, . . . , Tk).

Output: All vertices with a policy for Seq(T ).
1 Lv ← {i | v ∈ Ti : i = 1 . . . k} ∀v ∈ V ;
2 A[i] ← 0 for 1 ≤ i ≤ k;
3 countv ← number of outgoing edges of v;
4 bestv ← null, �v ← null for v ∈ V ;
5 bestv ← k + 1 for v ∈ V with no outgoing edges;
6 S ← V ;
7 Queue Q ← {v ∈ V | v has no outgoing edges};

8 while S �= ∅ do
9 if Q �= ∅ then

10 v = Q.pop();
11 ProcessVertex(v);
12 else
13 v ← argmaxv∈VR∩S bestv;
14 ProcessVertex(v);

15 return {v ∈ V | �v = 1};

16 function ProcessVertex(Vertex v)
17 for i ∈ Lv do A[i] ← 1 ;
18 �v ← bestv;
19 while A[�v − 1] = 1 ∧ �v > 1 do
20 �v ← �v − 1;
21 for i ∈ Lv do A[i] ← 0;
22 S ← S \ {v};
23 for w ∈ {w : (w, v) ∈ E} do
24 if w ∈ V1 then
25 bestw ← min(bestw, �v)
26 else
27 bestw ← max(bestw, �v)
28 countw ← countw − 1;
29 if countw = 0 ∧ w ∈ S then
30 Q.push(w)

into a single vertex, which we set to be a player-1 vertex.
In the target sets, all the vertices of the MEC are replaced
by this new vertex. This does not change the reachability
conditions of the resulting MDP: Every vertex in a MEC
can be visited almost surely from every other vertex in the
same MEC, regardless of their type (player-1, random).
Thus it suffices to present an algorithm for a MEC-free
MDP P = (V,E, 〈V1, VR〉, δ) with tuple of target sets
(T1, . . . , Tk). The vertices in S are the vertices that are
not processed yet and S is initialized with V . Initially,
vertices with no outgoing edges are added into a queue Q.
Throughout the algorithm the queue Q contains the vertices
which have not been processed so far but whose successors
are already processed. While the queue Q is not empty,
a vertex from the queue is processed. When a vertex v is
processed the function ProcessVertex(v) is called.
The function calculates the label �v of the vertex v and

updates variables bestw and countw of the other vertices.
The variable countv counts the number of successors of v
that are not yet processed. The label �v means vertex v has
an almost-sure winning policy for the objective Seq(T�v )
where T�v = (T�v , . . . , Tk). Note that this means that
vertices with label 1 have an almost-sure winning policy
for the objective Seq(T ) where T = {T1, T2, . . . Tk). The
variables bestv are used to store the maximum (for v ∈ VR)
/ minimum (for v ∈ V1) label of the already processed
successors of v. Now when Q is empty, the algorithm has
to process a vertex where not all successors have been
processed yet. In that case, one considers all the random
vertices for which at least one successor has already been
processed and chooses the random vertex with maximum
bestv to process next. (notice that the function argmax
ignores arguments with null values). One can show that, as
the graph has no MECs, whenever Q is empty (and S is not)
there exists such a random vertex. Moreover, whenever Q is
empty, all vertices in the set of unprocessed vertices S have
a policy that satisfies Seq(Tm) for m = maxv∈VR∩S bestv .
Intuitively, this is due to the fact that all vertices v ∈ S can
reach the set of already processed vertices and in the worst
case the reached vertex v′ has lv′ = m and thus a strategy
for Seq(Tm). Thus, for the selected vertex v, we have that
all its successors w will finally have a label �w of at most m,
and, as the current value of bestv is m, there is a successor
w with �w = m. Thus, as v ∈ VR, we have that also the
final value of bestv must be m. Hence, one can already
process v without knowing the labels of all the successors.
Theorem 5. Given an MDP P , a starting vertex s and a
tuple of targets T = (T1, . . . , Tk), we can calculate whether
there is a player-1 policy σ1 at s for the objective Seq(T ) in
O(MEC +m log n+

∑k
i=0 |Ti|) time.

Running Time. Initializing the algorithm takes O(m +
∑k

i=0 |Ti|) time. This is due to the fact that we calcu-
late Lv in O(n + m + k) at Line 1. The other initial-
ization steps take only O(m) time (Lines 2–6). Now con-
sider the while loop. Every vertex v ∈ V is processed
with a call to ProcessVertex(v) once. Evaluating
ProcessVertex(v) takes time linear in the number of
incoming edges of v plus |Lv|. Summing up over all ver-
tices we obtain a O(m +

∑k
i=0 |Ti|) bound. To compute

the argmax function efficiently we have to maintain a pri-
ority queue containing all unprocessed random vertices with
a processed vertex along one of its outgoing edges. As we
have O(m) updates this costs only O(m log n) for one of
the standard implementations of priority queues. Summing
up this yields a O(m log n +

∑k
i=0 |Ti|) running time for

Algorithm 1 and by considering also the time MEC for the
MEC decomposition we obtain the desired bound.
Planning in Graphs. The algorithm for graphs works iden-
tically to the algorithm for MDPs but it does not need the
priority queue. This is due to the fact that Q is always non-
empty and the MEC decomposition reduces to computing
SCCs. We thus obtain a running time of O(m+

∑n
i=1 |Ti|).

Theorem 6. Given a graph G = (V,E), a starting vertex s
and a tuple of targets T = (T1, . . . , Tk), we can calculate
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whether there is a player-1 policy σ1 at a start vertex s for
the objective Seq(T ) in O(m+

∑k
i=1 |Ti|) time.

Planning in Games. For game graphs with the tuple T =
(T1, . . . Tk) and starting vertex s, the basic algorithm per-
forms k player-1 attractor computations, starting with com-
puting the attractor Sk = Attr1(Tk) of Tk, then computing
S� = Attr1(S�+1 ∩ T�) for 1 ≤ � < k, and finally returning
S1. This gives an O(k ·m)-time algorithm.

Conditional Lower Bounds

We present CLBs for game graphs based on the conjectures
STC, SETH and OVC, which establish the CLBs for the
third row of Table 1.
Sparse Game Graphs. For sparse game graphs, we present
conditional lower bounds based on OVC. The reduction is
an extension of Reduction 1, where we (a) again produce
player-2 vertices instead of random vertices and (b) also ev-
ery vertex of S2 has an edge back to s. The reduction is il-
lustrated in Figure 2. For the correctness recall that the game
graph Γ is constructed in such a way that there is no path be-
tween xi and yj iff they are orthogonal in the OV instance.
Notice that each play starting at s revisits s every four steps
and if there is no path between xi and yj then player 2 can
disrupt player 1 from visiting a target yj by moving the to-
ken to xi whenever the token is in s. However, if there is no
such xi and yj , player 2 can not disrupt player 1 from s be-
cause no matter which vertex xi player 2 chooses, player 1
has a policy to reach the next target set.

Theorem 7. There is no O(m2−ε) or O((k · m)1−ε) algo-
rithm (for any ε > 0) to check if a vertex v has a winning
policy for sequential reachability objectives in game graphs
under Conjecture 4 (i.e., unless OVC and SETH fail).

Dense Game Graphs. For dense game graphs, we present
a conditional lower bound based on BMM. The reduction
extends Reduction 2, where we (a) produce player-2 vertices
instead of random vertices and (b) every vertex in the fourth
copy has an edge back to s. The reduction is illustrated in
Figure 3. For the correctness of the reduction recall that there
is a triangle in the graph G iff there is a path from some
vertex v1i in the first copy of G to the same vertex in the
fourth copy of G, v4i. Player 2 then has a policy to always
visit only v1i from the first copy and only v4i from the fourth
copy which prevents player 1 from visiting target Ti.

Theorem 8. There is no combinatorial O(n3−ε) or O((k ·
n2)1−ε) algorithm (for any ε > 0) to check if a vertex v
has a winning policy for sequential reachability objectives
in game graphs under Conjecture 2 (i.e., unless STC and
BMM fail). The bounds hold for dense game graphs with
m = θ(n2).

Discussion and Conclusion

In this work, we study several natural planning problems in
graphs, MDPs, and game graphs, which are basic algorith-
mic problems in artificial intelligence. Our main contribu-
tions are a sub-quadratic algorithm for sequential target in
MDPs, and quadratic conditional lower bounds. Note that

graphs are a special case of both MDPs and game graphs,
and the algorithmic problems are simplest for graphs, and in
all cases, we have linear-time upper bounds. The key high-
light of our results is an interesting separation of MDPs and
game graphs: for basic target reachability, MDPs are harder
than game graphs; for the coverage problem, both MDPs and
game graphs are hard (quadratic CLBs); for sequential target
reachability, game graphs are harder than MDPs.

Remark 5. Note that in Table 1 in the upper bounds for
MDPs (second column) the term m · n2/3 appears consis-
tently, which is the current best-known bound for the MEC-
decomposition problem. For all the upper bound results, any
improvement for the MEC-decomposition bound also car-
ries over and improves the m ·n2/3 term in all entries of Ta-
ble 1. Quite interestingly, for the coverage problem the CLB
shows that the k · m term, which is present alongside the
MEC-decomposition term, cannot be improved (this gives
quadratic CLB), whereas for the sequential target problem,
we present a sub-quadratic upper bound for MDPs.

Our lower bounds based on Conjecture 2 only apply to
combinatorial algorithms (this excludes “algebraic meth-
ods” like fast matrix multiplication). However, notice that
(a) our lower bounds based on Conjecture 4 are not restricted
to combinatorial algorithms, (b) all existing algorithms for
deciding almost-sure winning conditions in MDPs or win-
ning conditions in games on graphs are indeed combina-
torial and thus CLBs for combinatorial algorithms are of
particular interest in our setting, and (c) Conjecture 2 also
gives non-trivial lower bounds for non-combinatorial algo-
rithms, i.e., Ω̃(min{nω,m2ω/(ω+1)}) lower bounds with ω
being the matrix multiplication exponent.

In this work, we clarified the algorithmic landscape of
basic planning problems with CLBs and better algorithms.
An interesting direction of future work would be to consider
CLBs for other polynomial-time problems in planning and
AI in general. For MDPs with sequential targets, we estab-
lish sub-quadratic upper bounds, and hence the techniques of
the paper that establish quadratic CLBs are not applicable.
Other CLB techniques for this problem are an interesting
topic to investigate as future work.
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