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Abstract
Objective—Clinical records contain significant medical information that can be useful to
researchers in various disciplines. However, these records also contain personal health information
(PHI) whose presence limits the use of the records outside of hospitals.

The goal of de-identification is to remove all PHI from clinical records. This is a challenging task
because many records contain foreign and misspelled PHI; they also contain PHI that are ambiguous
with non-PHI. These complications are compounded by the linguistic characteristics of clinical
records. For example, medical discharge summaries, which are studied in this paper, are characterized
by fragmented, incomplete utterances and domain-specific language; they cannot be fully processed
by tools designed for lay language.

Methods and Results—In this paper, we show that we can de-identify medical discharge
summaries using a de-identifier, Stat De-id, based on support vector machines and local context (F-
measure = 97% on PHI). Our representation of local context aids de-identification even when PHI
include out-of-vocabulary words and even when PHI are ambiguous with non-PHI within the same
corpus. Comparison of Stat De-id with a rule-based approach shows that local context contributes
more to de-identification than dictionaries combined with hand-tailored heuristics (F-measure =
85%). Comparison with two well-known named entity recognition (NER) systems, SNoW (F-
measure = 94%) and IdentiFinder (F-measure = 36%), on five representative corpora show that when
the language of documents is fragmented, a system with a relatively thorough representation of local
context can be a more effective de-identifier than systems that combine (relatively simpler) local
context with global context. Comparison with a Conditional Random Field De-identifier (CRFD),
which utilizes global context in addition to the local context of Stat De-id, confirms this finding (F-
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measure = 88%) and establishes that strengthening the representation of local context may be more
beneficial for de-identification than complementing local with global context.

Keywords
automatic de-identification of narrative patient records; local lexical context; local syntactic context;
dictionaries; sentential global context; syntactic information for de-identification

1 Introduction
Medical discharge summaries can be a major source of information for many studies. However,
like all other clinical records, discharge summaries contain explicit personal health information
(PHI) which, if released, would jeopardize patient privacy. In the United States, the Health
Information Portability and Accountability Act (HIPAA) provides guidelines for protecting
the confidentiality of patient records. Paragraph 164.514 of the Administrative Simplification
Regulations promulgated under the HIPAA states that for data to be treated as de-identified,
it must clear one of two hurdles.

1. An expert must determine and document “that the risk is very small that the
information could be used, alone or in combination with other reasonably available
information, by an anticipated recipient to identify an individual who is a subject of
the information.”

2. Or, the data must be purged of a specified list of seventeen categories of possible
identifiers, i.e., PHI, relating to the patient or relatives, household members and
employers, and any other information that may make it possible to identify the
individual [1]. Many institutions consider the clinicians caring for a patient and the
names of hospitals, clinics, and wards to fall under this final category because of the
heightened risk of identifying patients from such information [2,3].

Of the seventeen categories of PHI listed by HIPAA, the following appear in medical discharge
summaries: first and last names of patients, of their health proxies, and of their family members;
identification numbers; telephone, fax, and pager numbers; geographic locations; and dates.
In addition, names of doctors and hospitals are frequently mentioned in discharge summaries;
for this study, we add them to the list of PHI. Given discharge summaries, our goal is to find
the above listed PHI and to replace them with either anonymous tags or realistic surrogates.

Medical discharge summaries are characterized by fragmented, incomplete utterances and
domain-specific language. As such, they cannot be effectively processed by tools designed for
lay language text such as news articles [4]. In addition, discharge summaries contain some
words that can appear both as PHI and non-PHI within the same corpus, e.g., the word
Huntington can be both the name of a person, “Dr. Huntington”, and the name of a disease,
“Huntington’s disease”. They also contain foreign and misspelled words as PHI, e.g., John
misspelled as Jhn and foreign variants such as Ioannes. These complexities pose challenges to
de-identification.

An ideal de-identification system needs to identify PHI perfectly. However, while anonymizing
the PHI, such a system needs to also protect the integrity of the data by maintaining all of the
non-PHI, so that medical records can later be processed and retrieved based on their inclusion
of these terms. Almost all methods that determine whether a target word2, i.e., the word to be
classified as PHI or non-PHI, is PHI base their decision on a combination of features related
to the target itself, to words that surround the target, and to discourse segments containing the

2Or a target phrase, though we will refer here only to target words.
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target. We call the features extracted from the words surrounding the target and from the
discourse segment containing the target the context of the target. In this paper, we are
particularly interested in comparing methods that rely on what we call local context, by which
we mean the words that immediately surround the target (local lexical context) or that are linked
to it by some immediate syntactic relationship (local syntactic context), and global context,
which refers to the relationships of the target with the contents of the discourse segment
containing the target. For example, the surrounding k-tuples of words to the left and right of a
target are common components of local context, whereas a model that selects the highest
probability interpretation of an entire sentence by a Markov model employs sentential global
context (where the discourse segment is a sentence).

In this paper, we present a de-identifier, Stat De-id, which uses local context to de-identify
medical discharge summaries. We treat de-identification as a multi-class classification task;
the goal is to consider each word in isolation and to decide whether it represents a patient,
doctor, hospital, location, date, telephone, ID, or non-PHI. We use Support Vector Machines
(SVMs), as implemented by LibSVM [5], trained on human-annotated data as a means to this
end.

Our representation of local context benefits from orthographic, syntactic, and semantic
characteristics of each target word and the words within a ±2 context window of the target.
Other models of local context have used the features of words immediately adjacent to the
target word; our representation is more thorough as it includes (for a ±2 context) local syntactic
context, i.e., the features of words that are linked to the target by syntactic relations identified
by a parse of the sentence. This novel representation of local syntactic context uses the Link
Grammar Parser [6], which can provide at least a partial syntactic parse even for incomplete
and fragmented sentences [7]. Note that syntactic parses can be generally regarded as sentential
features. However, in our corpora, more than 40% of the sentences only partially parse. The
features extracted from such partial parses represent phrases rather than sentences and
contribute to local context. For sentences that completely parse, our representation benefits
from syntactic parses only to the extent that they help us relate the target to its immediate
neighbors (within 2 links), again extracting local context.

On five separate corpora obtained from Partners Healthcare and Beth Israel Deaconess Medical
Center, we show that despite the fragmented and incomplete utterances and the domain-specific
language that dominate the text of discharge summaries, we can capture the patterns in the
language of these documents by focusing on local context; we can use these patterns for de-
identification. Stat De-id, presented in this paper, is built on this hypothesis. It finds more than
90% of the PHI even in the face of ambiguity between PHI and non-PHI, and even in the
presence of foreign words and spelling errors in PHI.

We compare Stat De-id with a rule-based heuristic+dictionary approach [8] two named entity
recognizers, SNoW [9] and IdentiFinder [10], and a Conditional Random Field De-identifier
(CRFD). SNoW and IdentiFinder also use local context; however, their representation of local
context is relatively simple and, for named entity recognition (NER), is complemented with
information from sentential global context, i.e., the dependencies of entities with each other
and with non-entity tokens in a single sentence. CRFD, developed by us for the studies
presented in this paper, employs the exact same local context used by Stat De-id and reinforces
this local context with sentential global context. In this manuscript, we refer to sentential global
context simply as global context. Because medical discharge summaries contain many short,
fragmented sentences, we hypothesize that global context will add limited value to local context
for de-identification, and that strengthening the representation of local context will be more
effective for improving de-identification. We present experimental results to support this
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hypothesis: On our corpora, Stat De-id significantly outperforms all of SNoW, IdentiFinder,
CRFD, and the heuristic+dictionary approach.

The performance of Stat De-id is encouraging and can guide research in identification of entities
in corpora with fragmented, incomplete utterances and even domain-specific language. Our
results show that even on such corpora, it is possible to create a useful representation of local
context and to identify the entities indicated by this context.

2 Background and Related Work
A number of investigators have developed methods for de-identifying medical corpora or for
recognizing named entities in non-clinical text (which can be directly applied to at least part
of the de-identification problem). The two main approaches taken have been either (a) use of
dictionaries, pattern matching, and local rules or (b) statistical methods trained on features of
the word(s) in question and their local or global context. Our work on Stat De-id falls into the
second of these traditions and differs from others mainly in its use of novel local context
features determined from a (perhaps partial) syntactic parse of the text.

2.1 De-identification
Most de-identification systems use dictionaries and simple contextual rules to recognize PHI
[8,11]. Gupta et al. [11], for example, describe the DeID system which uses the U.S. Census
dictionaries to find proper names, employs patterns to detect phone numbers and zip codes,
and takes advantage of contextual clues (such as section headings) to mark doctor and patient
names. Gupta et al. report that, after scrubbing with DeID, of the 300 reports scrubbed, two
reports still contained accession numbers, two reports contained clinical trial names, three
reports retained doctors’ names, and three reports contained hospital or lab names.

Beckwith et al. [12] present a rule-based de-identifier for pathology reports. Unlike our
discharge summaries, pathology reports contain significant header information. Beckwith et
al. identify PHI that appear in the headers (e.g., medical record number and patient name) and
remove the instances of these PHI from the narratives. They use pattern-matchers to find dates,
IDs, and addresses; they utilize well-known markers such as Mr., MD, and PhD to find patient,
institution, and physician names. They conclude their scrubbing by comparing the narrative
text with a database of proper names. Beckwith et al. report that they remove 98.3% of unique
identifiers in pathology reports from three institutions. They also report that on average 2.6
non-PHI phrases per record are removed.

The de-identifier of Berman [13] takes advantage of standard nomenclature available in UMLS.
This system assumes that words that do not correspond to nomenclature and that are not in a
standard list of stop words are PHI and need to be removed. As a result, this system produces
a large number of false positives.

Sweeney’s Scrub system [3] employs numerous experts each of which specializes in
recognizing a single class of personally-identifying information, e.g., person names. Each
expert uses lexicons and morphological patterns to compute the probability that a given word
belongs to the personally-identifying information class it specializes in. The expert with the
highest probability determines the class of the word. On a test corpus of patient records and
letters, Scrub identified 99–100% of personally-identifying information. Unfortunately, Scrub
is a proprietary system and is not readily available for use.

To identify patient names, Taira et al. [14] use a lexical analyzer that collects name candidates
from a database and filters out the candidates that match medical concepts. They refine the list
of name candidates by applying a maximum entropy model based on semantic selectional
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restrictions—the hypothesis that certain word classes impose semantic constraints on their
arguments, e.g., the verb vomited implies that its subject is a patient. They achieve a precision
of 99.2% and recall of 93.9% on identification of patient names in a clinical corpus.

De-identification resembles NER. NER is the task of identifying entities such as people, places,
and organizations in narrative text. Most NER tasks are performed on news and journal articles.
However, given the similar kinds of entities targeted by de-identification and NER, NER
approaches can be relevant to de-identification.

2.2 Named Entity Recognition
Much NER work has been inspired by the Message Understanding Conference (MUC) and by
the Entity Detection and Tracking task of Automatic Content Extraction (ACE) conference
organized by the National Institute of Standards and Technology. Technologies developed for
ACE-2007, for example, have been designed for and evaluated on several individual corpora:
a 65000-word Broadcast News corpus, a 47500-word Broadcast Conversations corpus, a
60000-word Newswire corpus, a 47500-word Weblog corpus, a 47500-word Usenet corpus,
and a 47500-word Conversational Telephone Speech corpus [15].

One of the most successful named entity recognizers, among the NER systems developed for
and outside of MUC and ACE, is IdentiFinder [10]. IdentiFinder uses a Hidden Markov Model
(HMM) to learn the characteristics of names that represent entities such as people, locations,
geographic jurisdictions, organizations, and dates. For each entity class, IdentiFinder learns a
bigram language model, where a word is defined as a combination of the actual lexical unit
and various orthographic features. To find the names and classes of all entities, IdentiFinder
computes the most likely sequence of entity classes in a sentence given the observed words
and their features. The information obtained from the entire sentence constitutes IdentiFinder’s
global context.

Isozaki and Kazawa [16] use SVMs to recognize named entities in Japanese text. They
determine the entity type of each target word by employing features of the words within two
words of the target (a ±2 word window). The features they use include the part of speech and
the structure of the word, as well as the word itself.

Roth and Yih’s SNoW system [9] labels the entities and their relationships in a sentence. The
relationships expressed in the sentence constitute SNoW’s global context and aid it in creating
a final hypothesis about the entity type of each word. SNoW recognizes names of people,
locations, and organizations.

Our de-identification solution combines the strengths of some of the abovementioned systems.
Like Isozaki et al., we use SVMs to identify the class of individual words (where the class is
one of seven categories of PHI or the class non-PHI); we use orthographic information as well
as part of speech and local context as features. Like Taira et al., we hypothesize that PHI
categories are characterized by their local lexical and syntactic context. However, our approach
to de-identification differs from prior NER and de-identification approaches in its use of deep
syntactic information obtained from the output of the Link Grammar Parser [6]. We benefit
from this information to capture local syntactic context even when parses are partial, i.e., input
text contains fragmented and incomplete utterances. We enrich local lexical context with local
syntactic context and thus create a more thorough representation of local context. We use our
newly defined representation of local context to identify PHI in clinical text.

3 Definitions
We define the PHI found in medical discharge summaries as follows:
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• Patients: include the first and last names of patients, their health proxies, and family
members. Titles, such as Mr., are excluded, e.g., “Mrs. [Lunia Smith]patient was …”.

• Doctors: include medical doctors and other practitioners. Again titles, such as Dr.,
are not considered part of PHI, e.g., “He met with Dr. [John Doe]doctor”.

• Hospitals: include names of medical organizations. We categorize the entire
institution name as PHI including common words such as hospital, e.g., “She was
admitted to [Brigham and Women’s Hospital]hospital”.

• IDs: refer to any combination of numbers and letters identifying medical records,
patients, doctors, or hospitals, e.g., “Provider Number: [12344]ID”.

• Dates: HIPAA specifies that years are not considered PHI, but all other elements of
a date are. We label a year appearing in a date as PHI if the date appears as a single
lexical unit, e.g., 12/02/99, and as non-PHI if the year exists as a separate token, e.g.,
23 March, 2006. This decision was motivated by the fact that many solutions to de-
identification and NER classify entire tokens as opposed to segments of a token. Also,
once identified, dates such as 12/02/99 can be easily post-processed to separate the
year from the rest.

• Locations: include geographic locations such as cities, states, street names, zip codes,
and building names and numbers, e.g., “He lives in [Newton]location”.

• Phone numbers: include telephone, pager, and fax numbers.

4 Hypotheses
We hypothesize that we can de-identify medical discharge summaries even when the
documents contain many fragmented and incomplete utterances, even when many words are
ambiguous between PHI and non-PHI, and even in the presence of foreign words and spelling
errors in PHI. Given the nature of the domain-specific language of discharge summaries, we
hypothesize that a thorough representation of local context will be more effective for de-
identification than (relatively simpler) local context enhanced with global context; in this
manuscript, local context refers to the characteristics of the target and of the words within a
±2 context window of the target whereas global context refers to the dependencies of entities
with each other and with non-entity tokens in a sentence.

5 Corpora
We tested our methods on five different corpora, three of which were developed from a corpus
of 48 discharge summaries from various medical departments at the Beth Israel Deaconess
Medical Center (BIDMC), the fourth of which consisted of authentic data including actual PHI
from 90 discharge summaries of deceased patients from Partners HealthCare, and the fifth of
which came from a corpus of 889 de-identified discharge summaries, also from Partners. The
sizes of these corpora and the distribution of PHI within them are shown in Table 1. The
collection and use of these data were approved by the Institutional Review Boards of Partners,
BIDMC, State University of New York at Albany, and Massachusetts Institute of Technology.

A successful de-identification scheme must achieve two competing objectives: it must
anonymize all PHI in the text; however, it must leave intact the non-PHI. Two of the major
challenges to achieving these objectives in medical discharge summaries are the existence of
ambiguous PHI and the existence of out-of-vocabulary PHI.

Four of our corpora were specifically created to test our system in the presence of these
challenges. Three of these artificial corpora were based on the corpus of 48 already de-
identified discharge summaries from BIDMC. In this corpus, the PHI had been replaced by
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[REMOVED] tags (see excerpt below). This replacement had been performed semi-
automatically. In other words, the PHI had been removed by an automatic system [8] and the
output had been manually scrubbed. Before studying this corpus, our team confirmed its
correctness.

HISTORY OF PRESENT ILLNESS: The patient is a 77-year-old woman with long
standing hypertension who presented as a Walk-in to me at the [REMOVED] Health
Center on [REMOVED]. Recently had been started q.o.d. on Clonidine since
[REMOVED] to taper off of the drug. Was told to start Zestril 20 mg. q.d. again. The
patient was sent to the [REMOVED] Unit for direct admission for cardioversion and
anticoagulation, with the Cardiologist, Dr. [REMOVED] to follow.

SOCIAL HISTORY: Lives alone, has one daughter living in [REMOVED]. Is a non-
smoker, and does not drink alcohol.

HOSPITAL COURSE AND TREATMENT: During admission, the patient was seen
by Cardiology, Dr. [REMOVED], was started on IV Heparin, Sotalol 40 mg PO b.i.d.
increased to 80 mg b.i.d., and had an echocardiogram. By [REMOVED] the patient
had better rate control and blood pressure control but remained in atrial fibrillation.
On [REMOVED], the patient was felt to be medically stable.

…

We used the definitions of PHI classes in conjunction with local contextual clues to identify
the PHI category corresponding to each of the [REMOVED] phrases in this corpus. We used
dictionaries of common names from the U.S. Census Bureau, dictionaries of hospitals and
locations from online sources, and lists of diseases, treatments, and diagnostic tests from the
UMLS Metathesaurus to generate surrogate PHI for three corpora: a corpus populated with
random surrogate PHI [8], a corpus populated with ambiguous surrogate PHI, and a corpus
populated with out-of-vocabulary surrogate PHI. The surrogate PHI inserted into each of the
corpora represent the common patterns associated with each PHI class. The name John K.
Smith, for example, can appear as John K. Smith, J. K. Smith, J. Smith, Smith, John, etc. The
date July 5th 1982 can be expressed as July 5, 5th of July, 07/05/82, 07-05-82, etc.

5.1 Corpus Populated with Random PHI
We randomly selected names of people from a dictionary of common names from the U.S.
Census Bureau, and names of hospitals and locations from online dictionaries in order to
generate surrogate PHI for the corpus with random PHI (Details of these dictionaries can be
found in Dictionary Information section). After manually tagging the PHI category of each
[REMOVED] phrase, we replaced each [REMOVED] with a random surrogate from the
correct PHI category and dictionary. In the rest of this paper, we refer to this corpus as the
random corpus. The first column of Table 1 shows the breakdown of PHI in the random corpus.

5.2 Corpus Populated with Ambiguous PHI
To generate a corpus containing ambiguous PHI, two graduate students marked medical
concepts corresponding to diseases, tests, and treatments in the de-identified corpus.
Agreement, as measured by Kappa, on marking these concepts was 93%. The annotators
discussed and resolved their differences, generating a single gold standard for medical
concepts.

We used the marked medical concepts to generate ambiguous surrogate PHI with which to
populate the de-identified corpus. In addition to the people, hospital, and location dictionaries
employed in generating the random corpus, we also used lists of diseases, treatments, and
diagnostic tests from the UMLS Metathesaurus in order to locate examples of medical terms
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that occur in the narratives of our records and to deliberately inject these terms into the surrogate
patients, doctors, hospitals, and locations (with appropriate formatting). This artificially
enhanced the occurrence of challenging examples such as “Mr. Huntington suffers from
Huntington’s disease” where the first occurrence of “Huntington” is a PHI and the second is
not. The ambiguous terms we have injected into the corpus were guaranteed to appear both as
PHI and as non-PHI in this corpus.

In addition to the ambiguities resulting from injection of medical terms into patients, doctors,
hospitals, and locations, this corpus also already contained ambiguities between dates and non-
PHI. Many dates appear in the format 11/17, a common format for reporting medical
measurements. In our corpus, 14% of dates are ambiguous with non-PHI. After injection of
ambiguous medical terms, 49% of patients, 79% of doctors, 100% of locations, and 14% of
hospitals are ambiguous with non-PHI. In return, 20% of non-PHI are ambiguous with PHI.
In the rest of this paper, we refer to this corpus as the ambiguous corpus. The second column
of Table 1 shows the distribution of PHI in the ambiguous corpus; Table 2 shows the
distribution of tokens that are ambiguous between PHI and non-PHI.

5.3 Corpus Populated with Out-of-Vocabulary PHI
The corpus containing out-of-vocabulary PHI was created by the same process used to generate
the random corpus. However, instead of using dictionaries, we generated surrogates by
randomly selecting word lengths and letters, e.g., “O. Ymfgi was admitted …”. Almost all
generated patient, doctor, location, and hospital names were consequently absent from common
dictionaries. In the rest of this paper, we refer to this corpus as the out-of-vocabulary (OoV)
corpus. The third column of Table 1 shows the distribution of PHI in the OoV corpus.

5.4 Authentic Discharge Summary Corpus
In addition to the artificial corpora, we obtained and used a corpus of authentic discharge
summaries with genuine PHI about deceased patients. In the rest of this paper, we refer to this
corpus as the authentic corpus.

The authentic corpus contained approximately 90 discharge summaries of various lengths from
various medical departments from Partners HealthCare. This corpus differed from the artificial
corpora obtained from BIDMC in both the writing style and in the distribution and frequency
of use of PHI. However, it did contain the same basic categories of PHI. Three annotators
manually marked the PHI in this corpus so that each record was marked three times. Agreement
among the annotators, as measured by Kappa, was 100%. As with artificial corpora, we
automatically de-identified the narrative portions of these records. The fourth column of Table
1 shows the break-down of PHI in the authentic discharge summary corpus.

5.5 Challenge Corpus
Finally, we obtained and used a separate, larger corpus of 889 discharge summaries, again from
Partners HealthCare. This corpus, which had formed the basis for a workshop and shared-task
on de-identification organized at the 2006 AMIA Fall Symposium, had been manually de-
identified and all authentic PHI in it had been replaced with realistic out-of-vocabulary or
ambiguous surrogates [17]. Of the surrogate PHI tokens in this corpus, 73% of patients, 67%
of doctors, 56% of locations, and 49% of hospitals were out-of-vocabulary. 10% of patients,
15% of doctors, 10% of locations, and 37% of hospitals were ambiguous with non-PHI. This
corpus thus combined the challenges of out-of-vocabulary and ambiguous PHI de-
identification. In the rest of this paper, we refer to this corpus as the challenge corpus. The fifth
column of Table 1 shows the breakdown of PHI in the challenge discharge summary corpus.
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In general, our corpora include non-uniform representation of various PHI categories. What is
more, in terms of overall number of tokens, although our authentic and challenge corpora are
larger than the standard corpora used for NER shared-tasks organized by NIST, our random,
ambiguous, and out-of-vocabulary corpora contain very few examples of some of the PHI
categories, e.g., 24 examples of locations. Therefore, in this manuscript, while we maintain the
distinction among the PHI categories for classification, we report results on the aggregate set
of PHI consisting of patients, doctors, locations, hospitals, dates, IDs, and phone numbers. We
measure the performance of systems in differentiating this aggregate set of PHI from non-PHI.
We report significance test results on the aggregate set of PHI and on non-PHI separately.
Finally, we analyze the performance of our system on individual PHI categories only to
understand its strengths and weaknesses on our data so as to identify potential courses of action
for future work.

While access to more and larger corpora is desirable, freely-available corpora for training de-
identifiers are not common, and until de-identification research becomes more successful and
accepted, it will require large investments in human reviewers to create them. Even then,
multiple rounds of human review of the records may not be satisfactory for the Institutional
Review Boards to allow widespread and unhindered use of clinical records for de-identification
research. Even for those who can obtain the data, the use of the records may be limited to a
particular task [17].

6 Methods: Stat De-id
Categories of PHI are often characterized by local context. For example, the word Dr. before
a name invariably suggests that the name is that of a doctor. While titles such as Dr. provide
easy context markers, other clues may not be as straightforward, especially when the language
of documents is dominated by fragmented and incomplete utterances. We created a
representation of local context that is useful for recognizing PHI even in fragmented,
incomplete utterances.

We devised Stat De-id, a de-identifier that uses SVMs, to classify each word in the sentence
as belonging to one of eight categories: doctor, location, phone, address, patient, ID, hospital,
or non-PHI. Stat De-id uses features of the target, as well as features of the words surrounding
the target in order to capture the contextual clues human annotators found useful in de-
identification. We refer to the features of the target and its close neighbors as local context.

Stat De-id is distinguished from similar approaches in its use of syntactic information extracted
from the Link Grammar Parser [6]. Despite the fragmented nature of the language of discharge
summaries, we can obtain (partial) syntactic parses from the Link Grammar Parser [7] and we
can use this information in creating a representation of local context. We augment the syntactic
information with semantic information from medical dictionaries, such as the Medical Subject
Headings (MeSH) of the Unified Medical Language System (UMLS) [18]. Stat De-id will be
freely available through the i2b2 Hive, https://www.i2b2.org/resrcs/hive.html, a common tools
distribution mechanism of the National Centers for Biological Computing project on
Informatics for Integrating Biology and the Bedside (i2b2) that partially funded its
development.

6.1 Support Vector Machines
Given a collection of data points represented by multi-dimensional vectors and class labels,
(xi, yi), i = 1, …, l where xi ∈ Rn and yi ∈ {1, −1}l, SVMs [5,19] optimize:

(1)
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(2)

where C>0 is the penalty parameter, ξi is a measure of misclassification error, and w is the
normal to the plane. This optimization maps input training vectors, xi, to a higher dimensional
space given by the function, φ. SVMs find a hyperplane that in this space best separates the
data points according to their class. To prevent over-fitting, the hyperplane is chosen so as to
maximize the distance between the hyperplane and the closest data point in each class. The
data points that are closest to the discovered hyperplane are called the support vectors. Given
a data point whose class is unknown, an SVM determines on which side of the hyperplane the
point lies and labels it with the corresponding class [19]. The kernel function:

(3)

plays a role in determining the optimal hyperplane and encodes a “similarity measure between
two data points” [20]. In this paper, we explore a high dimensional feature space which can be
prone to over-fitting. To minimize this risk, we employ the linear kernel

(4)

and investigate the impact of various features on de-identification.

The choice of SVMs over other classifiers is motivated by their capability to robustly handle
large feature sets; in our case, the number of features in the set is on the order of thousands.
SVMs tend to be robust to the noise that is frequently present in such high dimensional feature
sets [19]. In addition, while “classical learning systems like neural networks suffer from their
theoretical weakness, e.g., back-propagation usually converges only to locally optimal
solutions.” [21], in comparison to other neural classifiers, SVMs are often more successful in
finding globally optimum solutions [22].

Conditional Random Fields (CRF) [23] provide a viable alternative to SVMs. Just like SVMs,
CRFs can “handle many dependent features”; however, unlike SVMs, they also can “make
joint inference over entire sequences” [24]. In our case, predictions over entire sequences
correspond to global context. Given our interest in using local context, for the purposes of this
manuscript, we focus primarily on SVMs. We use CRFs as a basis for comparison, in order to
gauge the contribution of sentential global context to local context. We employ the multi-class
SVM implementation of LIBSVM [5]. This implementation builds a multi-class classifier from
several binary classifiers using one-against-one voting.

6.2 Knowledge Representation
We use a vector to represent our features for use with an SVM. In this vector, each row
corresponds to a single target and each column represents the possible values of all features of
all targets in the training corpus. For example, suppose the first feature under consideration is
dictionary information, i.e., the dictionaries that the target appears in, and the second is the part
of speech of the target. Let w be the number of unique dictionaries relevant to the training
corpus, and p be the number of unique parts of speech in the training corpus. Then, the first
w columns of the feature vector represent the possible dictionaries. We mark the dictionaries
that contain the target by setting the value of their entry(ies) (where an entry is the intersection
of a row and a column) to one; all other dictionary entries for that target will be zero. Similarly,
let’s assume that the next p columns of the vector represent the possible values of parts of
speech extracted from the training corpus; we mark the part of speech of the target by setting
that entry to one and leaving the other part-of-speech entries at zero.
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The vector that is fed into the SVM is concatenation of individual feature vectors that capture
the target itself, the lexical bigrams of the target, use of capitalization, punctuation, or numbers
in the target, and the length of the target, part-of-speech of the target, as well as syntactic
bigrams, MeSH IDs, dictionary information, and section headings of the target.

We evaluate our system using cross-validation. At each round of cross-validation, we recreate
the feature vector based on the training corpus used for that round, i.e., the feature vector does
not overfit to the validation set.

6.3 Lexical and Orthographic Features
6.3.1 The target itself—Some words consistently occur as non-PHI. Taking the word itself
into consideration allows the classifier to learn that certain words, such as and and they, are
never PHI.

We incorporate the target word feature into our knowledge representation using a vector of all
unique words in the training corpus. We mark unique words after normalization using UMLS’s
Norm [18]. We mark each target word feature by setting the value of the entry corresponding
to the target to one and leaving all other entries at zero.

6.3.2 Lexical Bigrams—The context of the target can reveal its identity. For example, in a
majority of the cases, the bigram admitted to is followed by the name of a hospital. Similarly,
the bigram was admitted is preceded by the patient. To capture such indicators of PHI, we
consider uninterrupted strings of two words occurring before and after the target. We refer to
these strings as lexical bigrams.

We keep track of lexical bigrams using a vector that contains entries for both left and right
lexical bigrams of the target. The columns of the vector correspond to all lexical bigrams that
are observed in the training corpus. We mark the left and right lexical bigrams of a target by
setting their entries to one and leaving the rest of the lexical bigram entries at zero.

6.3.3 Capitalization—Orthographic features such as capitalization can aid identification of
PHI. Most names, i.e., names of locations as well as people, usually begin with a capital letter.
We represent capitalization information in the form of a single column vector which for each
target (row) contains an entry of one if the target is capitalized and zero if it is not.

6.3.4 Punctuation—Dates, phone numbers, and IDs tend to contain punctuation. Including
information about the presence or absence of “−” or “/” in the target helps us recognize these
categories of PHI. Punctuation information is incorporated into the knowledge representation
in a similar manner to capitalization.

6.3.5 Numbers—Dates, phone numbers, and IDs consist of numbers. Information about the
presence or absence of numbers in the target can help us assess the probability that the target
belongs to one of these PHI categories. Presence of numbers in a target is incorporated into
the knowledge representation in a similar manner to capitalization.

6.3.6 Word Length—Certain entities are characterized by their length, e.g., phone numbers.
For each target, we mark its length in terms of characters by setting the vector entry
corresponding to its length to one.

6.4 Syntactic Features
6.4.1 Part of Speech—Most PHI instances are more likely to be nouns than adjectives or
verbs. We obtain information about the part of speech of words using the Brill tagger [25].

Uzuner et al. Page 11

Artif Intell Med. Author manuscript; available in PMC 2009 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Brill first uses lexical lookup to assign to each word its most likely part-of-speech tag; it then
refines each tag, as necessary, based on the tags immediately surrounding it.

In addition to the part of speech of the target, we also consider the parts of speech of the words
within a ±2 context window of the target. This information helps us capture some syntactic
patterns without fully parsing the text. We include part of speech information in our knowledge
representation via a vector that contains entries for all parts of speech present in the training
corpus. We mark the part of speech of a target by setting its entry to one and leaving the rest
of the part-of-speech entries in the vector at zero.

6.4.2 Syntactic Bigrams—Syntactic bigrams capture the local syntactic dependencies of
the target, and we hypothesize that particular types of PHI in discharge summaries occur within
similar syntactic structures. For example, patients are often the subject of the passive
construction was admitted, e.g., “John was admitted yesterday”. The same syntactic
dependency exists in the sentence “John, who had hernia, was admitted yesterday”, despite the
differences in the immediate lexical context of John and was admitted.

Link Grammar Parser: To extract syntactic dependencies between words, we use the Link
Grammar Parser. This parser’s computational efficiency, robustness, and explicit
representation of syntactic dependencies make it appealing for use even on our fragmented text
[7,26,27].

The Link Grammar Parser models words as blocks with left and right links. This parser imposes
local restrictions on the type of links, out of 107 main link types, that a word can have with
surrounding words. A successful parse of a sentence satisfies the link requirements of each
word in the sentence.

The Link Grammar Parser has several features that increase robustness in the face of
ungrammatical, incomplete, fragmented, or complex sentences. In particular, the lexicon
contains generic definitions “for each of the major parts of speech: noun, verb, adjective, and
adverb.” When the parser encounters a word that does not appear in the lexicon, it replaces the
word with each of the generic definitions and attempts to find a valid parse.

This parser can also be set to enter a less scrupulous “panic mode” if a valid parse is not found
within a given time limit. The panic mode comes in very handy when text includes fragmented
or incomplete utterances; this mode allows the parser to suspend some of the link requirements
so that it can output partial parses [7]. As we are concerned with local context, these partial
parses are often sufficient.

Using Link Grammar Parser Output as an SVM Input: The Link Grammar Parser produces
the following structure for the sentence:3

“John lives with his brother.”

3Wd links the main clause back to the LEFT-WALL; Ss links singular nouns to singular verb forms; MVp connects verbs to their
(prepositional) modifying phrases; Js links prepositions to their objects; Ds links determiners to nouns; and Xp links periods to words
[28].
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This structure shows that the verb lives has an Ss connection to its singular subject John on the
left and an MVp connection to its modifying preposition with on the right. To use such syntactic
dependency information obtained from the Link Grammar Parser, we created a novel
representation that captures the syntactic context, i.e., the immediate left and right
dependencies, of each word. We refer to this novel representation as “syntactic n-grams”;
syntactic n-grams capture all the words and links within n connections of the target. For
example, for the word lives in the parsed sentence, we extract all of its immediate right
connections (where a connection is a pair consisting of the link name and the word linked to)
—in this case the set {(with, MVp)}. We represent the right syntactic unigrams of the word
with this set of connections. For each element of the right unigram set thus extracted, we find
all of its immediate right connections—in this case {(brother, Js)}. The right syntactic bigram
of the word lives is then {{(with, MVp)}, {(brother, Js)}}. The left syntactic bigram of lives,
obtained through a similar process, is {{(LEFT WALL, Wd)}, {(John, Ss)}}. For words with
no left or right links, we create their syntactic bigrams using the two words immediately
surrounding them with a link value of NONE. Note that when words have no links, this
representation implicitly reverts back to uninterrupted strings of words (which we refer to as
lexical n-grams).

To summarize, the syntactic bigram representation consists of: the right-hand links originating
from the target; the words linked to the target through single right-hand links (call this set
R1); the right-hand links originating from the words in R1; the words connected to the target
through two right-hand links (call this set R2); the left-hand links originating from the target;
the words linked to the target though single left-hand links (call this set L1); the left-hand links
originating from the words in L1; and the words linked to the target through two left-hand links
(call this set L2). The vector representation of syntactic bigrams sets the entries corresponding
to L1, R1, L2, R2, and their links to target to one; the rest of the entries are set to zero.

In our corpus, syntactic bigrams provide stable, meaningful local context. We find that they
are particularly useful in eliminating the (sometimes irrelevant) local lexical context often
introduced by relative clauses, (modifier) prepositional phrases, and adverbials. Even when
local lexical context shows much variation, syntactic bigrams remain stable. For example,
consider the sentences “She lives in Hatfield”, “She lives by herself in Hatfield”, and “She
lives alone in Hatfield”,, which we adopted from actual examples in our data. In these sentences,
the lexical bigrams of Hatfield differ; however, in all of them, Hatfield has the left syntactic
bigram {{(lives, MVp), {(in, Js)}}.

“She lives in Hatfield.”

“She lives alone in Hatfield.”

“She lives by herself in Hatfield.4”
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Similarly, in the sentences “She was taken to Deaconess Hospital”, “She was taken by car to
Deaconess Hospital”, and “She was taken by his brother to Deaconess Hospital”, lexical local
context of Deaconess varies but local syntactic context remains stable.5

“She was taken to Deaconess.”

“She was taken by car to Deaconess.”

“She was taken by her brother to Deaconess.”

In our corpus, we find that some verbs, e.g., live, admit, discharge, transfer, follow up, etc.,
have stable local syntactic context which can be relied on even in the presence of much variation
in local lexical context. For example, a word that has the left syntactic bigram of {{(follow,
MVp), {(on, ON)}} is usually a date; a word that has the left syntactic bigram of {{(follow,
MVp), {(with, Js)}} is usually a doctor; and a word that has the left syntactic bigram of
{{(follow, MVp)}, {(at, Js)}} is usually a hospital.

“The patient will follow up on November 20 at Beth-Israel.6”

“She is to follow up with Dr. John at Shapiro.7”

4“J connects prepositions to their objects” [28].
5Pv links verb be to the following passive participle; MVa connects verbs to adverbs; “ID marks the idiomatic strings found in the link
grammar dictionary” [28].
6“I connects verbs with infinitives”; “K connects verbs with particles like in, out,” etc.,; “ON connects the preposition on to time
expressions”; “TM connects month names to day numbers” [28].
7“TO connects verbs and adjectives which take infinitival complements to the word to”; “G connects proper nouns together in
series”; Xi connects punctuation symbols to abbreviations [28].
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6.5 Semantic Features
6.5.1 MeSH ID—We use the MeSH ID of the noun phrase containing the target as a feature
representing the word. MeSH maps biological terms to descriptors, which are arranged in a
hierarchy. There are 15 high-level categories in MeSH: e.g., A for Anatomy, B for Organism,
etc. Each category is divided up to a depth of 11. MeSH descriptors have unique tree numbers
which represent their position in this hierarchy. We find the MeSH ID of phrases by shallow
parsing the text to identify noun phrases and exhaustively searching each phrase in the UMLS
Metathesaurus. We conjecture that this feature will be useful in distinguishing medical non-
PHI from PHI: unlike most PHI, medical terms such as diseases, treatments, and tests have
MeSH ID’s.

We include the MeSH ID’s in our knowledge representation via a vector that contains entries
for all MeSH ID’s in the training corpus. We mark the MeSH ID of a target by setting its entry
to one and leaving the rest of the MeSH ID entries at zero.

6.5.2 Dictionary Information—Dictionaries are useful in detecting common PHI. We use
information about the presence of the target and of words within a ±2 word window of the
target in location, hospital, and name dictionaries. The dictionaries used for this purpose
include:

• A dictionary of names, from U.S. Census Bureau [29], consisting of:
– 1,353 male first names, including the 100 most common male first names in

the U.S., covering approximately 90% of the U.S. population.
– 4,401 female first names, including the 100 most common female first names

in the U.S., covering approximately 90% of the U.S. population.
– 90,000 last names, including the 100 most common last names in the U.S.,

covering 90% of the U.S. population.
• A dictionary of locations, from U.S. Census [30] and from WorldAtlas [31], consisting

of names of 3606 major towns and cities in New England (the location of the hospital
from which the corpora were obtained), in the U.S., and around the world.

• And, a dictionary of hospitals, from Douglass [8], consisting of names of 369 hospitals
in New England.

We added to these a dictionary of dates, consisting of names and abbreviations of months, e.g.,
January, Jan, and names of the days of the week. The overlap of these dictionaries with each
of our corpora is shown in Table 3. The incorporation of dictionary information into the vector
representation has been discussed in the Knowledge Representation section.

6.5.3 Section Headings—Discharge summaries have a repeating structure that can be
exploited by taking into consideration the heading of the section in which the target appears,
e.g., HISTORY OF PRESENT ILLNESS. In particular, the headings help determine the types
of PHI that appear in the templated parts of the text. For example, dates follow the DISCHARGE
DATE heading. The section headings have been incorporated into the feature vector by setting
the entry corresponding to the relevant section heading to one and leaving the entries
corresponding to the rest of section headings at zero.
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7 Baseline Approaches
We compared Stat De-id with a scheme that relies heavily on dictionaries and hand-built
heuristics [8], with Roth and Yih’s SNoW [9], with BBN’s IdentiFinder [10], and with our in-
house Conditional Random Field De-identifier (CRFD). SNoW, IdentiFinder, and CRFD take
into account dependencies of entities with each other and with non-entity tokens in a sentence,
i.e., sentential global context, while Stat De-id focuses on each word in the sentence in isolation,
using only local context provided by a few surrounding words and the words linked by close
syntactic relationships. We chose these baseline schemes to explore the contributions of local
and global context to de-identification in clinical narrative text.

While we cross-validated SNoW and Stat De-id on our corpora, we did not have the trainable
version of IdentiFinder available for our use. Thus, we were unable to train this system on the
training data used for Stat De-id and SNoW, but had to use it as trained on news corpora.
Clearly, this puts IdentiFinder at a relative disadvantage, so our analysis intends not so much
to draw conclusions about the relative strengths of these systems but to study the contributions
of different features. In order to strengthen our conclusions about contributions of global and
local context to de-identification, we compare Stat De-id with CRFD, which adds sentential
global context to the features employed by Stat De-id and, like Stat De-id and SNoW, is cross-
validated on our corpora.

7.1 Heuristic+dictionary Scheme
Most traditional de-identification approaches use dictionaries and hand-tailored heuristics. We
obtained one such system that identifies PHI by checking to see if the target words occur in
hospital, location, and name dictionaries, but not in a list of common words [8]. Simple
contextual clues, such as titles, e.g., Mr., and manually determined bigrams, e.g., lives in, are
also used to identify PHI not occurring in dictionaries. We ran this rule-based system on each
of the artificial and authentic corpora. Note that the discharge summaries obtained from the
BIDMC had been automatically de-identified by this approach prior to manual scrubbing. The
dictionaries used by Stat De-id were identical to the dictionaries of this system.

7.2 SNoW
Roth and Yih’s SNoW system [9] recognizes people, locations, and organizations. This system
takes advantage of words in a phrase, surrounding bigrams and trigrams of words, the number
of words in the phrase, and information about the presence of the phrase or constituent words
in people and location dictionaries to determine the probability distribution of entity types and
relationships between the entities in a sentence. This system uses the probability distributions
and constraints imposed by relationships on the entity types to compute the most likely
assignment of relationships and entities in the sentence. In other words, SNoW uses its beliefs
about relationships between entities, i.e., the global context of the sentence, to strengthen or
weaken its hypothesis about each entity’s type.

We cross-validated SNoW on each of the artificial and authentic corpora, but only on the entity
types it was designed to recognize, i.e., people, locations, and organizations. For each corpus,
tenfold cross-validation trained SNoW on 90% of the corpus and validated it on the remaining
10%.

7.3 IdentiFinder
IdentiFinder, described in more detail in the Background and Related Work section, uses
HMMs to find the most likely sequence of entity types in a sentence given a sequence of words.
Thus, it uses the global context of the entities in a sentence. IdentiFinder is distributed pre-
trained on news corpora. We obtained and used this system out-of-the-box.
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7.4 Conditional Random Field De-identifier (CRFD)
We built CRFD, a de-identifier based on Conditional Random Fields (CRF) [23], which, like
SVMs, can handle a very large number of features, but which makes joint inferences over entire
sequences. For our purposes, following the example of IdentiFinder, sequences are set to be
sentences. CRFD employs exactly the same local context features used by Stat De-id. However,
the use of conditional random fields allows this de-identifier to also take into consideration
sentential global context while predicting PHI; CRFD finds the optimal sequence of PHI tags
over the complete sentence. We use the CRF implementation provided by IIT Bombay [32]
and cross-validate (tenfold) CRFD on each of our corpora.

8 Evaluation Methods
8.1 Precision, Recall, and F-measure

We evaluated the de-identification and NER systems on four artificial and one authentic
corpora. We evaluated Stat De-id using tenfold cross-validation; in each round of cross-
validation we extracted features only from the training corpus, trained the SVM only on these
features, and evaluated performance on a held-out validation set. To compare with the
performance of baseline systems, we computed precision, recall, and F-measures for each

system. Precision for class x is defined as  Where β is the number of correctly classified
instances of class x and B is the total number of instances classified as class x. Recall for class

x is defined as  where v is the number of correctly classified instances of x and V is the total
V number of instances of x in the corpus. The metric that is of most interest in de-identification
is recall for PHI. Recall measures the percentage of PHI that is correctly identified and should
ideally be very high. We are also interested in maintaining the integrity of the data, i.e., avoiding
the classification of non-PHI as PHI. This is captured by precision. In this paper, we also
compute F-measure, which is the harmonic mean of precision and recall, given by:

(5)

and provides a single number that can be used to compare systems. In the biomedical
informatics literature, precision is referred to as positive predictive value and recall is referred
to as sensitivity.

In this paper, the purpose of de-identification is to find all PHI and not to distinguish between
types of PHI. Therefore, we group the seven PHI classes into a single PHI category, and
compute precision and recall for PHI versus non-PHI. In order to study the performance on
each PHI type, in the section on Multi-Class SVM Results and Implications for Future
Research, we present the precision, recall and F-measure for each individual PHI class. More
details can be found in Sibanda [33].

8.2 Statistical Significance
Precision, recall, and F-measure represent proportions of populations. In trying to determine
the difference in performance of two systems, we therefore employ the z-test on two
proportions. We test the significance of the differences in F-measures on PHI and the
differences in F-measures on non-PHI [34–36].

Given two system outputs, the null hypothesis is that there is no difference between the two
proportions, i.e., H0: p1 = p2. The alternate hypothesis states that there is a difference between
the two proportions, i.e., H1: p1 ≠ p2. At the significance level α, the z-statistic is given by:
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(6)

where

(7)

n1 and n2 refer to sample sizes. A z-statistic of ±1.96 means that the difference between the
two proportions is significant at α = 0.05. All significance tests in this paper are run at this α.

9 Results and Discussion
9.1 De-identifying Random and Authentic Corpora

We first de-identified the random and authentic corpora. On the random corpus, Stat De-id
significantly outperformed all of IdentiFinder, CRFD, and the heuristic+dictionary baseline.
Its F-measure on PHI was 97.63% compared to IdentiFinder’s 68.35%, CRFD’s 81.55%, and
the heuristic+dictionary scheme’s 77.82% (see Table 4).8 We evaluated SNoW only on the
three kinds of entities it is designed to recognize. We found that it recognized PHI with an F-
measure of 96.39% (see Table 5). In comparison, when evaluated only on the entity types
SNoW could recognize, Stat De-id achieved a comparable F-measure of 97.46%. On the
authentic corpus, Stat De-id significantly outperformed all other systems (see Table 6 and Table
7). F-measure differences from SNoW were also significant.

The superiority of Stat De-id over the heuristic+dictionary approach suggests that using
dictionaries with only simple, incomplete contextual clues is not as effective for recognizing
PHI. The superiority of Stat De-id over IdentiFinder, CRFD, and SNoW suggest that, on our
corpora, a system using (a more complete representation of) local context performs as well as
(and sometimes better than) systems using (weaker representations of) local context combined
with global context.

9.2 De-identifying the Ambiguous Corpus
Ambiguity of PHI with non-PHI complicates the de-identification process. In particular, a
greedy de-identifier that removes all keyword matches to possible PHI would remove
Huntington from both the doctor’s name, e.g., “Dr. Huntington”, and the disease name, e.g.,
“Huntington’s disease”. Conversely, use of common words as PHI, e.g., “Consult Dr. Test”,
may result in inadequate anonymization of some PHI.

When evaluated on such a challenging data set where some PHI were ambiguous with non-
PHI, Stat De-id accurately recognized 94.27% of all PHI: its performance measured in terms
of F-measure was significantly better than that of IdentiFinder, SNoW, CRFD, and the heuristic
+dictionary scheme on both the complete corpus (see Table 8 and Table 9) and on only the
ambiguous entries in the corpus (see Table 10) for both PHI and non-PHI at α = 0.05. For
example, the patient name Camera in “Camera underwent relaxation to remove mucous plugs.”
is missed by all baseline schemes but is recognized correctly by Stat De-id.

9.3 De-identifying the Out-of-Vocabulary Corpus
In many cases, discharge summaries contain foreign or misspelled words, i.e., out-of-
vocabulary words, as PHI. An approach that simply looks up words in a dictionary of proper

8Throughout this paper, the baseline F-measures that are significantly different from the corresponding F-measure of Stat De-id at α =
0.05 are marked with * in the tables.
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nouns may fail to anonymize such PHI. We hypothesized that on the data set containing out-
of-vocabulary PHI, context would be the key contributor to de-identification. As expected, the
heuristic+dictionary method recognized PHI with the lowest F-measures on this data set (see
Table 11 and Table 12). Again, Stat De-id outperformed all other approaches significantly
(α = 0.05), obtaining an F-measure of 97.44% for recognizing out-of-vocabulary PHI in our
corpus, while IdentiFinder, CRFD, and the heuristic+dictionary scheme had F-measures of
53.51%, 80.32%, and 38.71% respectively (see Table 11).

Of only the out-of-vocabulary PHI, 96.49% were accurately identified by Stat De-id. In
comparison, the heuristic+dictionary approach accurately identified those PHI that could not
be found in dictionaries 11.15% of the time, IdentiFinder recognized these PHI 57.33% of the
time, CRFD recognized them 84.75% of the time, and SNoW gave an accuracy of 95.08% (see
Table 13). For example, the fictitious doctor name Znw was recognized by Stat De-id but missed
by all other systems in the sentence “Labs showed hyperkalemia (increased potassium), …,
discussed with primary physicians (Znw) and cardiologist (P. Nwnrgo).”

9.4 De-identifying the Challenge Corpus
The challenge corpus combines the difficulties posed by out-of-vocabulary and ambiguous
PHI. Being the largest of our corpora, we expect the results on this corpus to be most reliable.
Consistent with our observations on the rest of the corpora, Stat De-id outperformed all other
systems significantly (α = 0.05) on the challenge corpus, obtaining an F-measure of 98.03%
(see Table 14 and Table 15). The performance of IdentiFinder on this corpus is the worst (F-
measure = 33.20%), followed by the heuristic+dictionary approach (F-measure = 43.95%) and
CRFD (F-measure = 85.57%). When evaluated only on the entity types SNoW could recognize,
Stat De-id achieved an F-measure of 97.96% in recognizing PHI, significantly outperforming
SNoW with F-measure = 96.21%.

9.5 Feature Importance
To understand the gains of Stat De-id, we determined the relative importance of each feature
by running Stat De-id with the following restricted feature sets on the random, authentic, and
challenge corpora:

1. The target words alone.

2. The syntactic bigrams alone.

3. The lexical bigrams alone.

4. The part of speech (POS) information alone.

5. The dictionary-based features alone.

6. The MeSH features alone.

7. The orthographic features alone.

Table 16 shows that running Stat De-id only with the target word, i.e., a linear SVM with
keywords as feature, would give an F-measure of 57% on the random corpus. In comparison,
Table 4 shows that Stat De-id with the complete feature set gives an F-measure of 97%.
Similarly, Stat De-id with only the target word gives an F-measure of 80% on the authentic
corpus (Table 17). When employed with all of the features, the F-measure rises to 97% (Table
6). Finally, the target word by itself can recognize 65% of PHI in the challenge corpus whereas
Stat De-id with the complete feature set gives an F-measure of 98%. The observed
improvements on each of the corpora suggest that the features that contribute to a more
thorough representation of local context also contribute to more accurate de-identification.
Note that keywords are much more useful on the authentic corpus than on the random and
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challenge corpora. This is because there are more and varied PHI in the random and challenge
corpora. In contrast, in the authentic corpus, many person and hospital names repeat, making
keywords informative. Regardless of this difference, on both corpora, as the overall feature set
improves, so does the performance of Stat De-id.

The results in Table 16 also show that, when used alone, lexical and syntactic bigrams are two
of the most useful features for de-identification of the random corpus. The same two features
constitute the most useful features for de-identification of the challenge corpus (Table 18). In
the authentic corpus (Table 17), target word and syntactic bigrams are the most useful features.
All of random, authentic, and challenge corpora highlight the relative importance of local
context features; in all three corpora, context is more useful than dictionaries, reflecting the
repetitive structure and language of discharge summaries.

On all three corpora, syntactic bigrams outperform lexical bigrams in recognizing PHI. The F-
measure difference between the syntactic and lexical bigrams is significant for PHI on all of
the random, challenge, and authentic corpora. Most prior approaches to de-identification/NER
have used only lexical bigrams, ignoring syntactic dependencies. Our experiments suggest that
syntactic context is more informative than lexical context for the identification of PHI in
discharge summaries, even though these records contain fragmented and incomplete
utterances.

We conjecture that the lexical context of PHI is more variable than their syntactic context
because many English sentences are filled with clauses, adverbs, etc., that separate the subject
from its main verb. The Link Grammar Parser can recognize these interjections so that the
words break up lexical context but not syntactic context. For example, the word supposedly
gets misclassified by lexical bigrams as PHI when encountered in the sentence “Trantham,
Faye supposedly lives at home with home health aide and uses a motorized wheelchair”. This
is because the verb lives which appears on the right-hand side of supposedly is a strong lexical
indicator for PHI. If we parse this sentence with the Link Grammar Parser, we find that the
right-hand link for the word supposedly is (lives, E) where E is the link for “verb-modifying
adverbs which precede the verb” [6]. This link is not an indicator of patient names and helps
mark supposedly as non-PHI.

9.6 Local vs. Global Context
Table 19 shows that the local context features of SNoW and IdentiFinder are also quite
powerful. When employed with the same learning algorithm utilized by Stat De-id, the
individual local feature sets of SNoW and IdentiFinder give performance F-measures above
86%. Note that Stat De-id’s local context outperforms the local context of SNoW and
IdentiFinder on all corpora. This result supports the hypothesis that developing a more thorough
representation of local context can benefit de-identification. Our experiments with CRFD were
designed specifically to address the relative value of improved local vs. global context features.
Our results show that a CRF-based system using exactly the same local context feature set as
Stat De-id performs significantly worse than Stat De-id on all corpora (Tables 4, 6, 8, 10, 11,
13, and 14). Thus, on our corpora and for CRFD, attending to global consistency in addition
to a rich set of local features actually hurts performance. This strongly supports our hypothesis
that improved local features are dominant for de-identification.

10 Multi-Class SVM Results and Implications for Future Research
The goal of this paper is to separate PHI from non-PHI for de-identification purposes. We have
so far shown that Stat De-id recognizes 94–97% of the PHI and outperforms all other systems.
However, from a policy perspective, the adequacy of the performance of Stat De-id depends
on the PHI that are missed. Not all PHI are equally strong identifiers of individuals. For
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example, failing to remove 6% of the names would have different policy implications than
failing to remove 6% of dates. Therefore, in order to put the performance figures into
perspective, we evaluate Stat De-id on each type of PHI on the authentic and challenge corpora.

The results in Table 20 and Table 21 show that Stat De-id performs relatively poorly in
recognizing phone and location PHI classes. Of the 88 location words in the authentic corpus,
22% are classified as non-PHI and 16% are classified as hospital names. For example, the
location Hollist in the sentence “The patient lives at home in Hollist with his parents.” is missed.
The errors in the location class arise because there are too few positive examples in the training
set to learn the context distinguishing locations. Furthermore, the context for locations often
overlaps with the context for hospitals.

Of the 32 phone numbers in the authentic corpus, 34% are misclassified as non-PHI. For
example, the number 234-907-1924 is missed in the sentence “DR. JANE DOE
(234-907-1924)”. Again, these errors arise because there are too few phone numbers in the
training set.

Despite being person names, patients and doctors are rarely misclassified as each other,
although they sometimes do get misclassified as non-PHI. This is because the honorifics used
with the patients’ and doctors’ names help differentiate between the two. However, the
honorifics are absent from some of the names. When these names also lack local context, this
leaves Stat-Deid to its best guess, i.e., non-PHI. For example, the name “Jn Smth” which
consists of rare tokens and appears on a line all by itself, with no context, gets misclassified as
non-PHI. 4% of patients and 3% of doctors in the authentic corpus are misclassified as non-
PHI. These observations generalize to the challenge corpus also.

Misclassifying patient and doctor names as non-PHI is detrimental for de-identification.
Similarly, misclassifying phone numbers as non-PHI can cause serious privacy concerns as
today’s technology allows us to cross-reference a single phone number with a search engine,
e.g., Google, and link it directly with individuals. To minimize the risk of revealing PHI and
of easy re-identification, we plan to improve performance on PHI with stereotypical formats,
such as names, phone numbers, social security numbers, medical record numbers, dates, and
addresses, by enhancing Stat De-id with the patterns employed by rule-based systems, not to
make a final determination of whether something matching the pattern is PHI, but as an
additional input feature. Such features can be drawn from available dictionaries of names,
places, etc., to augment what can be learned automatically from labeled corpora.

Note that, in general, even after de-identification, it may be possible to deduce the identity of
individuals mentioned in the records, for example, by combining the de-identified data with
other publicly available information or by studying some indirect identifiers that may be
mentioned in the records but that do not fall into one of the PHI categories defined by HIPAA
[37]. To further reduce the risk of re-identification, such indirect identifiers may also need to
be removed or generalized. Unfortunately, the problem of minimizing data loss by generalizing
or removing data is computationally intractable [38], so only heuristic methods are typically
employed [39]. The category of doctors is one indirect identifier that is not included in PHI
defined by HIPAA but is included in the PHI marked by Stat De-id.

11 Conclusions
In this paper, we have shown that we can de-identify clinical text, characterized by fragmented
and incomplete utterances, using local context 94–97% of the time. Our representation of local
context is novel; it includes novel syntactic features which provide us with useful linguistic
information even when the language of documents is fragmented. The results presented imply
that de-identification can be performed even when corpora are dominated by fragmented and
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incomplete utterances, even when many words in the corpora are ambiguous between PHI and
non-PHI, and even when many PHI include out-of-vocabulary terms. Structure and repetitions
in the language of documents can be exploited for this purpose.

Experiments on our corpora suggest that local context plays an important role in de-
identification of narratives characterized by fragmented and incomplete utterances. This fact
remains true even when the narratives contain uncommon PHI instances that are not present
in easily obtainable dictionaries and even when PHI are ambiguous with non-PHI. The more
thorough the local context, the better the performance; and strengthening the representation of
local context may be more beneficial for de-identification than complementing local with
global context.
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Table 2
Distribution of words, i.e., tokens, that are ambiguous between PHI and non-PHI.

Category Number of ambiguous tokens in the ambiguous corpus Number of ambiguous tokens in the challenge corpus
Non-PHI 3,787 39,374
Patient 514 158
Doctor 247 1,083
Location 24 44
Hospital 86 1,910
Date 201 81
ID 0 4
Phone 0 1

Artif Intell Med. Author manuscript; available in PMC 2009 January 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Uzuner et al. Page 27
Ta

bl
e 

3
Pe

rc
en

ta
ge

 o
f w

or
ds

 th
at

 a
pp

ea
r i

n 
na

m
e,

 lo
ca

tio
n,

 h
os

pi
ta

l, 
an

d 
m

on
th

 d
ic

tio
na

rie
s u

se
d 

by
 S

ta
t D

e-
id

 a
nd

 b
y 

th
e 

he
ur

is
tic

+d
ic

tio
na

ry
 a

pp
ro

ac
h.

C
or

pu
s

Pa
tie

nt
s i

n
na

m
es

 d
ic

t.
D

oc
to

rs
 in

na
m

es
 d

ic
t.

L
oc

at
io

ns
 in

lo
ca

tio
n 

di
ct

.
H

os
pi

ta
ls

 in
ho

sp
ita

l d
ic

t.
D

at
es

 in
m

on
th

 d
ic

t.
N

on
-P

H
I i

n
na

m
es

 d
ic

t.
N

on
-P

H
I i

n
lo

ca
tio

n 
di

ct
.

N
on

-P
H

I i
n

ho
sp

ita
ls

 d
ic

t.
N

on
-P

H
I i

n
m

on
th

 d
ic

t.
R

an
do

m
86

.4
5%

86
.5

0%
87

.5
%

87
.5

%
12

.6
5%

15
.8

7%
9.

19
%

14
.1

0%
0.

07
%

A
ut

he
nt

ic
78

.5
7%

70
.3

3%
54

.5
5%

80
.1

8%
21

.9
7%

16
.1

2%
10

.1
9%

12
.7

4%
0.

02
%

A
m

bi
gu

ou
s

86
.5

3%
86

.5
0%

10
0%

87
.5

%
12

.6
4%

19
.5

3%
10

.5
0%

14
.0

3%
0.

08
%

O
oV

2.
51

%
1.

99
%

0%
19

.5
6%

12
.6

5%
15

.8
7%

9.
19

%
14

.1
0%

0.
07

%
C

ha
lle

ng
e

14
.1

0%
17

.2
0%

11
.4

0%
26

.5
9%

5.
15

%
15

.3
6%

11
.3

2%
8.

61
%

0.
06

%

Artif Intell Med. Author manuscript; available in PMC 2009 January 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Uzuner et al. Page 28

Table 4
Precision, recall, and F-measure on random corpus. IFinder refers to IdentiFinder and H+D refers to heuristic
+dictionary approach. Highest F-measures are in bold. The F-measure differences from Stat De-id, in PHI and
in non-PHI, that are significant at α = 0.05 are marked with an * in all of the tables in this paper.

Method Class Precision Recall F-measure
Stat De-id PHI 98.34% 96.92% 97.63%
IFinder PHI 62.21% 75.83% 68.35%*
H+D PHI 93.67% 66.56% 77.82%*
CRFD PHI 81.94% 81.17% 81.55%*
Stat De-id Non-PHI 99.53% 99.75% 99.64%
IFinder Non-PHI 96.15% 92.92% 94.51%*
H+D Non-PHI 95.07% 99.31% 97.14%*
CRFD Non-PHI 98.91% 99.05% 98.98%*
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Table 5
Evaluation of SNoW and Stat De-id on recognizing people, locations, and organizations found in the random
corpus. Note that these are the only entity types SNoW was built to recognize. Highest F-measures are in bold.
The difference in PHI F-measures between SNoW and Stat De-id is not significant at α = 0.05. The difference
in non-PHI F-measures is significant at the same α and marked as such with an *.

Method Class Precision Recall F-measure
Stat De-id PHI 98.31% 96.62% 97.46%
SNoW PHI 95.18% 97.63% 96.39%*
Stat De-id Non-PHI 99.64% 99.82% 99.73%
SNoW Non-PHI 99.75% 99.48% 99.61%*
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Table 6
Evaluation on authentic discharge summaries. Highest F-measures are in bold. The F-measure differences from
Stat De-id in PHI and in non-PHI are significant at α = 0.05.

Method Class Precision Recall F-measure
Stat De-id PHI 98.46% 95.24% 96.82%
IFinder PHI 26.17% 61.98% 36.80%*
H+D PHI 82.67% 87.30% 84.92%*
CRFD PHI 91.16% 84.75% 87.83%*
Stat De-id Non-PHI 99.84% 99.95% 99.90%
IFinder Non-PHI 98.68% 94.19% 96.38%*
H+D Non-PHI 99.58% 99.39% 99.48%*
CRFD Non-PHI 99.62% 99.86% 99.74%*
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Table 7
Evaluation of SNoW and Stat De-id on authentic discharge summaries. Highest F-measures are in bold. The F-
measure differences from Stat De-id in PHI and in non-PHI are significant at α = 0.05.

Method Class Precision Recall F-measure
Stat De-id PHI 98.40% 93.75% 96.02%
SNoW PHI 96.36% 91.03% 93.62%*
Stat De-id Non-PHI 99.90% 99.98% 99.94%
SNoW Non-PHI 99.86% 99.95% 99.90%*
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Table 8
Evaluation on the corpus containing ambiguous data. Highest F-measures are in bold. The F-measure differences
from Stat De-id in PHI and in non-PHI are significant at α = 0.05.

Method Class Precision Recall F-measure
Stat De-id PHI 96.37% 94.27% 95.31%
IFinder PHI 45.52% 69.04% 54.87%*
H+D PHI 79.69% 44.25% 56.90%*
CRFD PHI 81.84% 78.08% 79.92%*
Stat De-id Non-PHI 99.18% 99.49% 99.34%
IFinder Non-PHI 95.23% 88.22% 91.59%*
H+D Non-PHI 92.52% 98.39% 95.36%*
CRFD Non-PHI 98.12% 98.78% 98.45%*
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Table 9
Evaluation of SNoW and Stat De-id on ambiguous data. Highest F-measures are in bold. The F-measure
differences from Stat De-id in PHI and in non-PHI are significant at α = 0.05.

Method Class Precision Recall F-measure
Stat De-id PHI 95.75% 93.24% 94.48%
SNoW PHI 92.93% 91.57% 92.24%*
Stat De-id Non-PHI 99.33% 99.59% 99.46%
SNoW Non-PHI 99.17% 99.31% 99.24%*
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Table 10
Evaluation only on ambiguous people, locations, and organizations found in ambiguous data. Highest F-measures
are in bold. The F-measure differences from Stat De-id in PHI and in non-PHI are significant at α = 0.05.

Method Class Precision Recall F-measure
Stat De-id PHI 94.02% 92.08% 93.04%
IFinder PHI 50.26% 67.16% 57.49%*
H+D PHI 58.35% 30.08% 39.70%*
SNoW PHI 91.80% 87.83% 89.77%*
CRFD PHI 74.15% 71.15% 72.62%*
Stat De-id Non-PHI 98.28% 98.72% 98.50%
IFinder Non-PHI 92.26% 85.48% 88.74%*
H+D Non-PHI 86.19% 95.31% 90.52%*
SNoW Non-PHI 97.34% 98.27% 97.80%*
CRFD Non-PHI 95.84% 96.89% 96.37%*

Artif Intell Med. Author manuscript; available in PMC 2009 January 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Uzuner et al. Page 35

Table 11
Evaluation on the out-of-vocabulary corpus. Highest F-measures are in bold. The F-measure differences from
Stat De-id in PHI and in non-PHI are significant at α = 0.05.

Method Class Precision Recall F-measure
Stat De-id PHI 98.12% 96.77% 97.44%
IFinder PHI 52.44% 54.62% 53.51%*
H+D PHI 88.24% 24.79% 38.71%*
CRFD PHI 82.01% 78.71% 80.32%*
Stat De-id Non-PHI 99.54% 99.74% 99.64%
IFinder Non-PHI 93.52% 92.97% 93.25%*
H+D Non-PHI 90.32% 99.53% 94.70%*
CRFD Non-PHI 98.43% 99.01% 98.72%*
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Table 12
Evaluation of SNoW and Stat De-id on the people, locations, and organizations found in the out-of-vocabulary
corpus. Highest F-measures are in bold. The F-measure differences from Stat De-id in PHI and in non-PHI are
significant at α = 0.05.

Method Class Precision Recall F-measure
Stat De-id PHI 98.04% 96.49% 97.26%
SNoW PHI 96.50% 95.08% 95.78%*
Stat De-id Non-PHI 99.67% 99.82% 99.74%
SNoW Non-PHI 99.53% 99.67% 99.60%*
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Table 14
Evaluation on the challenge corpus. Highest F-measures are in bold. The F-measure differences from Stat De-
id in PHI and in non-PHI are significant at α = 0.05.

Method Class Precision Recall F-measure
Stat De-id PHI 98.69% 97.37% 98.03%
IFinder PHI 25.10% 49.10% 33.20%*
H+D PHI 36.24% 55.84% 43.95%*
CRFD PHI 86.37% 84.79% 85.57%*
Stat De-id Non-PHI 99.83% 99.92% 99.86%
IFinder Non-PHI 97.25% 92.47% 94.80%*
H+D Non-PHI 97.67% 94.95% 96.29%*
CRFD Non-PHI 99.55% 99.65% 99.60%*
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Table 15
Evaluation of SNoW and Stat De-id on the people, locations, and organizations found in the challenge corpus.
Highest F-measures are in bold. The F-measure differences from Stat De-id in PHI and in non-PHI are significant
at α = 0.05.

Method Class Precision Recall F-measure
Stat De-id PHI 98.98% 96.96% 97.96%
SNoW PHI 98.73% 93.81% 96.21%*
Stat De-id Non-PHI 99.90% 99.97% 99.93%
SNoW Non-PHI 99.80% 99.96% 99.88%*
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Table 16
Comparison of features for random corpus. For all pairs of features, the differences between F-measures for PHI
and the differences between F-measures for non-PHI are significant at α = 0.05. The only exceptions are the
difference of F-measures in non-PHI of lexical bigrams and POS information (marked by †), the difference in
F-measures in PHI of MeSH and orthographic features (marked by ‡), and the difference in F-measures in non-
PHI of MeSH and orthographic features (marked by •). Best F-measures are in bold.
Feature Class Precision Recall F-measure

Target words Non-PHI 91.61% 98.95% 95.14%
PHI 86.26% 42.03% 56.52%

Lexical bigrams Non-PHI 95.61% 98.10% 96.84%†
PHI 85.43% 71.14% 77.63%

Syntactic bigrams Non-PHI 96.96% 98.72% 97.83%
PHI 90.76% 80.20% 85.15%

POS information Non-PHI 94.85% 98.38% 96.58%†
PHI 86.38% 65.84% 74.73%

Dictionary Non-PHI 88.99% 99.26% 93.85%
PHI 81.92% 21.41% 33.95%

MeSH Non-PHI 86.49% 100% 92.75%•
PHI 0% 0% 0%‡

Orthographic Non-PHI 86.49% 100% 92.75%•
PHI 0% 0% 0%‡
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Table 17
Comparison of features for authentic corpus. For all pairs of features, the differences between F-measures for
PHI and the differences between F-measures for non-PHI are significant at α = 0.05. The only exceptions are the
difference of F-measures in non-PHI of lexical bigrams and syntactic bigrams (marked by †) and the difference
of F-measures in non-PHI of MeSH and orthographic features (marked by ‡). Best F-measures are in bold.
Feature Class Precision Recall F-measure

Target words Non-PHI 98.79% 99.94% 99.36%
PHI 97.64% 67.38% 79.74%

Lexical bigrams Non-PHI 98.46% 99.83% 99.14%†
PHI 92.75% 58.47% 71.73%

Syntactic bigrams Non-PHI 98.55% 99.87% 99.21%†
PHI 94.66% 60.97% 74.17%

POS information Non-PHI 97.95% 99.63% 98.78%
PHI 81.99% 44.64% 57.81%

Dictionary Non-PHI 97.11% 99.89% 98.48%
PHI 88.11% 21.14% 34.10%

MeSH Non-PHI 96.37% 100% 98.15%‡
PHI 0% 0% 0%

Orthographic Non-PHI 96.39% 99.92% 98.12%‡
PHI 22.03% 0.61% 1.19%
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Table 18
Comparison of features for challenge corpus. For all pairs of features, the differences between F-measures for
PHI and the differences between F-measures for non-PHI are significant at α = 0.05. Best F-measures are in bold.
Feature Class Precision Recall F-measure

Target words Non-PHI 96.90% 99.87% 98.36%
PHI 96.05% 49.56% 65.38%

Lexical bigrams Non-PHI 97.34% 99.69% 98.50%
PHI 91.99% 56.87% 70.29%

Syntactic bigrams Non-PHI 97.50% 99.74% 98.61%
PHI 93.44% 59.61% 72.79%

POS information Non-PHI 96.04% 99.42% 97.70%
PHI 79.33% 35.24% 48.80%

Dictionary Non-PHI 94.26% 99.90% 96.99%
PHI 69.70% 3.79% 7.19%

MeSH Non-PHI 94.05% 100% 96.93%
PHI 0% 0% 0%

Orthographic Non-PHI 96.05% 99.60% 97.79%
PHI 84.67% 35.30% 49.83%
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