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Abstract
Objective: The purpose of this study was to develop a pattern classification algorithm for use in
predicting the location of new contrast-enhancement in brain tumor patients using data obtained
via multivariate magnetic resonance imaging from a prior scan. We also explore the use of feature
selection or weighting in improving the accuracy of the pattern classifier.

Methods and materials: Contrast-enhanced MR images, perfusion images, diffusion images,
and proton spectroscopic imaging data were obtained from 26 patients with glioblastoma
multiforme brain tumors, divided into a design set and an unseen test set for verification of results.
A k-NN algorithm was implemented to classify unknown data based on a set of training data with
ground truth derived from post-treatment contrast enhanced images; the quality of the k-NN
results was evaluated using a leave-one-out cross-validation method. A genetic algorithm was
implemented to select optimal features and feature weights for the k-NN algorithm. The binary
representation of the weights was varied from 1 to 4 bits. Each individual parameter was
thresholded as a simple classification technique, and the results compared with the k-NN.

Results: The feature selection k-NN was able to achieve a sensitivity of 0.78 ± 0.18 and
specificity of 0.79 ± 0.06 on the holdout test data using only 7 of the 38 original features. Similar
results were obtained with non-binary weights, but using a larger number of features. Overfitting
was also observed in the higher bit representations. The best single-variable classifier, based on a
choline-to-NAA abnormality index computed from spectroscopic data, achieved a sensitivity of
0.79 ± 0.20 and specificity of 0.71 ± 0.11. The k-NN results had lower variation across patients
than the single-variable classifiers.

Conclusions: We have demonstrated that the an optimized k-NN rule could be used for
quantitative analysis of multivariate images, and be applied to a specific clinical research question.
Selecting features was found to be useful in improving the accuracy of feature weighting
algorithms and improving the comprehensibility of the results. We believe that in addition to
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lending insight into parameter relevance, such algorithms may be useful in aiding radiological
interpretation of complex multimodality datasets.
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1. Introduction
Magnetic resonance (MR) imaging has wide uses in the diagnosis, characterization, and
planning of treatment for brain tumors. One particularly powerful feature of MR is the
ability to exploit several different contrast mechanisms, thereby acquiring multiple views of
the same tissue within a single examination. Datasets that are composed of multiple images
have been variously described as multivariate, multispectral, or multiparametric. The
contrast mechanisms used to generate these images may rely upon different physical or
physiological properties, and so by combining these images, it is possible to gain insight into
the status of brain tumors and surrounding tissues beyond that which is available from any
single image. A state-of-the-art brain tumor examination may include conventional T1- and
T2-weighted images as well as physiologically motivated images, such as diffusion images,
perfusion images, and magnetic resonance spectroscopic imaging (MRSI). Features derived
from diffusion images are thought to provide information on cellular density and the nature
of local edema [1, 2], while perfusion imaging yields information about cerebral vasculature
[3-5]. Proton spectroscopy can be used to measure levels of cerebral metabolites that may be
indicative of metabolically active tumor, necrosis and regions with compromised energetics
[6-8].

In traditional analysis of multivariate images, these images are presented to radiologists who
apply a combination of experience with previous images and prior knowledge of the contrast
mechanisms of each image in order to formulate an opinion about the tumor and its borders.
However, as the number of images increases, so does the possibility that valuable but
complex patterns may exist undiscovered in the data. Additionally, while qualitative visual
combination of images may be appropriate for structural images, such as conventional T1-
or T2-weighted images, it fails to take advantage of the quantitative nature of diffusion,
perfusion, and spectroscopic images. These issues have led many researchers to pursue
computational methods for combining information from multivariate MR images.

A large amount of research effort has been applied to the automated classification of in vivo
proton spectroscopy in brain tumor research. Using machine learning tools such as linear
discriminant analysis, artificial neural networks, and support vector machines, researchers
have reported computerized classification results that have compared favorably with
histopathology based on biopsy [9-12]. However, there has been somewhat less work on
combining imaging data with spectroscopy. When this combination has been performed, the
accuracy of the classification has been shown to be superior to using images or spectroscopy
alone [13-16].

One approach that can further improve the accuracy of pattern classification algorithms is
the use of feature selection or weighting. By using only a subset of features, it is possible to
increase generalization accuracy, particularly if some features are irrelevant, noisy, or
redundant. The search space may be very large and complex; genetic algorithms are a
commonly used method for choosing a near-optimal set of features in a potentially very
complicated landscape [17, 18].
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In this study, we use a k-nearest neighbor algorithm to perform a voxel-by-voxel outcome
prediction in brain tumor images. Instead of using biopsy pathology as the ground truth, the
goal is to classify voxels based on their predicted radiological outcome. The ground truth for
this outcome is defined by images acquired at a followup examination. Our initial feature
space will include features from spectroscopic, diffusion, and perfusion imaging; we will
study the reduction of this space through the use of a genetic algorithm.

We hypothesize that the pre-radiation images contain information that can be used to predict
where new regions of contrast-enhancing (CE) lesion will appear after radiotherapy. We
further hypothesize that by applying feature selection, we will be able to improve the
accuracy of the classification and gain insight into the relevance of various MR measured
indices. We will consider the use of non-binary feature weighting, but with the
understanding that this may lead to overfitting and degrade the sensitivity and specificity on
test cases. The results of the genetically optimized classifiers will be compared with
thresholding on individual variables and the non-optimized classifier.

2. Materials and Methods
2.1. Image acquisition

Twenty-six patients (19 male, 7 female; median age 54 yrs, range 26–75) with a
histologically confirmed diagnosis of grade IV gliomas received MRI examinations on a 1.5
T GE Signa Echospeed MR imager (GE Healthcare, Waukesha, Wisconsin, USA) within
two weeks following surgery, but before the initiation of radiotherapy. A second MRI was
performed within a month of the conclusion of radiotherapy. The mean inter-exam interval
was 69 ± 13 days.

The MR examination included a 3D T1-weighted spoiled-gradient recalled echo (SPGR)
sequence (TR/TE = 27/6 ms; flip angle = 40°; 1 mm × 1 mm × 1.5 mm nominal resolution),
acquired both with and without gadolinium diethylene-triamine-pentaacetate (Gd-DTPA)
contrast agent. Chemical shift imaging was performed using point-resolved spectroscopy
(PRESS) volume-selection techniques (TR/TE = 1000/144 msec; 12 × 12 × 8 or 16 × 8 × 8
phase encode steps; 10 mm × 10 mm × 10 mm nominal spatial resolution). For the
spectroscopy, water suppression was achieved through the use of spectral-spatial spin-echo
pulses [19] and outer volume suppression was performed using very selective suppression
pulses [20]. Perfusion imaging was performed by dynamic imaging during the injection of a
bolus Gd-DTPA contrast. A power injector was used to infuse a 0.1 mmol/kg bolus of
contrast agent at a constant rate of 5 mL/second followed by a 20 mL continuous saline
flush. A series of 60 T2*-weighted gradient-echo echo-planar images was acquired (TR/TE
= 1000/54 msec, flip angle 35°). The acquisition matrix was 128 × 128 with a 26 cm × 26
cm field-of-view (FOV) and a nominal slice thickness of 3–6 mm, depending on the size and
position of the tumor. Diffusion tensor imaging (b = 1000 s/mm2; 1.5 × 1.5 × 2.2 mm3) was
acquired using six gradient encoding directions with a spin-echo echo-planar imaging
sequence.

2.2. Data processing
2.2.1. Image and spectral processing—Spectroscopic data were processed using
previously described methods [6]. After processing, the spectral amplitudes and linewidths
of choline (Cho), creatine (Cr), N-acetyl-aspartate (NAA), lactate (Lac), and lipids (Lip)
were estimated. Abnormality indices were derived for the relative levels of Cho to NAA, Cr
to NAA, and Cho to Cr (CNI, CrNI, and CCrI, respectively) using a robust linear regression
algorithm [9, 21]. The first-pass perfusion data were modeled as a modified gamma-variate
function, as described previously in the literature [22]. This yielded cerebral blood volume

Lee and Nelson Page 3

Artif Intell Med. Author manuscript; available in PMC 2013 August 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(CBV) as well as curve shape features of peak height, time-to-peak (TTP), peak width
(FWHM), recirculation factor, and percent recovery to baseline [23]. Estimates of the pure
WM and GM values were derived from a partial-volume model based on the segmented T1-
weighted images [22]. Maps of the apparent diffusion coefficient (ADC) and anisotropy
were derived from the diffusion images using standard methods [24].

All images were registered to the post-contrast T1-weighted image and then resampled to
the resolution of the perfusion images through the use of Fourier interpolation. The
registration was performed through the maximization of normalized mutual information
using a gradient ascent algorithm [25]. Non-rigid alignment was performed to correct image
distortion in the perfusion and diffusion EPI sequences, and consisted of the optimization of
control point positions for a grid of B-splines [26]. The importance of this correction has
been previously quantified for perfusion images [22].

A significant concern in this study was the normalization and scaling of the data before
combining across patients. Therefore, data were expressed in several different ways, and the
feature selection and weighting processes performed over the full set of redundant data. A
complete listing of the features and their normalization methods is given in Table 1. A total
of 38 features were computed for every voxel.

2.2.2. Regions of interest—This study was focused on the growth of contrast-enhancing
regions, as observed in T1-weighted images. The region of contrast-enhancement was
manually contoured on both the pre-therapy and post-therapy Gd-enhanced T1-weighted
SPGR images by research staff using commonly accepted clinical standards for defining
contrast enhancement, performed under the guidance of and reviewed by an experienced
neuroradiologist. All voxels that enhanced at the pre-therapy exam were excluded from
further consideration. The contrast-enhancing region is thought to have a very different
physiology from the non-enhancing region, and so the evolution of such regions over time is
expected to be different from non-enhancing regions. It is therefore likely that including
both enhancing and non-enhancing tissue would confound the results and make the selected
features more difficult to understand. The region of interest in the study was also limited to
the region of overlap between all registered images for a given patient. For example,
diffusion and perfusion have limited slice ranges compared with the full T1-weighted
volume. The geometry of the spectroscopy PRESS box further limits the extent of overlap.

The ground truth for classification was defined as follows. Voxels within the post-therapy
enhancement contour were designated as being positives, and voxels outside the contours
were designated as negatives. A positive was therefore a voxel that was originally non-
enhancing but became enhancing, while a negative was a voxel that remained non-
enhancing for both scan times. All references to true and false positives and negatives in this
study will follow this convention. The overall goal of the study was to optimally utilize the
pre-therapy feature vector of each voxel to predict whether that voxel was positive or
negative in terms of its post-therapy contrast-enhancement. Informally, we were seeking to
answer whether there was information in the pre-therapy images that would have suggested
that certain regions were going to become contrast-enhancing.

2.2.3. Patient groups—Patients were randomly divided into a design set of 15 patients
and a verification set of 11 patients. The design set was used to optimize the classifier
through feature selection or feature weighting, as described in the subsequent sections. The
verification set was only used after the classifier development was completed. Unless stated
otherwise, all statistics are reported for this holdout verification set. We use the terms design
and verification here instead of training and test, since we will be describing the feature
selection process as using an internal training and test set. In total, the design set consisted
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of 60465 negative examples and 1838 positive examples, while the verification set consisted
of 55526 negative examples and 1102 positive examples.

2.3. Classification method
The classifier used in this study was a k-nearest neighbor (k-NN) algorithm. Consider a test
point with an unknown classification and its n-dimensional feature vector. In this study, a
38-dimensional feature vector was associated with each voxel, as described in the previous
section. The training data for the classifier consists of a set of training points, each with a
known classification and its own 38-dimensional parameter vector. To classify the unknown
test point, the distances between the test point and all training points are computed and
sorted. In this study, the distance measure was the Euclidean distance:

(1)

where X is the feature vector of the test point and Y is the feature vector of the training
point. The k closest training points then ‘vote’ on the classification of each unknown test
point. In the standard k-NN algorithm, the estimated probability P of the test point being
positive was given by the fraction of the k closest points that were themselves positive. In
this study, a threshold of 0.5 was used (majority voting).

2.4. Training and testing data
Before applying the k-NN algorithm, the size of the training data set was condensed to
reduce noise, prevent any single patient from having undue influence, remove the statistical
correlations between voxels, and correct the imbalance in the amounts of postive and
negative training data. Several methods have been proposed to reduce the training data set
(see, for example [27]), but this data presents a natural method based on separation into
patients. We compress the training data such that each of the 15 patients in the design set
provides only two training data points, instead of one point per voxel. These two points are
the average of the 38 features describing the positive voxels and the negative voxels for that
patient. Again, positive voxels are defined as those that converted from non-enhancing to
enhancing, while negative voxels remain non-enhancing over the two sets of scans. The 15
patients in the design set thus yielded a training data set of only 60 data points: 30 positive
and 30 negative.

During both the leave-one-out validation and final testing on the hold-out data, the test data
remains the full data set for each patient, in which each voxel is a separate data point. The k-
NN classification is therefore applied to every voxel, but the search for nearest neighbors
occurs in the much smaller compressed training data set, consisting of only 30 positive and
30 negative points. Clearly, the full 38-dimensional space is very sparsely populated by this
reduced training set; among the goals of feature extraction and feature selection are the
reduction of this space, thereby increasing the density of points in meaningful regions. We
describe this technique in the next section.

2.5. Genetic optimization for feature weighting
The k-NN algorithm is known to be sensitive to parameter scaling and the presence of
irrelevant or noisy features. To improve classification accuracy, we apply feature weighting,
in which the features are scaled so that their numerical range better matches their relevance
[17, 28]. Feature selection is implicitly included by allowing the weight of a feature to be
zero. Feature weights were included in classification by introducing a set of weights wi to
equation 1, yielding:

Lee and Nelson Page 5

Artif Intell Med. Author manuscript; available in PMC 2013 August 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(2)

In this study, optimal feature weights were found through the use of a genetic algorithm.
Genetic algorithms have been shown to be very effective at locating high quality, if not
globally optimal, solutions in combinatorial optimization problems or cases where the
structure of the objective function is not amenable to deterministic optimization methods. A
schematic example of the interplay between the genetic operations and the k-NN algorithm
is given in Figure 1.

The CHC (Cross-generational elitist selection, Heterogeneous recombination, and
Cataclysmic mutation) algorithm was used as the particular genetic optimization scheme in
this study [29]. A candidate solution was defined by a 38-dimensional vector of weights.
Each weight was expressed as an m-bit binary integer using Gray coding [30]. In this study,
four values of m were considered: 1, 2, 3, and 4. Pure feature selection is performed with the
1-bit optimization. For 2-, 3-, and 4- bit representations, feature selection was implicit; some
features were not considered during classification because they will have a weight of zero.
For each candidate solution, a chromosome was defined as the concatenated string of 38m
binary bits; in the CHC genetic algorithm, the order of weights in the chromosome was
irrelevant. Increasing the number of bits used in representing the weights increases the range
of weights available for each feature, and also increases the dimensionality of the search
space. A population of 50 chromosomes was used, as is typical in the CHC algorithm. The
initial population was randomly initialized with each bit having a 50% chance of being
active.

At each iteration, offspring are produced thorough random mating and recombination,
without any selective bias. Pairs of parents chromosomes are randomly selected without
replacement for mating. Half uniform crossover (HUX) is used for recombination between
the two parents, swapping exactly half of the differing bits. The only provision to allow
mating is that the two parents must be a Hamming distance of d apart; parents that do not
meet this criteria are not returned to the pool of potential parents. The value of d is
initialized to the one fourth the total number of bits (38m/4 in this study), and is reduced by
one whenever no mating events occur in a generation. At each generation, a total of n
offspring are generated, where 0 ≤ n ≤ 50. When d is unity but no further offspring (n = 0)
are produced during mating, the population has converged to a very low-diversity state. At
that point, ‘cataclysmic’ mutation occurs, in which the best individual is retained intact, and
all other members of the population are copies of this individual but mutated with a
probability of mutation of 0.35 per bit. The value of the Hamming threshold d is then reset
to its initial value and offspring produced as before.

After the n offspring are generated, the cost function is evaluated on each new chromosome;
this is described in detail in the next section. The members of the previous generation and of
all their offspring (total of 50+n chromosomes) are sorted based on the cost function, and the
50 best chromosomes are retained. These chromosomes are then moved to the new
generation, where the reproduction process begins anew.

This algorithm combines a very rapid and aggressive search combined with highly
disruptive crossover and mutation events to prevent premature convergence, and has been
previously shown to be robust for feature subset selection [31]. An example of the evolution
of solutions is shown in Figure 2. The candidate solutions were allowed to evolve for 1000
generations. The optimization was implemented in C and parallelized using the MPICH
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library (Argonne National Laboratories), on a grid-enabled cluster of 24 Intel Xeon
processors (Intel Corporation, Santa Clara, CA) running at 2.8 GHz and required less than
10 hours to complete the full 1000 generations. Note that the genetic algorithm itself
remained a serial algorithm, with the hardware parallelization used for accelerating the
computation rather than modifying the search, as in a true parallel genetic algorithm.

2.6. Cost function
In order to sort the chromosome by their quality, it is necessary to define a cost function.
The goal of the genetic algorithm is to minimize this cost function. To evaluate the cost
function for a single chromosome, leave-one-out verification was performed on a patient-by-
patient basis. For N design patients, a single patient p was selected for testing, and the
remaining N-1 patients were retained as training data. Every voxel in patient p was classified
using the k-nearest neighbor algorithm for a predetermined set of k values. Again, we
emphasize that the data compression only affects N-1 patients in the training data, i.e. the
data in which the nearest neighbors are found, but not the test data. The k-NN is applied to
every voxel in the patient p. The sensitivity, specificity, and area under the ROC curve (Az)
were then computed for patient p at a given k value. The sensitivity and specificity were
defined in the usual manner, i.e.

(3)

(4)

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false
negative, respectively. The Az was computed non-parametrically through an analogy to the
Wilcoxon statistic and represents the fraction of times the positive example was ranked
higher by the k-NN algorithm [32].

Following this leave-one-out classification of all the voxels from all the design patients, the
sensitivity, specificity, and Az were computed separately for each patient. The mean μ and
standard deviation σ across patients was computed for these statistics. The cost function for
each value of k was then defined as

(7)

where cmask is the number of non-zero feature weights included. A separate value of the cost
function was computed for each value of k, and the final cost for that chromosome was the
minimum across all k values. Note that k is not a parameter in the genetic optimization, but
is exhaustively sampled during evaluation of every chromosome; a single chromosome has a
single optimal k that is applied to all patients in the leave-one-out testing. Every
chromosome may have a different k value. It is important to note that a cost function is
computed over the whole group of patients, not for any individual patient.
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2.7. Single-variable thresholding
An alternative classification scheme would be to simply threshold a single feature, such that
any voxels with a value greater than or equal to the threshold would receive a positive
prediction, and those below the threshold would receive a negative prediction. Similarly, the
classification can be inverted, so that values lower than the threshold receive a positive
prediction. This thresholding classifier was first applied to the design data to select an
optimal threshold. For each of the 38 features, the minimum and maximum values across all
patients was determined. This range was used to create a list of 1000 equally spaced
thresholds which were applied to all design patients. The cost function in equations 5
through 7 were then evaluated for all 1000 threshold values, and the optimum threshold and
minimum costs were selected. The 38 features were then sorted according to their costs, and
the five features with the five lowest costs were selected for further study. For these five
features, the optimum thresholds determined above were applied to the verification data, and
receiver operating characteristic (ROC) curves and related statistics computed and compared
with the k-NN results. Note that for a given threshold, a single cost function is calculated
across all patients, and that for each feature, a single optimum threshold is chosen to be
applied to all patients.

3. Results
3.1. Genetic optimization of feature weights

3.1.1. Effect of bit-representation—The effect of changing the number of bits used to
represent weights in the optimization process can be seen in Figure 3 and in Table 2. To
produce the results in Figure 3, the state of the genetic algorithm at each generation was
recorded. Each of these intermediate weight vectors were then applied to the holdout
verification set. Note that these results are only available in retrospect, since during training,
the genetic algorithm is allowed to go to convergence on the design data only, with no
knowledge of the verification data. We emphasize that all other results presented for the
optimized algorithms use the final result only, as the intermediate (and potentially better)
solutions cannot be known in advance.

When the best member of each generation is applied to the holdout verification set, differing
behaviors are also observed. Note that in Figure 3, the costs have been normalized to
emphasize the similarities and differences in trends between the design and verification sets.
As expected, the number of generations required for convergence increases with the number
of bits used to represent weights, with the 1-bit optimization converging in fewer than 100
generations. The improvement in the verification cost function is not monotonic in any of
the four representations, while the CHC algorithm ensures that the design cost function is
monotonic. Using pure feature selection (1-bit), the best possible result on the verification
data is reached at generation 54, at which point the cost function has improved by 35%
below the initial state. The genetic algorithm then continued to evolve new solutions for 14
generations before converging. The final result upon convergence, when applied to the
verification data, was a 32% improvement below the initial state, or within 5% of the best
solution. Similarly, the verification results for the 2-bit representation closely match the
trend for the design results. The verification results for the 3-bit and 4-bit algorithms also
begin by following the same trend as the design results; however, the design and verification
cost trends begin to diverge well before convergence is achieved. The 4-bit algorithm
achieved its best result on the verification data at iteration 205, at a cost 17% below the
initial state, and then continued to evolve for 119 generations. The final result was only 4%
below the initial state. This is displayed graphically in Figure 3(d), where the 4-bit solution
improves significantly but then this improvement is lost as the algorithm continues. This
suggests a noticeable degree of overfitting in the 3-bit and 4-bit representations.
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The overfitting problem can also be observed by comparing the final results on the design
data with the final results on the verification data. The 1-bit representation achieved a
sensitivity and specificity of 0.85 ± 0.14 and 0.84 ± 0.10 on the design data and a sensitivity
and specificity of 0.78 ± 0.79 and 0.75 ± 0.07 on the verification data. As expected, there is
some level of generalization error, reflected in the discrepancy between the design and
verification data. The 4-bit representation was able to achieve a sensitivity of 0.86 ± 0.10
and specificity of 0.87 ± 0.06 on the design data. However, on the verification data, it was
only able to achieve a sensitivity and specificity of 0.72 ± 0.22 and 0.80 ± 0.07. Thus,
despite a slight improvement in the design results, the increased bit-representation resulted
in a decline in the sensitivity of the classifier on verification data, and only a marginal
improvement in specificity. As seen in Table 2, the 2-bit representation yielded the best
value for Az and sensitivity, and also showed the least overfitting. Moreover, Figure 2
shows that there was less overfitting in this 2-bit representation than the 3- or 4-bit
representations.

3.1.2. Optimal feature weights—The optimal weights determined by the genetic
algorithm are shown in Table 1. Across all four bit representations, the predominant feature
types are the spectral peak amplitudes. As seen in Table 2, the five best single variable
threshold classifiers are all spectral features. All features present in the 1-bit feature
selection method were also present in one normalized form or another in the 2-, 3-, and 4-bit
representations. There was no clear preference for a normalization method, and in the 2-, 3-,
and 4-bit optimizations, the same feature was sometimes included twice, using two different
normalization methods. After optimization, the k-NN classification required 7, 11, 17, and
23 features for the 1-, 2-, 3-, 4-bit representations. In the following sections, we will focus
primarily on the 1-bit feature selection result, as its results were comparable to the higher
bit-representations while requiring the fewest number of features.

3.2. Comparison of classifiers
3.2.1. Sensitivity and specificity—Means and standard deviations of the sensitivity,
specificity, and Az for all the classifiers are given in Table 2. Note the improvement in
sensitivity when moving from the original, non-optimized k-NN classifier to the optimized
k-NN classifiers. The optimized k-NN classifiers (1-, 2-, and 3-bit) are the only classifiers in
which both the mean sensitivity and specificity are greater that 0.75. Additionally, the
minimum sensitivity and specificity across patients (worst-case performance) was higher in
the feature selection (1-bit) k-NN classifier than any single variable classifier. This suggests
that the feature selection k-NN demonstrated greater consistency across patients; this is also
reflected in the low standard deviation across patients. It is also apparent that the optimized
k-NN yielded a smaller discrepancy between sensitivity and specificity than any of the
single variable classifiers. This implies that the probability of correctly classifying a
negative voxel is similar to the probability of correctly classifying a positive voxel.

An illustrative example of this variation can be observed in Figure 4. Shown are ROC
curves for thresholding on CNI using two patients from the design set, i.e. the set from
which the optimal threshold was derived. Both ROC curves exhibit similar and high Az
values: 0.91 for patient 1 and 0.85 for patient 2. For illustrative purposes, we choose optimal
operating thresholds for each patient separately based on the criteria of minimizing equation
5. These optimum thresholds are 0.80 for patient 1 and 1.32 for patient 2; their positions are
plotted on the two ROC curves. Clearly, a compromise between these two thresholds must
be chosen, and the result will be suboptimal for both patients. In contrast, a common
threshold of 0.5 for the k-NN classifier results in consistent sensitivity and specificity values
across patients.
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3.2.2. Prediction maps—Examples of the classification results are shown in Figure 5. In
both cases, the sensitivities of the 1-bit k-NN and CNI thresholding are comparable; very
little of the new contrast enhancement is outside of either contour. However, the specificity
of the k-NN algorithm is higher in both cases, with much less non-enhancing tissue
contained within the contours. Note, however, that in both these cases, and indeed most
patients, an optimal threshold for CNI could have been chosen which would have been very
competitive with the k-NN results. This corresponds to choosing the ideal points on ROC
curves, as in Figure 4. However, as seen in section 3.1.2, selection of a single optimal
threshold is difficult due to inter-patient variation.

4. Discussion
In this study, we have demonstrated the use of a genetic algorithm to design a k-nearest
neighbor classifier. By reducing the dimensionality of the data or rescaling the feature space,
the genetic algorithm is able to improve the performance of the classifier. In this way, it was
possible to construct a classifier that performs better than any single-variable and
generalizes well to previously unseen data.

It is important to note that the goal of the classifier is not explicitly to detect the presence of
tumor. The goal is to predict the appearance of contrast-enhancement; this is a related but
distinct problem. The growth of contrast-enhancement in this study should also not be
confused with physical growth of the bulk tumor. Instead, this study is concerned with
conversion of apparently normal regions of tissue into regions of macroscopic contrast-
enhancement. The appearance of new post-therapy contrast-enhancement suggests several
hypotheses about the pre-therapy state of the tissue. It may suggest microscopic infiltration
of tumor cells into an apparently normal region, a hallmark of gliomas. During the inter-
exam interval, these cells may grow to such an extent as to cause a breakdown in the blood-
brain barrier, resulting in contrast-enhancement. New contrast-enhancement may also occur
in regions where blood vessels and tissues are particularly susceptible to radiation.
Prediction of new contrast-enhancement may therefore also identify tumor subregions that
are being severely damaged by radiotherapy. In that case, the post-therapy contrast-
enhancement may not be indicative of tumor growth, but rather, response to therapy. The
machine learning approach adopted in this study is designed only to predict the radiological
outcome of individual voxels, but does not seek to specifically decide between these
possible causes for the outcome. Nevertheless, by examining the features used in
classification, it is possible to gain some insight into both the classification algorithms as
well as the underlying physiology.

The best single variable classifiers were CNI, CrNI, NAA, lactate, and lipid. Tumor cell
proliferation is generally associated with elevated choline and reduced NAA and these
changes motivated the development of CNI as a marker of tumor [9]. A change in NAA
would also be reflected in a change in CrNI. Lactate is a marker of anaerobic metabolism,
which may be related to tumor hypoxia. The presence of lactate therefore suggests that a
tumor has outgrown its blood supply. The presence of lipids suggests cell death, and is often
observed in regions of contrast-enhancement. Abnormalities in any of these five variables
are well known to be indicative of tumor presence. These features therefore suggest that
early regions of growth in contrast-enhancement correspond to tumor that is already present
in the pre-therapy examination. If machine learning based classification methods are able to
combine these features to predict tumor growth on a local, voxel-by-voxel basis, such
methods may prove useful in surgical or radiotherapy planning.

One problem observed with the single-variable classifiers is the variation in optimum
thresholds across patients. For example, the high Az of CNI suggests that by properly
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adjusting the thresholds it is possible to very accurately delineate regions at risk of contrast-
enhancement. However, this alone is not sufficient, as the correct threshold cannot be
definitively known a priori, but must be determined from a set of design or training data.
The CNI algorithm was developed to provide a quantitative and objective measure of
spectroscopic abnormality, and has been shown to have a sensitivity of 90% and specificity
of 86% in predicting tumor based upon correlation with image guided biopsy [21]. This
study has shown that it is possible to add a further level of cross-patient robustness and
numerical consistency by adding in additional features through machine learning techniques.
This is particularly true for the metabolic peaks heights and areas, where normalization to a
well defined standard is a difficult task currently under study.

While instance-based learning algorithms, such as the k-NN, do not attempt to induce
generalized rules from the training data, it is still possible to evaluate the validity of the
feature selection and feature weighting by comparing the selected features with prior
knowledge of the problem domain. In this case, several spectral features were consistently
chosen, regardless of bitwise representations. These include the derived index CNI, as well
as the five metabolites generally visible on long-echo proton spectroscopy: choline, creatine,
NAA, lactate, and lipids. As describe earlier, it has been well reported in the literature that
spectroscopy provides a highly accurate means of identifying the presence of tumor.
Contrast enhancement at the post-therapy examination is commonly assumed to represent
clinical progression, and has been found to be most likely to occur in regions that were
metabolically abnormal in the pre-treatment examination. Also identified by feature
selection was the width of the peak in the perfusion data. Peak recovery to baseline was also
included with non-binary feature weighting. Both these features are believed to be related to
vessel leakiness and tortuosity. Small scale leakage of contrast agent below the level that is
detected in the post-gadolinium T1-weighted images may correspond to macroscopic
contrast-enhancement at a later time point. Neovasculature is known to be both tortuous and
leaky in regions of tumor and it is reasonable that increased peak width and decreased
percent recovery are observed in the pre-therapy examination predicts subsequent larger
scale leakage of the contrast agent.

In addition to clinical research issues related to contrast enhancement in gliomas, this study
is also largely concerned with topics in machine learning for computer-aided diagnosis. The
problem of overfitting can be very severe when aggressive optimization strategies are used
in feature weighting. The approach we have adopted is patterned after the idea proposed by
Kohavi et al, in which the problem of overfitting is mitigated by reducing the
representational power of the optimization algorithm [33]. Kohavi et al found that in a
nearest neighbor algorithm, allowing features weights to take on more than two different
non-zero values failed to significantly improve accuracy on a test set. In this study, using
different bitwise representations, we allowed 1, 3, 7, and 15 non-zero weights, and found
little difference between the 1-, 2-, and 3-bit representations. Given this, we elected to
perform most comparisons using the 1-bit representation, which required only 7 features.
There was further evidence of overfitting in the 3-bit and 4-bit representations, as seen by
retrospectively applying the intermediate weights to the test data. In these cases, a second
strategy such as early stopping may be useful in improving accuracy. Such an approach has
previously been applied for k-NN algorithms by Loughrey and Cunningham, and has been
widely used in backpropagation training of artificial neural networks [34]. This study further
emphasizes the well known importance of taking measures to prevent overfitting the data,
and also the use of a completely separate set of data for testing and verification. Use of
leave-one-out cross-validation only within the feature selection or feature weighting phase
will still result in a biased outcome, and does not guarantee generalizability [35].
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A major assumption of this study is that it was possible to create a voxel-by-voxel
correspondence between the pre-therapy and post-therapy images. As discussed earlier, this
study is concerned with conversion of tissue, and not bulk growth of the solid tumor. It is
therefore important that bulk tumor growth and corresponding tissue shift during the inter-
exam interval is minimal. The images observed in Figure 5 are typical of the images used in
this study. Some tissue shift is inevitable, but in this study, we did not perceive this tissue
shift to be a significant problem. Other studies have specifically modeled the growth and
infiltration of brain tumors in a mathematical sense [36]. These models have more recently
been combined with prior knowledge available from diffusion tensor imaging studies [37].
The results of the present study suggests that information from other MR images may also
be useful in modeling tumor growth.

One issue of concern in machine learning studies is the independence of samples in the
training data. While other researchers have found success in treating each voxel in an image
as an separate instance in training [38], others have used prior knowledge of the acquisition
procedure to reduce correlations between samples by attempting to choose only the most
uncorrelated voxels [14]. The approach used in this study was to condense information from
the entire ROI in a single patient, so that correlations between samples in a single patient are
largely removed, and each patient contributes equally to the training data. This has the
disadvantage of eliminating large amounts of data and any important information that may
have been in the spatial distribution of this data. Alternative methods of reducing the
training data have been proposed, and may be useful in selecting out the most useful, if not
the most uncorrelated, data [27, 39, 40].

This study complements previous work in using combined MRI and spectroscopy features in
classifying brain tumors [13-16]. We have chosen to apply similar methods of supervised
pattern recognition and computer-aided diagnosis to study a very specific question in glioma
imaging, thereby relating machine learning techniques with image segmentation and clinical
prediction. The results of these studies all suggest the potential for computerized methods in
understanding which combination of multivariate features may be relevant in addressing
specific imaging problems.

5. Conclusions
Techniques of pattern recognition and evolutionary computing have previously been used in
computer-aided diagnosis applications, such as in mammography and stroke imaging. The
primary contribution of this work was to apply these methods to a new problem in glioma
imaging: the identification of regions at risk for developing contrast enhancement. We have
applied techniques of feature-selection and weighting developed in the machine learning and
artificial intelligence fields with current techniques in magnetic resonance imaging to select
relevant features and use them to perform this predictive analysis. Our key finding from the
tumor biology perspective is that the features in the pretreatment scan that appear to be most
relevant in predicting formation of new contrast enhancement in the subsequent examination
are metabolic features of tumor in non-enhancing tissue. This implies that new contrast
enhancement is not necessarily new tumor. We believe that in addition to aiding radiological
interpretation of complex multimodality datasets, such methods can lend insight into
parameter relevance and therefore be of use in both the machine learning and clinical
research communities.

Acknowledgments
This work was supported in part by NIH/NCI grant P50 CA97257 and fellowship F32 CA105944. We would like to
thank Forrest Crawford, Rebeca Choy, and Il Woo Park for their assistance in processing the imaging and
spectroscopic data.

Lee and Nelson Page 12

Artif Intell Med. Author manuscript; available in PMC 2013 August 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



References
1. Tien RD, Felsberg GJ, Friedman H, Brown M, MacFall J. MR imaging of high-grade cerebral

gliomas: value of diffusion-weighted echoplanar pulse sequences. AJR Am J Roentgenol. 1994;
162:671–77. [PubMed: 8109520]

2. Krabbe K, Gideon P, Wagn P, Hansen U, Thomsen C, Madsen F. MR diffusion imaging of human
intracranial tumours. Neuroradiology. 1997; 39:483–9. [PubMed: 9258924]

3. Aronen HJ, Gazit IE, Louis DN, Buchbinder BR, Pardo FS, Weisskoff RM, et al. Cerebral blood
volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology. 1994;
191:41–51. [PubMed: 8134596]

4. Maeda M, Itoh S, Kimura H, Iwasaki T, Hayashi N, Yamamoto K, et al. Tumor vascularity in the
brain: evaluation with dynamic susceptibility-contrast MR imaging. Radiology. 1993; 189:233–8.
[PubMed: 8372199]

5. Knopp EA, Cha S, Johnson G, Mazumdar A, Golfinos JG, Zagzag D, et al. Glial neoplasms:
dynamic contrast-enhanced T2*-weighted MR imaging. Radiology. 1999; 211:791–8. [PubMed:
10352608]

6. Nelson SJ. Analysis of volume MRI and MR spectroscopic imaging data for the evaluation of
patients with brain tumors. Magn Reson Med. 2001; 46:228–39. [PubMed: 11477625]

7. Ott D, Hennig J, Ernst T. Human brain tumors: assessment with in vivo proton MR spectroscopy.
Radiology. 1993; 186:745–52. [PubMed: 8430183]

8. Negendank WG, Sauter R, Brown TR, Evelhoch JL, Falini A, Gotsis ED, et al. Proton magnetic
resonance spectroscopy in patients with glial tumors: a multicenter study. J Neurosurg. 1996;
84:449–58. [PubMed: 8609557]

9. McKnight TR, Noworolski SM, Vigneron DB, Nelson SJ. An automated technique for the
quantitative assessment of 3D-MRSI data from patients with glioma. J Magn Reson Imaging. 2001;
13:167–77. [PubMed: 11169821]

10. Tate AR, Griffiths JR, Martinez-Perez I, Moreno A, Barba I, Cabanas ME, et al. Towards a method
for automated classification of 1H MRS spectra from brain tumours. NMR Biomed. 1998; 11:177–
91. [PubMed: 9719572]

11. Usenius JP, Tuohimetsa S, Vainio P, AlaKorpela M, Hiltunen Y, Kauppinen RA. Automated
classification of human brain tumours by neural network analysis using in vivo H-1 magnetic
resonance spectroscopic metabolite phenotypes. Neuroreport. 1996; 7:1597–600. [PubMed:
8904763]

12. Preul MC, Caramanos Z, Leblanc R, Villemure JG, Arnold DL. Using pattern analysis of in vivo
proton MRSI data to improve the diagnosis and surgical management of patients with brain
tumors. NMR Biomed. 1998; 11:192–200. [PubMed: 9719573]

13. Devos A, Simonetti AW, van der Graaf M, Lukas L, Suykens JA, Vanhamme L, et al. The use of
multivariate MR imaging intensities versus metabolic data from MR spectroscopic imaging for
brain tumour classification. J Magn Reson. 2005; 173:218–28. [PubMed: 15780914]

14. Simonetti AW, Melssen WJ, Szabo de Edelenyi F, van Asten JJ, Heerschap A, Buydens LM.
Combination of feature-reduced MR spectroscopic and MR imaging data for improved brain
tumor classification. NMR Biomed. 2005; 18:34–43. [PubMed: 15657908]

15. Simonetti AW, Melssen WJ, van der Graaf M, Postma GJ, Heerschap A, Buydens LM. A
chemometric approach for brain tumor classification using magnetic resonance imaging and
spectroscopy. Anal Chem. 2003; 75:5352–61. [PubMed: 14710812]

16. Szabo de Edelenyi F, Rubin C, Esteve F, Grand S, Decorps M, Lefournier V, et al. A new
approach for analyzing proton magnetic resonance spectroscopic images of brain tumors:
nosologic images. Nat Med. 2000; 6:1287–9. [PubMed: 11062544]

17. Siedlecki W, Sklansky J. A note on genetic algorithms for large-scale feature-selection. Pattern
Recognition Letters. 1989; 10:335–47.

18. Sahiner B, Chan HP, Wei DT, Petrick N, Helvie MA, Adler DD, et al. Image feature selection by a
genetic algorithm: Application to classification of mass and normal breast tissue. Med Phys. 1996;
23:1671–84. [PubMed: 8946365]

Lee and Nelson Page 13

Artif Intell Med. Author manuscript; available in PMC 2013 August 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



19. Star-Lack J, Nelson SJ, Kurhanewicz J, Huang LR, Vigneron DB. Improved water and lipid
suppression for 3D PRESS CSI using RF band selective inversion with gradient dephasing
(BASING). Magn Reson Med. 1997; 38:311–21. [PubMed: 9256113]

20. Tran TK, Vigneron DB, Sailasuta N, Tropp J, Le Roux P, Kurhanewicz J, et al. Very selective
suppression pulses for clinical MRSI studies of brain and prostate cancer. Magn Reson Med. 2000;
43:23–33. [PubMed: 10642728]

21. McKnight TR, von dem Bussche MH, Vigneron DB, Lu Y, Berger MS, McDermott MW, et al.
Histopathological validation of a three-dimensional magnetic resonance spectroscopy index as a
predictor of tumor presence. J Neurosurg. 2002; 97:794–802. [PubMed: 12405365]

22. Lee MC, Cha S, Chang SM, Nelson SJ. Partial-volume model for determining white matter and
gray matter cerebral blood volume for analysis of gliomas. J Magn Reson Imaging. 2006; 23:257–
66. [PubMed: 16456821]

23. Lupo JM, Cha S, Chang SM, Nelson SJ. Dynamic susceptibility-weighted perfusion imaging of
high-grade gliomas: characterization of spatial heterogeneity. AJNR Am J Neuroradiol. 2006;
26:1446–54. [PubMed: 15956514]

24. Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by
quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance. 2996; 111:209–19. [PubMed:
8661285] Series B

25. Studholme C, Hill DL, Hawkes DJ. An overlap invariant entropy measure of 3D medical image
alignment. Pattern Recognition. 1999; 32:71–86.

26. Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ. Nonrigid registration using
free-form deformations: application to breast MR images. IEEE Trans Med Imaging. 1999;
18:712–21. [PubMed: 10534053]

27. Wilson DR, Martinez TR. Reduction techniques for instance-based learning algorithms. Machine
Learning. 2000; 38:257–86.

28. Wettschereck D, Aha DW, Mohri T. A review and empirical evaluation of feature weighting
methods for a class of lazy learning algorithms. Artificial Intelligence Review. 1997; 11:273–314.

29. Eshelman, L. The CHC adaptive search algorithm: how to have a safe search when engagin in
nontraditional genetic recombination. In: Rawlins, GJE., editor. Foundations of Genetic
Algorithms I. Morgan Kaufmann; San Mateo, CA USA: 1991. p. 265-83.

30. Mathias, KE.; Whitley, LD. In: Schaffer, JD., editor. Transforming the search space with Gray
coding; Proceedings of the IEEE Conference on Evolutionary Computation, IEEE World Congress
on Computational Intelligence; New York: IEEE Press; 1994. p. 513-8.

31. Guerra-Salcedo, C.; Whitley, LD. In: Koza, JR.; Banzhaf, W.; Chellapilla, K.; Deb, K.; Dorigo,
M.; Fogel, DB., et al., editors. Genetic search for feature subset selection: a comparison between
CHC and GENESIS; Genetic Programming 1998: Proceedings of the Third Annual Conference;
San Mateo, CA: Morgan Kaufmann; 1998. p. 504-9.

32. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic
(ROC) curve. Radiology. 1982; 143:29–36. [PubMed: 7063747]

33. Kohavi, R.; Langley, P.; Yun, Y. In: Van Someren, M.; Widermer, G., editors. The utility of
feature-weighting in nearest-neighbor algorithms; Poster: Ninth European Conference on Machine
Learning, Czech Republic; 1997.

34. Loughrey, J.; Cunningham, P. Overfitting in wrapper-based feature subset selection: the harder you
try the worse it gets. In: Bramer, M.; Coenen, F.; Allen, T., editors. Research and Development in
Intelligent Systems XXI. Springer-Verlag; London, UK: 2005. p. 33-43.

35. Li Q, Doi K. Reduction of bias and variance for evaluation of computer-aided diagnostic schemes.
Med Phys. 2006; 33:868–75. [PubMed: 16696462]

36. Swanson KR, Bridge C, Murray JD, Alvord EC Jr. Virtual and real brain tumors: using
mathematical modeling to quantify glioma growth and invasion. J Neurol Sci. 2003; 216:1–10.
[PubMed: 14607296]

37. Jbabdi S, Mandonnet E, Duffau H, Capelle L, Swanson KR, Pelegrini-Issac M, et al. Simulation of
anisotropic growth of low-grade gliomas using diffusion tensor imaging. Magn Reson Med. 2005;
54:616–24. [PubMed: 16088879]

Lee and Nelson Page 14

Artif Intell Med. Author manuscript; available in PMC 2013 August 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



38. Gottrup C, Thomsen K, Locht P, Wu O, Sorensen AG, Koroshetz WJ, Ostergaard L. Applying
instance-based techniques to prediction of final outcome in acute stroke. Artif Intell Med. 2005;
33:223–36. [PubMed: 15811787]

39. Tomek I. Experiment with Edited Nearest-Neighbor Rule. IEEE Trans Syst Man Cybern. 1976;
6:448–52.

40. Kuncheva LI. Editing for the K-Nearest Neighbors Rule by a Genetic Algorithm. Pattern
Recognition Letters. 1995; 16:809–14.

Lee and Nelson Page 15

Artif Intell Med. Author manuscript; available in PMC 2013 August 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
A schematic example of the interaction between the genetic search and the k-NN algorithm.
Consider a set of training points, a–d in a 2-dimensional feature space, and an unknown test
point, denoted by an open circle. For the k-NN algorithm, we are interested in the relative
distances between points a–d and the test point. We begin with two parent chromosomes,
with two bits representing the weight for each of the two features. The first parent P1 has a
chromosome 1010, corresponds to weights of (3,3) in Gray code, while the second parent P2
has bits 0110, corresponding to (1,3). Consequently, P2 has its horizontal axis shrunken by a
factor of 3 compared with P1. When ordered from nearest to farthest from the test point, the
test points in P1 are d, b, c, a while in P2, the order is c, a, b, d. These two parent
chromosomes mate using HUX, or half uniform crossover, swapping a single bit (in HUX
we swap half the non-matching bits, rounding up as needed; in this schematic example,
exactly one bit is swapped). O1 is a copy of P1, with the second bit swapped, while O2 is a
swapped copy of P2. The order of points in the offspring are now different: c, b, d, a in O1,
while in O2 the order is c, a, d, then b. In this way, the genetic algorithm is able to sample
the search space, altering the measured distances and thus altering the outcome of the k-NN
algorithm.
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Figure 2.
Schematic of the evolution of solutions in the 1-bit (feature selection) optimization. Each of
the 50 rows represent a separate chromosomes, sorted from best (top) to worst (bottom),
while each column represents a different parameter. A white square indicates that a specific
parameter is active in that chromosome. The identity of these features can be seen in Table
1.
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Figure 3.
Retrospective view of the relative cost when the best member of each generation is applied
to the design and to the verification data. Shown are results for the (a) 1-bit, (b) 2-bit, (c) 3-
bit, and (d) 4-bit representations.
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Figure 4.
Example ROC curves from two design patients when thresholded using CNI. Also shown
are two candidate operating points. Note that each threshold is optimal for one patient (in
terms of minimizing the distance to the top left corner) but not for the other patient.
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Figure 5.
Example classification of a design patient, showing the (a) pre-therapy image and (b) post-
therapy image with region of interest indicated; (c) feature-selection k-NN result and (d)
thresholding on CNI using the optimal threshold derived from the design patients with
contour showing the region of pre-existing contrast-enhancement and resection cavity for
which no prediction was made (■ true positive,  false positive,  false negative). These
results are also for a verification patient (d-f).
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Table 1

Features and optimal weights

Feature 1-bit 2-bit 3-bit 4-bit Feature 1-bit 2-bit 3-bit 4-bit

Perfusion

CBV2 0 0 0 11

Spectral height CBV4 0 0 5 0

CNI 1 3 7 15 Peak height2 0 0 0 4

CrNI 0 0 0 0 Peak height4 0 0 0 0

CCrI 0 3 7 14 Recirc.3 0 0 0 7

Cho1 0 0 0 6 Recirc.2 0 0 0 0

Cr1 1 3 7 15 Peak width3 0 0 6 11

NAA1 0 0 2 2 Peak width2 1 3 0 10

Cho2 0 0 6 0 Peak time3 0 0 0 5

Cr2 0 0 4 0 Peak time2 0 0 0 6

NAA2 0 0 7 0 % recovery3 0 0 0 0

Lactate1 1 3 7 13 % recovery2 0 3 7 13

Lipid2 1 3 6 12

Cho3 1 3 0 10 Spectral widths

Cr3 0 2 0 0 Cho linewidth 0 0 0 0

NAA3 1 3 3 15 Cr linewidth 0 0 2 0

NAA linewidth 0 0 0 0

Diffusion Cho linewidth3 0 0 2 4

FA 0 0 0 13 Cr linewidth3 0 0 0 0

ADC2 0 0 0 13 NAA linewidth3 0 0 2 9

ADC3 0 0 0 0 Cho linewidth2 0 0 0 6

Cr linewidth2 0 0 0 0

NAA linewidth2 0 3 6 13

1
Normalized within each patient to standard error of the noise

2
Normalized within each patient to the mean value in normal appearing white matter (NAWM)

3
Standardized to the mean and standard deviation in normal appearing white matter for each patient

4
Scaled linearly such that 0 is the estimated value of normal appearing white matter and 1 is normal appearing gray matter for each patient
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Table 2

Comparison of classifiers

mean ± standard deviation

classifier ndim sensitivity specificity | sens – spec | Az

k-NN (no opt) 38 0.73 ± 0.16 0.75 ± 0.07 0.15 ± 0.14 0.77 ± 0.10

k-NN (1-bit) 7 0.78 ± 0.18 0.79 ± 0.06 0.16 ± 0.10 0.80 ± 0.08

k-NN (2-bit) 11 0.79 ± 0.14 0.78 ± 0.06 0.13 ± 0.13 0.81 ± 0.07

k-NN (3-bit) 17 0.78 ± 0.15 0.78 ± 0.06 0.15 ± 0.12 0.79 ± 0.06

k-NN (4-bit) 23 0.72 ± 0.22 0.80 ± 0.07 0.22 ± 0.14 0.78 ± 0.12

CNI 1 0.79 ± 0.20 0.71 ± 0.11 0.19 ± 0.17 0.86 ± 0.10

CrNI 1 0.66 ± 0.36 0.76 ± 0.11 0.28 ± 0.27 0.78 ± 0.21

NAA 1 0.77 ± 0.25 0.67 ± 0.07 0.24 ± 0.15 0.79 ± 0.12

Lactate 1 0.48 ± 0.34 0.74 ± 0.05 0.32 ± 0.23 0.61 ± 0.31

Lipid 1 0.52 ± 0.30 0.68 ± 0.03 0.23 ± 0.23 0.61 ± 0.23
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