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Summary

Objective: Efficient scheduling of patient appointments on expensive resources is a
complex and dynamic task. A resource is typically used by several patient groups. To
service these groups, resource capacity is often allocated per group, explicitly or
implicitly. Importantly, due to fluctuations in demand, for the most efficient use of
resources this allocation must be flexible.
Methods: We present an adaptive approach to automatic optimization of resource
calendars. In our approach, the allocation of capacity to different patient groups is
flexible and adaptive to the current and expected future situation. We additionally
present an approach to determine optimal resource openings hours on a larger time
frame. Our model and its parameter values are based on extensive case analysis at the
Academic Medical Hospital Amsterdam.
Results and conclusion: We have implemented a comprehensive computer simulation
of the application case. Simulation experiments show that our approach of adaptive
capacity allocation improves the performance of scheduling patients groups with
different attributes and makes efficient use of resource capacity.
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1. Introduction

High patient service levels are becoming increas-
ingly important in the hospital. At the same time,
the demand for health care is increasing and, more
and more patients must be treated with the same
limited capacity and budget. High efficiency on
rved.
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resources is necessary to provide patients with high
quality care including short access times. To this
end, improvements on all levels of hospital opera-
tions must be made, from strategic innovations and
adjustments, to improved day to day scheduling [2].

Efficient scheduling of patient appointments on
expensive resources is a complex and dynamic task.
Traditional approaches to logistical improvement for
increased efficiency are usually not easily applied to
the medical domain. In patient scheduling, we have
to consider that hospital resources aremany: ranging
from scanners for medical imaging, to hospital
beds, to attending staff, to operating rooms. To
achieve a high hospital-wide patient throughput,
local resources must maintain short access times.
For some resources, this is a more complex problem
than for other resources.

A resource is typically used by several patient
groups with different properties [3]. Groups can be
distinct based on referring departments, inpatients
(admitted to the hospital) or outpatients (not
admitted), medical constraints, and level of
urgency [4]. To allow different norms on what is
an acceptable access time per patient group, hos-
pital resource capacity is allocated per group, expli-
citly or implicitly. However, due to variation in
demand, determining the optimal allocating is a
complex problem. Importantly, to achieve the best
performance, this allocation must be dynamic.

We study the case of scheduling computer tomo-
graphy scans (CT-scans) at the radiology department
within the Academic Medical Centre Amsterdam
(AMC). Diagnostic resources such as the CT-scanners
are literally central in the clinical pathways of many
patients. Long access times to such resources are
immediately felt as bottlenecks for health care
processes in the hospital. In recent years the whole
logistical process around the CT-scan in the AMC has
already improved substantially [5]. The actual sche-
duling of appointments is (still) done by human
schedulers: they select a timeslot on the resource
calendar for each patient, given the scheduling
restrictions due to the allocation of capacity. There
is often a lack of overview on how these low-level
scheduling decisions influence overall performance.

A calendar supervisor determines a long time in
advance how to allocate scanner capacity, based
on experience, future expectation, and in coop-
eration with medical experts. Often, the actual
realization of patient arrivals does not match the
allocation, which results in inefficient use of the
capacity and/or long access time for patients. This
fact is well known from general queuing theory: a
static allocation of capacity will increase variabil-
ity and can reduce resource efficiency. In current
practice, the calendar supervisor can counter such
problems by manually adjusting the calendar to
adopt the allocation of capacity to variability in
demand as best as possible. With constant active —
and time consuming — supervision of the calendar,
the scheduling and adjustment practice performs
satisfactory. However, making good adjustments is
critically dependent on the supervisor’s expertise:
even a short vacation or illness of the calendar
supervisor leads to immediate and significant dete-
rioration of the resource efficiency. Additionally it
would take a long time to train a new calendar
supervisor with similar capabilities. From a plan-
ning and sustainability perspective, this is highly
unsatisfactory.

As our main contribution, we present an adaptive
approach to automatic optimization of resource
calendars. In our approach, the allocation of capa-
city to different patient groups is flexible and adap-
tive to the current and expected future situation. To
maintain high performance levels, our approach
shifts capacity between different urgent and non-
urgent patients groups. It does not require any
rescheduling of patients, or a pool of on-call
patients to fill in empty timeslots. Our approach
enables the calendar supervisor to quickly imple-
ment calendar adjustments, and anticipate — and
remedy — the impact of current demand trends to
future resource efficiency, as well as assess the
impact of possible changes to the calendar. Addi-
tionally, we present an approach to determine opti-
mal resource openings hours on a larger time frame.
Opening hours can be reduced to increase capacity
usage while maintaining high performance levels, or
extended to counter increasing access time.

We extensively evaluate our adaptive appro-
aches in a precise simulated environment. Our
model and its parameter values are determined
from extensive case analysis. Sources include his-
torical data and extensive discussion with experts
at various levels in the organization. We evaluate
with a comprehensive computer simulation of the
application case. This additionally allows us to
study various problem scenarios and scheduling
approaches. Due to the complexity of our process
model, queuing theory [6] cannot provide analyti-
cal answers, and modeling the problem as a Markov
decision problem [7] results in a state space of
unsolvable size.

In the next section, we will discuss the problem
and our case study in more detail. In Section 3 we
will present our simulation model built based on
our case study. Our adaptive patient scheduling
approach is presented in Section 4. We present
the results of our experiments in Section 5. We
discuss related work in Section 6, and conclude in
Section 7.
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Table 1 Patient attributes

Attribute Description

Request time Date and time when request for CT-scan is made
In-/outpatient Is the patient admitted in the hospital?
Contrast needed? (�ivc) Does intravenous–—contrast need to be injected?
Planning window (PLANWIN) Expresses urgency of patient
Duration Of the needed appointment

Table 2 Patient groups

Group Urgency PLANWIN (fraction) Duration Size(%)

OUT+IVC normal (2,14) 15 min 52%� 6%
OUT—IVC normal (2,14) 15 min 23%� 4%,
URGENT high (0,1)(33%), (0,2)(33%), or (0,3)(33%) 15 min 10%� 3%
CLINIC high (0,1)(40%), or (0,2)(60%) 30 min 6%� 2%
SPECIALn n.a. n.a. durationn 9%� 2%
2. CT-scan scheduling model

In this Section, we define our CT-scan scheduling
model. From the AMC electronic calendar system1,
we have collected the historical data of the appoint-
ments made from October 2005 until March 2006.
We have complemented this with data from actual
production of CT-scans (November 2005 until Jan-
uary 2006). During this period, some scans were
taken without an appointment. We derive the
patient arrival process, patient attributes distribu-
tions and scheduling practice from this data as well
as from site-visits and extensive discussions with the
human schedulers, the calendar supervisor, and
resource manager.

Our case consists of threemain parts, discussed in
the following sections. One part is the arriving
patients that need to be scheduled for a specific
scan. Secondly, we describe the available resources,
and the way the associated appointment calendar is
structured. The third part is the scheduling process
that determines how appointments are made by
assigning patients to timeslots on the calendar.

2.1. Patients

An important issue is that there is a great variety in
patients and scan attributes. We make the abstrac-
tion that a patient always needs to be scheduled for
exactly one CT-scan. We therefore model the
patient and his/her scan as a unity, which we from
now on refer to as ‘patient’. The patient attributes
most important are listed in Table 1. We make an
abstraction from a patient’s physical arrival time
and consider the request time of when the actual
request for a CT-scan is made. Medical attributes
1 X/CARE, McKesson.
include whether the patient is admitted to the
hospital or not (inpatient versus outpatients), which
has influence on the duration of the appointment
needed. If a patients needs to be injected with
intravenous contrast (ivc) before the scan can be
taken, a doctor must be present. The urgency, or
acceptable access time, is expressedwith a planning
window (PLANWIN) in which the appointment must be
scheduled.

We structure patients and their attributes in
different patient groups. Table 2 lists these groups
and their specific properties. The group size is given
relative to the total number of patients, with its
variation between weeks. These groups are defined
based on the groups used in practice and a medical
and scheduling perspective. Based on all their attri-
butes, patients can be grouped in many different
ways. Patient group definitions can be unclear or
incorrect in practice, which can cause a negative
effect on efficiency. Defining the correct groups is
important for efficiency, and finding the best defini-
tion of groups can be a complex problem. In our
definition of patient groups, the most important
attributes are medical constraints, and urgency.
We additionally considered the compatibility with
the current schedule procedure in the hospital,
aggregating the URGENT and CLINIC groups for instance,
would require additionally changes in the instruc-
tions for the human schedulers.

The largest group — OUT+IVC — is comprised of non-
urgent outpatients who need intravenous contrast
(ivc). Non-urgent outpatients who do not need intra-
venous-contrast are in the group OUT—IVC. All urgent
outpatients form the group URGENT. The fourth group
— CLINIC — consists of all inpatients.

Besides these four groups, there are a number of
smaller, highly specific groups: SPECIALn. These
include patients taking part in special programs,
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Table 4 Timeslot types

Timeslot-type Allowed patients size

TTout OUT+IVC, OUT—IVC, URGENT 1tu
TT-ivc (during lunch) OUT—IVC, URGENT (no ivc), 1tu
TTurgent URGENT 1tu
TTclinic CLINIC 2tu
TTspecialn SPECIALn 1—4tu

Table 3 Calendar parameters

Parameter Description

m Number of resources
o j;d Opening time of

Resource j on day d
c j;d Closing time of

Resource j on day d
tu Unit size timeslots
TTS Timeslot type specification
and patients who need a very specific treatment for
making a CT-scan. For example, one special group is
the group of patients, usually children, who need to
be sedated while making the CT-scan.

Urgency of patients is defined in terms of plan-
ning windows (PLANWIN) with different sizes. Besides
medical urgency, a planning window also expresses
the norm on acceptable access time. These norms
are indicators, used to evaluate and compare hos-
pitals on a national level. In the AMC the norm for
non-urgent outpatients is two weeks: OUT+IVC and
OUT—IVC have a planning window of (2,14), which
means that the appointment must be scheduled
between 2 days and 14 days after the request for
the scan is made. The planning window starts from
day 2 such that outpatients do not have to return to
the hospital within a day, but have some time to plan
things around the appointment at home or work.
Urgent outpatients (URGENT) and inpatients (CLINIC)
have high urgency. They can be planned from the
request day (0), and have varying due-date of either
1, 2, or 3 days after the request date. Patients from
special groups do not have specific planning win-
dows and are always scheduled to the first available
timeslot of matching type. In our model, we do not
consider patients with a urgency of less than one
day, or those that need to be scanned immediately
without an appointment. For these patients there is
an additional CT-scanner available in the emergency
room of the AMC.

2.2. Resource calendar

Patients must be scheduled to a timeslot on the
calendar. The total resource capacity is given by the
number of actual CT-scanners m (for the radiology
department at the AMC m ¼ 2) and the opening
hours. It is not allowed by the hospital to make
appointments on the CT-scanner in the emergency
room, we therefore do not include this resource in
our model.

The resource calendar used in practice is a grid of
timeslots of varying sizes. Restrictions on the sche-
duling of patients are enforced by defining blocks of
timeslots of a specific type. Timeslots of different
types are used differently. In this way, resource
capacity is allocated to patient groups. An initial
allocation is determined months in advance, based
on historical data and hospital policy. Short term
adjustments of this allocation are currently done
manually by the calendar-supervisor if problems
occur.

We model a standard calendar, structured in days
and weeks. The time on the calendar is partitioned
into timeslots of different sizes. All timeslots have a
size of a multitude of the time unit tu. (on the CT-
scan calendar tu is 15 min, and there are timeslots
of sizes 1tu up to 4tu.) The parameters in Table 3
define the resource calendar. The parametersm and
tu are fixed for long periods, the other parameters
can be changed dynamically. Adjustments to the
openings hours must be known at least one week
in advance to plan staff. In general we assume that
the m actual resources are interchangeable.

CT-scan capacity is allocated to different patient
groups, and these allocations serve medical restric-
tions (e.g. due to preparation constraints for nar-
cosis), as well as a scheduling goal (e.g. reserve
timeslots for urgent patients). The allocations
include: three timeslots are reserved on all Thurs-
day mornings for patients from a SPECIALn group, who
need to be sedated whilemaking the CT-scan; during
lunch time, radiologists schedule meetings and
other activities, therefore, OUT+IVC patients, who
need to be injected with intravenous contrast for
which a radiologist must be present, cannot be
scheduled during lunch; in the afternoon of every
day a number of timeslots is reserved for URGENT

patients, such that urgent CT-scans ordered during
the day can be performed on the same day as much
as possible.

We model this allocation by using a timeslot-type
specification (TTS). A timeslot-type specifies which
patient can be scheduled to a certain timeslot
(Table 4). The TTS thus determines how much of
the resource capacity is allocated to the patient
groups. See Fig. 1 for an example TTS in the CT-scan
resource calendar as used in practice. The TTS is not
necessarily fixed as the capacity allocation can be
dynamically altered.

The TTspecialn type of timeslots can only be used
by very specific types of patients. For each TTspe-
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Figure 1 Example TTS (capacity allocation) on CT-scan calendar.
cialn type there is a rule which states that if there
are still any free slots remaining rn days in advance,
these slots are changed to TTout type of timeslots,
to not waste the capacity otherwise. This rule is
currently the only automatic TTS adjustments in
operation at the hospital.

2.3. Scheduling

Patient scheduling is the process of assigning patients
to timeslots on the calendar thus setup, i.e. making
appointments. In the casewedescribe, twoelements
influence overall scheduling performance: first, how
well the TTS matches the actual patient arrival, and
second, the used schedulingmethod (the selection of
a timeslot per patient given the TTS).

As in many hospitals, the actual scheduling of
appointments for CT-scans is done manually in the
AMC. Requests arrive either by telephone or via
request form. Patients are scheduled in turn by
human schedulers, who look at the calendar for
the availability of a suitable slot, or use the search
function of the electronic calendar system. The
search function returns a list of the first available
suitable timeslots. For urgent patients the search
function is usually not used, instead, the schedulers
look at the first few days of the calendar and select a
free timeslot by hand. Often the human schedulers
deviate from the offered list for non-urgent patients
as well. They can take a patient’s personal attri-
butes into account, including a patient’s preference
(e.g. for a specific day, or time).
3. Simulation

Based on the case study we have implemented a
patient scheduling simulation, see Fig. 2. We use the
simulation in the evaluation of different scheduling
and capacity allocation approaches. The case inputs
of our simulation model are based on the case we
studied in the previous Section. These elements
together with our adaptive model (Section 4) are
the inputs of our simulation. We discuss the main
parts of our simulation in more details next.

3.1. Patient arrival simulation

With our model of patient properties and the dis-
tributions over patient attributes (Table 2) derived
from analyzing the historical data, we can simulate
the stochastic arrival process of patients. To simu-
late the stochastic arrival process, including trends
where some periods of weeks are busier than others,
wemodel the number of patients per week bymeans
of a random walk.

A standard randomwalk with a drift t towards the
average n̄ fits the distribution over the number of
patients arrivals per week. The number of patients
for next week (nwþ1) is determined as a function of
the current patient arrivals nw as

nwþ1 ¼ nw þNð0; sÞ þ
n̄� nw

t
;

where Nð0; sÞ a normally distributed fluctuation of
patient arrivals.We set: n̄ ¼ 250,n0 ¼ n̄, s ¼ 30, and
t ¼ 3.
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Figure 2 Overview of hospital patient scheduling model.
Furthermore, arrival of patients within the
week is stochastic, simulating that some days have
more arrivals than other days. Because of extra
rounds for CLINIC patients on Monday and Friday,
patient arrival is slightly structured during the
week. On Monday and Friday, twice as many
requests for CT-scans of CLINIC patients are ordered
compared to the other three weekdays. Request
for urgent outpatients arrive following a uniform
distribution over the week. Because of the rela-
tive small number of URGENT and CLINIC patients
there can occur a large difference in number of
arrivals between days. Non-urgent outpatient
have a planning window of two weeks, their arri-
val distribution over the week is of little influence
on performance, we assume that request arrivals
for these non-urgent outpatients follow a uniform
distribution over the week. The resource is closed
on Saturday and Sunday, appointments for URGENT

and CLINIC patients requested on a Friday with a
PLANWIN of (0,1) or (0,2) must be scheduled the
same day.
3.2. Resource calendar

In our simulation, we use a resource calendar, which
is practically the same as the calendar used in
practice. Opening time on the calendar is 8:30,
while the resource closes at 16:45. The TTS used
(which defines the capacity allocation) is set such
that there is no other TTS with a better performance
given the stochastic patient arrival and optionally
an adjustment method. The best initial TTS was
determined experimentally.

3.3. Scheduling

In our experiments, we want to simulate current
scheduling practice to evaluate it in scenarios dif-
ferent from current practice. In current scheduling
practice there is considerable variation in the rules
for selecting timeslots. Often patient preferences
and other considerations are taken into account. We
define a schedule method that simulates this in the
following way.
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First come randomly served (FCRS): patients are
scheduled in order of arrival. A patient is assigned to
a timeslot within his planning window, randomly
selected from all the free timeslots of allowed types
in his planning window. If there are no free time-
slots, the first free timeslot after the planning
window is selected.

For URGENT and CLINIC patients, patient preferences
are of little importance because they have a high
urgency. However due to the mix of urgency within
URGENT and CLINIC patients, which often the human
schedulers do not take into account, these patients
are also scheduled randomly to allowed timeslots in
the planning window. In Section 4.1.1 we discuss a
dynamic approach to the scheduling of URGENT and
CLINIC patients.

3.4. Performance measure

Our performance measure expresses that patients
must be scheduled within their planning windows.
As a performance measure per patient group, we
take the percentage of patients scheduled on time
(within their planning window). We call this percen-
tage the service level of the group. This is a typical
performance indicator in the hospital. It is impor-
tant that each group G has a high service level.
Hospital policy determines the importance of each
group in the overall scheduling objective. In discus-
sion with hospital experts at the AMC, all groups
were given equal weights, and the lowest service
level between groups, the most indicative of a
department’s performance. We therefore define
our objective to maximize the minimum service
level (MSL) of the four main groups of Table 2:

MSL ¼ min
G

jpatient2G ¼ ontimej
jGj

� �
;

where ontime is defined as scheduled within the
planningwindowofthepatient. InourAMCcasestudy,
groups with higher urgency are also of smaller size,
whileallgroupshaveequalweight inMSL.Therefor, to
maximize performance, it is often more important
to schedule a single urgent patient on time than it
is to schedule a single non-urgent patient on time.

4. Adaptive model

In the hospital, the allocation of capacity, through
the TTS on the resource calendar, can be separated
in different timeframes:

1. Long term (months): the initial overall allocation
is determined, based on long-term expectations
of patient arrivals and hospital policy.
2. Medium term (weeks): adjustments can be made
for known future events, e.g. holiday periods,
additional workload, or planned maintenance of
the machines. These adjustments could include
adjusting the openings hours to optimize per-
formance. (In some initial experiments, we
observed that adjusting the allocation weekly,
based on the realization of patient arrival, had a
limited effect.)

3. Short term (days): small adjustments to the
allocation are made daily, based on the realized
and expected patient arrivals.

In our research, our focus is on an adaptive
approach for short term adjustments. Additionally
we look at medium term adjustments of opening
hours. We discuss these in turn next.

4.1. Short-term adjustments

Our short-term adaptive approach consists of two
parts: a scheduling method, and a method for
adjusting capacity between patient groups. In our
approach URGENTand CLINIC patients are scheduled by
taking the expected number of patient arrivals per
day and their specific planning window into account.
Secondly, we use the expectation values to compare
available capacity with needed capacity on the first
three days, and change capacity between groups.

4.1.1. Adaptive urgent scheduling
To schedule urgent and clinic patients on time, the
allocated capacity must be large enough. Some
patients with different PLANWINs use the same type
of slots: URGENT with PLANWINs of (0,1), (0,2), or (0,3)
use timeslots of type TTurgent; CLINIC patients with
PLANWINs of (0,1) or (0,2) use timeslots of type TTcli-
nic. Because of this mix of urgency, there is a trade-
off between scheduling patients to the earliest
timeslots available to not waste capacity and keep-
ing timeslots open for the possible arrival of more
urgent patients. In current hospital practice, human
schedulers do not have an overview to solve this
efficiently (either too many low-urgency patients
are scheduled in place of high-urgency ones or too
much capacity is wasted).

In our approach, we solve the problem of sche-
duling patients with mixed urgency, by virtually
dividing urgent capacity while scheduling: a number
of timeslots are specifically reserved for patients
with a certain PLANWIN (for each day of arriving
patients). In Table 5 we show the matrix of reserva-
tions for URGENT patients, RðTTurgentÞplanwin

reqd , for
each PLANWIN and request day reqd (relative to the
current day 0). We similarly define a reservation
matrix for CLINIC patients on TTclinic capacity.
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Table 5 Reservations within TTurgent type timeslots

Request day

PLANWIN 0 1 reqd

(0,1) RðTTurgentÞð0;1Þ0 RðTTurgentÞð0;1Þ1 RðTTurgentÞð0;1Þreqd

(0,2) RðTTurgentÞð0;2Þ0 RðTTurgentÞð0;2Þ1 RðTTurgentÞð0;2Þreqd

(0,3) RðTTurgentÞð0;3Þ0 RðTTurgentÞð0;3Þ1 RðTTurgentÞð0;3Þreqd
The number of timeslots reserved per urgency
and arrival day (size of reservation) is the expecta-
tion of the number of patients and some additional
surplus capacity. The expected number of patients is
small for a specific reservation and has high varia-
bility. To select which timeslots are reserved, we use
the following heuristic for placing the reservations
over timeslots on the calendar: the reservations are
placed on the last day of the PLANWIN (RðTTurgentÞð0;1Þ0
on day 1, RðTTurgentÞð0;2Þ0 on day 2, etc) see Fig. 3.
By placing the reservations at the end of the plan-
ning window, variability of their usage is minimized.
Note that because the resource is closed in the
weekend, a large number of reservations is posi-
tioned on Friday; this corresponds to practice,
where on Fridays a large capacity is allocated to
URGENT and CLINIC patients.

Given the reservations, URGENT patients are sched-
uled first come first serve (FCFS), to a timeslot
either not reserved or reserved and matching the
patient’s entry-date and PLANWIN. To make this
method more flexible and reduce utilization varia-
bility, a reservation violation is allowed if the
patient is not scheduled on time otherwise. Speci-
fically, if there are no allowed timeslots available in
the patient’s planning window, the patient is sched-
uled to the day within his PLANWIN which has the most
available timeslots regardless of reservations. We
call this scheduling with flexible reservation
(FlexRes), see Algorithm 1. We use a similar algo-
rithm for scheduling CLINIC patients to TTclinic type
timeslots.
Figure 3 Positioning of rese
Algorithm 1 FlexRes: Scheduling with Flexible
Reservations for URGENT patients.
1: p is the current to be scheduled patient at day 0

2: RðTTurgentÞplanwin

reqd is the number of TTurgent slots

reserved for patients with PLANWIN and have a request date
of reqd.
3: FREEðTTurgentÞd is the number of free TTurgent
timeslots on day d
4: TS = the first available TT urgent timeslot
5: if PLANWIN == (0,2) OR PLANWIN == (0,3) then
6: if (TS is on day 1 AND

FREEðTTurgentÞ1 � RðTTurgentÞð0;1Þreqd¼0) then

7: TS = the first available TTurgent timeslot after day 1
8: if PLANWIN == (0,3) AND TS is on day 2 AND

(FREEðTTurgentÞ2 � RðTTurgentÞð0;1Þreqd¼1 þ RðTTurgentÞreqd
¼ 0ð0;2Þ then
9: TS = the first available TTurgent timeslot after day 2
10: if TS is outside PLANWIN then
11: D is day within PLANWIN with most free TTurgent
slots
12: if FREEðTTurgentÞD> 0 then
13: TS = the first available TTurgent timeslot on day
D
14: schedule p to TS

Algorithm 2 Dynamic: Adjusting capacity between patient
groups.
1: change all FREEðTToutÞ1 (on day 1) timeslots into
TTurgent

2: if FREEðTTurgentÞ1> RðTTurgentÞð0;1Þ0 then

3: change (FREEðTTurgentÞ1 � RðTTurgentÞð0;1Þ0 )
number of TTurgent timeslots into TTclinic

4: if FREEðTTclinicÞ1> RðTTclinicÞð0;1Þ0 then
rvations within TTurgent.
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5: change (FREEðTTclinicÞ1 � RðTTclinicÞð0;1Þ0 ) number
of TTclinic timeslots into TTurgent

6: CHSLOTS ¼
P

d�2FREEðTTurgentÞd �P
d�2RðTTurgentÞ

0;d
d�1

7: change (minðFREEðTTurgentÞ2;CHSLOTSÞ) number of
TTurgent timeslots on day 2 into TTout

4.1.2. Adjusting capacity
In the previous section we discussed how we use
reservations of timeslots in scheduling URGENT and
CLINIC patients. Crucially, if timeslots within the
reservations are not used, these could be made
available for other groups. In our approach, we
dynamically manage allocated capacity to be adap-
tive to stochastic patient arrival.

To maintain high MSL, at the beginning of the
current day 0, capacity is shifted (Algorithm 2)
between timeslot types on the days that their plan-
ning windows overlap: on day 1 all remaining TTout
and TT-ivc capacity is changed into TTurgent capa-
city; on day 1 capacity can be shifted between
TTurgent and TTclinic; on day 2 some TTurgent
timeslots can be changed into TTout (see Table 6).
Note that because Algorithm 1 does not reserve
timeslots on day 0 (see Fig. 3) shifting capacity
between timeslot types TTurgent and TTclinic on
the current day 0 is not neccessary in our approach.
Because adjustments are made at least one day in
advance, it is sufficient to adjust once a day instead
of continuously.

Thresholds for reallocating capacity between
timeslot types are based on the reservations dis-
cussed above. The goal of the adjustments is to
reallocate capacity, such that all reservations
(which include surplus) can be made within the
capacity allocated per group. In this step, in order
to optimize allocation, reservations are no longer
necessarily placed on the last day of the planning
window. Any timeslot not needed for reservation
can be changed into a timeslot of another type.

4.2. Adjusting opening hours

Adjusting the calendar on a medium term time
scale, is suited for reacting to busy periods, holi-
Table 6 Adjustment of capacity, increased ðþÞ or
reduced ð�Þ, for different timeslot types and days (with
corresponding line in Algorithm 2)

Day

Capacity type 0 1 2

TTout � (1) þ (7)
TTurgent þ (1), � (3), þ (5) � (7)
TTclinic þ (3), � (5)
days, planned resource maintenance, or increased
workload due to additional patient programs. Here
we focus on adjusting the opening hours for quiet
and busy periods, which is important for main-
taining short access times and high resource and
staff efficiency. This is currently not done effi-
ciently in hospital practice, because it is difficult
to oversee the effect of an adjustment long
enough in advance. In busy periods, when the
total demand reaches or exceeds resource
capacity, access time increases rapidly. With
little extra capacity this can usually be avoided.
Reducing opening hours in slow periods can com-
pensate increased staff working hours in busy
periods.

Although fixed working hours are still preferred
by the staff, there is some flexibility in the working
hours if the changes are known in advance. We
assume that for the planning of staff, the actual
opening hours of the resource must be known at
least one week in advance. In our approach we fix
the opening time of the resource, and adjust the
closing time. We set a parameter OHw which defines
the total amount of openings hours of week w.
Before the beginning of week w � 1 we determine
the best value for OHw.

We use a standard bi-directed search method,
with a discrete step size of stepsize, where per-
formance of different values of OHw are deter-
mined by a number of simulation runs using our
patients scheduling simulator. We search for the
smallest OHw that has an MSL performance of at
least Ppref (preferred performance level). In these
simulations we schedule patients arriving over 2
weeks, since the opening hours are adjusted for
the second week. The current partially filled-in
calendar and the estimation on the expectation of
future patient arrivals are used as the starting
point of the simulation. We use the number of
patients from the previous weeks, as an estimate
for future weeks. Conceivably, we can easily use
more specific estimates for known holidays etc.
When adjusting the openings hours on the calen-
dar the total hours OHw are divided equally over
the days.

This approach takes into account that on each
day the closing time can not be reduced further
than the latest appointment already scheduled
in the partially filled-in calendar. To make it pos-
sible to reduce the openings hours in quiet periods
for increased capacity usage, a small adjustment
to the scheduling method is used: for weeks of
which the opening hours can still be adjusted,
patients are preferably scheduled to timeslots
before 3 pm, to allow opportunities for earlier
closing times.
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Table 7 Reservation sizes (expected n.o. patients)

TTurgent TTclinc TTclinc
planwin all days Mon, Fri Tue, Wed, Thu

(0,1) 3 (1.6) 4 (2) 2 (1)
(0,2) 2 (1.6) 2 (2) 1 (1)
(0,3) 2 (1.6)
5. Experiments

We conduct computer experiments to evaluate our
adaptive optimization of the scheduling process. In
our simulations, we generate realistic problem runs.
We compare the performance of our fully adaptive
approach to benchmark approaches. Performances
are averaged over 70 runs. Within each run, patients
arrive during 20 weeks. To avoid start-up effects, we
start with a partially filled-in calendar, and measure
average performance (MSL) only over the last 10
weeks of the simulation run.

We use a TTS optimized for a stochastic arrival of
patients, including:

� 18 TTclinic timeslots reserved for an average of 14
(�4) CLINIC patients per week,

� 34 TTurgent timeslots reserved for an average of
25 (�8) URGENT patients per week.

No-shows and machine downtime are not
included in simulation runs presented here, these
had only a limited effect in our experiments, other
that creating more busy periods which is captured
by our arrival model.

We determined the best sizes of the reservations
experimentally, see Table 7 for the used values in
comparison with the expected number of patients
per reservation. Because we use patient expecta-
tion per request-date and urgency (see Table 5) the
actual reservation size is a small number. Deter-
mining the optimal size of a reservation is rela-
tively easy due to the discreteness of timeslots.
The smallest planning window (0,1) has the least
average number of patients and largest variability
and therefore needs the most relative surplus.
Larger planning windows (lower urgencies) have
less variability, and can also make use of surplus
capacity reserved for higher urgency if necessary
(Algorithm 1).

First, we show our main results for short-term
scheduling methods and adaptive allocation of
capacity. Second, we show how opening hours can
be adjusted to maintain high MSL or increases
resource usage.

5.1. Short-term

We present average performances of three schedul-
ing approaches with a static allocation, and the
same three approaches with capacity dynamically
adjusting by the method presented in this paper.
The first benchmark is a baseline approach using
FCRS for all patients (see Section 3.3). This
approach is similar to the practical case in a hospital
where there is no staff to adjust the calendar
dynamically, or where the calendar supervisor is
absent due to illness of vacation. The second bench-
mark is the standard scheduling rule first come first
serve (FCFS), which optimizes resource efficiency
but does not consider any stochastic element in the
scheduling process. The third approach is our sche-
duling method for URGENT and CLINIC patient based on
flexible reservations (FlexRes), Algorithm 1. All
three approaches are evaluated with either a static
calendar or in combination with our approach to
dynamic adjustments of capacity (dynamic), Algo-
rithm 2.

We present the results of three different scenar-
ios for the number of patients arriving per week: nw
is given by a random walk (see Section 3.1), nw is
constant with nw ¼ 250, and nw is constant with
nw ¼ 270. The average performances (MSL), stan-
dard deviation (stdv), and average capacity usage
(cu) are presented in Table 8. We additionally com-
pare performances to the baseline approach (FCRS
with static calendar) with an additional capacity of
2.5 hours per week (6% extra capacity).

The results in Table 8 show that our dynamic
approach to capacity allocation in combination with
flexible reservations, has a very high performance
close to a MSL of 1.0, even in the busiest (constant
with nw ¼ 270) and most stochastic (random walk)
scenarios. Even though standard deviation is gen-
erally high, due to the wide range of problem
instances created in our simulation, our dynamic
approach has the lowest performance-variability.
The performance of FlexRes Dynamic is significantly
better than FCRS static ( p-value ¼ < 10�10),
FlexRes Dynamic better than FCRS dynamic (p-value
¼ < 10�6), and FCRS Dynamic better than FCRS
static (p-value < 10�6), using the two-sample Kol-
mogorov-Smirnov test with significance level a ¼
0:01 for the random walk scenario.

In the random walk scenario, FCRS with a static
calendar has an average MSL performance level of
0.79: of the worst-off patient group only 79% of
patients are scheduled on time. With dynamic
adjustments and flexible reservation performance
increases to 0.94: even of the worst-off patient
group 94% of patients is scheduled on time. The
capacity of the static baseline approach has to be
increased with 6% to achieve similar performance as
our dynamic approach.
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Table 9 Adaptive approach parameter values

Parameter Value

OHstandard 41 h, 15 min
(from 8:30 till 16:45)

stepsize (OH) 30 min
Ppref 0.95 (MSL)

Table 8 Performances (MSL) averaged over 70 runs, with
standard deviation (stdv.) and average capacity usage, for
three different scenarios, given 41 h 15 min openings
hours per week

Approach: Performance
MSL

Stdv. Cap.
usage

Random walk
FCRS static 0.79 0.19 0.91
FCFS static 0.78 0.25 0.93
FlexRes static 0.77 0.24 0.91
FCRS dynamic 0.88 0.14 0.91
FCFS dynamic 0.88 0.10 0.93
FlexRes dynamic 0.96 0.07 0.91
FCRS static + 2,5 h 0.96 0.03 0.86

Constant 250
FCRS static 0.88 0.06 0.91
FCFS static 0.92 0.05 0.93
FlexRes static 0.85 0.16 0.91
FCRS dynamic 0.94 0.03 0.91
FCFS dynamic 0.95 0.02 0.92
FlexRes dynamic 0.98 0.01 0.91
FCRS static + 2,5h 0.97 0.03 0.86

Constant 270
FCRS static 0.56 0.16 0.97
FCFS static 0.28 0.26 0.97
FlexRes static 0.42 0.29 0.97
FCRS dynamic 0.76 0.07 0.97
FCFS dynamic 0.68 0.12 0.99
FlexRes dynamic 0.93 0.03 0.97
FCRS static + 2,5h 0.96 0.02 0.92
With a static allocation, our scheduling approach
with flexible reservation (FlexRes) achieves perfor-
mance similar to the scheduling benchmarks. How-
ever, our dynamic adjustments approach performs
far better in combination with FlexRes, than any of
the benchmark schedulers.

5.2. Medium-term

When more patients arrive than expected, access
time increases exponentially [6]. Adding extra capa-
city temporarily can prevent this from happening.
Our approach (Section 4.2) proposes changes in
openings hours to resource managers to maintain
high performance. We show the experimental
results for an example scenario of 16 weeks with
Figure 4 Performance over wee
a short busy period. The number of patients nw per
week in this scenario is given by:

nw ¼ 200jw � 4; nw ¼ 300j6 � w � 11; nw ¼ 250jw

¼ 5;w� 12

In Fig. 4 we show the performances (averaged over
10 runs) of the baseline approach and our dynamic
approach with fixed capacity, against our dynamic
approach with adjustable openings hours (see Sec-
tion 4.2, and the parameters in Table 9). We plot the
extra time (in minutes) used by our dynamic
approach with adjustable openings hours, per week
and averaged over the weeks, in Fig. 5.

It is clear that a busy period results in a great
decline in performance for the baseline approach.
Our fully adaptive approach with fixed capacity does
decline in performance but reaches good perfor-
mance quickly after the busy period. The fully
adaptive approach with adjustable openings hours
can adjust capacity such that high performance is
maintained over all weeks. Summed over all 16
weeks, it uses little more than the total capacity
used by approaches with fixed capacity.

6. Related work

There is a number of research fields closely related to
our work. Much literature considers the hospital
capacity planning problem on a strategic level. On
an operational level patient scheduling is resear-
ched, either specific schedulingmethods or the sche-
dulingprocess in hospital practice. Additionally there
is work on coordination of scheduling multiple
patient appointments and optimizing patient flow.

Capacity planning in hospitals at a strategic level
is extensively studied in the literature, e.g. [8—10],
ks with variable and fixed OH.
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Figure 5 Extra time (in minutes) used, per week and averaged over weeks.
for an overview see [2,11]. Most approaches con-
sider the capacity allocation problem on a strategic
level; the allocation is static on the operational
level. Here we focus on short-term dynamic adjust-
ments to the initial allocation.

Exceptions to the strict separation of capacity
planning and operational scheduling are [12—14].
However, all three papers only consider allocation
capacity to two priority classes, where we consider
multiple priorities with additional medical con-
straints. In [12], the authors similarly consider a
CT-scan scheduling problem. The approach assumes
the use of a pool of on-call outpatients that can be
scheduled to unused timeslots. The results show the
benefit of a flexible approach compared to a static
allocation. The work however, does not consider a
full scheduling problem as the authors assume all
patient arrivals are known at the beginning of each
day. Furthermore, the authors use a more abstract
case with only two types of reservations and mea-
sure performance in growth rate of access time. In
[14] the authors consider a model similar to ours,
but focus on optimizing the usage of overbooking
and overtime, without dynamic rules for scheduling
and capacity allocation. In [15], the authors discuss
a profit maximization problem of a MRI scheduling
problem for three classes of patients. Their more
abstract model requires setting specific revenue and
penalty functions, for which the authors identify
properties of an optimal solutions.

Amore abstract approach to capacity planning can
also be taken from a queuing theory point of view [6].
Although realistic models are too complex to be
analyzed mathematically, the problem and solutions
are related: overflow rules between queues can cor-
respond to a dynamic usage of capacity. The defini-
tion ofqueuesand servers [16,17], corresponds to the
problem of defining patient groups and timeslot
types. However, queuing systems do not consider
specific timeslots and appointments, and therefore
do not capture the full scheduling problem.

The patient scheduling problem is not solved with
optimal capacity allocation alone, the actual
method of scheduling determines whether the allo-
cated capacity is efficiently used. Scheduling meth-
ods are studied for various problem properties and
objective measures, including online problems, for
an overview see [18]. We have partly based our
scheduling approach on insights from scheduling
theory, specifically scheduling problems with objec-
tives related to MSL. Furthermore, the scheduling
method can be optimized for other considerations
such as minimizing doctor and patient idle time
during the execution of a schedule [19,20]. Addi-
tionally, optimizing the logistical process in hospital
practice can also be largely beneficial for resource
efficiency [5,21].

Short access time to all resources is necessary for
high patient throughput in the hospital. Optimally
coordinating patient paths between resources is an
additional problem [22,23]. In our approach, the
human schedulers are still responsible for coordina-
tion. Multi-agent approaches seem promising to
solve this distributed and dynamic coordination pro-
blem [24—26], and are part of our current research.

7. Conclusions

We presented a detailed model for scheduling multi-
ple patient groups to a hospital resource. Specifi-
cally we presented the details of the CT-scan
scheduling case at the academic hospital AMC. Short
access time to central diagnostic resources is crucial
for high patient throughput in the hospital. Arriving
patients have varying attributes, including their
urgency, corresponding to the group they belong
to. Patients are scheduled to a resource calendar
with capacity allocated per group. This capacity
allocation must be flexible to achieve high service
levels for all groups. We have implemented a rea-
listic simulation of our case study to analyze the
problem and evaluate approaches.

Given our practical case, model validation is a
complex issue. The current practice and historical
data provide only a single instance, and it is difficult
to identify appropriate performance indicators for
a wide range of settings. Recent organizational
changes in the department limit the availability
or usability of historical data. Additional to histor-
ical data, for which the average capacity usage was
the most indicative, we evaluated model elements
in numerous discussions with hospital experts with
many years of detailed experience.
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We developed a dynamic approach to adjusting
the allocation on the calendar. We focus on short
term adjustments given the current state of the
calendar and the expectation of future patient
arrival. We create flexible reservations for patients
per request-date and urgency. Patients are sched-
uled based on these reservations, and the reserva-
tions determine how much capacity can be shifted
between different patient groups. Additionally we
use our simulation to determine the best medium-
term adjustment of openings hours for maintaining
high service levels, which can serve as proposals to
the resource manager.

The results of our simulation experiments show
that our approach can effectively schedule patients
groups with different attributes and make efficient
use of capacity. By dynamically adjusting capacity
allocation, overall, all patient groups benefit. We
have shown that there is a significant improvement
over static capacity allocation. In current practice,
adjusting the calendar manually requires constant
attention and is critically dependent on the exper-
tise of the calendar supervisor.

In our experiments, we focus on measuring the
minimum service level of patient groups. This objec-
tive expresses the goal of the AMC to have short
access times for all groups, where short can be
differently defined per group. In general, the objec-
tive of our approach is efficiency of scheduling and
capacity usage. By using FCRS for scheduling out-
patients we simulate the effect of including patient
preferences in the objective.

Many resources in thehospital are usedbymultiple
patient groups, with different attributes such as
urgency. Implicitly or explicitly, the resource capa-
city must be allocated to these groups of patients.
Our approach can readily be applied to these pro-
blems, given the patient group definitions and para-
meter values. In general, when capacity is allocated,
dynamically adjusting the allocation increases effi-
ciency.

Our approach is on a operational level. Further-
more, our approach matches the current schedule
procedure in the hospital. An approach that
improves, not replaces, the current scheduling pro-
cess is most beneficial. Human schedulers, as well as
doctors, are used to working with an allocation of
capacity. This is important for flexibility in usage and
acceptance of the system. Furthermore it will not
cause any disruptions on existing coordination with
external logistics in other departments, and personal
schedules. This is important for user acceptance and
fast implementation. Notably, based on our results,
theAMChospital has startedcooperationwitha third-
party software-company to fullydevelopourdynamic
approach into implementation.
In future work we want to develop our dynamic
approach to capacity allocation further. We will
focus on a more general method for flexible usage
of capacity, where the parameters of our approach
are fine-tuned automatically. This will coincide with
more case studies at different departments of the
AMC. We will extend the scheduling method to take
patient preferences into account. Based on our
results for efficient resource usage locally we will
also scale the scheduling problem to multiple
departments and research mechanisms for coordi-
nation between departments.
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