
A decision aid for intensity-modulated radiation-therapy plan
selection in prostate cancer based on a prognostic Bayesian
network and a Markov model

Wade P Smitha,*, Jason Doctorb, Jürgen Meyerc, Ira J Kaleta, and Mark H Phillipsa

a1959 NE Pacific St., Department of Radiation Oncology, Box 356043 University of Washington, Seattle, WA
98195−6043 bSchool of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA
90033 cDepartment of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch,
New Zealand

Abstract
Objective—The prognosis of cancer patients treated with intensity modulated radiation therapy
(IMRT) is inherently uncertain, depends on many decision variables, and requires that a physician
balance competing objectives: maximum tumor control with minimal treatment complications.

Methods—In order to better deal with the complex and multiple objective nature of the problem
we have combined a prognostic probabilistic model with multi-attribute decision theory which
incorporates patient preferences for outcomes.

Results—The response to IMRT for prostate cancer was modeled. A Bayesian network was used
for prognosis for each treatment plan. Prognoses included predicting local tumor control, regional
spread, distant metastases, and normal tissue complications resulting from treatment. A Markov
model was constructed and used to calculate a quality-adjusted life-expectancy which aids in the
multi-attribute decision process.

Conclusions—Our method makes explicit the tradeoffs patients face between quality and quantity
of life. This approach has advantages over current approaches because with our approach risks of
health outcomes and patient preferences determine treatment decisions.
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1 Introduction
Radiation therapy (RT) for the treatment of cancer has undergone a major change in the past
decade. Intensity modulated radiation therapy (IMRT), predicated on technical and physical
advances, provides the capability of significantly improved dose localization. This capability
allows the physician to prescribe a higher tumor dose with a reduced risk of complications.
The competing goals of maximizing tumor control while minimizing normal tissue
complications is a complicated decision which is typically made using radiation beam intensity
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optimization algorithms as de facto decision making algorithms, guided by physician
experience, but without explicit representation of physician knowledge.

Optimization algorithms select values of the large number of beam intensities that comprise
an IMRT treatment. These algorithms minimize the value of an objective function that attempts
to embody the goals of the treatment. Multiple objectives are used for a particular tissue, such
as limits on the maximum dose, the minimum dose and the degree of dose uniformity. The
total number of objectives used in a particular case depends on the type and location of the
tumor but typically ranges from 5 to 20. An important limitation with the current approach is
that the multiple objective problem of IMRT is transformed to a single objective function by
adding many functions together, each weighted by a scalar importance factor. The values of
the importance factors are not known a priori, so a trial-and-error process is required. This
process takes extra time, and reduces the solution space that can be explored.

Our approach to improving this process is to couple the results of a multiobjective optimization
to a decision aid consisting of a Bayesian network used for prognosis and a Markov model.
The multiobjective optimization yields a set of treatment plans (specifically, a Pareto optimal
set [1]) that span the range of possible dose distributions. This range includes plans that provide
good coverage of the tumor with significantly high doses to normal tissues to plans that better
spare the normal tissues at the expense of lower doses to the tumor.

The Bayesian network – also known as a belief network – provides probabilities for outcomes
related to treatment of the tumor and for each of the outcomes related to normal tissue. The
network is designed to model the clinical decision making process involved in choosing among
different treatment plans, and it predicts the probability that a given plan will result in control
of the disease, and treatment complications. Conditional probability tables are derived from
prospective clinical trials, results from the research literature, and the beliefs of practicing
clinicians. The Bayesian network produces probabilities over some fixed period of time
corresponding to the length of the study from which they are derived. We transform these
prognostic probabilities to constant annual probabilities for the state transitions in the Markov
model. We use utilities from the literature and evaluate the Markov model with a cohort
simulation to compute a quality adjusted life expectancy (QALE) for each IMRT treatment
plan. This work builds on our original introduction of the Bayesian network to predict disease
control using IMRT for prostate cancer [2,3]. In this paper, we describe a more mature version
of the network, and extend it with a Markov model.

2 Materials and methods
We provide a brief review of prostate cancer and its management with RT as it is incorporated
into the qualitative structure of both the Bayesian network and the Markov model. There are
a number excellent reviews on the topic, for example Ref. [4]. In this work we focus on the
prostate (tumor), and treatment complications in the rectum, and the bladder.

Prostate cancer is typically staged and risk stratified by three attributes: 1) TNM stage, the
local extent of the disease and its degree of spread to lymph nodes or distant sites in the body,
2) Gleason score, a measure of the histologic tumor-cell differentiation, and 3) PSA, the amount
of the protein PSA that is released into the bloodstream. Taken as a group, these three tests are
predictive of the likelihood of clinical progression and the response to therapy.

The clinical model for prostate cancer progression is that tumor cells spread to the lymph nodes
and then metastasize to distant sites, typically the skeleton, liver, or lungs. In the setting of
localized prostate cancer the goal of RT is to kill the tumor cells within the prostate gland. In
patients at high risk of regional lymph node spread the pelvic lymph nodes are often electively
treated.
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The primary instrument used to monitor a patient's progress after RT is the level of circulating
PSA. Although PSA levels are not a perfect measure for the disease, or disease recurrence, the
test is quick to perform, is inexpensive, and is in widespread use. The PSA level is the clinical
marker for both regrowth of the primary tumor and metastasis. PSA levels typically fall in the
months after RT due to the radiation absorbed by PSA-producing cells in the prostate. If PSA
levels remain at or near the post-RT nadir, patients are said to have biochemical no-evidence
of disease (BNED) [5]. If PSA levels rise after reaching a nadir – termed PSA failure – it can
be difficult to determine whether the failure is due to local disease alone or distant metastasis.
Early PSA failure, however, often suggests progression of occult metastatic disease.

An IMRT treatment plan is based on a patient's internal geometry as determined by a CT scan
taken before treatment begins. The plan is defined by many variables that describe the physical
orientation and intensity of hundreds of x-ray beamlets. Each of these variables is set by the
optimization algorithm. This algorithm calculates the dose to each tissue of interest. A number
of dose metrics can be defined for each candidate treatment plan, and these are used in treatment
plan selection.

The current paradigm for IMRT optimization is to generate a treatment plan and then to
examine 2- and 3-dimensional displays of the dose distributions overlaid upon the patient's CT
images. The goals of the plan are set by the physician and include dosimetric objectives. For
prostate therapy these objectives might include a requirement to deliver at least 72 Gy to 95%
of the tumor, while treating no more than 50% of the rectum to 50 Gy, and no more than 15%
of the rectum to 70 Gy. There may be 5−20 such objectives for each plan, and each is assigned
a different weighting factor for the optimization algorithm. The objectives themselves, and
their associated weighting factors are then varied by a “guess-and-check” process until the
optimizer (typically a physicist or dosimetrist) and physician are satisfied that a plan is as
optimal – meets most of the objectives – as this process can achieve.

The information available to choose between competing IMRT treatment plans include clinical
trials designed to provide outcome probabilities for a selected set of variables, retrospective
studies which seek to determine variables predictive of treatment outcome, and information
from experts in the field. The experts include physicians, physicists, and dosimetrists. The
physicists and dosimetrists are responsible for running the optimization routines. Physicians
have a comprehensive view of the entire disease process, including some appreciation of the
likelihood of different outcomes for a patient.

We have chosen a Bayesian network to model the process of prognosis. The process for creating
a Bayesian network involves writing down all of the variables which affect the outcome of the
treatment, and drawing links between all of those variables which influence one another. The
next step is to remove nodes for which there is insufficient evidence for experts to form beliefs.
We do not include, for example, any of the underlying cellular mechanisms of prostate cancer
because the connection to health outcomes is incompletely understood and current clinical
practice does not consider them. Next, a literature search unveils which of the nodes can be
populated by probabilities from clinical studies. Nodes for which clinical studies do not exist
must be modeled as belief nodes, with their conditional probabilities taken from expert
opinions, or the research literature. The list is paired down to a set of nodes which can be
reasonably assessed from experts. Finally, modeling techniques are employed in order to make
the modeling process tractable. These techniques include divorcing and the noisy-or. Divorcing
introduces an intermediate variable between parent nodes and the child node in order to reduce
the complexity of the problem. The noisy-or is a method of modeling variables which
independently influence an event, and may include a background probability for the event.
There are also Bayesian networks termed “learning” which attempt to model the network
structure from data; we do not address these approaches here.
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Even with probabilities for tumor control and for radiation-induced complications it is not clear
how much tumor control one should sacrifice in order to keep the complication probabilities
low. We utilize a Markov model to calculate a quality adjusted life expectancy in order to rank
treatment plans. A Markov model evaluated with a cohort simulation models probabilistic
events by following a simulated cohort of patients through discrete states with defined
transition probabilities between states. Utilities for complication and disease states come from
the literature. Transition probabilities related to RT treatment are calculated from the Bayesian
network, and life expectancies come from the literature.

Next we describe the Bayesian network and the Markov model and the connections between
the two. In order to avoid confusion, we denote nodes of the Bayesian network with
BN:SMALL CAPITALS and nodes of the Markov model with MM:SMALL CAPITALS.

3 The Bayesian network
Bayesian networks have been described extensively elsewhere [6,7]. We describe only the
most basic properties, and introduce notation. The nodes of a Bayesian network represent
uncertain events, and the arrows between nodes represent probabilistic dependencies between
these events. If nodes A and B influence node X, A and B are said to be the parents of X, and
X is said to be the child of A and B. Conditional probability tables provide the quantitative
connections between parents and children. The probability that X will take on the value xi given
that the parent states are aj and bk is P (X = xi|A = aj, B = bk). The Bayesian network is
implemented with Hugin software (www.Hugin.com).

3.1 Tumor control
Our Bayesian network for prostate cancer prognosis following RT is an unconnected network,
consisting of three separate networks for tumor control, rectal complications, and bladder
complications. The part of the network for tumor control is depicted in Fig. 1. The network
calculates the probability that a patient will develop distant metastasis after treatment with RT.
There are two paths to distant metastasis: (a) initial lymph node involvement and/or (b)
recurrence of the primary. The second path also includes a background rate of distant
metastasis, usually attributed to occult metastasis already present at the time of RT.

Patients with lymph node involvement that is detectable before treatment have a different set
of treatment options, and our network does not consider these patients. Our patient cohort may
have occult lymph node involvement. The probability of lymph node involvement conditioned
on T-stage, Gleason score, and PSA have been determined by examination of nodes after
lymphadectomy [8]. BN:LYMPH NODE CONTROL is the probability that lymph nodes are controlled,
conditioned on whether they are involved, and whether they are treated. If the lymph nodes
are not controlled the probability to develop distant metastasis is 90%. Treating the lymph
nodes affects the probability of normal tissue complication as discussed below.

The conditional probabilities for BN:BNED come from a clinical trial [9]. This study used
recursive partitioning techniques to find a joint probability for BNED given three clinical
measurements of disease – pretreatment-PSA, Gleason score, and T-stage – and the minimum
dose delivered to 95% of the treatment volume (D95). Recursive partitioning generates a
decision tree based on many clinical variables and their tree is represented in our node
BN:BNED. The study grouped patients into one of four groups with different 5-year BNED
probabilities (16%, 41%, 67%, 84%).

Small changes in pretreatment tests or D95 can cause a plan to make a large discrete step
between BNED groups. As an example, a patient with a Gleason score of 7, T-stage of T2a,
PSA of 15 ng/ml receiving 76.0 Gy of radiation has a predicted cure rate of 41%, but if the
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dose is increased to just 76.5 Gy the cure rate increases to 84%. We model the a priori
probability distribution for BN:D95 as a linear function of D95. In this way we can maintain
the discrete dose levels in the original study, and still incorporate the belief of physicians that
larger doses are more likely to control the tumor.

Much of the expert-experience driven decision making occurs in the BN:PSA CONTROL node of
the network. We consider two IMRT plan parameters related to the size of a radiation “cold
spot” in the patient treatment volume (PTV), and the equivalent uniform dose (EUD) [10]
which is defined as the actual uniform dose which would result in the same amount of cell
killing in the PTV as the non-uniform dose-distribution contained in the treatment plan. We
calculate the EUD for prostate tumors using the linear quadratic model following the example
of [11]. The conditional probability table for BN:PSA CONTROL reflects the belief that larger values
of the equivalent uniform dose and smaller “cold spots” within the PTV increase the probability
of tumor control.

We chose to divorce the nodes BN:EUD and BN:PTV COLD SPOT from the node BN:BNED by
introducing the qualitatively similar node BN:PSA CONTROL for several reasons. Most importantly
it reduces one node with 144 conditional probabilities to two nodes with smaller probability
tables. This choice of nodes also results in one node, BN:BNED, with a probability table
populated by a prospective clinical trial. The conditional probability table for BN:PSA
CONTROL is used to incorporate personalized decisions.

The nodes BN:BNED and BN:PSA CONTROL yield the probability that a patient's PSA will be
controlled after RT. The prognosis for patients with PSA failure, however, is not well defined.
An additional indicator is the post-RT PSA doubling time (PSA-DT) [12]. Patients with a PSA-
DT of < 3 months had a 7.0-fold increase in the chance of developing distant metastasis than
patients with a a PSA-DT of > 12 months. Our network is for pretreatment plan selection and
PSA-DT is not yet known. In order to predict the PSA-DT the patient is placed into a high,
medium, or low risk group conditioned on T-stage, Gleason score, and PSA. The conditional
probabilities for BN:PSA-DT from BN:RISK GROUP are not explicitly given in [12] and we
performed a manual fit to the data. An intermediate-risk patient, for example, has a 12.5%,
12.5%, 25%, 50% probability to have a PSA-DT of < 3, 3−6, 6−12, > 12 months, respectively.

Development of distant metastasis is modeled through two independent causes, one predicted
by PSA level, modeled in the node BN:DM1, and one predicted by occult pretreatment lymph
node involvement, modeled in the node BN:DM2. Either path leads to distant metastasis, and
BN:DISTANT METASTASIS is an “or” node which is positive if either BN:DM1 or BN:DM2 is positive.

P(DM1= yes|PSA CONTROL= no) comes directly from [12]. There are also patients who develop
distant metastasis without PSA failure, that is, some patients with a steady PSA level are found
to have evidence of clinical failure using, for example, a CT scan, chest X-ray, or tissue biopsy.
The sensitivity and specificity for the ASTRO definition of biochemical failure are 73% and
76%, respectively [13], which has been incorporated into the conditional probabilities for P
(DM1= yes|PSA CONTROL= yes). The complete conditional probability table for the node BN:DM1
is presented in Table I.

3.2 Normal tissue complications
The part of the Bayesian network dedicated to predicting complications is depicted in Fig. 2.
In prostate cancer, the rectum and the bladder are the two primary organs at risk for
complication. The complication probability is a combination of a normal tissue complication
probability (NTCP) computation, a consideration of hotspots in regions near the organ at risk
(OAR) at the time of imaging, and three dosimetric objectives. The dosimetric cutpoints are
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binary – either contained or exceeded by the treatment plan – and come from a retrospective
analysis of patient data [14].

We calculate the NTCP with the Lyman-Kutcher method [15-17], which relies on clinical data
for the uniform radiation dose which results in a 50% complication rate for an organ (T D50)
along with parameters describing volume dependence n and slope m of the NTCP vs. dose.
There are many studies with clinical data fit to the Lyman-Kutcher model for rectal
complications, and the parameters used in our calculation [T D50 = 80.4 Gy, n = 0.148, m =
0.146] are averages from three of these studies [18-20] which use the clinical endpoint of grade
2 rectal bleeding. This endpoint is very similar to the description presented to patients for utility
determination (see Sect. 4).

The NTCP model includes dose-volume information using an organ volume as visualized by
a CT scan. This choice is based on an anatomically static model and during the course of RT
the position of the organ is not fixed and can move into regions which are not considered by
the IMRT optimization algorithm. Therefore, a treatment plan which contains a hotspot –
defined as a dose higher than T D50 – near an OAR is less desirable than a plan which does not
contain a nearby hotspot. Our model considers doses within 1.0 cm of the OAR.

Bladder complications are a less likely side effect of RT, and only one study was found fitting
bladder complications to the Lyman-Kutcher model [21]. This study uses an endpoint similar
to the bladder complication health state for which we have utility.

4 The Markov model
The Bayesian network predicts the probability over a fixed period of time that a patient will
develop distant metastasis and complications due to treatment.

Higher doses to the tumor result in an increased probability of cure, but also result in increased
doses to nearby tissue and hence increase the probability of a complication. The choice of a
plan is determined by balancing these factors. We use a Markov cohort simulation with a half-
cycle correction [22,23] to compute a predicted quality adjusted life expectancy for each plan
using probabilities from the Bayesian network, and utilities from the literature for prostate
cancer health states.

The Markov model depicted in Fig. 3 has states MM:POST-RT, MM:DISTANT METASTASIS, the absorbing
state MM:DEATH, three tunnel states for the first three years of biochemical failure, and a state
for those with biochemical failure who do not develop distant metastasis within the first 3 years.
Each state is denoted by a circular node and has associated transition probabilities (denoted by
lines with arrows) to move to other states in the model, or to stay in the same state. When the
probability for a transition is zero, no line is drawn. The probability for death from natural
causes comes from life tables, all other transition probabilities are derived from the Bayesian
network as described below.

We evaluate the Markov model with a cohort simulation with a half-cycle correction [22,23].
The cohort simulation takes into account an annual rate of discounting at 3% [24], and the
cycle-length is 1 year. The probability for death from natural causes comes from Social Security
Administration (SSA) life tables [25] and is age and gender dependent. The model runs from
the time of RT until the patient would be 119 years old, which is the oldest age for which the
SSA has life expectancy data. The utilities for health states used in the QALE calculation are
previously published [26] and are reproduced in Table II. We use two sets of values, the average
values of the utilities reported, and utilities which are 2 standard deviations below the average,
representing a complication averse individual. The survival probability for patients who
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develop distant metastasis is 50% at 5 years. The cohort simulation is calculated with Gnumeric
Spreadsheet software.

Qualitatively the Markov model follows patients through two pathways to distant metastasis,
one via biochemical failure after RT, and one directly to distant metastasis without biochemical
failure. Both transition probabilities are from the node BN:DISTANT METASTASIS, with different
evidence entered into the network. The transition directly to MM:DISTANT METASTASIS is calculated
from BN:DISTANT METASTASIS when evidence for BN:PSA CONTROL is entered as YES. When evidence
for BN:PSA CONTROL is entered as NO the transitions from the MM:BIOCHEMICAL FAILURE
states to MM:DISTANT METASTASIS are calculated from BN:DISTANT METASTASIS. The transition probability
into MM:BIOCHEMICAL FAILURE, YEAR 1 is derived from P (BN:PSA CONTROL) when only
the initial treatment evidence is entered into the network.

The prognostic probabilities from the Bayesian network are cumulative probabilities for certain
events at certain time points, defined by clinical studies. The probability calculated in
BN:BNED, for example, is the probability to have biological no evidence of disease at t = 5
years after the beginning of RT. These prognostic, cumulative probabilities are transformed
into annual transition probabilities for the Markov model. Each annual transition probability
is calculated by assuming a constant annual rate, ra, related to the cumulative probability of
an event from the Bayesian network as pc = 1 − e−rat where pc is a cumulative probability from
the Bayesian network, and the subscript a denotes annual. The annual transition probability
pa for the Markov model is then simply pa = 1 − e−ra.

The Markov model, however, needs transition probabilities beyond the endpoints of the studies.
There are three approaches which could be used in this situation: let the transition probability
persist unchanged throughout the lifetime of the cohort simulation, set the transition probability
to zero at the time period set by the length of the trial, or reduce the transition probability to a
“trickle effect” at the end of the trial. The last option assumes that the trial is long enough to
capture most, but not all, of the clinical events. We use the latter two options in our cohort
simulation, depending on an extrapolation of published data, and the opinions of experts.
Tunnel states are another method which we use to subject patients to a risk for a fixed period
of time.

After 5 years the transition probability into MM:BIOCHEMICAL FAILURE, YEAR 1 and
the transition probability to develop distant metastasis without biochemical failure is set to
zero. The probability for the development of distant metastasis is higher in the first few years
after a patient develops a rising PSA level [12]. The model accommodates this with tunnel
states for the first three years after biochemical failure. The rate in the later stage is set to one
third that of the initial rate. Once the model reaches 15 years post-RT the probability to
transition into MM:DISTANT METASTASIS from MM:BIOCHEMICAL FAILURE, YEAR 4 is turned
off.

We consider long term complications only, and approximate each complication as occurring
at the end of the 2nd year of the simulation and persisting throughout the lifetime of the patient.
Complications are assumed to affect each state of the Markov model with an equal probability,
and they do not affect transition probabilities into other Markov states. The effects of
complications are neglected for patients with metastatic cancer. Complications are computed
within the cycle summation of the cohort simulation.

5 Treatment selection
In Fig. 4 we present a sensitivity study for the responses of the QALE and probability to develop
distant metastasis from increasing the tumor dose as represented by D95. The probability of
complications is tied to increasing dose, and we simultaneously increase the probability of
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rectal complications linearly from 2% to 7% as dose increases from 70 to 80 Gy. The probability
of bladder complications is fixed at half the rate of rectal complications. Risk group
classifications are according to the National Comprehensive Cancer Network practice
guidelines recurrence risk groups (www.nccn.org).

The intermediate risk patient has a pretreatment PSA level of 15 ng/ml, Gleason score of 7,
and TNM stage T2a. The high risk patient has a pretreatment PSA level of 22 ng/ml, Gleason
score of 8, and TNM stage T2c. For both patients the lymph node dose was set to yes, the EUD
was 20% above D95, and the plan contained a cold spot of 5%. Clinical trials have shown little
evidence of improved outcomes by raising the dose of the intermediate risk patient above 74
Gy or for treating a high risk patient with less than 75 Gy [9]. Therefore we examine doses in
different ranges for two sample patients. Utilities for health states were the average values
listed in Table II. For comparison, a healthy 60 year old man has a life expectancy of 20.0 years
[25], and with a 3% discount rate has a QALE of 14.4 years.

In both cases the LE and QALE rise as D95 increases, indicating that for both sample patients,
dose escalation is worth the additional complication. For the high risk patient all of the benefit
of dose escalation is reaped at 78 Gy, and predicts an increase in life expectancy of 7.2 months,
and an increase in QALE of 6.0 months (quality adjusted). A dose escalation from 71 to 74 Gy
for the intermediate risk patient predicts an increase in life expectancy of 10.8 months, and an
increase in QALE of 8.4 months. The greater increase in QALE as compared to LE for the
intermediate risk patient is due to the lower value of D95. With lower doses, a dose escalation
does not incur as many additional complications.

This result is robust against variations in the parameters in the model. Specifically, varying the
sizes of the effects of BN:EUD and BN:PTV COLD SPOT within ranges specified by experts does
not change the preferred does for intermediate or high risk patients. Similarly, varying cure
rate of a lymph node dose does not change the plan ranking because it affects all plans equally.
Whether or not to treat lymph nodes, however, is an option we address in Table III.

Elective lymph node irradiation is generally associated with a higher rate of side effects and
is often called whole-pelvic radiation therapy (WPRT) because the entire pelvic region receives
radiation [27,28]. Table III presents the QALE for elective lymph node irradiation for 3 sample
patients with different attitudes towards life quality with complications. Bold face type
indicates when either prostate-only RT or WPRT yield a longer QALE, regardless of the
assumed cure rate of whole-pelvic RT. The patient labeled “avg-utils” values each
complication state according to the average utilities listed in Table II. The patient “LE-max”
makes all decisions in order to maximize life expectancy, regardless of the severity of the
complication outcome, and all complication utilities are set to 1.0. A recent study of prostate
cancer complication state utilities found that 17% of those surveyed were in this category
[29]. For the complication averse patient we used the utilities from Table II which were 2
standard deviation below the average. Intermediate risk patients were modeled to receive 74
Gy, and high risk patients received 78 Gy. For this study we modeled WPRT as increasing the
likelihood complications by 8% in each OAR [28]. The prostate-only and whole-pelvic model
treatment plans in this study are identical except for the additional cure rate and additional
complications from the pelvic dose. In our model the Bayesian network calculates a 26%
chance of lymph node involvement (BN:LNI) for the high risk sample patients, and a 10%
chance for the intermediate risk patients. The cure rate for elective lymph node irradiation is
not known, and we examine two values, a 65% cure rate, and a 20% cure rate, which are varied
in the conditional probability table for the node BN:LYMPH NODE CONTROL.

As expected, the LE maximizing patients receive the most benefit from elective lymph node
RT, which has the highest cure rate. For all patients who are stongly complication-averse
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prostate-only therapy provides the highest QALE. For the high risk sample patients with
average utilities the increased likelihood of death from nodal disease spread for prostate-only
RT outweighs the increased complication rate incurred from whole-pelvic RT. The choice is
more complicated for the sample patients with average attitudes towards risk and for the high-
risk complication-averse patients because the choice of treatment plan depends on the treating
physician's belief in the curative ability of lymph node irradiation. The QALE values are closer
together for older patients because lifetime-persisting complications that occurred at an older
age will impact the QALE calculation for a shorter period of time. These sample patients,
however, need not be used as treatment guidelines, and are only meant to illustrate the use of
the decision aid in treatment selection.

We compare predictions for overall survival and development of distant metastasis from our
network with treatment outcomes from a recent clinical study of intermediate and high-risk
prostate cancer patients treated with RT [30]. This study followed patients for up to 10 years
after treatment, and is one of the only studies to consider both distant metastasis and overall
survival as study endpoints. Many clinical studies in prostate RT end with biochemical failure.
This patient population received androgen deprivation therapy (ADT) concurrent with RT,
beginning two months prior to RT. ADT typically consists of a drug regimine which prevents
the release of, or interferes with the actions of male sex hormones with the intended effect of
preventing prostate cell growth.

Modeling a clinical study from data presented in the literature has a limitation in that patient
data is presented in summary form only in a clinical report. Data sets with age, clinical scoring,
treatment information, and outcome are rarely reported. Specifically, the triplet of clinical
scoring (Gleason sum, PSA level, and Tstage) taken together have far greater predictive power
than each does individually [4]. Furthermore, our model includes patient-specific dosimetry
which is not reported by clinical studies. Modeling limitations aside, however, it is instructive
to see if a simulated cohort which approximates the averages of clinical information performs
similarly to a reported patient cohort. Our simulated cohort includes a patient population with
all combination of clinical variables reported by the study, and the contribution of each
collection of clinical variables is weighted by the product of the frequencies of each individual
variable. All patients are assumed to be the average age in the study, which is 70 years old.

Kaplan-Meier curves for overall survival are presented in Fig. 5. The clinical results include a
95% confidence interval (CI) only for the data point at year 10 of ±3 years, we apply the same
CI as an approximation for the entire time course. We have applied a conservative 5%
uncertainty to the model prediction to account for the previously mentioned modeling
limitations. The model predictions for overall survival in Fig. 5a all fall within the 3 year CI.
The model predicts a 5% greater incidence of distant metastasis at year 10 as shown in 5b. The
difference between the prediction and clinical results are partly due to the increase in cure rate
for some patients with ADT, a complex effect which is not taken into account in the model.
This difference is less apparent in the overall survival curve because a small increase in the
number of patients who develop distant metastasis will not greatly affect the average overall
survival of the group as a whole.

6 Discussion
Previous IMRT plan ranking systems have relied on a subset of the parameters we have
included, such as cold spots within the PTV, NTCP, EUD or modified versions of these metrics
[31,32]. Only one ranking system seeks to include the beliefs of practicing physicians [33].
None of these works include both clinical results and physician experience, and patient
preferences are not considered. These previous publications rank IMRT plans by means of a
newly introduced metric, the interpretation of which tends to be opaque to the clinician. The
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method reported here is the first decision aid in IMRT to combine the major dosimetric
parameters of a treatment plan with clinical results, physician experience, and patient
preferences.

Previous decision models in prostate cancer have utilized a Markov model and have focused
on comparisons of RT vs. radical prostatectomy [34,35,29] or on the cost effectiveness of X-
ray radiation therapy [36] or proton radiation therapy [37]. The transition probabilities for these
models were taken from the literature and represented average outcomes based only on a
patient's pre-treatment characteristics. Prognosis in these models was meant to assist with the
decision between treatment modalities. We consider patients who have already elected to
receive RT, and our decision model intends to determine which of several RT treatment plans
is preferable for a particular patient.

A Bayesian network is well suited to assist with prognosis in IMRT plan selection because
physicians draw upon many sources of information to predict an outcome. Clinical trials report
on the predictive power of a set of variables chosen before the study begins. Retrospective
studies mine past results for predictive variables, many of which are different than those
covered in clinical trials. Physicians must combine these sources and they supplement that
information with their subjective degree of belief in outcomes.

The Bayesian network described is a model of the radiation therapy process from the
perspective of a clinician prescribing radiation therapy. It does not attempt to model the basic
causal biological and radiobiological processes of cancer, although there are some such
elements. For example, the PSA value and Gleason score are measures of abnormal antigen
production and numbers of mitotically abnormal cells which do provide a connection between
therapy and the basic processes. Most of the nodes in the model, however, reflect empirical
observations that may or may not have direct biological corollaries. It is anticipated that as
understanding of the biological basis of prostate cancer grows, our model will develop in
parallel.

Prognosis is of central importance in health care, although there have been few previous efforts
at developing prognostic Bayesian networks in cancer [38-40]. The uncertainty present in
predicting the future, however, makes the Bayesian network formalism well suited to this task,
and the usefulness of Bayesian networks for medical prognostication is clearly recognized
[41,42]. Part of the problem may lie in the fact that there are often competing outcomes to a
cancer treatment, including side effects and complications that can be severe and cannot be
neglected when designing a therapy regime for a patient. There are no simple, established
methods to use a Bayesian network to rank results with multiple outcomes. Influence diagrams
are one attempt to combine utilities and probabilities of outcomes, but as others have noted
influence diagrams do not easily lend themselves to the time-dependent task of cost accounting
with disease states and utilities [43].

The limitations of the Bayesian network and Markov model are complemented by the strengths
of the other in our decision aid. The Bayesian network calculates the probabilities of the set of
possible outcomes. The Markov model uses transition probabilities calculated from those
probabilities to predict life expectancies. The use of QALE allows us to combine the disparate
outcomes in a simple, clinically useful metric.

Our model shows that for prostate cancer treatment decisions the benefits reaped from dose
escalation could be worth the additional cost of incurring a higher probability of treatment
complications, at least up to the highest doses for which our model has conditional probabilities.
This reflects the way in which physicians act in the field of prostate cancer plan selection, and
serves as a valuable proof of principle for our decision aid. Future work will include applying
our Bayesian network and Markov model-based QALE ranking to cases of IMRT for head-
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and-neck cancer, which generally have lower survival probabilities, more severe possible
complications, and a considerably more complex decision structure.

7 Conclusions
We have developed a prognostic Bayesian network for prostate cancer IMRT plan selection
and extended it to calculate a quality adjusted life expectancy using an established, well
understood method, a Markov model evaluated with a cohort simulation. By developing a
Bayesian network and a Markov model which work in concert we are able to combine clinical
reports with physician experience to make detailed predictions as the efficacy of individual
plans, and we are able to rank each plan with a QALE calculation. In the context of
multiobjective optimization this model provides a more sophisticated method of ranking
treatment plans than is available through current standard approaches. The method is the first
of its kind in IMRT to simultaneously consider empirical probabilities, physician degree of
belief, and patient preferences.
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Fig. 1.
The Bayesian Network to predict the incidence of distant metastasis given a patient's clinical
characteristics and an IMRT treatment plan. Shading indicates evidence nodes particular to a
patient (white); evidence nodes particular to a given IMRT plan (black); and chance nodes
(gray).
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Fig. 2.
The Bayesian network to predict the incidence of rectal complications from an NTCP
calculation, dosimetric cutpoints, elective lymph node radiation, and the properties of a nearby
hotspot. Shading indicates evidence nodes particular to a given IMRT plan (black), and chance
nodes (gray)
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Fig. 3.
The Markov model used to calculate the quality-adjusted life expectancy of a patient using
transition probabilities from the Bayesian network.
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Fig. 4.
Life expectancy (dashed line), QALE (dot-dased line), and probability of developing distant
metastasis for an intermediate risk (left) and a high risk (right) 60 year old patient as a function
of D95. The vertical scale on the far left refers to years for the LE plot, and quality-adjusted
life-years for the QALE plots, while the vertical scale on the far right refers to the probability
of developing distant metastasis.
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Fig. 5.
a) Overall survival and b) metastasis-free survival from a recent clinical analysis [30] (solid
circles) compared with predictions from the model (x marks).
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Table 2
Utilities for complication states.

Health state average complication-averse

Urinary difficulty 0.88 0.62

Bowel problems 0.71 0.19

Urinary and bowel (both) 0.70 0.19

Metastatic cancer 0.25 0.03
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