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Abstract 
Assessing recovery from stroke has been so far a time 
consuming procedure in which highly trained clinicians are 
required. This paper proposes a mechatronic platform which 
measures low forces and torques exerted by subjects. Class 
posterior probabilities are used as a quantitative and 
statistically sound tool to assess motor recovery from these 
force and torque measurements. The performance of the 
patients is expressed in terms of the posterior probability to 
belong to the class of normal subjects. The mechatronic 
platform together with the class posterior probabilities 
enables to automate motor recovery assessment without the 
need for highly trained clinicians. It is shown that the class 
posterior probability profiles are highly correlated, r  0.8, 
with the well-established Fugl-Meyer scale assessment in 
motor recovery. These results have been obtained through 
careful feature subset selection procedures in order to prune 
the large feature set being generated. The overall approach 
is general and can be applied to many other health 
monitoring systems where different categories (diseased vs. 
healthy) can be identified. 

Introduction
The World Health Organization defines stroke as a 
syndrome consisting of the rapid onset of a focal cerebral 
deficit of vascular origin lasting more than 24 hours (WHO 
1988). Stroke, also known as cerebrovascular accident 
(CVA) or ‘brain attack’, ranks 3rd among all causes of 
death after heart diseases and cancer in the United States 
(Thom et al. 2006). It is expected to become soon the first 
cause of death worldwide. Moreover, it is number 1 as a 
leading cause in long-term disability in the United States 
(CDCP 1999). Stroke patients suffer from disabilities 
ranging from hemiparesis, gait disturbance, incontinence, 
cognitive disturbance, vision disturbance, dependency in 
activities of daily living tasks, aphasia, numbness, … to 
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depressive symptoms (Kelly-Hayes et al. 2003). The 
symptoms are largely dependent on which part of the brain 
is affected by the stroke and the size of the affected part. 
It is estimated that the direct and indirect cost related to 
stroke is $57.9 billion in 2006 in the US (Thom et al. 
2006). 
Largest contributors in the acute care costs are (Diringer et 
al. 1999): room charges (50%), medical management 
(21%) and diagnostic costs (19%).  
It is important for rehabilitation specialists to be able to 
assess recovery and the effects of different physical 
therapies. This will help in reducing the stay of patients in 
hospitals and hence has a huge potential in reducing part of 
all aforementioned costs. Therefore, it is important that the 
recovery of the patient can be monitored objectively, 
reliably and cost-effectively. Current techniques require a 
highly skilled clinician to score the performance of patients 
in some tasks on specific scales such as the well-
established Fugl-Meyer (FM) motor recovery scale  
However, the scales suffer from inter-rater variability 
(Gladstone et al. 2002).   

Measurements from ADL Tasks 
Paramount in the appreciation of the quality of the patients' 
life is the ability to perform activities of daily living (ADL) 
tasks. This consists of a set of frequently executed tasks 
such as: drinking from a glass, turning a key, taking 
objects, … and so on. These tasks are thoroughly described 
in textbooks for physical and occupational therapists (Carr 
and Shepherd 1998) and (Perfetti 1997). In this research 57 
stroke patients and 57 normal controls are asked to perform 
6 ADL tasks: ‘drinking a glass of water’, ‘turning a key’, 
‘picking up a spoon’, ‘lifting a bag’, ‘reaching for a bottle’ 
and ‘bringing a bottle to the opposite side’. Every subject is 
required to execute each task 3 times. During these 
experiments patients and normal controls are seated in a 
mechatronic platform. This platform consists of 8 sensors 
which are connected to different parts of the body, see  
(Mazzoleni et al. 2005). Some of these body parts are 
fundamental in executing these tasks: thumb, index, middle 
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finger and the lower arm. Others potentially play a 
secondary role e.g. with the purpose of balancing, 
anticipation to a task, synchronization… and so on. These 
sensors are located at: below the posterior, behind the 
trunk, a foot and a big toe. The removal of irrelevant 
sensors, in terms of irrelevant in discriminating stroke 
patients from normal controls, is addressed later in this 
paper by means of feature selection procedures. 
Simultaneously during execution of these tasks force and 
torque signals are recorded from the sensors. Forces and 
torques are recorded both in X, Y, and Z direction. Figure 
1 shows 3 times series Fx(k), Fy(k) and Fz(k) during the 
drinking a glass task. 

The forces and torques are being measured under isometric 
constraints. The isometric approach implies that objects 
which are handled by the subjects within the platform 
cannot be moved. When a patient tries to drink from a cup, 
the patient has to insert the thumb, index and middle finger 
within the sensors, which are attached to the cup. The cup 
itself cannot be moved and is attached to a frame. Hence, 
the reaction forces will be recorded. The reason for this 
approach is two-fold: firstly for the ease of recording and 
secondly to take into account that stroke patients are often 
still capable of manipulating objects in a manner which is 
very different from normal subjects. This ability alone, 
however, is not indicative for the assessment of how 'close' 
stroke patients perform the task compared to normal 
subjects. The isometric setting enforces the stroke patients 
to manipulate the objects in the same way as normal 
subjects would be required. It has to be noticed that the 
recordings lead to a large amount of data per experiment: 
(6 ADL tasks per experiment) * (3 repetitions per ADL 
task) * (8 sensors) * (3 spatial directions per sensor) * (2 
types of measurements) = 864 measurements in total. 
Signals are recorded at a sampling rate of 100 Hz. Hence, 
this implies that recording of 1 s per experiment already 
leads to 86400 time samples. 

Feature Construction 
‘Raw’ time series, in this case force and torque signals, are 
seldom used for making predictions in pattern recognition 

systems. It is common to define features based on these 
times series. Extracting features, defined as functions of 
the times series, are a first important step to dimensionality 
reduction. Suppose that we would limit ourselves to fixed 
windows of 100 samples, using raw time series and 
retaining only 1 time series out of 864 times series would 
imply that one would use at least a 100 dimensional space. 
Secondly, one often disposes of prior knowledge about the 
difference in behavior between normal controls and the 
patients. Feature extraction then allows to express one's 
prior assumptions (or hypotheses) by defining functions of 
the time series.  
 It should be noticed that it is natural to consider 
combinations of X, Y and Z components to construct force 
vectors in vector space. In figure 2, we show the force 
trajectories by connecting the end-points of subsequent 
force vectors F(k-1) = [Fx(k-1), Fy(k-1), Fz(k-1)] and F(k)
= [Fx(k), Fy(k), Fz(k)].  

Next we describe the construction of features which are 
determined by the force and the torque vectors. 
Planning of a Trajectory. From experience it is clear that 
normal controls are better capable of ‘planning’ a 
trajectory in their efforts, e.g. in trying to bring a glass to 
the mouth. Hence, it can be hypothesized that the angular 
deviations from F(k) and T(k) relative to the mean efforts 
Fm and Tm show larger deviations and abnormalities for 
patients. These deviations and abnormalities can be 
assessed e.g. by calculating the maximal deviation, the 
standard deviation, the skewness, the kurtosis,… of the 
angular deviations. These statistical measures however, do 
not take temporal aspects into account. In order to do so, 
we fit an autoregressive model (AR-model) to these 
angular deviations with the Bayesian information criterion 
(BIC) (Lütkepohl 2005) to assess the time lag needed.  
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Figure 1: example recording of the three forces Fx(k), Fy(k) and 
Fz(k) from the thumb during the 'drinking a glass' task. The onset 
of the effort can be seen at approximately 0.5 s, as an increase in 
the forces.  
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Figure 2: force trajectories over time for the 'drinking a glass’ 
task. The trajectory is obtained by linking consecutive end-
points of the force vectors. The patient trajectory and normal 
control trajectory are discriminative by their smoothness: the 
normal control force trajectory seems smoother, while the 
patient’s trajectory is less predictive. 
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This model allows to take linear dependencies into account 
over time by fitting the current angle deviations based on 
the previous angle deviations. Moreover, rather than 
building vectors F(k) = [Fx(k), Fy(k), Fz(k)] on all 3 signals, 
similarly vectors based on 2 force and 2 torque signals are 
built:  
Fxy(k) = [Fx(k), Fy(k)], Fxz(k) = [Fx(k), Fz(k)] and Fyz(k) = 
[Fy(k), Fz(k)]. The same holds for the torque vectors T(k), 
Txy (k) = [Tx(k), Ty(k)], Txz(k) = [Tx(k), Tz(k)] and Tyz(k) = 
[Ty(k), Tz(k)]. These new vector definitions enable us to 
exclude force or torque signal components that are only 
noisy signals and are not part of voluntary movements. 
Continuity in Voluntary Movement. The ‘continuity’ of 
the voluntary movement can be quantified by computing 
the sequence of angles between subsequent force vectors, 
[k] = angle(F(k),F(k-1)), and torque vectors, [k] = 

angle(T(k),T(k-1)). Due to the partial destruction of 
feedback loops, the patients’ mental representation of the 
next state, is likely to need bigger corrections when 
confronted with the sensory feedback (Miall 1993). Hence, 
parameters of these angles such as maximal deviations 
from the mean, skewness, standard deviations, 
autoregressive coefficients quantify both the statistical and 
temporal aspects of the abnormalities in sequential angular 
deviations. 
Velocity Components. From the force and torque values 
we can also extract linear velocity and angular velocity 
respectively:

                       
l

k = 0

m 1l k
l + 1 l + 1

v F  (1) 

                       
l

k = 0

I 1(l) (k)
l + 1 l + 1

T  (2) 

However, we need to emphasize that strictly speaking, 
there is no real movement, while the objects are fixed in 
the isometric setting. Therefore, these velocity features 
have no physical meaning. Formula’s (1) and (2) would be 
correct in case of freely moving objects and time 
independent mass (m) and moment of inertia (I). We call 
these velocities ‘imaginary’ linear and ‘imaginary’ angular 
velocities. The statistics about the newly obtained angular 
and linear velocities are summarized in the same way as 
for the force and torque signals. 
Synchronization between Body Parts. The voluntary 
movement of objects in the ADL tasks needs a careful 
synchronization, which implies that forces exerted by one 
body part are likely to be statistically dependent on forces 
from other body parts. Consider e.g. the  ‘drinking a glass’ 
task, it is clear that one needs a proper synchronization 
between forces  and torques exerted by the thumb, the 
index and the middle finger. We compute this 
synchronization by the information theoretic measure of 
statistical dependency, known as mutual information 
(Cover and Thomas 1991). The mutual information can be 
computed as follows: 

                    
s1 s2

s1 s2a
k

s1 s2

s1 s2

MI( (k) , (k) )

max p( (k) , (k-a) )

p( (k) , (k-a)
ln

p( (k) )p( (k-a) )

F F

F F

F F
F F

(3)

Hence, the mutual information between the forces of 
sensor s1 and sensor s2 is computed between the 
magnitudes of these forces. We need to take into account 
that signals belonging to different sensors can be shifted in 
time. Therefore, the delay ‘a’ between the sensors is 
searched for, such that the magnitudes of the vectors 
become maximally dependent. Hence, this shift parameter 
is estimated by means of a maximization of mutual 
information approach. In figure 3, the maximal mutual 
information for all 57 normal controls and 57 stroke 
patients is shown for the norms of the force vector between 
the thumb and the index in the ‘turning a key’ task.  

As indicated in figure 3, the average mutual information 
for normal controls is higher than for the stroke patients. A 
t test rejects the null-hypothesis of equal means with p 
2.31*10-11. A similar conclusion can be drawn for the 
thumb and the middle finger. Hence, this provides 
evidence for the fact that these forces are much less 
dependent (less synchronized) for the group of stroke 
patients. This is a very plausible result, while turning a key 
needs a fine coordination between the thumb-index and the 
thumb-middle finger. It is clear from this example that 
feature extraction and putting forward hypotheses go hand 
in hand.  
Time Series Fitting. As can be seen in figure 1, the force 
and torque signals consist of a rising part and a decaying 
part. This behavior has been modeled by a sum of 2 
exponential functions. The parameters are used as features, 
as well as the residuals obtained after fitting the model.  
 In summary, the aforementioned definitions lead to a 
total of 59472 features, and for which we consider the 
result of applying a given feature definition to each ADL 
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Figure 3: mutual information feature between the thumb and 
index in the ‘turning a key’ task. The first 57 subjects are 
normal controls, the next 57 subjects are stroke patients. The 
average of the features for the controls is equal to 0.64 (left 
horizontal line), the average of the patients is equal to 0.35 
(right horizontal line).  
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task (6 in total), attempt (3 attempts / task) and sensor (8 
sensors) as different features. 

Class Posterior Probabilities and 
Dimensionality Reduction 

First, the rationale behind class posterior probabilities is 
discussed, subsequently a combined feature filter and 
feature wrapper selection approach is applied to decrease 
the dimensionality prior to density estimation. 

Rationale of Class Posterior Probabilities 
Given the set of normal controls and patients, one can 
obtain the conditional probabilities of the features (F1, F2,
… Fn) for the normal controls and the stroke patients: 

                        1 2 np(F ,F ,...,F |normal)  (4) 

                         1 2 np(F ,F ,...,F |stroke)  (5) 

These probabilities need to be estimated from 
measurements on a group of normal controls and stroke 
patients. Stroke patients should be selected in the phase 
where they are clearly not fully recovered, otherwise they 
should be considered as a subject with normal 
performance.  
The class posterior probability is then obtained by means 
of Bayes’ theorem: 

1 n
1 n

1 n

1 n 1 n

p(F ,...,F |normal)p(normal)
p(normal|F ,...,F ) = 

p(F ,...,F )
and p(stroke|F ,...,F ) = 1 - p(normal|F ,...,F )

 (6) 

If the features of a stroke patient are obtained at a certain 
time instant, say d days after the stroke, (f1(d), f2(d),

…fn(d)), then (6) provides a quantitative measure for ‘being 
normal’ by means of the class posterior probability to 
belong to the group of normal controls.  The class posterior 
probability has the advantage that it takes explicitly both 
the normal controls and stroke patients into account. This 
is a clear difference with the hypothesized ideal 
performance of the traditional scaling methods discussed in 
the introduction. Normal controls perform ADL tasks in a 
potentially different manner; therefore it is natural to take 
the statistical distribution for the normal controls into 
account. Moreover, the class posterior probability is an 
easily interpretable measure, bounded by two extreme 
values: 1 as a measure for complete ‘normality’ and 0 as 
measure for complete ‘disability’. A third advantage of the 
approach is that is Bayesian: the prior knowledge of an 
clinical expert about the ‘normality’ of a patient is 
represented by p(normal). This effectively serves as an 
interface between the clinical expert and the inference 
engine. In the validation part of this paper, we used the 
non-informative prior probability: p(normal) = 1/2. This 
value was set in order to attribute the result to the trained 
system, rather than the expert. 

Feature Subset Selection 
It is well known that densities can not be estimated 
accurately in high dimensional feature spaces. In general, 
the accuracy is a function of both the number of data points 
and the dimensionality of the feature space, e.g. see the 
AMISE (Asymptotic Mean Integrated Square Error) 
expression in (Härdle et al. 2004) for kernel density 
estimation. A general observation of the decrease in 
accuracy with increasing dimensionality is the so-called 
‘curse of dimensionality’. A second important reason for 
feature subset selection is that we want to reduce the 
number of sensors, hence, to decrease of the cost of the 
mechatronic device. This is a goal that in general cannot be 
achieved by feature extraction, because it makes 
combinations of the original features.  
Filter Based Feature Selection.  Because quantitative 
analysis by means of posterior probabilities is central in 
this paper, we should be able to reduce the high-
dimensional feature set to lower dimensions, without the 
risk of losing important features and without actually 
calculating the probabilities in high-dimensional spaces, 
which cannot be performed accurately. 
 One can prune the feature set in a statistically optimal 
way by means of the Kullback-Leibler framework for 
feature subset selection that has been proposed in (Koller 
and Sahami 1996).  
 It can be proven that if the following assumptions hold: 
1) the features are independent and 2) independent when 
conditioned on the class label (class conditional 
independence), then the Kullback-Leibler divergence 
between the original feature set and a subset thereof is 
equivalent to the sum of the mutual information 
contributions from the omitted features. This can be written 
as follows: 

n

1 n 1 n i
i = 1

n

1 n 1 n i
i = 1

if F ,...,F : p(F ,...,F ) = p(F )

and F ,...,F ,C: p(F ,...,F |C) = p(F |C)

1 n1

i

1 n r r

n2

s
i = 1

1 2 n1 1 n2

then: KL(p(C|F ,...,F )||p(C|F ,...,F )) =

MI(F ;C)

with {r ,r ,...,r } {s ,...,s } = 1,2,...,n

 (7) 

Here, we represent the class variable by means of variable 
C, which can e.g. take values -1 and +1 or 0 and +1. 
The class conditional independence condition should not 
come as a surprise: the naive Bayesian (NB) classifier 
similarly assumes class conditional independence. 
Although class conditional independence seems a very 
strong condition, it has been shown that the naive Bayesian 
classifier easily outperforms many other classifiers 
(Domingos and Pazzani 1997).  
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 It also has to be remarked that features which are 
selected based on the mutual information criterion will not 
necessarily be class conditional independent. This can be 
easily seen as follows. Suppose that we add a copy of a 
feature to the feature set. If the original feature is selected 
based on its high mutual information with the class 
variable, then the copy will be selected as well, because the 
mutual information is equal. 
From (7), it is clear that eliminating those features for 
which MI(Fsi;C) = 0 leads to the KL divergence = 0, due to 
the fact that the mutual information is larger or equal to 
zero. Hence, there is no loss in information by removing 
those features. We estimated the mutual information by 
entropies and conditional entropies: 

                      
i i i

2

i i j j
j = 1

MI(F ;C) = H(F ) - H(F |C)

= H(F ) - H(F |c )p(c )
 (8) 

The entropy estimate was obtained by a recently proposed 
nearest-neighbor approach to entropy estimation, formula 
(20) in (Kraskov et al. 2004). It has to be noticed that due 
to the finite sample estimation, MI(Fi; C) is different from 
0, even if the feature is statistically irrelevant. Statistical 
relevance can be easily tested, under the null hypothesis of 
irrelevance, by random permutation of the class label. 
Features for which the MI exceeds a certain significance 
level (  was taken equal to 0.01 in this case) can be 
considered as statistically relevant.  
 This procedure, which is more thoroughly explained in a 
regression context (Van Dijck and Van  Hulle 2006), 
allowed us to reduce the original set of 59472 features to a 
set of 2637 features.  
Wrapper Based Feature Selection.  The set of 2637 
features is still too high to estimate the posterior 
probabilities accurately for the 57 normal controls and the 
57 patients. The set of features is further reduced by taking 
the induction algorithm into account in the search (Kohavi 
et al. 1997) and retaining those features for which the best 
classification could be obtained in terms of classification 
accuracy with a leave-one-out validation. Strictly speaking, 
statistical optimality such as in the filter procedure cannot 
be guaranteed anymore. We compare 3 induction 
algorithms to search for the best subset of features, in terms 
of discriminating normal controls from stroke patients: k-
nearest neighbor, least squares support vector machines 
(LSSVM, Suykens et al. 2002) and a Bayesian classifier 
with kernel density estimation (KDE), for KDE see 
(Devroye et al. 2001). We use Gaussian kernels and use the 
maximum likelihood cross-validation method for kernel 
bandwidth estimation in KDE. The hyperparameters of the 
LSSVM were set to standard values. The LSSVM 
hyperparameters were then further tuned manually for the 
best subset in order to increase the performance.  
 We used the sequential forward search (SFS) procedure, 
which gradually adds the next best feature to an existing 
subset, starting from the empty set. From a recent 

comparison (Oh et al. 2004) among search procedures it 
can be seen that the difference with more advanced search 
procedures such as genetic algorithms is rather small, and 
maximally a few percent, see table 3 in (Oh et al. 2004). 
Moreover, the more advanced algorithms typically test 
much more subsets as compared to the SFS, this increases 
the risk of finding spurious results, due to the larger 
number of hypotheses being tested.  
Comparison from table 1 shows that the best performances 
are obtained for the Bayesian classifier with KDE (98.25 
%). The first column represents the number of features 
selected, abbreviated as feature subset (FS) size. 

In fact, 2 stroke patients were erroneously assigned to the 
class of normal controls. Performing experiments with 
more than 6 features for all classifiers until d = 10, did not 
increase the performance. The resulting set consists of 6 
features in which only 4 sensors play a role: thumb, index, 
middle finger and the seat. This effectively reduces the cost 
of the platform from 8 to 4 sensors.  
 The most important tasks are: ‘drinking a glass’, ‘lifting 
a bag’ and ‘lifting a bottle’. The most important features 
are: ‘angular velocity’, angular deviations from ‘continuity 
in voluntary movement’ and the residual from the ‘time 
series fitting’. 

Validation
We need to show that the process of defining features, 
reducing the feature set, followed by the definition of the  
posterior probabilities on the reduced feature set leads to 
results that satisfy our goals: the posterior probability 
should be able to monitor the patient’s motor recovery over 
time. We can achieve this by performing a correlation 
study between the class posterior probabilities and the 
broadly accepted, Fugl-Meyer (FM) score.  
Figure 4, shows the class posterior probability for the range 
6 to 180 days after stroke for one subject that recovered 
fast after the occurrence of the stroke. Also shown are the 
normalized global FM score (by adding up all items and 
dividing by the maximum), the normalized sum of the 
upper extremity of part A (ability to perform active 
movements), the normalized sum of Part B (ability to 
perform rapid movement changes). In order to quantify the 
correspondence between posterior probabilities and the 
subscores of the Fugl-Meyer scale we compute the Pearson 
correlations.  

FS Size k-NN LS-SVM KDE 
1 80.70 % 82.46 % 82.46 % 
2 88.60 % 85.96 % 87.72 % 
3 92.11 % 90.35 % 92.11 % 
4 93.86 % 93.86 % 96.49 % 
5 94.74 % 96.49 % 97.37 % 
6 94.74 % 97.37 % 98.25 % 

Table 1: results of the comparison of: k-NN, LS-SVM and 
KDE, using leave-one-out validation. 
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Table 2 gives an overview of the average correlation for 16 
of the 57 patients which were selected based on the 
constraints of a first-ever ischemic or haemorrhagic stroke 
and a lesion within the middle cerebral artery (MCA) 
territory proven by a CT and/or MRI scan.  

Patients are between 47 and 87 years old with a mean age 
of 65 and a standard deviation of 11 years. The posterior 
probability profiles are obtained with KDE on the 6 
selected features to compute the results in table 2. The 
average correlation scores have been obtained by averaging 
the correlations after 6, 31, 56, 81, 106, 131, 156 and 180 
days after stroke. From table 2 we note that especially the 
average correlations with the global FM score and the 
upper extremity of part A (ability to perform active 
movements) score are high. Part B, C and D are 
respectively: the ability to perform rapid movement 
changes, mobility and balance.  

In (Gladstone et al. 2002) many references are made to 
previous correlation studies between FM and other scales 
e.g. the Barthel index (BI). The correlation scores that have 
been reported there between the Fugl-Meyer upper 
extremity motor subscore and the BI is 75% in the acute 
stage and 82% after 5 weeks. Our average correlation 
result of 80.29 % between the same subscore and the 
posterior probability is approximately as high as those 
correlations. However, it has to be noticed that Fugl-Meyer 
and Barthel index scoring need to be performed by trained 
clinicians and easily take a few hours. Installing patients in 
the platform, executing the measurement protocol and 
computing the posterior takes 5 to 10 minutes. 
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