
Exploring Ant-Based Algorithms for Gene Expression

Data Analysis

Yulan Hea,∗, Siu Cheung Huib

aSchool of Engineering, Computing and Mathematics, University of Exeter

North Park Road, Exeter EX4 4QF, UK
bSchool of Computer Engineering, Nanyang Technological University,

Nanyang Avenue, Singapore 639798

Summary

Objective: Recently, much research has been proposed using nature inspired al-

gorithms to perform complex machine learning tasks. Ant colony optimization

(ACO) is one such algorithm based on swarm intelligence and is derived from a

model inspired by the collective foraging behavior of ants. Taking advantage of

the ACO in traits such as self-organization and robustness, this paper investi-

gates ant-based algorithms for gene expression data clustering and associative

classification.

Methods and Material: An ant-based clustering (Ant-C) and an ant-based as-

sociation rule mining (Ant-ARM) algorithms are proposed for gene expression

data analysis. The proposed algorithms make use of the natural behavior of

ants such as cooperation and adaptation to allow for a flexible robust search for

a good candidate solution.

∗Corresponding author. Tel.: +44 1392 263591; Fax: +44 1392 264067.
Email addresses: y.l.he.01@cantab.net (Yulan He), asschui@ntu.edu.sg (Siu Cheung

Hui)

Preprint submitted to Elsevier January 25, 2013

Results: Ant-C has been tested on the three datasets selected from the Stanford

Genomic Resource Database and achieved relatively high accuracy compared to

other classical clustering methods. Ant-ARM has been tested on the acute

lymphoblastic leukemia (ALL) / acute myeloid leukemia (AML) dataset and

generated about 30 classification rules with high accuracy.

Conclusions: Ant-C can generate optimal number of clusters without incor-

porating any other algorithms such as K-means or agglomerative hierarchical

clustering. For associative classification, while a few of the well-known algo-

rithms such as Apriori, FP-growth and Magnum Opus are unable to mine any

association rules from the ALL/AML dataset within a reasonable period of time,

Ant-ARM is able to extract associative classification rules.

Key words: Gene expression data analysis, Ant colony optimization,

Clustering, Associative classification, Swarm intelligence.

1. Introduction

The break through in the development of DNA microarray technology exam-

ination of gene expression has created a new era for further exploration of living

systems, source of disease and drug development. The study of thousands of

genes to analyze their relations to cancer biology is one of the advantages har-

nessed from DNA microarray technologies. However, as the years go by, the

explosion of genomic data in tens of thousands through microarray experiments

has brought about problems in the development of efficient methods to pick out

the information from such microarrays.

2

These gene expression data in microarray are presented in M × N matrix

where M is the number of microarray experiments and N being the number of

genes [1]. The number of experiments M can range from dozens to thousands.

On the other hand, the number of genes N can range from hundred to tens of

thousands. In some context, M can be referred to as number of transactions

or itemsets where each gene represents an item. To add to the complexity of

representation, each gene is measured in terms of absolute values. However,

biologists are more interested in how gene expression changes under different

environments in each respective experiment. Thus, these absolute values are

discretized according to some predetermined thresholds and grouped under three

different levels, namely unchanged, upregulated and downregulated.

With gene expression data, certain analysis needs to be performed on them to

retrieve useful biological information. One of the techniques named cluster anal-

ysis has discovered useful biological information by detecting genes that have

identical expression profile [2]. However, there are disadvantages in employing

this technique. Firstly, the relationships of the genes revealed from clustering

are only a fraction of the many valuable relationships that are present among

various transcripts. Secondly, the user needs to have a good biological under-

standing of the pathway in question. Thus, for many of the pathways and rules

that are not known to the user, clustering may not be a wise choice.

Such shortfalls provide the motivation for the development of association

rule mining (ARM) [3]. ARM finds interesting associations and/or correlation

relationships among a large set of data items. It is widely used for market

3

basket data to observe consumer spending patterns in retail markets. Its appli-

cation is used in the analysis of expression data as well. Studies have revealed

that association rules show the link between genes and environments/categories.

Cancer diagnosis and diseases can also be predicted by the studies of the genes

generated from association rules [4].

This paper explores ant-based algorithms for gene expression data analysis.

Novel methods based on the ant colony optimization (ACO), a nature inspired

algorithm emerging from the collective behavior of social ant colonies, are pro-

posed for clustering (Ant-C) and associative classification (Ant-ARM). The rest

of the paper is organized as follows. The related work on clustering and ARM

on gene expression data is presented in Section 2. Section 3 briefly describes the

ACO algorithm. The proposed Ant-C and Ant-ARM approaches are discussed

in Section 4 and Section 5 respectively. Experimental results are presented in

Section 6. Finally, Section 7 concludes the paper.

2. Related Work

Recently, there have been growing interests to apply the ACO algorithm

on gene expression data analysis. Ressom et al. [5] proposed an algorithm that

combines a recurrent neural network (RNN) and two swarm intelligence methods

to infer a gene regulatory network (GRN) from time course gene expression

data. ACO was used to identify the optimal architecture of an RNN, while the

weights of the RNN were optimized using particle swarm optimization. Robbins

et al. [6] applied ACO for feature selection in high dimensional gene expression

4

data for disease classification. The ACO was able to identify small subsets of

highly predictive and biologically relevant genes without the need for extensive

preselection of features. In this paper, we explore the ant-based algorithms for

gene expression data clustering and associative classification.

2.1. Clustering

Clustering is a fundamental technique in exploratory data analysis and pat-

tern discovery, aiming at extracting underlying cluster structures. Cluster anal-

ysis is concerned with multivariate techniques that can be used to create groups

amongst the observations, where there is no a priori information regarding the

underlying group structure. Clustering of the genes on the basis of the tissues

can be used to detect a group of genes whose expression level changes follow

a same pattern. Dozens of clustering algorithm exist in the literature and a

number of ad hoc clustering procedures have been applied to microarray data.

Available methods can be categorized broadly as being hierarchical such as

agglomerative hierarchical clustering (AHC) [7, 8] or non-hierarchical such as

K-means clustering [9] and clustering through self-organizing maps (SOMs) [10].

A major limitation of hierarchical methods is their inability to determine the

number of the clusters. The limitation of K-means methods mainly lies in its

inability to handle clusters with different sizes or densities and clusters with non-

globular shapes [11]. SOMs are in fact conceptually different from clustering

as they try to map high-dimensional input data onto a regular low-dimensional

grid while clustering is to partition the input data into groups. Thus SOMs of-

ten fail to deliver satisfactory results especially when clusters exhibit arbitrary

5

shapes [12].

Early approaches in applying ACO to clustering [13, 14, 15] are to first par-

tition the search area into low-dimensional regular grid (typically 2D grid). A

population of ant-like agents then move around this 2D grid and carry or drop

objects based on certain probabilities so as to categorize the objects. However,

this may result in too many clusters as there might be objects left alone in

the 2D grid and objects are still carried by the ants when the algorithm stops.

Therefore, some other algorithms such as K-means are normally combined with

ACO to minimize categorization errors [16, 17, 18]. More recently, variants of

ant-based clustering have been proposed, such as using inhomogeneous popula-

tion of ants which allow to skip several grid cells in one step [19], representing

ants as data objects and allowing them to enter either the active state or the

sleeping state on a 2D grid [20].

It has been formally proved in [21] that ACO clustering algorithms based on

the grid structure are prone to produce bad topographic mappings, either too

many or too small, and topographically distorted clusters. This paper proposes

a novel Ant-C algorithm without relying on a 2D grid structure. In addition,

it can generate optimal number of clusters without incorporating any other

algorithms such as K-means or AHC.

2.2. Association Rule Mining

Apriori is the classic ARM algorithm [3] and is commonly used as a bench-

mark for improvements in ARM. Earlier work on applying Apriori in gene ex-

pression data can be found in [22]. The main disadvantage of Apriori is its high

6

memory space overhead in generating the frequent itemsets and association rules

for large datasets which would exhaust the memory space limit that eventually

results in the termination of generation of rules in many of the experiments [23].

It has been mentioned that Apriori-based algorithms only work if the largest

frequent itemset has a size lower or equal to 15 when studied on human SAGE

data [24].

In many of the gene expression datasets, the number of genes (columns) can

range up to 10,000-100,000 while there are only 100-1000 experiments (rows).

Many of the column-wise mining algorithms such as Apriori would have prob-

lems processing the large number of columns in order to identify the frequent

itemsets as the search space consists of 2i possible candidates where i is the

number of columns. FARMER [25] uses a depth-first row-wise algorithm as

opposed to a breath-first algorithm used by Apriori. It proves to be a lot faster

than other algorithms that works on column enumeration space. However, no

evaluations for the accuracy of the algorithm have been performed. Further-

more, most of the datasets used are artificial datasets whose association rules

may not be of significance as compared to biomedical gene expression datasets.

3. Ant Colony Optimization

Nature inspired algorithms are problem solving techniques that attempt to

simulate the occurrence of natural processes. Some of the natural processes

that such algorithms are based on include the evolution of species [26, 27],

organization of insect colonies [28, 29] and the working of immune systems

7

[30, 31]. Nature inspired algorithms are often characterized by techniques that

manage a community of individuals and attempt to generate smarter individuals

as the community evolves. Through means of selection, reproduction, feedback

and heritability, each individual is able to offer a more productive solution. The

ability of such stochastic population-based methods to explore large search space

makes them highly suitable for overcoming complex problems such as clustering

and optimization.

The ACO algorithm [28, 29, 32, 33] belongs to the natural class of problem

solving techniques which is initially inspired by the efficiency of real ants as they

find their fastest path back to their nest when sourcing for food. An ant searches

for the fastest path based on the presence of pheromone deposited along the trail

by either itself or other ants. An open loop feedback exists in this process as

the chances of an ant taking a path increases with the amount of pheromone

built up by other ants. This natural phenomenon has been applied to model

the traveling salesman problem (TSP) [32].

Given a set of cities and the distances between them, the TSP is the problem

of finding the shortest possible path which visits every city exactly once. More

formally, it can be represented by a complete weighted graph G = (N,E) where

N is the set of nodes representing the cities andE is the set of edges. Each edge is

assigned a value dij which is the distance between city i and j. When applying

the ACO algorithm to the TSP, a pheromone strength τij(t) is associated to

each edge (i, j), where τij(t) is a numerical value which is modified during the

execution of the algorithm and t is the iteration counter. The skeleton of the

8

ACO algorithm applied to the TSP is:

procedure ACO algorithm for TSPs

set parameters, initialize pheromone trails

while (termination condition not met) do

Tour construction

Pheromone update

end

end ACO algorithm for TSPs

At first, each of the m ants is placed on a randomly chosen city. At each

Tour construction step, ant k currently at city i, chooses to move to city j at the

tth iteration based on the probability P k
ij(t) which is biased by the pheromone

trail strength τij(t) on the edge between city i and city j and a locally available

heuristic information ηij . Each ant is associated with a tabu list in which the

current partial tour is stored, i.e. tabuk(s) stores a set of cities visited by ant

k so far at time s. After all the ants have constructed their tours, Pheromone

update is performed by allowing each ant1 to add pheromone on the edges it has

visited. At the end of the iteration, the tabu list is emptied and each ant can

choose an alternative path for the next cycle.

The design of an ACO algorithm involves the following specifications [34]:

• an appropriate representation of the problem, usually done by means

of a “construction graph”, which allows the ants to incrementally con-

1Note that in some ACO variants such as the Max-Min Ant System, only the best ant is
allowed to update pheromone.

9

struct/modify solutions through the use of a probabilistic transition rule,

based on the amount of the pheromone in the trail and on a local problem-

dependent heuristic;

• a problem-dependent heuristic function (η) that measures the quality of

items that can be added to the current partial solution;

• a rule for pheromone updating, which specifies how to modify the pheromone

trail (τ);

• a probabilistic transition rule based on the contents of the pheromone trail

(τ) and the value of the heuristic function (η) that is used to iteratively

construct a solution.

4. Ant-Based Clustering (Ant-C)

We have proposed an ant-based clustering algorithm for document clustering

based on the TSP scenario [36]. The advantages of our ant-based clustering ap-

proach are: 1) It does not rely on a 2D grid structure. 2) It can generate optimal

number of clusters without incorporating any other algorithms such as K-means

or AHC. 3) When compared with other document clustering algorithms such

as K-means, AHC, and the artificial immune network based method, it shows

improved performance when tested on the subsets of 20 Newsgroup data2. Here,

we investigate the Ant-C algorithm for gene expression data analysis [37].

2http://people.csail.mit.edu/jrennie/20Newsgroups/ (accessed: 17 March 2008)

10

Table 1: ACO design issues addressed for Ant-C and Ant-ARM.

Design Criteria Ant-C Ant-ARM
Problem representa-
tion

Each node represents a gene in the graph. N
genes are connected by 1

2N × (N − 1) edges.
Each node on the graph corresponds to a 1-
itemset rule whose support exceeds minSup-
port threshold

A problem-dependent
heuristic function (η)

ηij is defined as a distance measure dist(~gi, ~gj)
between two genes gi and gj .

ηj is defined as 1 if the support of the newly
constructed rule r̂ by including the itemset Ij
is greater than minSupport and 0 otherwise.

A rule for updating the
pheromone trail (τ)

τij(t) represents the amount of pheromone as-
sociated with the gene pair geneij at iteration
t. The initial amount of pheromone deposited
at each path position is τij(0) = 1/N where N
is the total number of genes in the collection
D.
At every generation of the algorithm, τij is
updated by τij(t+1) = (1−ρ)τij(t)+∆τ where
ρ ∈ (0, 1] determines the evaporation rate and
the update of pheromone trail; ∆τ is defined as
the integrated similarity of a gene with other
genes within a cluster which is measured by:

∆τ =

{

∑Ni

j=1[1−
dist(~ci, ~gj)

γ
] gj ∈ ci

0 otherwise

where ~ci is the centroid vector of the ith clus-
ter, ~gj is the jth gene vector which belongs to
cluster i, Ni stands for the number of genes
which belongs to the ith cluster. The parame-
ter γ is defined as swarm similarity coefficient
and it affects the number of clusters as well as
the convergence of the algorithm.

τj(t) represents the amount of pheromone as-
sociated with the itemset isetj at iteration t.
The initial amount of pheromone deposited
at each path position is defined by τj(0) =

1/
∑k

i=1 bi where k is the total number of at-
tributes and bi is the number of possible values
that can be taken on by attribute Ai.
At every generation of the algorithm, τj is up-
dated by τj(t + 1) = (1 − ρ)τj(t) + ∆τ where
ρ ∈ (0, 1] determines the evaporation rate and
the update of pheromone trail ∆τ is defined
as the Foil Gain [35] that measures the infor-
mation gained from adding the itemset Ij to
the current rule. Suppose there are |P | posi-
tive examples and |N | negative examples sat-
isfying the current rule r’s body. After the
itemset Ij is added to r, there are |P̂ | posi-

tive and |N̂ | negative examples satisfying the
new rule’s body. Then the Foil Gain of Ij is
defined as:

∆τ = |P̂ |(log
|P |

|P |+ |N |
− log

|P̂ |

|P̂ |+ |N̂ |
)

A probabilistic transi-
tion rule

Ant k moves from gene i to an un-visited
gene j at tth iteration by following probability
P k
ij(t) defined by:

P k
ij(t) =

[τij(t)]
α · [ηij]

β

∑

l 6∈tabuk(t)
[τil(t)]α · [ηij]β

The parameters α and β control the bias on
the pheromone trail or the problem-dependent
heuristic function.

Ant k adds the itemset Ij at tth iteration by
following probability P k

j (t) defined by:

P k
j (t) =

[τj(t)]
α · [ηj]

β

∑k
i=1 xi ·

∑bj
l=1([τl(t)]

α · [ηl]β)

where k is the total number of attributes; xi

is set to 1 if the attribute Aj was not yet used
by the current ant or to 0 otherwise; and bj is
the number of values in the domain of the jth
attribute.

Stopping criteria Either be a predefined maximum number of
iterations or the change in the average gene
distance to the cluster centroid between two
successive iterations.

Either be a predefined maximum number of
iterations or the predefined minimum number
of cases covered by the rules generated.

11

GivenN genes gi, i = 1, . . . , N and their expression profilesEi = 〈a1i, a2i, . . . , aMi〉,

i = 1, . . . , N , we want to cluster these genes into several categories based on sim-

ilarities between their expression profiles. The design issues listed in Section 3

can be addressed as shown in Table 1. The procedure of the Ant-C algorithm

is illustrated in Fig. 1 where it consists of four main processes, Initialization,

Tour Construction, Pheromone Update, and Cluster Output.

Compute
transition

probability

Choose gene j to
move to based on the

transition probility

Update
pheromone by

evaporation

Initialize all
pheromone

intensities

Place m ants
randomly at n

genes

Initialization Tour Construction Pheromone Update

Termination

condition met?

No

Yes

Cluster output
using MST

Cluster Output

Figure 1: Ant-C: an ant-based clustering algorithm.

Once Ant-C has run successfully, a fully connected network of nodes will be

formed. Each node represents a gene, and every edge is associated with a certain

level of pheromone intensity. The next step is essentially to break the linkages

in order to generate clusters. The simplest way is to use the average pheromone

strategy where the average pheromone of all the edges is first computed and

then used as a threshold in determining the meaningfulness of the edges. Edges

with pheromone intensity less than the average pheromone will be removed from

the network which results in a partially connected graph. Nodes will then be

12

separated by their connecting edges to form clusters.

Here, minimum spanning trees (MSTs) are applied to break the linkages of

the fully connected network to generate clusters. When searching for the MST,

pheromone intensity is used to measure the similarity between two genes instead

of the commonly used Euclidean distance or correlation distance. Pheromone

intensities associated with every edge in a fully-connected network records the

collective memory of the ants through which self-organizing behavior could be

easily discovered. After finding an MST T for a weighted graph, we can partition

T into K subtrees, for some specified integer K > 0 [38]. These K subtrees

would then correspond to K clusters.

5. Ant-Based Association Rule Mining (Ant-ARM)

Suppose a tuple t in the dataset D follows the schema (A1, A2, ..., Ak) where

A1, ..., Ak are called attributes. Let I = {I1, I2, ..., In} be a set of items in the

dataset D. Each item is an attribute-value pair, taking the form of (Ai, v) where

Ai is an attribute and v is an value. Here, we assume that continuous attributes

can be discretized into consecutive positive integers.

Let C = {c1, c2, ..., cm} be a finite set of class labels. A training data set

is a set of tuples such that for each tuple t, there exists a class label ct ∈ C

associated with it. A class association rule (CAR) is an implication of the form

iset ⇒ c where iset ⊆ I is a subset of items, and c ∈ C. The confidence of

the CAR is defined as the percentage of the cases in D containing iset that are

labeled with class c. The support of the CAR is defined as the percentage of

13

cases in D that contain iset and are labeled with class c.

More formally, associative classification is to find all CARs that have support

above minSupport. For each CAR, the support count of iset is the number of

cases in D that contain iset. The support count of the rule iset ⇒ c is the

number of cases in D that contain iset and are labeled with class c. Therefore,

confidence(iset ⇒ c) =
supportCount(iset ⇒ c)

supportCount(iset)
(1)

support(iset ⇒ c) =
supportCount(iset ⇒ c)

|D|
(2)

where |D| is the size of the dataset.

Ant-ARM is applied to discover classification rules for one particular class

only. That is, the training set will contain cases from one particular class. One

ant is used to construct one CAR and it adds one itemset at a time. The design

issues listed in Section 3 can be addressed as shown in Table 1. The procedure

of the Ant-ARM algorithm is illustrated in Fig. 2 where it consists of four main

processes, Initialization, Tour Construction, Pheromone Update, and Rule Set

Update.

A more detailed elaboration of the Ant-ARM algorithm is shown in Fig. 3.

The purpose of the Rule Set Update step is to remove redundant and noisy

information. It compares the newly constructed rule with the existing rules in

R and decides whether to prune it or not. The selection of the n-best rules is

to compare the rules constructed by all the ants at one iteration and only keep

14

Compute

transition
probability

Construct a

rule by adding
a new itemset

Prune the newly
constructed rule

Initialize the
rule set R

confidence of the rule

> minConfidence?

Update
pheromone by

evaporation

Add the n-
best rules to

the rule set R

Remove the

newly added
itemset

Output the
rule set R

Initialize all

pheromone
intensities

Place m ants
randomly at R

Initialization

No

Yes

Tour Construction

Pheromone Update Rule Set Update

Termination
condition met?

No

Yes

Figure 2: Ant-ARM: an ant-based association mining algorithm.

the top n rules. The criteria used here are listed below [39]:

1. Sort the rules in the rank descending order. Given two rules r1 and r2, r1

is said having higher rank than r2, denoted as r1 > r2 if and only if (a)

conf(r1) > conf(r2); or (b) conf(r1) = conf(r2) but supp(r1) > supp(r2);

or (c) r1 and r2 have the same confidence and support value, but r1 has

fewer attribute values in its left hand side than r2 does. In this case, r2

will be pruned.

2. For each rule r : iset ⇒ c, test whether iset is positively correlated with c

by χ2 testing. Only the rules with χ2 value exceeding a significance level

threshold are kept.

15

1. Initialization.

Set the iteration counter t = 0
Initialize the rule set R to be the set of all 1-itemset rules, i.e. R = {{iset} ⇒ c|iset ∈ I}
forall rule r in R do

if supp(r) < minSupport then Remove r from R end if

end for

For every remaining itemset Ij , set an initial value τj(t) for trail intensity and ∆τj = 0.
Place m ants randomly on the rule set R.

2. Set the tabu list index s = 1.
for k = 1 to m do

Place starting itemset of the kth ant in tabuk(s).
end for

3. Tour Construction.

repeat until tabu list is full
Set s = s+ 1
for k = 1 to m do

Construct rule rkt by adding the itemset Ij to the current
rule with probability P k

j (t)

Insert the itemset Ij to the tabu list tabuk(s)
if conf(rkt) > minConfidence then Perform rule pruning
else Remove rule rkt end if

end for

end repeat

4. Pheromone Update.

for every itemset Ij do

∆τj =
∑m

k=1
∆τkj

compute τj(t + 1) = (1 − ρ)τj (t) + ∆τj
set ∆τj = 0

end for

5. Rule Set Update.

Choose the n-best rules among all rules constructed by all the ants
Add the n-best rules to the rule set R

6. Set t = t+ 1
if t > max iteration or the cases covered by the constructed rules > minCoverage then Stop
else Empty tabu lists, go to 2 end if

Fig. 3. The procedure of Ant-ARM.

6. Experiments

An analysis of the experimental results obtained from the Ant-C and the

Ant-ARM algorithms is performed in this section. For each algorithm, the

experimental setup is first explained followed by an analysis of the results pro-

duced.

16

6.1. Ant-C Experiments

After the investigation of the suitability of various datasets in Stanford Ge-

nomic Resource Database3, three datasets were chosen to evaluate the perfor-

mance of our algorithms. The dataset I is a subset of gene expression data in the

yeast Saccharomyces cerevisiae (SGD)4, which is commonly known as baker’s

or budding yeast. A set of 68 genes with each gene having 79 data points is

chosen. The dataset II is a temporal gene expression dataset in response of

human fibroblasts to serum5. It consists of 517 genes and each gene has 18

data points. In this dataset, genes are listed according to their cluster order

along with their Gene bank Accession number and Clone IDs. Gene names

with the SID prefix are not sequence verified. The expression changes are given

as the ratio of the expression level at the given time-point to the expression

level in serum-starved fibroblasts. The dataset III is the rat central nervous

system development dataset6. It is obtained by researchers using the method

of reverse transcription-coupled PCR to study the expression levels during rat

central nervous system development.

Two most commonly used similarity measures for gene expression data are

Euclidean distance and Pearson correlation coefficient [40]. Euclidean distance is

sensitive to scaling and difference in average expression level. This problem can

be addressed by standardizing each gene object with zero mean and unit variance

before calculating the distance between genes. Pearson correlation coefficient

3http://genome-www.stanford.edu/ (accessed: 17 March 2008)
4http://www.yeastgenome.org/ (accessed: 17 March 2008)
5http://genome-www.stanford.edu/serum/ (accessed: 17 March 2008)
6http://www.arclab.org/node_pages/265.html (accessed: 17 March 2008)

17

is not robust with respect to outliers [41]. Nevertheless, it has been shown in

[42] that if standardization is performed on data objects, then the effectiveness

of a clustering algorithm is equivalent whether Euclidean distance or Pearson

correlation coefficient is chosen as a similarity measure. In our experiments

reported here, all the gene objects were standardized with zero mean and unit

variance prior to clustering and Euclidean distance was chosen as the similarity

measure.

6.1.1. Evaluation Metric

The Rand index [43] is used to evaluate the performance of the clustering

algorithm. In statistics, the Rand index is a measure of the similarity between

two data clusters. Let V1 and V2 be two partitions of n objects. V1 and V2

may contain a different number of clusters. Let a be the number of pairs of

objects that are placed in the same cluster in partition V1 and in the same

cluster in partition V2, and d be the number of pairs of objects in different

clusters in both partition V1 and V2, The Rand index is a fraction of agreement,

i.e., Rand index = (a + d)/
(

n
2

)

. The Rand index lies between 0 and 1, with 0

indicating that the two data clusters do not agree on any pair of points and 1

indicating that the data clusters are exactly the same.

An illustration on how to calculate the Rand index between two parti-

tions of 4 points is given in Fig. 4. Partition V1 contains 2 clusters, V1 =

{(P1, P2), (P3, P4)} and partition V2 contains 3 clusters, V2 = {(P1, P2), (P3), (P4)}.

From the statistics of the point pairs shown in Fig. 4, it can be easily seen that

a = 1 and d = 4, thus, Rand index = (1 + 4)/
(

4
2

)

= 0.83.

18

P 1

P 2

P 3P 4

P 1

P 2

P 3P 4

Partition V 1 Partition V 2

Point pair P1P2 P1P3 P1P4 P2P3 P2P4 P3P4 Total
Together in both 1
Separate in both 4
Mixed 1

Figure 4: An illustration of calculating the Rand index.

Table 2: Statistics on experimental data where each entry denotes the numbers of genes
belonging to the corresponding cluster.

Gene Cluster
Dataset A B C D E F

I 28 17 15 8 - -
II 305 43 7 162 - -
III 27 20 21 17 21 6

6.1.2. Results

The detailed “expert” cluster information of the three datasets is shown in

Table 2 where dataset I and II have 4 clusters each and dataset III has 6 clusters.

Table 3 lists the experimental results using Ant-C on different datasets. Results

using the classical clustering algorithms such as AHC and K-means are also

presented. It can be observed from Table 3 that the performance of the Ant-C

algorithm is better than that of AHC and K-means on dataset I and II. The

Rand index value achieved is 0.936 on dataset I and 0.811 on dataset II. However,

the Rand index values obtained using Ant-C on dataset III are lower than that

of K-means though Ant-C slightly outperforms AHC. One possible reason of

19

Table 3: Comparison of experimental results on different algorithms.

Rand Index
Methods Dataset I Dataset II Dataset III
Ant-C 0.936 0.811 0.582
AHC 0.803 0.628 0.575
K-means 0.701 0.565 0.676

better performance of K-means on dataset III is that the exact cluster number

6 was preset by the user while in practice it is hard to predict the correct cluster

number.

The optimal number of clusters is determined automatically based on the

transition profile values [38] which is defined as follows:

T (k) =
‖Q(k − 1)−Q(k)‖

‖Q(k)−Q(k + 1)‖
(3)

where k is the number of clusters, T (k) is the transition profile value for k

clusters, Q(k) is a cluster cohesion value which measures the closeness among

objects within a cluster and it is defined as Q(k) =
∑k

i=1

∑Ni

j=1 dist(~gj , ~ci),where

~ci is the centroid vector of the ith cluster, ~gj is the jth gene vector which belongs

to cluster i, Ni stands for the number of genes which belongs to the ith cluster.

Q(0) always equals to 0. The highest transition profile value determines the

optimal number of clusters.

Fig. 5 shows the transition profile diagrams for dataset I, II and III. In the

transition profile diagram, the x-axis represents the number of clusters, while

the y-axis represents transition profile values. It can be observed from Fig. 5(a)

20

that the optimal number of clusters in dataset I is 4, which is same as the actual

number of clusters as can be found in Table 2. While for dataset II, the optimal

number of clusters is 3 as shown in Fig. 5(b). This is slightly different from the

actual cluster number 4. Fig. 5(c) reveals that the optimal number of clusters

in dataset III is 2 which is different from the actual cluster number 6. This also

explains the worse performance of Ant-C in dataset III.

6.2. Ant-ARM Experiments

Associative classification experiments were conducted using a widely used

Leukemia ALL/AML gene expression dataset [44]. The actual dataset can

be found in Broad Institute Database7. The ALL/AML dataset used con-

sists of 38 bone marrow samples obtained from acute leukemia patients. 27 of

them are acute leukemia arising from lymphoid precursors (acute lymphoblastic

leukemia, ALL) while 11 cases are acute leukemia arising from myeloid precur-

sors (acute myeloid leukemia, AML). There are 7129 genes (attributes), 2 class

labels (ALL/AML) with no missing attributes in any of the sample.

Each gene-sample pair has a gene expression value. When entropy-based dis-

cretization [45] is applied, the gene expression value is discretized into suitable

intervals. For example, the gene AFFX-BioC-5 at (endogenous control) can be

discretized into (−∞, 317], (317,∞). We denote (−∞, 317] by 1 (downregulated

gene) and (317,∞) by 2 (upregulated gene). The partition that separates the

interval is known as cutting point. With the minimum entropy idea, the inter-

7http://www.broad.mit.edu/cgi-bin/cancer/publications/pub_paper.cgi?mode=

view&paper_id=43 (Accessed: 17 March 2008)

21

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18 20

Number of Clusters

T
ra

n
si

ti
o

n
 P

ro
fi

le
 V

al
u

e

(a) Dataset I.

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16 18 20

Number of Clusters

T
ra

n
si

ti
o

n
 P

ro
fi

le
 V

al
u

e

(b) Dataset II.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10 12 14 16 18 20

Number of Clusters

T
ra

n
si

ti
o

n
 P

ro
fi

le
 V

al
u

e

(b) Dataset III.

Figure 5: Transition profile diagrams of the three datasets.

22

vals are ‘maximally’ discriminatory between expression values from normal cells

and those from cancer cells. This method automatically ignores those ranges

which contain uniformly mixed normal and cancer cells’ expression values. That

is, those noisy features (genes) would not be of any use for the Ant-ARM al-

gorithm and they are removed. As a result of the application of entropy-based

discretization, ALL/AML dataset has a reduction of 7129 genes to 866 genes.

The tunable parameters in the Ant-ARM algorithm include the number of

iterations i, the number of ants m, the evaporation rate ρ, and the parameters

α and β that control the bias on the pheromone trail. A set of experiments

have been conducted and it was found that the good value or range of each

parameter is i = 20, m = 10, ρ = 0.2, α = 1, and β = 1. From this section

onwards, subsequent experiments will be carried out using these values for the

parameters.

We have tried various ARM algorithms on the ALL/AML dataset, including

Apriori [3], FP-growth [46], and Magnum Opus8 which is based on OPUS (Op-

timized Pruning for Unordered Search) [47], a systematic search method with

pruning. However, the CPU’s memory space was exhausted when using Apriori.

Similar results have been reported in other papers [48, 23, 24]. FP-growth has

been declared as one of the fastest approaches to frequent item set mining. But

still, it yielded no result despite running for more than 25 hours. Magnum Opus

only processed less than 10% of the data after running for 13 hours.

8http://www.rulequest.com/MagnumOpus-info.html (Accessed: 17 March 2008).

23

6.2.1. Run Time Analysis

As most existing ARM algorithms were unable to process the ALL/AML

datasets, we instead used other two benchmark datasets in our experiments for

run time comparison. One comprises of synthetic data resemble market basket

data with short frequent patterns generated using a transaction data generator

obtained from IBM Almaden, typically designated as T10I4D100K9. Another

dataset, Mushroom10, is real data which are dense in long frequent patterns.

These data sets were often used in the previous study of association rules mining.

Table 4 shows the characteristics of these two datasets.

Table 4: Characteristics of the two datasets used for run time analysis.

Dataset No. of Trans. No. of Items Avg Trans. Length
T10I4D100K 100,000 1,000 10
Mushroom 8,124 120 23

The computer used to run the experiments had the configurations of Pentium

CPU 2.66GHz with 3.25GB of memory, running Windows XP. Fig. 6(a) shows

the run time of the compared algorithms on the T10I4D100K dataset with

different minimum support values ranging from 0.01% to 1% while Fig. 6(b)

shows the run time on the Mushroom dataset with minimum support values

ranging from 0.1% to 5%. The run time is shown on a logarithmic scale (base

10).

It can be observed that for T10I4D100K, when the minimum support is large,

there is not much difference between various algorithms. However, when grad-

9http://fimi.cs.helsinki.fi/data/T10I4D100K.dat (accessed: 18 November 2008)
10http://archive.ics.uci.edu/ml/datasets/Mushroom (accessed: 18 November 2008)

24

ually reducing the minimum support, the difference in running time becomes

more obvious. The run times of all algorithms increase exponentially as the

support threshold is reduced. Magnum Opus is significantly slower than all the

other algorithms especially with lower minimum support threshold. Ant-ARM

and FP-growth outperform Aprior with a larger margin when the minimum

support decreases. For the Mushroom dataset, Aprior runs significantly slower

than the other three algorithms. For both datasets, Ant-ARM runs faster than

all the other algorithms and there is a considerable gap in the performance

of the second best algorithm, FP-growth, with respect to our algorithm. The

difference is more significant for the Mushroom dataset.

(a) T10I4D100K. (b) Mushroom.

Figure 6: Run time of the algorithms for the two benchmark datasets.

6.2.2. Parameters Tuning

Parameters which are commonly used for the construction of association

rules are the minsup (minimum support threshold), minconf (minimum confi-

25

dence threshold) andminchi (minimum chi-square threshold). Parameter tuning

was performed based on the accuracy of the rules generated. As there is no gold

standard rule set available for the ALL/AML dataset, one possible way is to

compare the rules generated by Ant-ARM with those output by other existing

algorithms. However, this seems not possible as none of the existing well-known

ARM algorithms is able to process the ALL/AML dataset within a reasonable

period of time. We found that Magnum Opus allows the user to choose the items

in the LHS and RHS for the association rules to be generated. Thus, for each

rule generated by Ant-ARM, we could manually specify the allowed LHS and

RHS items in Magnum Opus to see whether the same rule could be generated.

For example, if a rule output by Ant-ARM is Gene1 ↑, Gene3 ↓→ AML, then

in Magnum Opus, the desired genes Gene1 and Gene3 are selected for LHS and

AML and ALL are selected for values allowed on RHS. This guarantees that

Magnum Opus can generate association rules within short time. Accuracy is

calculated as the total number of the matched rules with those generated from

Magnum Opus over the total number of the rules generated from the Ant-ARM

algorithm.

The following settings were used in Magnum Opus: the default value of 0.001

for minimum leverage of interest, the default value of 0 for minimum coverage

of interest, the maximum number of associative rules being 1000. The value of

minimum support is adjusted according to the support used by Ant-ARM.

Fig. 7 shows the relationships between the ARM accuracy and the various

parameters. The effect of varyingminsup is displayed in Fig. 7(a). Bothminconf

26

and minchi values are set to zero in this experiment so that rule pruning is

disabled. It can be observed that the support that yields the greatest accuracy

is at 0.1 where 63.9% accuracy is obtained. Increasing the support threshold

value resulted in decreased performance. For minsup of 0.1, it is relatively low.

However, it has been noted that only at low minimum support do interesting

(predictive) findings being found [49]. A test conducted in [50] reveals that

minsup of 0.1 gives the most effective operational results.

Fig. 7(b) shows the accuracy versus various minimum confidence values.

The remaining parameters used are minsup = 0.1,minchi = 0. It can be

observed that the minconf value that yields the highest accuracy is 100% where

its accuracy stands at 80.7%. This is a significant improvement from Fig. 7(b)

where the best accuracy is just 63.9%. As researchers are interested in rules with

good classification power (high confidence) [51], a minconf of 100% is desirable.

Such conclusion of minconf = 100% can also be found in [50].

Fig. 7(c) shows the accuracy versus various chi-square values. The remaining

parameters used are minsup = 0.1,minconf = 100%. The best accuracy 90%

was obtained when minchi was set to 0.4. Increasing the minchi value degraded

the performance. Finally, Fig. 7(d) shows that the optimal accuracy is achieved

when 3-best rules were kept at each iteration of the Ant-ARM algorithm (Step

5 in Fig. 2).

In summary, the best accuracy is obtained using a low support threshold.

On the other hand, the choice of confidence threshold is also important. Low

confidence threshold has resulted in bad performance as reported in [50].

27

0

10

20

30

40

50

60

70

0.08 0.10 0.12 0.14 0.16
Minimum support

A
c

cu
ra

c
y

(%
)

(a) Support vs. accuracy.

Minimum Confidence(%)

A
c

cu
ra

c
y

(%
)

0

10

20

30

40

50

60

70

80

90

20 40 60 80 100

(b) Confidence vs. accuracy.

0

10

20

30

40

50

60

70

80

90

100

0.2 0.4 0.6 0.8 1
Minimum Chi-Square

A
c

cu
ra

c
y(

%
)

(c) Chi-Square vs. accuracy.

0

10

20

30

40

50

60

70

80

90

100

3 4 5 6 7 8
N-best Rules

A
cc

u
ra

cy
 (

%
)

(d) N-best rules vs. accuracy.

Figure 7: ARM accuracy vs. various parameters.

28

6.2.3. Result Summary

Table 5 illustrates the number of rules generated and the number of terms per

rule respectively as different parameters are tuned. As can be seen from these

figures, the more optimum the parameters are tuned, the simpler are the rules

generated. This is a desired result where simplicity is of importance compared

to its predictive accuracy [52].

Table 5: Results on the no. of rules generated and the no. of terms per rule.

Support 0.08 0.10 0.12 0.14 0.16
No. of Rules 36 36 36 36 36
No. of terms/rule 2.58 2.72 2.69 2.75 2.56
Confidence (%) 20 40 60 80 100
No. of rules 36 36 36 35 31
No. of terms/rule 2.55 2.89 2.22 2.46 2.06
Chi-Square 0.2 0.4 0.6 0.8 1.0
No. of rules 25 30 29 33 31
No. of terms/rule 1.96 1.97 1.83 2 1.81

Fig. 8 shows the run time of Ant-ARM on the ALL/AML dataset by varying

the minimum support value from 0.08 to 0.16. It can be observed that the run

time of Ant-ARM decreases with the increasing minimum support value. Ant-

ARM run for 4.2 hours to generate associative classification rules at the best

minimum support value 0.1.

Experiments have also been conducted to evaluate the effect of pheromone

update in Ant-ARM. Instead of choosing an itemset to add to the current rule

based on the pheromone deposited at the path to that itemset, an ant randomly

picked an itemset to add to the rule. Essentially, the Ant-ARM’s search for rules

is guided by the comparison with the minimum support threshold only. Table 6

29

Figure 8: Run time of Ant-ARM for the ALL/AML dataset.

shows the results of Ant-ARM with or without pheromone update by varying

n as in keeping the n-best rules at the end of each iteration. It can be observed

that Ant-ARM without pheromone update consistently performed worse than

Ant-ARM with pheromone update.

Table 6: Results with or without pheromone update by varying n as in keeping the n-best
rules at the end of each iteration.

With pheromone update Without pheromone update
n Accuracy(%) Accuracy(%)
3 90.0 85.2
4 76.9 71.8
5 83.3 79.5
6 63.9 61.4
7 65.0 60.5
8 74.3 69.2

Table 7 shows some of the associative classification rules generated by Ant-

ARM. Almost all of the genes in Table 7 can be found in [53] where a list of

50 genes are termed as marker genes that are involved in Leukemia and can

distinguish AML from ALL.

30

Table 7: Example associative classification rules generated by Ant-ARM.

No. Associative Classification Rules
1 {IL-7 receptor (M29696)↑} ⇒ ALL
2 {CD19 antigen (M28170)↑} ⇒ ALL
3 {LYN (M16038)↓} ⇒ ALL
4 {LTC4 synthase (U50136) ↓, CRADD (U84388)↓} ⇒ ALL
5 {IRF2 (X15949)↑} ⇒ ALL
6 {TFIEβ(X63469)↑} ⇒ ALL
7 {Leptin receptor (Y12670)↑} ⇒ AML
8 {p62 (U46751)↑ SNF2 (U29175)↓} ⇒ AML

Leptin receptor (Y12670) has been cited as one of the new markers of acute

leukemia subtype [44]. It is originally identified through its role in weight reg-

ulation and has high relative expression in AML. Furthermore, this gene has

been recently found to have antiapoptotic function in hematopoietic cells.

What is more interesting in the findings is that in all of the experiments

conducted, more than half of the experiments show the presence of CD19 antigen

(M28170) gene in one or more of the associative classification rules. According

to [54], CD19 antigen is a cell surface molecule expressed only by B-lymphocytes

and follicular dendritic cells of the hematopoietic system. It is present on most

pre-B and most non-T acute lymphocytic leukemia cells. Furthermore, it is the

earliest of the B-lineage-restricted antigens to be expressed. Thus, CD19 antigen

may be an important gene that differentiates ALL from AML.

It should also be noted that Rule 4’s “CRADD (U84388) ↓” cannot be

matched in [44, 54] while “LTC4 synthase (U50136)↓ ⇒ ALL” can be matched.

Such an observation on the co-relationship between these two genes and ALL

can be used for future investigation.

31

7. Conclusions

This paper explored the Ant-C and Ant-ARM algorithms for gene expression

data analysis. The proposed algorithms make use of the natural behavior of ants

such as cooperation and adaptation to allow for a flexible robust search for a

good candidate solution.

Unlike other existing ACO-based clustering approaches where ants move

around in a 2D grid and carry or drop objects to perform categorization, the

novel Ant-C approach proposed here does not rely on a 2D grid structure. In

addition, it can also generate optimal number of clusters without incorporating

any other algorithms such as K-means or AHC. Overall, Ant-C shows a relatively

high accuracy compared to other classical clustering algorithms when tested on

the three gene expression datasets.

For associative classification on gene expression data, first, the entropy-based

discretization pre-processing method was used to remove many noisy features

(genes) and explore the remaining most discriminatory features. Such pre-

processing effectively reduces the search space required and thus reduces over-

head time. The rules discovered by the Ant-ARM algorithm are in general quite

simple with an average of 3 items per rule. Such simplicity improves the com-

prehensibility to a human who would be making intelligent decision based on

these rules. Moreover, the algorithm delivers its ability to mine large datasets.

A few of the well-known algorithms such as Apriori, FP-growth and Magnum

Opus have been used to experiment on ALL/AML dataset. However, these

algorithms are unable to mine any association rules from the dataset within

32

a reasonable period of time. Therefore, given the accuracy, simplicity of rules

and ability to mine large datasets, the Ant-ARM algorithm has the advantage

compared to most of the ARM algorithms.

Nevertheless, the run time of Ant-ARM needs to be further improved. In

future work, we intend to incorporate other algorithms for attribute reduction

such as the one proposed in [55] which is based on rough set theory to reduce

the run time of Ant-ARM.

References

[1] A. Tuzhilin, G. Adomavicius, Handling very large numbers of association

rules in the analysis of microarray data, in: O. Zäıane, R. Goebel, D. Hand,

D. Keim, R. Ng (Eds.), Proceedings of the 8th ACM SIGKDD international

conference on Knowledge discovery and data mining, ACM, New York, NY,

USA, 2002, pp. 396–404.

[2] P. Kotala, P. Zhou, S. Mudivarthy, W. Perrizo, E. Deckard, Gene expres-

sion profiling of DNA microarray data using peano count trees (p-trees),

in: Online Proceedings of the 1st Virtual Conference on Genomics and

Bioinformatics, North Dakota State University, USA, 2001, pp. 15–16.

[3] R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets

of items in large databases, in: P. Buneman, S. Jajodia (Eds.), Proceedings

of the 1993 ACM SIGMOD International Conference on Management of

Data, ACM, New York, NY, USA, 1993, pp. 207–216.

33

[4] X. Xu, G. Cong, B. Ooi, K.-L. Tan, A. Tung, Semantic mining and analysis

of gene expression data (demo), in: M. Nascimento, M. Özsu, D. Koss-

mann, R. Miller, J. Blakeley, K. Schiefer (Eds.), Proceedings of the 30th

International Conference on Very Large Data Bases (VLDB’04), Morgan

Kaufmann, St. Louis, MO, US, 2004.

[5] H. Ressom, Y. Zhang, J. Xuan, Y. Wang, R. Clarke, Inference of gene

regulatory networks from time course gene expression data using neural

networks and swarm intelligence, in: D. Ashlock, C. Bauch (Eds.), IEEE

Symposium on Computational Intelligence and Bioinformatics and Com-

putational Biology, IEEE, Los Alamitos, CA, US, 2006, pp. 1–8.

[6] K. Robbins, W. Zhang, J. Bertrand, R. Rekaya, The ant colony algorithm

for feature selection in high-dimension gene expression data for disease

classification, Mathematical Medicine and Biology 24 (4) (2007) 413–426.

[7] M. Eisen, P. Spellman, P. Brown, D. Botstein, Cluster analysis and display

of genome-wide expression patterns, Proceedings of the National Academy

of Sciences of the United States of America 95 (14) (1998) 14863–14868.

[8] X. Wen, S. Fuhrman, G. Michaels, D. Carr, Large-scale temporal gene

expression mapping of central nervous system development, Proceedings of

the National Academy of Sciences of the United States of America 95 (1)

(1998) 334–339.

[9] R. Herwig, A. Poustka, C. Müller, C. Bull, Large-scale clustering of cdna-

fingerprinting data, Genome Research 9 (11) (1999) 1093–1105.

34

[10] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, Interpreting pat-

terns of gene expression with self-organizing maps: Methods and applica-

tion to hematopoietic differentiation, Proceedings of the National Academy

of Sciences of the United States of America 96 (6) (1999) 2907–2912.

[11] P.-N. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, Addison-

Wesley, 2006.

[12] S. Wu, T. Chow, Self-organizing-map based clustering using a local cluster-

ing validity index, Journal Neural Processing Letters 17 (3) (2004) 253–271.

[13] J. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, L. Chre-

tien, The dynamics of collective sorting robot-like ants and ant-like robots,

in: J.-A. Meyer, S. Wilson (Eds.), Proceedings of the 1st international con-

ference on simulation of adaptive behavior on From animals to animats,

MIT Press, Cambridge, MA, USA, 1990, pp. 356–363.

[14] E. Lumer, B. Faieta, Diversity and adaptation in populations of clustering

ants, in: D. Cli, P. Husbands, J. Meyer, S. Wilson (Eds.), Proceedings of the

3rd International Conference on Simulation of Adaptive Behaviour: From

Animals to Animats 3, MIT Press, Cambridge, MA, 1994, pp. 501–508.

[15] P. Kuntz, P. Layzell, D. Snyers, A colony of ant-like agents for partitioning

in VLSI technology, in: P. Husbands, I. Harvey (Eds.), Proceedings of the

4th European Conference on Artificial Life, MIT Press, Cambridge, MA,

USA, 1997, pp. 417–424.

35

[16] N. Monmarche, On data clustering with artificial ants, in: A. Freitas (Ed.),

Data Mining with Evolutionary Algorithms: Research Directions, AAAI

Press, Orlando, Florida, 1999, pp. 23–26.

[17] B. Wu, Y. Zheng, S. Liu, Z. Shi, CSIM: a document clustering algorithm

based on swarm intelligence, in: Proceedings of the 2002 congress on Evo-

lutionary Computation, IEEE Computer Society, Washington, DC, 2002,

pp. 477–482.

[18] Y. Peng, X. Hou, S. Liu, The k-means clustering algorithm based on density

and ant colony, in: Proceedings of IEEE International Conference on Neural

Networks and Signal Processing, IEEE, Los Alamitos, CA, 2003, pp. 457–

460.

[19] J. Handl, B. Meyer, Improved ant-based clustering and sorting, in:

J. Guervós, P. Adamidis, H.-G. Beyer, n. J.L. Fernández-Villaca H.-P.

Schwefel (Eds.), PPSN VII: Proceedings of the 7th International Confer-

ence on Parallel Problem Solving from Nature, Springer-Verlag, London,

UK, 2002, pp. 913–923.

[20] L. Chen, X. Xu, Y. Chen, An adaptive ant colony clustering algorithm,

in: D. Yeung, X. Wang, J. Su (Eds.), Proceedings of the 3rd International

Conference on Machine Learning and Cybernetics, IEEE, Los Alamitos,

CA, 2004, pp. 1387–1392.

[21] L. Herrmann, A. Ultsch, Explaining ant-based clustering on the basis of

self-organizing maps, in: M. Verleysen (Ed.), Proc. of the European Sym-

36

posium on Artificial Neural Networks (ESANN 2008), Bruges, Belgium,

2008, pp. 215–220.

[22] C. Creighton, S. Hanash, Mining gene expression databases for association

rules, Bioinformatics 19 (1) (2003) 79–86.

[23] Z. Zheng, R. Kohavi, L. Mason, Real world performance of association

rule algorithms, in: D. Lee, M. Schkolnick, F. Provost, R. Srikant (Eds.),

Proceedings of the 7th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, ACM, New York, NY, USA, 2001, pp.

401–406.

[24] C. Becquet, S. Blachon, B. Jeudy, J. F. Boulicaut, O. Gandrillon, Strong-

association-rule mining for large-scale gene-expression data analysis: A case

study on human sage data, Genome Biology 3 (12) (2002) 1465–6914.

[25] G. Cong, A. Tung, X. Xu, F. Pan, J. Yang, Farmer: Finding interesting

rule groups in microarray datasets, in: G. Weikum, A. König, S. Deßloch

(Eds.), Proceeding of the ACM SIGMOD International Conference on Man-

agement of Data, ACM, New York, NY, USA, 2004, pp. 143–154.

[26] E. Yu, K. Sung, A genetic algorithm for a university weekly courses

timetabling problem, International Transactions in Operational Research

9 (6) (2002) 703–717.

[27] E. Burke, D. Elliman, R. Weare, A genetic algorithm based university

timetabling system, in: P. Brusilovsky, V. Stefanuk (Eds.), Proceedings of

37

the 2nd East-West International Conference on Computer Technologies in

Education, International Centre for Scientific and Technical Information,

Moscow, Russia, 1994, pp. 35–40.

[28] M. Dorigo, V. Maniezzo, A. Colorni, Positive feedback as a search strategy,

Technical report 91-016, Politecnico di milano, dip. Elettronica (1991).

[29] M. Dorigo, V. Maniezzo, A. Colorni, The ant system: Optimization by a

colony of cooperating agents, IEEE Transactions on Systems, Man, and

Cybernetics - Part B 26 (1) (1996) 29–42.

[30] L. de Castro, F. V. Zuben, Learning and optimization using the clonal se-

lection principle, IEEE Transactions on Evolutionary Computation, Special

Issue on Artificial Immune Systems 6 (3) (2002) 239–251.

[31] D. Dasgupta, Z. Ji, F. Gonzlez, Artificial immune system (AIS) research

in the last five years, in: R. Sarker, R. Reynolds, H. Abbass, K. Tan,

B. McKay, D. Essam, T. Gedeon (Eds.), Proceedings of the IEEE Congress

on Evolutionary Computation Conference (CEC), IEEE, Los Alamitos, CA,

US, 2003, pp. 123–130.

[32] M. Dorigo, T. Stützle, Ant Colony Optimization, MIT Press, Cambridge,

MA, US, 2004.

[33] W. Gutjahr, Mathematical runtime analysis of aco algorithms: survey on

an emerging issue, Swarm Intelligence 1 (1) (2007) 59–79.

38

[34] E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: from Natural

to Artificial Systems, New York: Oxford University Press, 1999.

[35] J. Quinlan, R. Cameron-Jones, FOIL: a midterm report, in: P. Brazdil

(Ed.), Proceedings of European Conference on Machine Learning, Springer,

Vienna, Austria, 1993, pp. 3–20.

[36] Y. He, S. Hui, Y. Sim, A novel ant-based clustering approach for document

clustering, in: H. Ng, M.-K. Leong, M.-Y. Kan, D. Ji (Eds.), Asia Infor-

mation Retrieval Symposium, Springer, Singapore, LNCS 4182, 2006, pp.

537–544.

[37] D. Zhou, Y. He, C. Kwoh, H. Wang, Ant-MST: An ant-based mini-

mum spanning tree for gene expression data clustering, in: J. Rajapakse,

B. Schmidt, G. Volkert (Eds.), IAPR Workshop on Pattern Recognition in

Bioinformatics, Springer, Singapore, LNCS 4774, 2007, pp. 198–205.

[38] Y. Xu, V. Olman, D. Xu, Clustering gene expression data using a graph-

theoretic approach: an application of minimum spanning trees, Bioinfor-

matics 18 (4) (2002) 536–545.

[39] W. Li, J. Han, J. Pei, CMAR: Accurate and efficient classification based

on multiple class-association rules, in: N. Cercone, T. Lin, X. Wu (Eds.),

Proceedings of the IEEE International Conference on Data Mining, IEEE

Computer Society, Washington, DC, US, 2001, pp. 369–376.

[40] P. D’haeseleer, How does gene expression clustering work?, Nature Biotech-

nology 23 (2005) 1499 – 1501.

39

[41] D. Bickel, Robust cluster analysis of microarray gene expression data with

the number of clusters determined biologically, Bioinformatics 19 (7) (2003)

818–824.

[42] D. Jiang, C. Tang, A. Zhang, Cluster analysis for gene expression data:

A survey, IEEE Transactions on Knowledge and Data Engineering 16 (11)

(2004) 1370–1386.

[43] W. Rand, Objective criteria for the evaluation of clustering methods, Jour-

nal of the American Statistical Association 66 (1971) 622–626.

[44] T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov,

H. Coller, M. Loh, J. Downing, M. Caligiuri, C. Bloomfield, E. Lander,

Molecular classification of cancer: Class discovery and class prediction by

gene expression monitoring, Science 286 (5439) (1999) 531–537.

[45] U. Fayyad, K. Irani, Multi-interval discretization of continuous-valued at-

tributes for classification learning, in: R. Bajcsy (Ed.), Proceedings of the

13th International Joint Conference on Uncertainty in AI, Morgan Kauf-

mann, Chambery, France, 1993, pp. 1022–1027.

[46] C. Borgelt, An implementation of the FP-growth algorithm, in:

B. Goethals, S. Nijssen, M. Zaki (Eds.), Proceedings of the 1st interna-

tional Workshop on Open Source Data Mining, ACM, New York, NY,

USA, 2005, pp. 1–5.

[47] G. Webb, Opus: An efficient admissible algorithm for unordered search,

Journal of Artificial Intelligence Research 3 (1995) 431–465.

40

[48] G. Webb, Efficient search for association rules, Knowledge Discovery and

Data Mining (2000) 99–107.

[49] R. Bayardo, The hows, whys, and whens of constraints in itemset and rule

discovery, in: J.-F. Boulicaut, L. Raedt, H. Mannila (Eds.), Proceedings of

the Workshop on Inductive Databases and Constraint Based Mining, Vol.

3848 of Lecture Notes in Computer Science, Springer, Berlin, 2005, pp.

1–13.

[50] F. Coenen, P. Leng, The effect of threshold values on association rule based

classification accuracy, Data and Knowledge Engineering 60 (2) (2007) 345–

360.

[51] R. Bayardo, Brute-force mining of high-confidence classification rules, in:

D. Heckerman, H. Mannila, D. Pregibon, R. Uthurusamy (Eds.), Proceed-

ings of the 3rd International Conference on Knowledge Discovery and Data

Mining, AAAI Press, Menlo Park, CA, 1997, pp. 123–126.

[52] R. Parpinelli, H. Lopes, A. Freitas, Data mining with an ant colony opti-

mization algorithm, IEEE Transactions on Evolutionary Computation 6 (4)

(2002) 321–332.

[53] M. Chow, E. Moler, I. Mian, Identifying marker genes in transcription pro-

filing data using a mixture of feature relevance experts, Physiol Genomics

5 (2) (2001) 99–111.

[54] S. Bicciato, M. Pandin, G. Didone, C. D. Bello, Pattern identification and

41

classification in gene expression data using an autoassociative neural net-

work model, Biotechnology and Bioengineering 81 (5) (2003) 594–606.

[55] L. Ke, Z. Feng, Z. Ren, An efficient ant colony optimization approach to

attribute reduction in rough set theory, Pattern Recognition Letters 29 (9)

(2008) 1351–1357.

42

