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Abstract

Objective: Biomedical events extraction concerns about extracting events de-

scribing changes on the state of bio-molecules from literature. Comparing to

the protein-protein interactions (PPIs) extraction task which often only involves

the extraction of binary relations between two proteins, biomedical events ex-

traction is much harder since it needs to deal with complex events consisting

of embedded or hierarchical relations among proteins, events, and their textual

triggers. In this paper, we propose an information extraction system based

on the hidden vector state (HVS) model, called HVS-BioEvent, for biomedical

events extraction, and investigate its capability in extracting complex events.

Methods and Material: HVS has been previously employed for the extrac-

tions of PPIs. In HVS-BioEvent, we propose an automated way to generate

abstract annotations for HVS training and further propose novel machine learn-

ing approaches for event trigger word identification, and for biomedical events

extraction from the HVS parse results.

Results Our proposed system achieves an F-score of 49.57% on the corpus

used in the BioNLP’09 shared task, which is only 2.38% lower than the best

performing system by UTurku in the BioNLP’09 share task. Nevertheless,

HVS-BioEvent outperforms UTurku’s system on complex events extraction with
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36.57% vs 30.52% being achieved for extracting regulation events, and 40.61%

vs 38.99% for negative regulation events.

Conclusions The results suggest that the HVS model with the hierarchical hid-

den state structure is indeed more suitable for complex event extraction since

it could naturally model embedded structural context in sentences.

Keywords: Hidden vector state model, biomedical events extraction, abstract

annotations, semantic parsing.

1. Introduction

In the past few years, there have been a surge of interests in utilizing text

mining techniques to provide in-depth bio-related information services. With

an increasing number of publications reporting on protein-protein interactions

(PPIs), much effort has been made in extracting information from biomedical

articles using natural language processing (NLP) techniques. Several shared

tasks, such as LLL [1] and BioCreative [2], have been arranged for the BioNLP

community to compare different methodologies for biomedical information ex-

traction. In general, existing PPI extraction approaches can be roughly cat-

egorized into three types, machine learning methods [3], approaches based on

pattern matching [4] and those employing parsing techniques [5].

Comparing to protein-protein interactions which often only involves binary

relations between two proteins, bio-molecular events describing changes on the

state of bio-molecules are more complex. For example, “Spc97p interacts with

Spc98 and Tub4 in the two-hybrid system” describes two PPIs, Spc97p interacts

with Spc98 and Spc97p interacts with Tub4. However, “...inhibiting tyrosine phos-

phorylation of STAT6...” describes two bio-molecular events, one is the phospho-

rylation event, the other is the complex or embedded negative regulation event

which is signaled by the word inhibiting and takes the first phosphorylation event

as its argument. In a typical biomedical event annotation, we can represent

these two events as:

E1 (Event Type:Phosphorylation, Theme:STAT6, ToLoc:tyrosine)
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E2 (Event Type: Negative regulation:inhibiting Theme:E1)

Bio-molecular events extraction aims to extract such event information from

biomedical literature and reformats these extracted information in structures as

represented by the two annotations presented above. By extracting detailed be-

haviors of bio-molecules, bio-molecular event extraction can be used to support

the development of biomedical-related databases.

The BioNLP’09 Shared Task [6] is the recent one focusing on the recog-

nition of bio-molecular events in scientific abstracts, such as gene expression,

transcription, protein catabolism, localization and binding, plus (positive or

negative) regulation of proteins. In the shared task evaluation, the system con-

structed by Jari et al. [7] achieved an F-score of 51.95% on the core task, the

best results among all the participants. The best F-score result obtained is still

relatively low, mainly attributed to the following two main reasons, one is the

large variety of the event trigger words and the other is the complexity of the

sentences to be dealt with.

To tackle the complexity of the sentences, we constructed a system, called

HVS-BioEvent, which uses the hidden vector state model (HVS) to automati-

cally extract biomedical events from biomedical literature. The HVS model [8]

is a discrete Hidden Markov Model (HMM) in which each HMM state represents

the state of a push-down automaton with a finite stack size. It is complex enough

to capture hierarchical structure but which can be trained automatically from

only lightly annotated data. The HVS model has been successfully employed to

extract PPIs [5]. However, it is not straightforward to extend the usage of the

HVS model for biomedical events extraction. There are two main challenges.

First, comparing to the trigger words used for PPIs which are often expressed

as single words or at most two words, the trigger words for biomedical event are

more complex. For example, controlled at transcriptional and post-transcriptional

levels, spanning over 6 words, is considered as the trigger word for the regulation

event. In addition, the same word can be the trigger word for different types

of biomedical events in different context. Second, biomedical events consist of

both simple events and complex events. While simple events are more similar
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to PPIs which only involve binary or pairwise relations, complex events involve

both n-ary (n > 2) and nested relations. For example, a regulation event may

take another event as its theme or cause which represents a structurally more

complex relation. Being able to handle both simple and complex events thus

poses a huge challenge to the development of our HVS-BioEvent system.

We summarize our contributions below. First, we have proposed an auto-

mated way to generate abstract annotations from the BioNLP’09 shared task

data and successfully deployed the HVS model for biomedical events extraction.

Second, we have proposed two novel machine learning approaches, one for event

trigger word identification, and another for biomedical events extraction from

the HVS parse results. Our proposed system achieves an F-score of 49.57% on

the corpus used in the BioNLP’09 shared task, which is only 2.38% lower than

that of UTurku’s system, the best performing system in this task. Nevertheless,

HVS-BioEvent outperforms UTurku’s system on complex events extraction with

36.57% vs 30.52% being achieved for extracting regulation events, and 40.61%

vs 38.99% for negative regulation events.

The rest of the paper is organized as follows. Section 2 discusses the related

work on biomedical events extraction, followed by a brief description of the

BioNLP’09 shared task. Section 3 presents the overall process of the HVS-

BioEvent system, which consists of three steps, trigger words identification,

semantic parsing based on the HVS model, and biomedical events extraction

from the HVS parse results. Experimental results are discussed in section 4.

Finally, section 5 concludes the paper.

2. Related Work

2.1. Work on Protein-Protein Interactions Extraction

Approaches proposed to extract PPIs can be roughly categorized into three

types, machine learning methods, rule-based methods and those employing pars-

ing techniques.
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Rule-based methods generally achieve better performance compared to other

categories. For example, Ono et al. [9] manually defined some linguistic patterns

which were then augmented with additional constraints based on word forms

and syntactic categories to generate better matching precision. It achieved

high performance with a recall rate of 85% and a precision rate of 84% for

Saccharomyces cerevisiae (yeast) and Escherichia coli. However, these methods

are not feasible in practical applications as they require heavy manual efforts to

define patterns when shifting to other domains.

Machine learning approaches to the PPIs extraction task typically cast it

as a classification problem where a sentence containing a pair of proteins is

classified as implying interaction of the pair or not. Features used for classifier

training are normally syntactic and lexical patterns derived from dependency

relations between individual words in sentences which are revealed automatically

by syntactic parsers. Various kernels have been proposed to calculate similarity

between syntactic structures, including subsequence kernel [10], tree kernels [11],

shortest path kernel [12], graph kernel [13], or a combination of them [14]. Under

this kind of problem setting, one sentence in the dataset yields C2
n distinct

instances, where n is the number of proteins in the sentence and each instance

represents a pairwise combination of proteins.

Approaches employing parsing techniques make use of semantic parsing mod-

els. One example is the hidden vector state (HVS) model [8] which can map

sentences to their semantic meaning representations without the use of expen-

sive tree-bank style training data. The model has been employed successfully

for extracting PPIs [5]. To further improve the performance of the HVS-based

system, other techniques such as semi-supervised learning [15], discriminative

training [16] and the hybrid training framework [17] have been proposed.

2.2. Work on Biomedical Events Extraction

The prevailing approaches to relation extraction has focused on extracting

pairwise or binary relations. McDonald et al. [18] has attempted to extract

n-ary (for n > 2) relations by factoring higher-order relations into a set of
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binary relations and using a classifier to extract binary relations. Entities graph

is then created and higher-order relations are constructed by finding maximal

cliques. Still, there has been very little work in extracting complex relations, in

particular, nested relations, such biomedical events information.

Recently, two corpora annotated with complex, nested and typed event re-

lations have been introduced, the BioInfer [19] and GENIA Event [20]. The two

corpora aim to capture the diversity of biological relations. The GENIA Event

corpus was used in the BioNLP’09 Shared Task which aims to extract nested

bio-molecular events from research abstracts, where an event may have vari-

able number of arguments and may contain other events as arguments. Most

participants to the Shared Task either reduced the task to binary classification

problem or used heuristics to combine manual rules and statistics. Among 24

submissions, the best result with an F-score of 51.95% was obtained by Bjorne

et al. [7] who essentially transformed complex relation extraction into binary

classification. A classifier (such as SVMs) needs to be trained for every relation

type seen in the training data, which thus hinders its scalability. Ozgur and

Radev [21] also trained a separate SVM classifier for different event types, but

only achieved an overall F-score around 40%. Farzaneh et al. [22] identified the

event participants using a rule-based system which relies on a relative distance

between candidate entities and the trigger in the associated parse tree. The

overall F-score is around 30%. Jörg et al. [23] presented an approach based on a

deep parser using the Link Grammar. It gave an overall F-score of 29.6%. More

recently, Poon and Vanderwende [24] proposed a joint approach for bio-event

extraction based on Markov logic but still trailed the previously reported best

approach [7] by two points on the BioNLP’09 Shared Task test set.

2.3. The BioNLP’09 Shared Task

The BioNLP’09 Shared Task concerns the recognition of bio-molecular events

that appear in biomedical literature. The shared task consists of three subtasks,

Core event extraction, Event enrichment, and Negation and speculation recog-

nition. Table 1 illustrates with three example sentences where their events
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information corresponds to the three subtasks. Core event extraction, as shown

in the first row of Table 1, includes trigger detection (Expression), event typing

(Gene expression:Expression), primary argument recognition (IkappaBalpha) and

finally fill into the frame (E1 event type:event trigger Theme:primary argument).

For Event enrichment, the secondary arguments are found and added into the

event frame as ToLoc: nuclear as shown in the second row of Table 1. For Nega-

tion and speculation recognition, negations and speculations of events need to be

identified and formatted as M1 Negation/Speculation E1 where E1 denotes the

event information recognized in the Core event extraction and Event enrichment

subtasks.

The organizers provide human-curated reference material for the training

and evaluation of the participating systems. For training, a data set based on

the publicly available GENIA corpus is provided in a stand-off format.

3. System Overview

The overall architecture of the system is shown in Figure 1. At the begin-

ning, abstracts are retrieved from MEDLINE and split into sentences. Protein

names, gene names, trigger words for biomedical events are then identified. Af-

ter that, each sentence is parsed by the HVS semantic parser. Finally, biomed-

ical events are extracted from the HVS parse results using a hybrid method

combining rules and machine learning. All these steps process one sentence

at a time. Since 95% of all annotated events are fully annotated within a

single sentence, this does not incur a large performance penalty but greatly

reduces the size and complexity of the problem. An example of using HVS-

BioEvent for biomedical event extraction is illustrated in Figure 2. For the

sentence “All agents tested induced expression of Hsp60 6 hr after application.”,

the event trigger words “induced”, “expression” are replaced separately with

their corresponding event types “positive regulation” and “gene expression” at

the event trigger words identification step as shown in Figure 2(a). At the se-

mantic parsing step, the HVS model generates the parsing result of the sentence
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as presented in Figure 2(b) where symbols preceding the parentheses such as

“SS+POSITIVE REGULATION” are the semantic tags. Finally, the event extrac-

tion step extracts the event information as shown in Figure 2(c). The remainder

of the section will discuss each of the steps in details.

3.1. Event Trigger Words Identification

Event trigger words are crucial to biomedical events extraction. Approaches

for biomedical term identification (such as protein name, gene name) can also be

used for event trigger words detection. They typically fall into three categories,

dictionary based, rule based and machine learning based. In our system, we

explored two approaches for event trigger words identification, one is a hybrid

approach combing a dictionary and rules, the other treats trigger words identi-

fication as a sequence labeling problem and uses a Maximum Entropy Markov

Model (MEMM) to detect trigger words.

The hybrid approach first constructs a trigger word dictionary from the orig-

inal GENIA event corpus [20]. The corpus consists of 1,000 Medline abstracts

with 36,114 events being annotated. We extracted annotated event trigger words

together with their corresponding event types. For example, (stimulates, pos-

itive regulation) denotes that the trigger word ”stimulates” triggers the event

“positive regulation”. Then these trigger words were lemmatized and stemmed.

Thus, the above example would be changed to (stimulate, positive regulation).

After that, duplicate entries were removed and the remaining entries were sorted

according to their occurrence frequencies in the corpus. Table 2 lists the top 10

most frequency trigger word/event type entries.

By examine the sorted list, we found that lots of trigger words are too

common and lack the discriminative power relative to individual event types.

For example, in certain context, through is the trigger word for the binding event

type and therefore is the trigger word for positive regulation. Using such words

for even type identification would cause potential ambiguities and therefore

might lead to many false positive events extracted. However, such common

words typically occur much less frequent in denoting event types compared
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to their overall occurrences in the corpus. For example, through occurs 311

times in the corpus, but only appears once to denote the binding event. Hence,

we could calculate the ratio between the occurrence frequency of each trigger

word in denoting an event type and its total occurrences in the corpus. Those

trigger words with their ratios below certain threshold are discarded. In our

experiments here, we empirically set the threshold to 0.05. After the processing,

3771 entries were kept. Table 3 gives some example entries whose ratios are

below the threshold.

After the filtering stage, there might be cases where one trigger might rep-

resent multiple event types. For example, underlie in some context denotes the

regulation event type, while in other context denotes the correlation event type.

Thus, it is important to disambiguate which event type it refers to. We proposed

a rule-based approach for event type disambiguation. First, for each ambiguous

event trigger word, we collected the sentences containing such a word in the

GENIA event corpus. Then we selected words occurring before or after the

trigger word within some predefined window size and converted them to word

features. A decision tree was built for each trigger word using these word fea-

tures. Finally, rules were extracted automatically from these decision trees for

event type disambiguation. Below is an example rule generated for the trigger

word underlie:

IF the word following “underlie” is a gene or protein related term, the word “under-

lie” is not an event trigger;

ELSE IF the word following “underlie” is another biomedical event, the word “un-

derlie” triggers the event type Regulation;

ELSE the word “underlie” triggers the event type Correlation;

END.

In the second approach, we treat trigger words identification as a sequence la-

beling problem and train a first-order Maximum entropy Markov model (MEMM)

[25] on the BioNLP’09 shared task training data. Maximum entropy Markov

models are based on the concept of a probabilistic finite state model such as

the Hidden Markov model (HMM). However, instead of generating observations
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as in HMM, MEMM consider observation sequences to be conditioned upon.

Given a finite set of states S and a finite output alphabet X, MEMM only need

to define a single set of S separately trained distributions P (s′|s, x). The distri-

butions represent the probability of moving from state s to s′ on observation x.

Thus, the conditional distribution over a label sequences y given an observation

sequence x is:

p(y|x) = p(y1 = s1|x1)
n∏

t=2

p(yt = st|yt−1 = st−1, xt) (1)

To treat trigger words identification as a sequence labeling problem, three

labels ‘B’, ‘I’, and ‘O ’are introduced where ‘B’ refers to the word which is the

beginning word of an event trigger, ‘I’ indicates the rest of the words (if the

trigger contains more than one words) and ‘O’ refers to the other words which

are not event triggers. Then the training data were converted into BIO format.

The features used in the MEMM model were extracted from the surface string

and the part-of-speech information of the words corresponding to (or adjacent

to) the target BIO tags. Given a word sequence (a sentence), MEMM output a

tag sequence where each word is tagged as one of the ‘B’, ‘I’, or ‘O’ tags. It can

then be easily identified the trigger word(s) from the BIO tag sequence.

3.2. Semantic Parsing using the HVS Model

The Hidden Vector State (HVS) model [8] is a discrete Hidden Markov Model

(HMM) in which each HMM state represents the state of a push-down automa-

ton with a finite stack size. This is illustrated in Figure 3 which shows a sequence

of the HVS stack states corresponding to the given parse tree. State transitions

are factored into separate stack pop and push operations constrained to give a

tractable search space. The result is a model which is complex enough to cap-

ture hierarchical structures but which can be trained automatically from only

lightly annotated data.

The HVS model computes a hierarchical parse tree for each word string W ,

and then extracts semantic concepts C from this tree. Each semantic concept
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consists of a name-value pair where the name is a dotted list of primitive se-

mantic concept labels. For example, the top part of Figure 3 shows a typical

semantic parse tree and the semantic concepts extracted from this parse would

be in Equation 2

Positive regulation = enhanced

Positive regulation.Site = tyrosine

Positive regulation.Site.Phosphorylation = phosphorylation

Positive regulation.Site.Phosphorylation.Protein = STAT1

(2)

In the HVS-based semantic parser, conventional grammar rules are replaced

by three probability tables. Let each state at time t be denoted by a vector

of Dt semantic concept labels (tags) ct = [ct[1], ct[2], ..ct[Dt]] where ct[1] is the

preterminal concept label and ct[Dt] is the root concept label (SS in Figure 3).

Given a word sequence W , concept vector sequence C and a sequence of stack

pop operations N , the joint probability of P (W,C, N) can be decomposed as

P (W,C, N) =
T∏

t=1

P (nt|ct−1)P (ct[1]|ct[2 · · ·Dt])P (wt|ct) (3)

where nt is the vector stack shift operation and takes values in the range 0, · · · ,

Dt−1, and ct[1] = cwt is the new pre-terminal semantic label assigned to word

wt at word position t. Dt−1 denotes the number of semantic concept labels in

the vector at word position t− 1.

Thus, the HVS model consists of three types of probabilistic move, each

move being determined by a discrete probability table:

1. popping semantic labels off the stack - P (n|c);
2. pushing a pre-terminal semantic label onto the stack - P (c[1]|c[2 · · ·D]);

3. generating the next word - P (w|c).

In training, each word string W is marked with the set of semantic concepts

C that it contains. For example, if the sentence shown in Figure 3 was in the

training set, then it would be marked with the four semantic concepts given in

Equation 2. The abstraction semantic annotation for the sentence is

SS(Positive regulation(Site(Phosphorylation(protein))) SE) (4)
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where SS and SE denotes sentence start and end and brackets denote the hi-

erarchical relations among semantic concepts. For each word wk of a training

sentence W , EM training uses the forward-backward algorithm to compute the

probability of the model being in stack state c when wk is processed. Maximum

Likelihood Estimation (MLE) is used for estimating the probabilities using the

following re-estimation formulae:

P ∗(n|c′) =
∑

t P (nt=n,ct−1=c′|W,λk)∑
t P (ct−1=c′,W |λk)

(5)

P ∗(c[1]|c[2..D]) =
∑

t P (ct,W |λk)∑
t P (ct[2..D]=c[2..D]|W,λk)

(6)

P ∗(w|c) =
∑

t P (ct=c,wt=w|λk)∑
t P (ct=c,W |λk)

(7)

These probabilities are then used to generate parse results at run-time using

Viterbi decoding. The time complexity of parsing based on the HVS model is

O(TQD), where T is the length of the sequence, D is the maximum depth of

stack (vector state), and Q is the max number of semantic tags (node labels) at

each level of the stack.

Without any constraints, the set of possible stack states would be intractably

large. However, in the HVS model this problem can be avoided by pruning out

all states which are inconsistent with the semantic concepts associated with W .

The details of how this is done are given in [8].

For the sentences in the BioNLP’09 shared task, only event information

is provided. However, the abstract semantic annotation as in Equation 4 is

required for training the HVS model. We proposed Algorithm 1 to automatically

convert the annotated event information into the abstract semantic annotations.

The time complexity of Algorithm 1 is O(m2), where m is the number of event

information in the sentence W .

An example of abstract semantic annotation generation is shown below:

Sentence: According to current models the inhibitory capacity of I(kappa)B(alpha)

would be mediated through the retention of Rel/NF-kappaB proteins in

the cytosol

Annotated Events: E1 Negative regulation: inhibitory capacity Theme: I(kappa)B(alpha)

E2 Positive regulation: mediated Theme: E1
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Algorithm 1 Abstract semantic annotation generation.
Input: The sentence W =< w1, w2, · · · , wn >, and its corresponding event

information Ev =< e1, e2, · · · , em >, ei =<Event type:Trigger words

Theme:Protein name ...>

Output: Abstract semantic annotation A

1: Set A = ∅
2: for i = 1 to m do

3: Sort the trigger words, protein name, and other argument words in event

information ei based on their position in the sentence W and get the

sorted list t1, t2, ..., tk

4: Set A[i] = t1(t2(..tk)), where tj is the jth words in the sorted list

5: end for

6: for i = 1 to m do

7: if A[i] contains another event, e.g. E1 then

8: Replace the event with its corresponding annotation A[l]

9: end if

10: end for

11: for i=1 to m do

12: for j=i+1 to m do

13: if A[i] is a subset of A[j] then

14: Set A[i] = Null

15: end if

16: end for

17: end for

18: Output the annotations in A and reorder them based on their positions in

the sentence W

Candidate annotation generation (steps 1-4 of Algorithm 1):

Negative regulation(Protein) Negative regulation(Protein(Positive regulation))

Abstract semantic annotation (steps 5-14 of Algorithm 1):

SS(Negative regulation(Protein(Positive regulation)) SE)
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3.3. Biomedical Events Extraction From the HVS Parse Results

Based on the HVS parse results, it seems straightforward to extract the event

information. However, after detailed investigation, we found that sentences

having the same semantic tags might contain different events information. For

example, the two sentences shown in Table 4 have the same semantic parse

results but contain different event information.

We analyzed HVS semantic parse results and found that three types of se-

mantic tags need to be disambiguated as shown in Table 5. Consider the event

information shown in the right column of Table 5 as classes, the disambiguation

problem can be converted to the classification problem. For each of the class,

we trained a SVM classifier which takes a sentence as the input and outputs

whether it represents the event information that the class corresponds to. Given

the semantic tag which needs to be disambiguated, wi is the word corresponding

to the semantic tag and pi is the part-of-speech (POS) tag of wi. The features

used in SVM training are wi and its five preceding and five subsequent words,

plus pi and its five preceding and five subsequent POS tags.

Incorporating the disambiguation process mentioned above, the whole proce-

dure of event extraction from HVS parse results is described in Algorithm 2. For

each semantic tag, first check whether it requires disambiguation. If so, clas-

sification will be invoked. For example, Protein+Gene expression+Regulation,

requires disambiguation as it belongs to one of the ambiguous semantic tag

types listed in Table 5. Then check whether the semantic tag ends with an

event trigger (e.g. Protein+Localization). If this is the case, search backward to

find the theme of the event (since every event should have a theme) and add

the event information. Otherwise, check whether the semantic tag ends with

a protein or an entity (e.g. Binding+Protein). If so, search backward to find

the corresponding trigger word (word with the semantic tag containing Binding)

and add the event information. Based on the approach described above, the

biomedical events can be extracted as shown in Figure 2(c).
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Algorithm 2 Biomedical event extraction from HVS parse results.
Input: The sentence W =< w1, w2, · · · , wn >, and its corresponding semantic

tag sequence S =< s1, s2, · · · , sn >. The semantic tag-event list MT in

which one semantic tag may represent multiple event information.

Output: Event list E =< e1, e2, · · · , em >, where ei =<Event Type:Trigger

words, Theme:protein name,...>

1: for each word wi do

2: Compare the semantic tag length l(si) of si with si−1.

3: if l(si) > l(si−1) then

4: if si is in the semantic tag-event list MT then

5: Perform classification based the S and W

6: Search backwards si−1, · · · , s1 for theme, trigger word, add event

information into E

7: else if the last tag in si is a trigger word then

8: Search backwards si−1, · · · , s1 for theme, add event information into

E

9: else if the last tag in si is a protein or a entity then

10: Search backwards si−1, · · · , s1 for trigger word, add event informa-

tion into E

11: end if

12: end if

13: end for

4. Results and Discussion

Experiments have been conducted on the training data of the BioNLP’09

shared task which consists of 800 abstracts. After cleaning up the sentences

which do not contain biomedical events information, 2893 sentences were kept.

We split the 2893 sentences randomly into the training set and the test set at

the ratio of 9:1 and conducted the experiments ten times with different training

and test data each round. The average parsing speed on IBM Linux server

equipped with 3.00Ghz processor and 4 GB RAM was 0.14s per sentence. The
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average speed for generating the abstract annotation on the server was 4s per

1000 sentences.

Table 6 shows the performance evaluated using the approximate recursive

matching method adopted from the BioNLP’09 share task evaluation mode.

We also report the overall performance of the system using the two different

trigger words identification approaches proposed, dictionary+rules and MEMM.

The results show that the hybrid approach combining a dictionary and rules

gives better performance than MEMM which only achieved an F-score around

43%. For biomedical event extraction from HVS parse results, employing the

classification method presented in Section 3.3 improves the overall performance

from 47.77% to 49.57%.

The best performance that HVS-BioEvent achieved is an F-score of 49.57%,

which is only 2.38% lower than UTurku’s system, the best performing system

in the BioNLP’09 share task. It should be noted that our results are based on

10-fold cross validation on the BioNLP’09 shared task training data only since

we don’t have the access to the BioNLP’09 test set while the results generated

by UTurku’s system were evaluated on the BioNLP’09 test set. Although a

direct comparison is not possible, we could still speculate that HVS-BioEvent

is comparable to the best performing system in the BioNLP’09 shared task.

The results on the five event types involving only a single theme argument

are shown in Table 7 as Simple Events. For the complex events such as binding,

regulation and negative regulation events, the results are shown in Table 7 as

Complex Events. It can be observed that HVS-BioEvent achieved F-scores in

the range of 57-73% for simple events extraction and 37-50% for complex events

extraction. This is not surprising since complex events contain structurally more

complex or nested relations and thus it is much more difficult for our system to

extract compared to those simple events which only contain pairwise or binary

relations.

To investigate our system’s ability in handling complex events, we compare

the performance of our system with the UTurku’s system. Figure 4 shows the

comparison on recall, precision and F-score. It can be seen that HVS-BioEvent
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outperforms UTurku’s system on the extraction of the complex event types,

with the performance gain ranging between 2% and 7%. The results suggest

that the HVS model with the hierarchical hidden state structure is indeed more

suitable for complex event extraction since it could naturally model embedded

structural context in sentences.

Based on our knowledge, there is only one system participated in the BioNLP’09

shared task which is modified from AkanePPI, a public available protein-protein

interaction extraction system [26]. AkanePPI has previously achieved state-of-

the-art performance on all existing public PPI corpora. By adding new types

of name entities to represent the events, the modified AkanePPI for event ex-

traction only achieved an F-score of 42.6%. More deliberated design on event

trigger identification and the use of HVS for semantic parsing may explain our

superior performance compared to the modified AkanePPI.

We also conducted error analysis by analyzing the parse results of 150 ran-

domly selected sentences from the test data set. The errors are classified into

three categories as shown in Table 8 together with the total number of sentences

falling into each category. We also gave an example sentence for each category,

with its extracted events and the gold standard. The three categories of errors

are semantic parsing errors, trigger words identification errors and event extrac-

tion errors. (1) Semantic parsing errors constitute the major portion of all errors.

We found that the current semantic parsing method causes approximately 60%

of the total errors. This partially derives from the fact that some complex hier-

archical structures still can not be handled correctly by our method. (2) Errors

caused by the trigger words identification procedure accounts for nearly 15% of

all the failures. (3) Event extraction procedure caused about 25% errors.

5. Conclusions

In this paper, we have presented HVS-BioEvent which uses the HVS model to

automatically extract information on biomedical events from text. The system is

able to offer comparable performance compared with the best performing system
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in the BioNLP’09 shared task. Moreover, it outperforms the existing systems on

complex events extraction which shows the ability of the HVS model in capturing

embedded and hierarchical relations among named entities. Our results may

provide a useful supplement to manually created resources in established public

databases. In future work we will explore incorporating arbitrary lexical features

into the HVS model training in order to further improve the extraction accuracy.
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6. Tables

Subtask Sentence Events

Core event extrac-

tion

Expression of IkappaBalpha in the nucleus

of human peripheral blood T lymphocytes.

E1 Gene expression: Expres-

sion Theme: IkappaBalpha

Event enrichment We demonstrate the nuclear localization of

I(kappa)B(alpha) in PBL by different tech-

niques: Western blot, indirect immunofluores-

cence and electron microscopy.

E1 Localization: localiza-

tion Theme: I(kappa)B(alpha)

ToLoc: nuclear

Negation and

speculation recog-

nition

This failure to degrade IkappaBalpha may

underlie both the observed decrease in NFkap-

paB induction and the IL-2 receptor expression

in TNF-treated T cells during aging.

E1 Protein catabolism: de-

grade Theme: IkappaBalpha

M1 Negation E1

Table 1: Examples of the three subtasks of the BioNLP’09 shared task.

Trigger word Event type Word occ. in denoting the event type

express gene expression 1748

induce positive regulation 1601

active positive regulation 1403

inhibit negative regulation 864

bind binding 823

regulate regulation 602

transcribe transcription 527

mediate positive regulation 424

activate physiological process 424

differentiate cell differentiation 292

Table 2: The 10 most frequent trigger words in denoting event types in the GENIA-event

corpus.
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Trigger

word

Event type Word occ. in denot-

ing the event type

Word occ. in the

whole corpus

Ratio

being localization 1 30 0.03

but correlation 1 531 0.002

by correlation 1 2564 0.0004

do positive regulation 1 52 0.02

after positive regulation 2 186 0.01

due correlation 2 61 0.03

Table 3: Examples of the removed pairs whose ratios are below the threshold.

Sentence We concluded that CTCF expression and ac-

tivity is controlled at transcriptional and post-

transcriptional levels

CONCLUSION: IL-5 synthesis by human

helper T cells is regulated at the transcrip-

tional level

Parse

results

SS+Protein(CTCF)

SS+Protein+Gene Expression(expression)

SS+Protein+Gene Expression+Regulation(

controlled...levels)

SS+Protein(IL-5)

SS+Protein+Gene Expression(synthesis)

SS+Protein+Gene Expression+Regulation(

regulated)

Events E1 Gene expression:expression Theme: CTCF E1 Gene expression: synthesis Theme: IL-5

E2 Regulation: controlled...levels Theme: E1 E2 Regulation: regulated Theme: E1

E3 Regulation: controlled...levels Theme:

CTCF

Table 4: An example of the same semantic parse results denoting different event information.

7. Figure captions

7.1. Figure 1. The main components of the system.

7.2. Figure 2. An example of biomedical events extraction using HVS-BioEvent.

7.3. Figure 3. Example of a parse tree and its vector state equivalent.

7.4. Figure 4. Performance comparison between HVS-BioEvent and UTurku’s

system on complex events extraction.
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Semantic tags Possible event information represented

Trigger1+Protein+Trigger2 <E1 Trigger1 Protein> <E2 Trigger2 E1>

<E1 Trigger2 Protein> <E2 Trigger1 E1>

Trigger1+Trigger2+Protein <E1 Trigger2 Protein> <E2 Trigger1 E1>

<E1 Trigger2 Protein> <E2 Trigger1 E1> <E1 Trigger1

Protein>

Protein+Trigger1+Trigger2 <E1 Trigger1 Protein> <E2 Trigger2 E1>

<E1 Trigger1 Protein> <E2 Trigger2 E1> <E3 Trigger2

Protein>

Table 5: The semantic tag-event list in which a semantic tag denotes multiple event informa-

tion.

Method Recall (%) Precision (%) F-score (%)

Trigger Word Identification

Dictionary+Rules 46.31 53.34 49.57

MEMM 45.43 40.91 42.99

Event Extraction from HVS Parse Results

No classification 43.57 52.85 47.77

With Classification 46.31 53.34 49.57

Table 6: Experimental results based on 10 fold cross-validation.

Event Class Recall (%) Precision (%) F-score (%)

Simple Events

localization 56.22 67.63 61.40

gene expression 70.96 73.98 72.44

transcription 64.93 72.05 68.30

protein catabolism 65.00 76.47 70.27

phosphorylation 51.66 62.40 56.52

Complex Events

binding 44.39 56.96 49.90

regulation 33.73 39.94 36.57

negative regulation 38.24 43.29 40.61

Table 7: Per-class performance in terms of recall, precision, and F-score.
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Result Category N0. of

Sentences

Example of the sentence, extracted events, and golden events

Events identified correctly, but

with wrong event information

generated

26 Sentence: Targeted mutational analysis demonstrated that a tandem NF-kappa B/Rel bind-

ing motif is critical for the gamma 3 ECS responsiveness to both CD40L and IL-4,

while a STAT-6-binding site is additionally required for IL-4 inducibility.

Extracted:E0 POSITIVE REGULATION: inducibility Theme: IL-4 E1 POS-

ITIVE REGULATION: inducibility Theme: STAT-6 E3 POSI-

TIVE REGULATION: inducibility Theme: CD40L

Golden: E1 Positive regulation: inducibility Theme: IL-4

Events identified partially, with-

out wrong event information

generated

40 Sentence: The gene expression of interferon (IFN)-inducible protein 10 (IP-10) (a CXC

chemokine) was markedly augmented by the IFNgamma treatment in PMA- or

RA-differentiated U937 cells, but only marginally in undifferentiated or VitD3-

treated cells.

Extracted:E0 GENE EXPRESSION: gene expression Theme: IP-10

Golden: E3 Gene expression: gene expression Theme: IP-10 E4 Positive regulation: aug-

mented Theme: E3 Cause:IFNgamma

Events identified partially, with

wrong event information gener-

ated

37 Sentence: In this study, the influence of the sequences located between -3134 and -2987 on

the transcriptional activity of the proIL-1beta gene in LPS-stimulated Raw 264.7

cells was examined in detail

Extracted:E1 TRANSCRIPTION: transcriptional activity Theme: proIL-1beta E2 REGU-

LATION: influence Theme: proIL-1beta

Golden: E1 Regulation: influence Theme: E2 E2 Transcription: transcriptional activity

Theme: proIL-1beta

Table 8: Error analysis from the sample data.
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