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A B S T R A C T 

Objective: The main purpose of this research is the novel use of artificial metaplasticity on multilayer 
perceptron (AMMLP) as a data mining tool for prediction the outcome of patients with acquired brain 
injury (ABI) after cognitive rehabilitation. The final goal aims at increasing knowledge in the field of 
rehabilitation theory based on cognitive affectation. 
Methods and materials: The data set used in this study contains records belonging to 123 ABI patients 
with moderate to severe cognitive affectation (according to Glasgow Coma Scale) that underwent reha­
bilitation at Institut Guttmann Neurorehabilitation Hospital (IG) using the tele-rehabilitation platform 
PREVIRNEC®. The variables included in the analysis comprise the neuropsychological initial evaluation of 
the patient (cognitive affectation profile), the results of the rehabilitation tasks performed by the patient 
in PREVIRNEC® and the outcome of the patient after a 3-5 months treatment. To achieve the treatment 
outcome prediction, we apply and compare three different data mining techniques: the AMMLP model, 
a backpropagation neural network (BPNN) and a C4.5 decision tree. 
Results: The prediction performance of the models was measured by ten-fold cross validation and several 
architectures were tested. The results obtained by the AMMLP model are clearly superior, with an average 
predictive performance of 91.56%. BPNN and C4.5 models have a prediction average accuracy of 80.18% 
and 89.91% respectively. The best single AMMLP model provided a specificity of 92.38%, a sensitivity of 
91.76% and a prediction accuracy of 92.07%. 
Conclusions: The proposed prediction model presented in this study allows to increase the knowledge 
about the contributing factors of an ABI patient recovery and to estimate treatment efficacy in individ­
ual patients. The ability to predict treatment outcomes may provide new insights toward improving 
effectiveness and creating personalized therapeutic interventions based on clinical evidence. 

1. Introduction 

An acquired brain injury (ABI) is a brain damage caused by 
events after birth, rather than part of a genetic or congenital dis­
order. It usually affects cognitive, physical, emotional, social or 
independent functioning and can result from either traumatic brain 
injury (TBI) (e.g. physical trauma due to accidents, falls, assaults, 
neurosurgery, etc.) or nontraumatic injury derived from either 

an internal or external source (e.g. stroke, brain tumors, infec­
tion, poisoning, hypoxia, ischemia, encephalopathy or substance 
abuse). 

At present, ABI is a major public health concern and a leading 
cause of disability worldwide. Severe disability resulting from an 
ABI has an estimated incidence of 2 per 100,000 population per 
year and moderate disability 4 per 100,000 population per year. 
The population most at risk suffering ABI are young people aged 
between 15 and 24 years with a male predominance, with traffic 
accidents as the main cause. In USA, it is estimated that 5.3 million 
Americans, more than 2 per of the country, are currently disabled 
due to acquired brain injury. About 1.5 million Americans suffer a 
acquired brain injury every year [1]. In Europe, that incidence is 
estimated between 175 and 200 per 100,000 population per year 
[2]. The World Health Organization (WHO) predicts that by the year 
2020, ABI will be among the ten most common ailments. These 



injuries dramatically change the life of patients and their families 
[3]. 

ABI patients have to go through a rehabilitation process that 
is usually focused on specific areas such as cognitive, motor, sen­
sorial, etc. Rehabilitation of cognitive functions in patients with 
ABI has the objective of increasing the autonomy and quality of 
life of the patients (minimizing and/or compensating for func­
tional alterations in this kind of patients) and their families [4]. The 
treatment consists of hierarchically organized treatment tasks and 
exercises which require repetitive use of the impaired cognitive 
system in a created, progressively more demanding sequence [5]. 
The rapid growth on ABI case numbers and the importance of cog­
nitive functions in daily activities, both demand efficient programs 
of cognitive rehabilitation. 

The recent introduction of automated systems for cognitive 
rehabilitation of patients with ABI generates large amounts of data 
[6,7]. The analysis of these data through information analysis and 
data mining techniques, allows us to obtain new knowledge to 
evaluate and improve the effectiveness of the rehabilitation pro­
cess. Along these lines, the aim of this work is to apply data mining 
techniques to predict treatment outcome in patients with ABI. In 
particular, we use a learning algorithm based on the concept of 
biological metaplasticity as the training algorithm of a multilayer 
perceptron. The artificial metaplasticity on multilayer perceptron 
model is compared with two machine learning methods: a back-
propagation neural network and a C4.5 decision tree. 

The data used in this study has been obtained from 
the PREVIRNEC® platform. PREVIRNEC® is a cognitive tele-
rehabilitation platform for neuropsychological clinical interven­
tions, developed over an architecture based on web technologies. 
It's conceived as a tool to enhance cognitive rehabilitation, 
strengthening the relationship between the neuropsychologist 
and the patient, allowing personalization of treatment and mon­
itoring the performance of rehabilitation tasks. PREVIRNEC® has 
been developed by the Universitat Rovira i Virgili and the 
Technical University of Madrid (Spain), together with the Insti-
tut Guttmann Neurorehabilitation Hospital neuropsychology and 
research departments [7]. 

The remainder of this paper is organized as follows: Section 2 
refers a brief state of the art in data mining techniques applied 
to predict clinical outcomes of patients with ABI. Section 3 intro­
duces artificial metaplasticity (AMP) and the applied mathematical 
theory to support its proposed implementation in artificial neural 
networks (ANNs) with error minimization-based learning. It also 
covers the description of the data set, the backpropagation neural 
network and the C4.5 decision tree used in this study. In Section 
4 the mining process and the experimental results are presented. 
Section 5 shows a brief discussion and, finally, Section 6 presents 
the summarized conclusions. 

2. Predictive data mining in ABI rehabilitation 

Data mining is the extraction of implicit, previously unknown 
and potentially useful information from data [8]. The term data 
mining has become a synonym for "Knowledge Discovery in 
Databases" [9], that emphasizes the data analysis process rather 
than the use of specific analysis methods. Data mining is therefore 
a part of a knowledge discovery process that follows: a number 
of steps: the selection, preprocessing and transformation of data, 
the analysis phase and the interpretation of the patterns extracted. 
Two types of data mining models are distinguished [8,10]: predic­
tive and descriptive. The predictive model makes prediction about 
unknown data values by using the known values. The descriptive 
model identifies the patterns or relationships in data and explores 
the properties of the examined data [10]. 

Data mining has been applied with success in different fields of 
knowledge and in the last few years, it has been increasingly used 
in medical literature [10,11]. One of the objectives of data min­
ing in clinical medicine is to create models that can use specific 
patient information to predict the outcome of interest and to sup­
port clinical decision-making or form the basis of hypotheses for 
future experiments. Data mining methods may be applied to the 
construction of decision models for procedures such as prognosis, 
diagnosis and treatment planning [9,12]. 

Different statistical methodologies and data mining techniques 
have been applied to predict clinical outcomes of rehabilitation 
of patients with ABI. The best-known methods are decision trees 
(DT) and ANNs, both of which are widely used in the ABI literature 
[13,14]. 

Several studies compared ANN directly to another predictive 
models such as multiple regression, adaboost, logistic regression 
and support vector machine (SVM). Andrews et al., conducted a 
comparative study between decision trees and logistic regression 
to predict improvement in patients with ABI [13]. In Yi et al. [14], 
compared different learning techniques (decision tree, adaboost, 
support vector machine and artificial neural networks) to be used as 
a decision support tool based on rules for the treatment of patients 
with TBI. Brown et al., executed a study to consider all clinical ele­
ments available concerning a survivor of TBI admitted for inpatient 
rehabilitation, and identify those factors that predict disability, 
need for supervision, and productive activity one year after injury 
[15]. Rovlias and Kotsou, applied a classification tree to predict the 
evolution of a patient with severe head trauma [16]. With simi­
lar objectives and methodology, in [17], Segal et al., compared the 
accuracy of models based on neural networks with multiple regres­
sion and classification trees to predict the course of 1644 patients 
with TBI. Pang et al. in [ 18], proposed a hybrid model in combining 
different classification techniques (discriminant analysis, logistic 
regression, decision trees, Bayesian networks and neural networks) 
to study the correlation between predictors at the time of admission 
and outcome at 6 months in patients with ABI. In Rughani et al. [19], 
applied an ANN for predicting survival following traumatic brain 
injury and compared its predictive ability with regression models 
and clinicians. 

The research work presented in this paper is focus on the cog­
nitive rehabilitation of patients with acquired brain injury and 
included information about the affectation profile and the rehabili­
tation process that the patient has followed. Our maj or contribution 
is the novel use of AMMLP as a data mining tool for prediction the 
outcome of patients with ABI after cognitive rehabilitation. To eval­
uate the predictive validity of the AMMLP model, we carry out a 
comparative study between this model, a backpropagation neural 
network and a C4.5 decision tree. 

3. Methods and materials 

3.1. Artificial metaplasticity 

The concept of biological metaplasticity was defined in 1996 
by W.C. Abraham [20] and is now widely applied in the fields of 
biology, neuroscience, physiology, neurology and others [20,21 ]. In 
neuroscience and other fields "metaplasticity" indicates a higher 
level of plasticity, expressed as a change or transformation in the 
way synaptic efficacy is modified. Metaplasticity is defined as the 
induction of synaptic changes, that depends on prior synaptic activity 
[22]. 

Recently, researchers as Marcano-Cedeño [23,24], Andina [25] 
and Ropero-Peláez [26], have introduced and modeled the biologi­
cal property of the metaplasticity in the field of the ANNs obtaining 
excellent results. 



Different models and simulations of AMP have resulted in con­
clusions relevant to not only the cybernetics field, but also to 
biology and medicine state-of-the-art [23,26,27]. However, of all 
AMP models tested by the authors, the most efficient model (as a 
function of learning time and performance) is the approach that 
connects metaplasticity and Shannon's information theory, which 
establishes that less frequent patterns carry more information than 
frequent patterns [28]. This model defines artificial metaplasticity 
as a learning procedure that produces greater modifications in the 
synaptic weights with less frequent patterns than frequent pat­
terns, as a way of extracting more information from the former 
than from the latter. As biological metaplasticity, AMP then favors 
synaptic strengthening for low level synaptic activity, while the 
opposite occurs for high level activity. The model is applicable to 
general ANNs, as stated in [25], where Andina et al. propose general 
AMP concepts for ANNs, and demonstrate them over radar detec­
tion data and Marcano-Cedeño et al. applied the same algorithm 
for breast cancer classification [23]. In this paper it has been imple­
mented as a data mining tool for predicting the improvement of 
patients with ABI after cognitive rehabilitation. 

3.2. Artificial metaplasticity algorithm 

The AMP implementation applied tries to improve results in 
learning convergence and performance by capturing information 
associated with significant rare events. It is based on the idea of 
modifying the ANN learning procedure such that un-frequent patterns 
which can contribute heavily to the performance, are considered with 
greater relevance during learning without changing the convergence 
of the error minimization algorithm. It is has been proposed on the 
hypothesis that biological metaplasticity property maybe signifi­
cantly due to an adaptation of nature to extract more information 
from un-frequent patterns (low synaptic activity) that, according 
to Shannon's Theorem, implicitly carry more information. 

3.2.1. Mathematical definitions 
Let us define an input vector for a MLP with n inputs (bias inputs 

are assumed to exist and be of fixed value set to l):xeR", where Rn 

is the n-dimensional space, i.e.x = (xi,X2 x„),x¡ eR1, i = l, 2 
n; and its co rrespondingj outputs given by vectory = (yi,y2 yn), 
y i e (0,1), j= 1, 2 m [29]. Let us consider now the random vari­
able of input vectors X={X\, Xj Xn) with probability density 
function (pdf)/x(x) =/x(xi, X\ x„). The strategy of MLP learn­
ing is to minimize an expected error, EM, defined by the following 
expression: 

% = £{E{x)} (1) 

where E(x) is the expression of an error function between the real 
and the desired network output, being respectively Y=F(X), with 
pdf/y(y) and Yd the desired output vector, and F(X) is the nonlin­
ear function performed by the MLP. The symbol s represents the 
mathematical expectation value, that is, 

E{x)fx{x)dx (2) 

To introduce AMP in the gradient descent algorithm, Eq. (2) has 
been manipulated in the following way: 

e{x)^E{x)fx{x); E„ 
fí(x) ' \fttx) 

(3) 

where a new probability density function (pdf) /¿(x) has been 
introduced, requiring that/J(x) ^ 0 wherever e(x) ^ 0,VxsR"and 
new mathematical expectation, e*, defined in Eq. (3) represents that 
the minimization of EM can also be achieve from statistical inference 
theory applied to Eq. (3), by estimating over the weighted function 
e(x)//x(x) instead of e(x), under /¿(x) pdf, through the following 
estimator: 

EM = 
1- e(x*) 

P^mxt) 
(4) 

where x*k, k 1, 2 , . . . , P, are independent sample vectors whose 
pdf is the weighting function/^(x). Note that many functions may 
fix to the definition of/^(x), in particular: 

L/xMl 
i 

opt • e(x) (5) 

that can be proved by taking Eq. (5) into Eq. (4); only one sim­
ple sample vector (P= 1) is then required for exactly estimating EM 
without error. The optimal solution for/^(x) given by Eq. (5) is not 
realistic, because EM is not known a priori (it has to be estimated by 
Eq. (4)). But, a suboptimal solution can be used. For example, the 
suboptimal solution for/^(x) applied and tested in this paper is: 

/ x M = 
A 1 

y^f./ELi W^ 
(6) 

where wjj(x) is defined as 1 /f¿(x), N is the number of neurons in the 
MLP input layer, and parameters A and B sR+ are algorithm opti­
mization values which depend on the specific application of the 
AMLP algorithm. Values for A and B have been empirically deter­
mined. Eq. (6) is a gaussian distribution, so it has been assumed 
that X pdf is Gaussian (if it is not the case, the real X pdf should 
be used instead). Then, wjj(x) has high values for un-frequent x 
values and close to 1 for the frequent ones and can therefore be 
straightforwardly applied in weights updating procedure to model 
the biological metaplasticity during learning. 

3.2.3. AMP in MLP training: AMMLP 
In the case of an MLP trained with BPA applied to L classes, H¡, 

1 = 0, 1 ¿ - 1 , previous studies have shown that the output for 
each class is the MLP inherent estimation oí a posteriori probability 
of the class [30], based on Bayes Theorem, we then have: 

H¡\ _fx(x/Hl).P(Hl) 
x J fx(x) 

This enables a direct implementation of metaplasticity. For each 
class, by assuming the proposed AMP model described in Section 
3.2.2 can be make/^x) =/x(x) and from Eq. (7) and (4) 

y\ (7) 

3.2.2. AMP in gradient descent algorithm 
Backpropagation algorithm (BPA) for training a MLPs follows 

Widrow gradient descent algorithm over an estimation of this 
expected error in each training iteration, t e N, for determining the 
necessary modification in the ANN weight matrix W(t) in each 
bias and weight value in the MLP [29]. The algorithm objective 
is to reduce the output classification error in subsequent training 
epochs, stopping the training phase if the error is low enough to 
satisfy the design requirements. 

1 s^KtkMx/H,) 
M¡¿-^ 

k=\ 
fx(xk) M,Y,EiXk)P[k) (8) 

where k = 1, 2 . . . , M¡, are the independent sample vectors of class / 
in the training set. Then, from Eq. (8) and (4) 

1 _Ji 
P(H¡) ~ f*{x) 

(9) 
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Eq. (7) takes advantage of the inherent a posteriori probabil­
ity estimation for each input class of MLP outputs, so it is used 
to quantify a pattern's frequency. Note that if this is not the case, 
as it happens in first steps of BPA training algorithm, the training 
may not converge. In this first steps, the outputs of the MLP does 
not provide yet any valid estimation of the a posteriori probabil­
ities, but rather random values corresponding to initial guess of 
the MLP weights,W. It is then better in these first steps of train­
ing, either to apply ordinary BPA training or to use another valid 
weighting function till BPA starts to minimize the error objective. 
Also, many suboptimal functions may yield good results. For exam­
ple, in the following experiments, a typical approximation premise 
that assumes a Gaussian distribution for the inputs has been imple­
mented, proposing the function for weight updating (known as a 
weighting function) [25], given by Eq. (6). 

To analytically introduce AMP in an arbitrary MLP training, all 
that has to be done is to introduce the weighting function in the 
error function between the real and the desired network output, as 
a function of the weights matrix W(t) in each training iteration, r, 
that is 

E*[W(t)] 
E[W(t)] 

(10) 

And apply the BPA [29] to the weighted error £*(W) for weights 
reinforcement in each iteration reN. If s,j, ieN are the MLP layer, 
node and input counters respectively, for each W(t) component, 
wj,s'(t) e R, a n d being ijgR* the learning rate, then the weight rein­
forcement in each iteration is given by: 

dE*[W(t)] 
VJf{t + \) = wf{t)-T1 

,(s) 

dwf % V ) " V-F 
1 dE[W{t)] 

dwf 
(11) 

So, as the pdf weighting function proposed is the distribution of 
the input patterns that does not depend on the network parame­
ters, the AMMLP algorithm can then be summarized as a weighting 
operation for updating each weight in each MLP learning iteration 

A*w = w*(x)Aw (12) 

being Aw = w(t + 1) - w{t) the weight updating value obtained by 
usual BPA and w*(x) the realization of the described weighting 
function w*(x) for each input training pattern x. 

3.3. Algorithms review 

3.3.1. Backpropagation neural network 
Backpropagation neural network (BPNN) is the most widely 

used search technique for training neural networks. Information in 
ANN is stored in the connection weights which can be thought of as 
the memory of the system. The purpose of BP training is to change 
iteratively the weights between the neurons in a direction that 
minimizes the error E, defined as the squared difference between 
the desired and the actual outcomes of the output nodes, summed 
over training patterns (training data set) and the output neurons. 

The algorithm uses a sample-by-sample updating rule for 
adjusting connection weights in the network. In one algorithm iter­
ation, a training sample is presented to the network. The signal is 
then fed in a forward manner through the network until the net­
work output is obtained. The error between the actual and desired 
network outputs is calculated and used to adjust the connection 
weights. Basically, the adjustment procedure, derived from a gra­
dient descent method, is used to reduce the error magnitude. The 
procedure is firstly applied to the connection weights in the output 
layer, followed by the connection weights in the hidden layer next 
to output layer. This adjustment is continued backward through 
to network until connection weights in the first hidden layer are 
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Fig. 1. Classification the cognitive functions and their respective subfunctions 
according to Institut Guttmann Neurorehabilitation Hospital. 

reached. The iteration is completed after all connection weights in 
the network have been adjusted [23,31]. 

3.3.2. C4.5 decision tree 
A C4.5 decision tree is a decision support tool that uses a tree­

like graph or model of decisions and their possible consequences, 
including chance event outcomes, resource costs, and utility [9]. 
DT are commonly used in operations research, specifically in deci­
sion analysis, to help identify a strategy most likely to reach a goal. 
Another use of decision trees is as a descriptive means for calculat­
ing conditional probabilities. In data mining and machine learning, 
a decision tree is a predictive model; that is, a mapping from obser­
vations about an item to conclusions about its target value. More 
descriptive names for such tree models are classification tree (dis­
crete outcome) or regression tree (continuous outcome). In these 
tree structures, leaves represent classifications and branches repre­
sent conjunctions of features that lead to those classifications. The 
machine learning technique for inducing a C4.5 from data is called 
decision tree learning, or (colloquially) decision tree. DT can classify 
variables according to a certain rule or classify data based on some 
data characteristics [32]. The goal of all decision tree algorithms is 
to maximize the "distance" between groups when splitting. Since 
evaluation measures of the "distance" are different, this allows to 
differentiate the decision tree algorithms. After the decision tree 
model is established, we can compute the error rate to pruning 
the decision tree. Pruning is a behavior that improves the predic­
tion and classification ability of decision trees. In this research we 
have used a DT with three levels of pruning to compare the results 
obtained by AMMLP and BPNN. 

3.4. Data description 

The Institut Guttmann Neurorehabilitation Hospital (IG)[33] 
is specialized in the comprehensive rehabilitation and medi­
cal/surgical treatment of peoples suffering from spinal cord injury, 
acquired brain injury or other serious physical disabilities of neuro­
logical origin. One of the areas of expertise of IG is the rehabilitation 
of cognitive functions in patients with ABI. IG classifies the cognitive 
functions in the following domains: attention, executive function 
and memory (See Fig. 1). 

As a first step of the IG cognitive rehabilitation process, the 
patients are administered a neuropsychological (NPS) assessment 
battery at admission for evaluating their cognitive functions. The 
NPS is the instrument that allows us to make a proper assess­
ment of the patient's cognitive profile, while functional and 
psychosocial scales reflect the impact of deficits in daily life. 
The NPS assessment battery used by the IG includes 27 items 
covering the major cognitive domains (attention, memory and 



Table 1 
Cognitive functions, subfunctions, neuropsychological tests and items/attributes selected for this research. 

Functions Subfunctions Neuropsychological test Item 

Attention 

Memory 

Executuve functions 

Sustained 

Selective 

Splitted 

Work 

Verbal 
Immediately 
Short period 

Visual 
Long period 
Recognition 

Planning 

Inhibition 

Flexibility 

Sequencing 

Categorization 

CPT 

WAIS-II1 

STROOP 

WAIS-II1 

PIENC 
STROOP 
WAIS-II1 
TMT 

WAIS-II1 
WAIS-II1 

WAIS-II1 
RAVLT 

RAVLT 
RAVLT 

WAIS-II1 
WAIS-II1 
STROOP 
WAIS-II1 
WCST 
PRM 
WAIS-II1 
TMT 
WCST 

CPT.OMISSIONS 
CPTXOMISSIONS 
CPT.TR 
TMT-A 
STROOP-WORD 
STROOP-COLOR 
STROOP-WORD-COLOR 
DIGIT SYMBOL CODING 
IMAGES 
STROOPJNTERFERENCE 
LETTER-NUMBER SEQUENCING 
TMT-B 

BACKWARD DIGIT SPAN 
LETTER-NUMBER SEQUENCING 

FORWARD DIGIT SPAN 
RAVLT075 

RAVLT015 
RAVLT015R 

BLOCK DESIGN 
LETTER-NUMBER SEQUENCING 
STROOPJNTERFERENCE 
LETTER-NUMBER SEQUENCING 
WCST.PERSEVERATIVE ERRORS 
PRM 
BLOCK DESIGN 
TMT-B 
WCSTXATEGORIES 

executive functions) measured using standardized cognitive tests 
(see Table 1). This first evaluation allows us to know the ini­
tial cognitive profile of patient's affectation. After NPS initial 
evaluation all patients initiate a three to five months rehabilita­
tion program adequated to their degree of affectation by means 
of PREVIRNEC® platform program. This computerized platform 
enables patients to perform different tasks during their rehabili­
tation sessions. 

Once finished rehabilitation program, the patients are admin­
istered the NPS assessment battery again. Differences between 
pre and post treatment NPS test scores are used to measure 
patient's improvements in the domains of attention, memory 
and executive functions, and their respective subfunctions (see 
Table 1). These changes are assigned to one of the following 
labels: improvement, no improvement, normal, NSI (No significant 
improvement). 

One hundred and twenty-three IG's ABI patients suffering mod­
erate to severe cognitive affectation that underwent rehabilitation 
treatment with PREVIRNEC® platform from November 2007 to 
November 2009 were included in this analysis. 

PREVIRNEC® is composed of a set of rehabilitation tasks 
for training different cognitive functions: attention, memory, 
executive functions and language. At the time of this analysis 
PREVIRNEC® included two hundred and fifteen rehabilitation tasks. 
Once a specific task is executed, the result (0-100 real number) is 
registered in the platform. Only the results of the task "memory" 
have been included to simplify the analysis. The task "memory", 
designed to train the cognitive subfunction verbal-visual mem­
ory, has been selected because of its high number of executions 
(up to 3396). The analysis also includes the normalized values of 
some items selected from the neuropsychological assessment bat­
tery (the 4 related to cognitive subfunction verbal-visual memory, 
see Table 1), some demographic data (age and education level, see 
Table 2), and the outcome of the patient once the treatment is con­
cluded. A more detailed description of the features included in the 
analysis is presented below: 

• Age group: each participant age is categorized in 3 groups: Group 
1 (from 17 to 30 years old), Group 2 (from 31 to 56 years old) and 
Group 3 (> 56). Prediction code "AGE". 

• Educational level: each participant education background level is 
categorized in 3 groups: Group 1 (Elementary School), Group 2 
(High School) and Group 3 (University). Prediction code "EDU-
LEVEL". 

• Wechsler adult intelligence scale, (WAIS-III): is used to measure 
adult and adolescent intelligence. In this research, the SPAN item 
of the WAISS-III has been included and its value has been normal­
ized according to the International Classification of Functioning, 
Disability and Health (ICF) [33]: 0-normal, 1-mild affectation, 2-
moderate affectation, 3-severe affectation, 4-acute affectation. 

• The rey auditory-verbal learning test, (RAVLT): it is widely used in 
the neuropsychological assessment for evaluating verbal learn­
ing and memory. It's easy to understand, and appropriate for 
both children and adults (ages 7-89). In this research three 
items of this test have been included: MRAVL075, MRAVL015, 
MRAVL015TR and their values have been also normalized accord­
ing to the International Classification of Functioning, Disability 
and Health (ICF) [34]: 0-normal, 1-mild affectation, 2-moderate 
affectation, 3-severe affectation, 4-acute affectation 

• Result: is the result obtained by the patients in the execution of 
the rehabilitation tasks in PREVIRNEC® platform, with a range of 

Table 2 
Statistical distribution of demographic variables used in this research. 

Variables »(«) 

Age 1 (from 17 to 30 years old) 
Age 2 (from 31 to 55 years old) 
Age 3 (> 56 years old) 

Education 
Edu 1 (elementary school) 
Edu 2 (high school) 
Edu (university) 

53(43.09) 
42(34.15) 
28(22.76) 

60(48.78) 
40(32.52) 
23(18.70) 



Table 3 
Summary of the attributes and classes used in this research. 

Attribute number Code attribute Value of attribute 

1 AGE 1-3 
2 EDU-LEVEL 1-3 
3 SPAN 1-4 
4 RAVL075 1-4 
5 RAVL015 1-4 
6 RAVL15R 1-4 
7 RESULT 0-100 
8 IMPROVEMENT Yes/No 

[0,100]. In this study, these results belong to the task "memory". 
Prediction code "RESULT". 

• Improvement: for each cognitive function, improvement values 
are obtained from neuropsychological assessments as the dif­
ference of pre and post values. Improvement takes (Yes/ No: no 
improvement and NSI). Prediction code "IMPROVEMENT". 

Data sets 
The data set consists of 3396 samples taken from the task "mem­

ory" of PREVIRNEC® database.The database contains 1702 (50.12%) 
improvement samples and 1694 (49.88%) no improvement samples 
(which includes "no improvement" and "NSI"). Each record in the 
database have eight attributes and is associated with its class label, 
which is either improvement or not improvement (see Table 3). 

3.5. Methods and algorithms implemented 

3.5.1. The artificial metaplasticity on multilayer perceptron 
algorithm in MATIAB 

100 AMMLPs with different initial weights, sampled from ran­
dom values of a normal distribution (mean of 0 and a variance of 1) 
has been generated. In each experiment, 100 networks were trained 
to achieve an average result that is independent of the initial ran­
dom value of the ANN values. Two different criteria were applied 
to stop training: in one case, training was stopped when the error 
reached 0.001 (error decreases but cannot reach to 0). Training was 
performed with different numbers of epochs 1000, 2000 and 3000 
and learning rate (LR.) 0.2, 0.5,1.0 respectively. 

The AMMLP algorithm was developed in MATLAB (MATLAB ver­
sion 7.6.0.324, R2008a) and on a 3.4 GHz Pentium IV computer with 
2 GB of RAM. 

3.5.2. Backpropagation neural network andJ48 provided by 
WEKA 

Waikato environment for knowledge analysis (WEKA), Version 
3.4.3 was the data mining platform for the BPNN and DT algorithms 
executions. WEKA was developed at the University of Waikato in 
New Zealand [35], it is written in Java, is available on the Inter­
net [35], and comprises a variety of data-mining algorithms. The 
J48 classifier algorithm is the WEKA implementation of the C4.5 
decision tree [12]. 

In the Weka J48 classifier, lowering the confidence factor 
decreases the amount of post-pruning (the parameter altered to 
test the effectiveness of post-pruning in Weka is the confidence 
factor). For this research we used three different confidence fac­
tors (0.25, 0.3 and 0.5) and we obtained three different decision 
trees: DT1.DT2 and DT3. For the BPNN, we used the same network 
structure that was applied to the AMMLP. 

3.6. Performance evaluation methods 

To measure the performance of the models used in this study, 
the evaluation has been divided into two parts: the first was to 
determine models accuracy, which is related to the prediction 

accuracy, analysis of sensitivity and specificity, and the confusion 
matrix (this measures are built from a confusion matrix which 
records correctly and incorrectly recognition such as the true 
positive (TP), false positive (FP), false negative (FN) and the true 
negative (TN) in binary classification) [23]. The second part of the 
evaluation uses a receiver operating characteristic (ROC) to derive 
a curve of the results obtained from the first part of the evaluation. 
The area under the ROC curve (AUC) is calculated to measure the 
performance of the models. 

3.6.2. Receiver operating characteristic curve 
The receiver operating characteristic (ROC) curve is a two-

dimensional measure of classification performance that is widely 
used in biomedical research to assess the performance of diagnos­
tic tests [23]. A ROC curve is a plot of sensitivity vs. specificity, or 
equivalently, the true positive fraction vs. the false positive fraction, 
computed from the application of a series of thresholds to the sys­
tem output. ROC graphs plot false positive specificity rates on the 
x-axis and true positive sensitivity rates on the y-axis. A simple, 
easy to implement approach for generating ROC curves involves 
collecting the probabilities for all the various tests, along with the 
true class labels of the corresponding instances, and generating a 
single ranked list based on the data [23]. If the ROC curve rises 
rapidly towards the upper right-hand corner of the graph, or if the 
area value of the curve is large, the test can be described as working 
well. An area close to one indicates that the test is reliable, while 
an area close to one half indicates that the test is unreliable. 

3.6.2. The area under the receiver operating characteristic curve 
The area under the ROC curve (AUCROC) is used as a measure 

of diagnostic capability of the dataset. The AUC value will always 
satisfy the following inequalities: 

0 < AUC< 1 

It is clear that an AUC close to one indicates a very reliable diag­
nostic test [23]. The AUC values obtained in this case were of 0.926, 
0.846 and 0.899 for AMMLP, BNPP and DT. 

4. Results 

This section presents the results obtained by the AMMLP, BPNN 
and DT models in the prediction of the outcome of ABI patients after 
cognitive rehabilitation. The results are analyzed and compared in 
order to determine the best predictive model. 

To evaluate the performance of the prediction models, 10-fold 
cross-validation was selected, which is known to provide a good 
estimation of the generalization error of a classifier. With a 10-
fold cross-validation procedure, the data set is split into 10 non-
overlapping subsets of equal size. Each subset is divided in such 
a way that contains approximately the same number of examples 
from each class [9]. A classifier is trained 10 times, each time using 
a version of the data in which one of the subsets is omitted (testing 
data). Each trained classifier is then tested on the data from the 
subset which was not used during training. The results are averaged 
over the 10 classifiers to obtain an overall error estimate [9]. In this 
study the data set was split in 9 subsets with 340 records and 1 
subset with 336. 

Architecture model selection 
In this study, different structures and parameters were tried in 

order to find the optimal choices for each method. The top three 
results of each model are presented in this subsection. In the case 
of AMMLP we used network parameters recently applied to other 
studies as the initial metaplasticity parametres A and B (see [25,36] 
and, specifically, [23]). Table 4 shows the three best architectures 
for the AMMLP model. 



Table 4 
Best network structures and metaplasticity parameters for AMMLP algorithm. 

Model Network structure Metplasticity 
parameters 

Mean squared error LR. Epoch Training time 
ts) 

Prediction accuracy {%) 

HL2 O3 

Where I1: Input, HL2: Hidden Layer, O3: Output. 

Table 5 
Network structure and parameters for BPNN model. 

Where I1: Input, HL2: Hidden Layer, O3: Output 

Training Testing 

AMMLPl 
AMMPL2 
AMMLP3 

4 
4 
4 

4 
5 
8 

1 
1 
1 

37 
39 
38 

0.02 
0.5 
0.4 

0.001 
0.001 
0.001 

1 
0.5 
0.2 

2000 
1000 
3000 

77.51 
88.79 
75.22 

97.58 
95.85 
94.45 

92.07 
91.36 
90.72 

Model 

BPNNl 
BPNN2 
BPNN3 

Network structure 

I1 

4 
4 
4 

HL2 

4 
5 
8 

O3 

1 
1 
1 

Mean squared error 

0.001 
0.001 
0.001 

L.R. 

1 
0.5 
0.2 

Epoch 

2000 
1000 
3000 

Training 

140.48 
14.56 

150.98 

time (s) Prediction 

Training 

85.58 
84.85 
84.18 

accuracy (%) 

Testing 

81.09 
80.89 
79.89 

Table 6 
DT with different confidence factors. 

Model Confidence 
factor (%) 

Minimum Training 
number time (s) 
objects {%) 

Prediction 
accuracy (%) 

Training Testing 

DTI 
DT2 
DT3 

0.3 
0.5 
0.25 

2 
2 
2 

90.35 
91.25 
90.45 

91.98 
91.69 
92.45 

89.10 
89.25 
9033 

set (x, y) is composed by 4 elements: AGE, EDU-LEVEL, RESULT 
and one of the four items related to the cognitive subfunction ver­
bal/visual memory of the NPS assessment battery administered 
at the beginning of the rehabilitation process (ASPAN, RAVLT075, 
RAVLT015, MRAVL015TR). The class label is the patient improve­
ment (YES/NO). 

The resulting ROC curves and the AUC value for the three meth­
ods used in this research are presented in Fig. 2. 

5. Discussion 

In order to compare the performance of the AMMLP model with 
the BPNN one, we used the same network structure for both models 
(see Table 5). 

To determine the best C4.5 architecture, we generate different 
models varying the confidence factor. Table 6 shows the three best 
configurations obtained. 

Tables 7-9 summarized the prediction accuracy get by the 
three models evaluated. The input data for each learning algo­
rithm is a collection of records which structure is described in 
Table 2. Each record corresponds to one execution of the reha­
bilitation task "memory" and is characterized by a tuple (x, y), 
where x is the attribute set and y is the class label. The attribute 

The prediction performance ofthe models was measured by ten­
fold cross-validation and several architectures were tested for each 
of them. As shown in Tables 7-9, the results obtained by the AMMLP 
are clearly superior to those obtained by the BPNN and C4.5 in 
terms of specificity, sensitivity and prediction accuracy. Prediction 
average accuracy of AMMPL, that measures the amount of correctly 
classified samples, rises to 91.56%. BPNN and C4.5 models have a 
prediction average accuracy of 80.18% and 89.91 % respectively. The 
results obtained by AMMLP in the ROC curve and in the AUC ROC 
were also superior to those obtained by BPNN and DT. The excellent 
performance ofthe AMMLP model allows us to predict the improve­
ment of a patient with ABI from the cognitive affectation profile and 

Table 7 
AMMLP prediction accuracy for the three best model architectures. 

Model 

AMMLPl 
AMMLP2 
AMMLP3 

ASPAN (%) 

92.07 ± 0.7 
91.18 ± 0.9 
90.08 ± 0.8 

RAVLT075 (%) 

91.78 ±0.9 
90.50 ± 0.5 
90.47 ± 0.7 

RAVLT015 (%) 

90.54 ±0.6 
89.78 ± 0.8 
89.83 ± 0.9 

MRAVL015TR(%) 

91.88 ±0 .5 
90.15 ± 0.8 
90.26 ± 0.8 

Model average {%) 

91.56 ±0.6 
90.42 ± 0.7 
90.71 ± 0.8 

Table 8 
BPNN prediction accuracy for the three best model architectures. 

Model 

BPNNPl 
BPNNP2 
BPNNP3 

Table 9 
Prediction acci 

Model 

iracy 

ASPAN (%) 

81.09 ± 1.1 
80.40 ± 1.3 
80.86 ± 1.4 

for C4.5 with different confidence 

ASPAN (%) 

RAVLT075 (%) 

80.25 ±0.7 
78.50 ± 0.9 
77.75 ± 0.8 

factors. 

RAVLT075 (%) 

RAVLT015 (%) 

79.35 ± 0.7 
67.70 ± 0.5 
75.26 ± 0.8 

RAVLT015 (%) 

MRAVL015TR(%) 

80.02 ± 0.8 
76.30 ± 0.6 
78.40 ± 0.8 

MRAVL015TR(%) 

Model average {%) 

80.18 ±0.6 
75.70 ± 0.6 
78.07 ± 1.0 

Model average {%) 

DTI 
DT2 
DT3 

88.24 ± 0.8 
80.24 ± 0.5 
90.33 ±0.9 

88.67 ± 0.8 
89.75 ± 0.4 
90.80 ± 0.8 

80.47 ± 0.8 
89.32 ± 0.6 
89.47 ± 0.6 

88.48 ± 0.8 
88.60 ± 0.5 
89.05 ± 0.6 

87.97 ± 0.8 
89.23 ± 0.5 
89.91 ± 0.7 



ROC Curves for AMMLP, DT and BNPP 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1-Specificity (False Positive rate) 

Fig. 2. ROC curves for the methods used in this research. 

Table 10 
Specificity, sensitivity and prediction accuracy obtained by AMMLP, BPNN and C4.5 
models for the tupia (AGE, EDU-LEVEL, RESULT, ASPAN, IMPROVEMENT). 

Model 

AMMLPs 
BPNNs 
DT 

Prediction {%) 

Specificity 

92.38 ± 0.9 
88.43 ± 1.4 
90.75 ± 0.8 

Sensitivity 

91.76 ± 0.6 
73.64 ± 1.1 
89.89 ± 0.9 

Accuracy 

92.07 ±0.7 
81.09 ± 1.2 
90.33 ± 0.9 

the information of the rehabilitation tasks performed. The best sin­
gle AMMLP model provided a specificity of 92.38%, a sensitivity of 
91.76% and a prediction accuracy of 92.07%, and corresponds to the 
input data containing the item ASPAN of the neuropsychological 
assessment battery. Considering the results obtained by the three 
prediction models, the variable ASPAN is the best predictor of out­
come of all the neuropsychological battery items included in this 
study (see Table 10). 

6. Conclusion and future works 

ABI constitutes a major and increasing social and healthcare 
concern of a great diagnostic and therapeutic complexity. Its high 
recurrence and survival rate afterthe initial critical phases, makes it 
a prevalent problem that needs to be addressed. Cognitive rehabil­
itation improves disorders related to memory, attention, language, 
etc. and increases the patient's autonomy. In order to optimize the 
rehabilitation process, treatments must be intensive, personalized 
to the patient's condition and evidence-based; and require constant 
monitoring. 

Currently, there is a lack of knowledge regarding patients' 
affectation profiles and the combination of therapeutic tasks that 
optimize the treatment's effectiveness. This research work tries to 
deal with this situation by analyzing the outcome of ABI patients 
as a function of the cognitive affectation profile, obtained from 
the neuropsychological initial evaluation of the patient, and the 
rehabilitation program he has followed. 

In this work we have presented a novel use of the AMMLP model 
as a data mining tool for prediction the outcome of ABI patients 

after cognitive rehabilitation. The AMMLP model have been com­
pared with: a backpropagation neural network (BPNN) and a C4.5 
decision tree. The Institut Guttmann Neurorehabilitation Hospi­
tal (IG) database has been used to test the models. This database 
contains data collected from PREVIRNEC® platform, a cognitive 
tele-rehabilitation platform integrated to the clinical practice of IG 
and other 14 rehabilitation centers. In light of the results obtained, 
the AMMLP prediction model outperforms the BPNN and the C4.5 
models with an average prediction accuracy that rises to 91.56%. 

The results obtained and the knowledge process defined, allow 
us to better understand the cognitive rehabilitation process in 
patients with ABI, to generate hypothesis about the rehabilitation 
program that better fits the patient's affectation and thus, to aid 
clinicians in the design of more effective treatment methods. 

We are currently extending the analysis to include new data 
mining techniques and patients' data. As a next step, we also 
plan to introduce information about other cognitive functions, as 
the items of the neuropsychological assessment battery and the 
results of the rehabilitation tasks related to attention and exec­
utive functions. With these extensions the method will provide 
clinicians and researchers with a deeper analysis on ABI patients' 
outcome. 
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