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Abstract

Objective: Anemia is a frequent comorbidity in hemodialysis patientsthat can be successfully treated by administering
erythropoiesis-stimulating agents (ESAs). ESAs dosing iscurrently based on clinical protocols that often do not account for
the high inter- and intra-individual variability in the patient’s response. As a result, the hemoglobin level of some patients oscillates
around the target range, which is associated with multiple risks and side-effects. This work proposes a methodology based on
reinforcement learning (RL) to optimize ESA therapy.
Methods: RL is a data-driven approach for solving sequential decision-making problems that are formulated as Markov decision
processes (MDPs). Computing optimal drug administration strategies for chronic diseases is a sequential decision-making problem
in which the goal is to find the best sequence of drug doses. MDPs are particularly suitable for modeling these problems dueto their
ability to capture the uncertainty associated with the outcome of the treatment and the stochastic nature of the underlying process.
The RL algorithm employed in the proposed methodology is fitted Q iteration, which stands out for its ability to make an efficient
use of data.
Results: The experiments reported here are based on a computationalmodel that describes the effect of ESAs on the hemoglobin
level. The performance of the proposed method is evaluated and compared with the well-known Q-learning algorithm and with a
standard protocol. Simulation results show that the performance of Q-learning is substantially lower than FQI and the protocol.
When comparing FQI and the protocol, FQI achieves an increment of 27.6% in the proportion of patients that are within the targeted
range of hemoglobin during the period of treatment. In addition, the quantity of drug needed is reduced by 5.13%, which indicates
a more efficient use of ESAs.
Conclusion: Although prospective validation is required, promising results demonstrate the potential of RL to become an alternative
to current protocols.

Keywords: reinforcement learning, Markov decision processes, fittedQ iteration, chronic kidney disease, renal anemia,
darbepoietin alfa

1. Introduction

Anemia is a common complication characterized by a re-
duced concentration of hemoglobin (Hb) that occurs in over
90% of patients undergoing hemodialysis [1]. Hemodialysis
is the most common treatment for patients in advanced stages
of chronic kidney disease (CKD), particularly in its end state,
commonly referred as end-stage renal disease (ESRD). In the
last years the prevalence of ESRD has increased substantially,
reaching more than 1000 per million population in most of
the developed countries [2]. In some countries, such as USA
and Japan, the current prevalence is over 2000 per million [2].
ESRD involves a gradual loss of kidney function over time,
which produces, among other health problems, a poor produc-
tion of erythropoietin (EPO). This hormone regulates the red
blood cell (RBC) production, a class of cells rich in Hb. Low
Hb levels are associated with heart disease, poorer overallqual-
ity of life, and increased mortality [3, 4].

Current standard treatment of anemia consists mainly of
the administration of erythropoiesis-stimulating agents(ESAs).

The response to this kind of drugs is known to have a large
inter- and intra-interindividual variability due to differences in
background characteristics, disease severity, comorbidities and
concurrent medications [5, 6]. Although there exist protocols
to help physicians determine the appropriate dose, achieving
stable Hb levels within the target range can be complex and
often requires dose titration. Results from several studies sug-
gest that a phenomenon known as Hb cycling is a common oc-
currence in ESA-treated patients [7, 8]. Hb cycling is defined
as the cyclical, repeated, up and down movement of Hb lev-
els during ESA treatment. The exact causes of Hb cycling are
not yet completely understood; however, a number of possible
reasons have been proposed. Fishbane and Berns [9] suggested
two ESA management practices as major causes. First, the use
of rigid dose adjustment protocols that do not account for the
high heterogeneity in patient response. Second, narrow Hb tar-
get ranges recommended in clinical guidelines [10, 11], which
need frequent dose changes. The effect of an ESA dose change
does not reach a steady state until 70-120 days (RBC lifespan).
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When doses are changed frequently, it is difficult to take into
account the long-term effects of each dose, and often they are
ignored [12, 13]. The link between Hb cycling and the devel-
opment of several diseases [7] together with the high cost of
the treatment (e.g., around $2.3 billions per year in USA [2])
justifies the need to improve current protocols.

The widespread use of electronic medical records is giving
rise to large amounts of data that could be useful to reduce
medical errors, improve treatments and minimize side effects
and costs [14]. This work proposes a methodology based on
reinforcement learning (RL) to optimize ESA therapy. RL is
a data-driven approach for solving sequential decision-making
problems that are formulated as Markov decision processes
(MDPs) [15]. Computing optimal drug administration strate-
gies for chronic diseases is a sequential decision-making prob-
lem in which the goal is to find the best sequence of drug doses.
MDPs are particularly suitable for modeling these problemsdue
to their ability to capture the uncertainty associated withthe
outcome of the treatment and the stochastic nature of the under-
lying process [16–18]. The standard approach to solve MDPs is
dynamic programming (DP); however, the practical application
of DP is limited because it cannot deal with large-scale prob-
lems and requires full knowledge of the MDP model, including
the transition probability function. In contrast, RL (alsoknown
as approximate dynamic programming (ADP)) uses function
approximation to address large-scale problems and the data
sampled from the process to implicitly represent the transition
function [19]. RL can exploit the information contained in med-
ical records to compute policies of ESA administration tailored
to the individual characteristics of each patient. In addition, the
optimization process is made over sequences of doses instead
of isolated doses, which is crucial to include the drug long-term
effects.

The methodology proposed in this work uses the algorithm
fitted Q iteration to learn a policy of ESA administration from
a set of medical records. The features employed to define the
MDP model are extracted in part from the laboratory tests and
in part from a clustering procedure of the patient’s main at-
tributes. In order to test the methodology, a series of exper-
iments has been conducted using a computational model that
simulates the response of the patients. The performance has
been assessed against the algorithm Q-learning and a standard
protocol of dose adjustment.

The rest of the paper is organized as follows. Next section
provides a brief review of related work in this domain. Section 3
introduces the necessary background in RL and briefly ex-
plains the algorithms employed in the experiments, namely,Q-
learning and fitted Q iteration. The latter algorithm makes use
of extremely randomized trees, a supervised learning method
that is described in Section 4. Section 5 discusses the com-
putational model used in the experiments to simulate patients’
response to ESA. Anemia management formulation using the
MDP framework is presented in Section 6. Experiments carried
out are detailed in Section 7. Section 8 shows and discusses the
achieved results. Finally, conclusions and proposals for further
work are given in Section 9.

2. Literature review

The idea of using a data-driven method to optimize ESA ad-
ministration is not new. Artificial neural networks have been
used by several authors during the last decade to individualize
ESA doses [20–22]. In general, those methods used current and
previous Hb levels, ESA doses, and other variables that describe
the patient’s condition, in order to predict the next Hb level. The
goal of those previous works was to select the optimal ESA
dose in order to achieve a given Hb level. This approach is suit-
able only when the optimization horizon is the next time step.
On the contrary, the aim of ESA therapy is the long-term Hb
stabilization. The same idea has been applied using other ma-
chine learning techniques, such as fuzzy logic [23, 24], support
vector machines [25] or Bayesian networks [26].

Model predictive control (MPC) is a method of process con-
trol whose main advantage is that it incorporates a finite time-
horizon in the optimization process. Gaweda et al. [27] showed
that MPC may result in improved anemia management. A ma-
jor difficulty of MPC is the requirement of an accurate system
model. Even if the system model is available, RL has shown to
be competitive with MPC [28].

RL in the context of anemia management was previously
studied by Gaweda et al. [29] and Martı́n-Guerrero et al. [30].
Both agree in the potential of RL to become an alternative to
currently used protocols. The algorithm employed in those
works was the popular Q-learning [31]. This algorithm has
been widely used in some fields as robotics because it requires
little computation and can work in real time. However, Q-
learning makes an inefficient use of the data, thus, it is not suit-
able for problems in which acquiring data is costly [32]. Fitted
Q-iteration (FQI) [33] is a relatively new RL algorithm thatsig-
nificantly reduces the quantity of data required to learn useful
policies. Recently there has been a growing interest in apply-
ing FQI to optimize the treatment of several diseases including
HIV /AIDS [34], psychiatric disorders [35], epilepsy [36, 37],
schizophrenia [38, 39] or smoking addiction [40]. To the au-
thors’ knowledge, this is the first work that applies FQI to the
optimization of anemia treatment.

3. Reinforcement learning

Reinforcement learning (RL) is a general class of algorithms
in the field of machine learning for solving decision-making
problems where decisions are made in stages [41]. Such prob-
lems are present in a wide range of fields, including operations
research [42, 43], artificial intelligence [44, 45], automatic con-
trol [46], or medicine [30]. The standard RL setting consists of
an agent (or controller) in an environment (or system). Eachde-
cision (also called action) produces an immediate reward. The
agent learns to perform actions in order to maximize the reward
collected over time. The goal is defined by the user through
the reward function. Contrary to other approaches, RL does not
rely on a mathematical model of the system, but is based on
experience (or data). The agent obtains experience interacting
with the environment. Fig. 1 represents the main RL elements
and how they interact. At each stage or discrete time-pointk,
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Figure 1: Elements of RL and their flow of interaction.

the agent receives the environment’s state, and on that basis se-
lects an action. As a consequence of its action, in the next time
step, the agent receives a numerical reward and the environment
evolves to a new state. The agent selects actions depending on
the environment state using a policy that assigns an action to
every state. Typically, the agent modifies the policy as a result
of the interactions with the environment.

The elements of the RL problem can be formalized using the
Markov decision processes (MDPs) framework. Next, in Sec-
tion 3.1, MDPs are used to formally introduce the basic compo-
nents of RL. Then, the algorithms used in this work, Q-learning
and fitted Q iteration, are briefly described in Section 3.2.

3.1. Markov decision processes

Markov decision processes are a general mathematical
framework for modeling sequential decision-making problems.
An MDP is defined by the following elements:

• A set of states, S: At each discrete time-pointk, the envi-
ronment occupies a statesk ∈ S. The state usually is com-
posed by a vector whose components describe the current
situation of the environment. As time passes, the vector
values evolve in part as consequence of the actions ap-
plied by the agent and in part stochastically. The state can
simply be a variable observed directly from the environ-
ment, or a more complex structure such as a set of vari-
ables highly processed which combines information about
the current and the past situations of the environment1.

• A set of actions, A: The agent applies an actionak ∈ A in
each state. The state in the next instant,sk+1, is influenced
by the current action. The actions are the mechanism em-
ployed by the agent to control or guide the evolution of the
environment.

• A transition probability function, P : S×A×S→ [0, 1):
After actionak is taken in the current state, the transition
function gives the probability of the next state, i.e., this
function describes how the state evolves.

• A reward function, ρ : S×A×S→ R: Each transition be-
tween states generates a rewardrk+1 = ρ(sk, ak, sk+1) that

1The only requirement is that the state should contain enoughinformation
to fulfill the Markov property (see Section 6.2 for more details).

evaluates the immediate effect of the transition, but it does
not provide information about its long-term effects. The
reward function is defined by the user and implicitly codi-
fies the goal of the agent. Notice that the reward function
does not describe how to achieve the goal, but the agent
must learn how to act from experience.

Suppose a patient suffering from a certain disease that re-
quires long term treatment with a particular drug. Usually,the
aim is to administrate a suitable sequence of doses in order to
control a variable (or several variables) related to the severity of
the disease. For example, in anemic patients, Hb level is used to
measure the degree of anemia. The MDP framework can be ap-
plied to this problem modeling the patient as the environment.
In this case, the state should contain all the information relevant
to choose a proper treatment. In addition to the current level of
Hb, the state may include other factors that can influence theef-
fect of the treatment such as the physical characteristics of the
patients or their nutritional condition. The set of actionsare the
possible treatments (or drug doses) that can be administered to
the patient. After each treatment, the patient status evolves to
a new state. The new state will be in part a consequence of the
treatment, and in part a consequence of other aspects that can-
not be controlled by the agent, like for example the presenceof
inflammation or blood losses. If the objective of the treatment
is to maintain the Hb level within a range, the reward function
can be defined to provide a positive reward when the Hb level
is between the limits of the target range and a negative reward
in otherwise.

The agent selects actions according to its policyπ : S → A.
The policy is a function that maps states to actions, i.e., for each
possible state of the environment, the policy indicates theaction
that should be performed:

π(s) = a (1)

The objective of the agent is to learn a policy that maximizes
the sum of rewards received over time, a quantity known as
return. Such a maximizing policy, denoted byπ∗, is said to
be optimal. The return usually is computed using the infinite-
discounted horizon. In such a case, the return for an initialstate
s0 and under the policyπ is [47]:

Rπ(s0) = lim
K→∞

Esk+1|sk,π(sk)















K
∑

k=0

γkρ(sk, π(sk), sk+1)















(2)

whereγ ∈ [0, 1) is the discount factor. This parameter can be
intuitively interpreted as a way to balance the immediate reward
and future rewards. Future rewards are more relevant for the
calculation of the return asγ approaches 1.

To find an optimal policy, the agent must explore the environ-
ment: the probability of attempting new actions (different from
those dictated by the policy) must always be non-zero. Other-
wise, some areas of the state-action space may never be visited
and the learning process can become stuck in a local optimum.
The tradeoff between greedy action choices and exploration is
necessary for the performance of any RL algorithm [48]. There
exist several strategies to include exploration in the agent’s
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behaviour, such asǫ-greedy exploration or Boltzmann explo-
ration [41].

3.2. Solving MDPs
Solving an MDP means to find an optimal policy. There

are several methods for solving MDPs, which can be grouped
into two classes: dynamic programming (DP) and reinforce-
ment learning (RL). DP methods require knowledge of the full
MDP model. Since the transition probability functionP rarely
is available, this class of methods can only be employed in
a limited number of practical problems. On the other hand,
RL methods are completely based on experience, which makes
them useful when the full MDP model is unknown or difficult
to estimate.

Most RL algorithms use Q-functions (also called utility func-
tions)Qπ : S×A→ R to find an optimal policy. Given a policy,
the Q-function for a particular pair (s, a) is defined as the ex-
pected return that is encountered starting froms, taking action
a and thereafter following policyπ [48]:

Qπ(s, a) = Es′ |s,a
{

ρ(s, a, s′) + γRπ(s′)
}

(3)

wheres′ is the state reached after taking actiona in the states.
The Q-function measures the utility (in terms of the expected
return) of perform each action in each state.

The optimal Q-function is defined as the best Q-function that
can be obtained by any policy:

Q∗(s, a) = max
π

Qπ(s, a) (4)

From the optimal Q-function, an optimal policy can be easily
derived choosing in each state the action that maximizesQ∗:

π∗(s) = arg max
a

Q∗(s, a) (5)

where arg maxx f (x) stands for the argumentx that attains the
maximum value of the functionf (·). In general, for a given
Q-function, a policy that maximizesQ in this way is said to
be greedy inQ. Therefore, solving an MDP (i.e., finding an
optimal policy) can be done by first findingQ∗, and then using
Eq. (5) to compute a greedy policy inQ∗.

When MDPs have a small enough number of states and ac-
tions, Q-functions can be exactly stored in tables with one en-
try per state-action pair. Unfortunately, many practical prob-
lems contain a very large or infinite (for example when the
state space is continuous) number of states; in such a case, Q-
functions must be represented approximately by two reasons.
First, suppose that the MDP containsN states, ifN is very large,
a table withN entries would be intractable due to computational
and memory limitations. On the contrary, in a typical approx-
imate representation is only necessary to store a vector ofM
parameters, beingM ≪ N. Second, when the state space is
large or continuous, the agent will probably never be exactly on
the same state more than once. Therefore, the experience ac-
quired from a set of states should be generalized to other states
that have not been seen before. In principle, any function ap-
proximation (or regression) method can be used to representQ-
functions. However, in practice, some RL algorithms impose
restrictions about the structure of the approximator.

The remaining of this section describes two RL algorithms
for solving MDPs. On the one hand, the well-known Q-learning
algorithm [31]. Q-learning is probably the most popular RL al-
gorithm, it has been used in many applications, including the
treatment of anemia in hemodialysis patients [29, 30]. On the
other hand, fitted Q iteration [33], a more recent algorithm that
forms part of the methodology proposed in this paper. Both are
offline algorithms, which means that they do not require inter-
acting with the environment during the learning phase, but in-
stead can learn a solution using data collected in advance. The
data, or experience, usually is stored as a set of transitions of the
form (s, a, r, s′) sampled from the process. This data set should
be representative of the state-action space, i.e., they should con-
tain a certain degree of exploration. Given that the agent cannot
interact with the environment when RL algorithms are applied
offline, in such a case it is not necessary to include a exploration
strategy.

3.2.1. Q-learning
Consider a Q-function approximator denoted byF and pa-

rameterized by ad-dimensional vectorθ. Every possible vector
of parametersθ provides an approximated representation of a
corresponding Q-function:

Q̂(s, a) = Fθ(s, a) (6)

where the symbol ˆ· denotes approximation. In general, the ap-
proximatorF can be nonlinear in the parameters. However, in
some algorithms (e.g., Q-learning) linear approximators are of-
ten preferred because they provide better convergence and sta-
bility properties [49–51]. A linearly parameterized approxima-
tion of the Q-function is expressed as:

Fθ(s, a) =
d

∑

l=1

φl(s, a)θl = φ
⊤(s, a)θ (7)

whereφ(s, a) = [φ1(s, a), . . . , φd(s, a)] is the vector of basis
functions (also called features [48]) that are combined using
thed-dimensional vector of parametersθ. A common approach
to define the basis functions consists in using a regular gridof
Gaussian radial basis functions (RBFs) spanned over the state-
action space [41, 52]. In such a case, for some state-action pair
x = (s, a), the vector of basis functions is:












exp













−||x− c1||2

2σ2
1













, exp













−||x− c2||2

2σ2
2













, . . . , exp













−||x− cd||2

2σ2
d

























⊤

(8)
where each RBF is defined by its position or centerc and vari-
anceσ2.

The Q-learning algorithm starts with an arbitrary approxi-
mation of the optimal Q-function, i.e., an arbitrary vectorof
parametersθ0. Then, it uses the data from each transition
(sk, ak, rk+1, s′k+1) to update the parameters using the following
rule:

θ j+1 = θ j + α

[

rk+1 + γmax
a′
φ⊤(sk+1, a

′)θ j

−φ⊤(sk, ak)θ j

]

φ(sk, ak) (9)
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where the indexj = 1, . . . , p corresponds with the number
of transitions in the data set andα is the learning rate. This
learning rule updates the estimation of the optimal Q-function
incrementally. Moreover, each update requires little computa-
tion and memory resources, which makes possible to apply Q-
learning in real-time. On the other hand, the algorithm presents
two possible drawbacks: (i) it generally requires many tran-
sitions to obtain useful policies, and (ii) the function approx-
imator should be parametric and typically linearly parameter-
ized [48].

3.2.2. Fitted Q iteration
Fitted Q iteration (FQI) is a batch RL algorithm whose main

feature lies in the way that it handles the experience [33]. Un-
like incremental algorithms, FQI uses the complete set of tran-
sitions each time that updates the estimation of the optimalQ-
function. Although this process involves more computation, it
allows to extract more information from the stored experience.
Consequently, FQI is more data-efficient than other RL algo-
rithms. This feature makes FQI a very suitable algorithm in
many application domains. For example, in the problem tack-
led here, patients are modeled as the environment and the agent
has to estimate optimal drug doses. Acquiring experience in
this context entails administering a dose, waiting until ittakes
effect and measuring the variables that define the new patient’s
condition. This process is expensive, both in time and money.
Thus, reducing the quantity of data required by the algorithm
can be crucial.

Given a fixed setD = {(sj
k, a

j
k, r

j
k+1, s

j
k+1), j = 1, . . . , p} of

p transitions and an arbitrary initial Q-functionQ0 (e.g., equal
to zero everywhere onS × A), FQI starts by initializing an ap-
proximationQ̂0 of the Q-functionQ0, with Q̂0(s, a) = 0 for all
(s, a) ∈ S×A. It then iterates over the following three steps [33]:

1. n← n+ 1
2. Build the training setTS = {(inputj, targetj), j =

1, . . . , p} based on the function̂Qn−1 and on the full set
of transitionsD:

inputj = (sj
k, a

j
k) (10)

targetj = r j
k+1 + γmax

a′
Q̂n−1(sj

k+1, a
′) (11)

3. Use supervised learning to induce fromTS the function
Q̂n(s, a)

Q̂n(s, a) = rk+1 + γmax
a′

Q̂n−1(sk+1, a
′) (12)

The iterative process can be stopped simply by establishinga
maximum number of iterations. Another possibility is to fix
a threshold valueξ > 0 and stop the loop when the distance
between two consecutive estimations of the optimal Q-function
drops below the threshold, i.e.,|Q̂n − Q̂n−1| < ξ [33].

FQI, similarly to other RL algorithms, requires a function ap-
proximator to represent large or continuous Q-functions. How-
ever, on the contrary to Q-learning, it does not impose any con-
straint on the kind of approximator. In fact, at each iteration n
it is possible to change the approximator in order to adapt the

resolution (or complexity) of the model so as to reach the best
bias/variance tradeoff [33]. Although FQI has been success-
fully combined with many approximation methods (e.g., neu-
ral networks [53] or linear regression [39]), a technique known
as extremely randomized trees [54] has shown better perfor-
mance than other approaches [33, 36]. Therefore, this tree-
based method, whose details are introduced in the next section,
was used in the experiments.

Despite FQI is more data-efficient than other RL algorithms,
the number of transitions required to learn optimal policies
grows quickly with the state space dimensionality due to the
“curse of dimensionality” [55]. This feature is common to all
RL algorithms, including also Q-learning. Thus, reducing the
number of state variables as much as possible is an important
issue. To this end, similarities among patients were exploited
by k-means clustering analysis before applying any learning al-
gorithm (see Section 6) [56].

4. Extremely randomized trees

Extremely randomized trees [54] are a tree-based ensemble
method for supervised classification and regression problems.
It can be considered as an improved version of the popular tree
ensemble method Tree Bagging [57]. The algorithm developed
to compute this kind of ensembles is called Extra-Trees and,
like Tree Bagging, it works by building several (M) trees. A
key difference between both approaches lies in the sample used
to compute the trees. While Tree Bagging uses a bootstrap sam-
ple, Extra-Trees uses the complete data set to built each tree.

Similarly to standard regression trees, each tree is composed
of decision nodes, where each node contains a split (or test)of
an attribute. The value where such attribute is split is known
as cut-point. In order to define a decision node, Extra-Trees
generatesK splits by choosingK attributes at random and for
each attribute a cut-point at random. Then, it calculates a score
(based on the explained variance) for each of theK candidate
splits and selects the split that obtained the maximum score.
This process is repeated until the number of elements in the
node is less than the parameterlmin [54]. The algorithm has
three parameters that need to be specified: the numberM of
trees to build the ensemble, the numberK of candidate tests at
each node and the minimal leaf sizelmin.

5. Erythropoiesis model under darbepoetin alfa treatment

The ability of RL to compute treatment policies was assessed
through simulations. Experiments were based on a computa-
tional model that describes the effect of darbepoetin alfa on
the Hb level. This section presents the main characteristics of
the model in order to provide insight into the tackled clinical
problem. Appendix A gives a more detailed description of the
model.

Several theoretical pharmacodynamic models describing the
hematological response to different kinds of ESAs have been
developed during the last decades [58–63]. The model in-
troduced in this section is focused in patients undergoing
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hemodialysis who are treated with intravenous darbepoetinalfa,
a second generation ESA drug. The hematopoietic cell popula-
tions are natural examples of biological systems governed by
lifespan-based processes of cell proliferation, differentiation,
maturation, and senescence. The Hb level is proportional to
the number of erythrocytes, which are produced primarily from
stem cells in bone marrow. During the process of maturation,
stem cells undergo a series of differentiations. When they reach
the stage of reticulocyte (immature erythrocytes), they begin to
circulate in the blood and, after 1-2 days, these ultimatelybe-
come mature RBCs (erythrocytes). In patients with CKD, ery-
throcyte lifespan is approximately 70-90 days [58]. The process
of erythrocytes production (erythropoiesis) is regulatedby the
hormone EPO, which is produced in the kidneys. Darbepoetin
alfa is a synthetic form of EPO that stimulates erythropoiesis
by the same mechanism.

Hb concentration dynamics following the administration of
darbepoetin can be described through a multi-compartment
model [64]. The different cell types involved in erythropoiesis
are grouped into population classes (or compartments) accord-
ing to their characteristic properties with respect to interaction
with EPO. The number of cells in all compartments depends on
the plasma concentration of EPO, which consists of the sum of
the naturally produced EPO,Ep, and the exogenous adminis-
tered EPO (darbepoetin alfa),E:

Etot = E + Ep. (13)

The rate of endogenous EPO production in the kidney is as-
sumed to be constant.

In the case of an intravenous administration, the total amount
of darbepoetin alfa is injected into a vein within a very short
time interval so that, without loss of generality, it can be as-
sumed that the amount of the exogenous hormone in plasma at
t0, the time when the administration takes place, is exactly equal
to the amount of exogenous hormone administered. The result
is a sudden rise of the hormone plasma concentration followed
by an exponential decay described by a first order ordinary dif-
ferential equation with a constant elimination rate

E′(t) =
24
25

log(2)E(t), E(t0) =
D0

Vd
, (14)

whereE(t) stands for the concentration of exogenous hormone
at timet, D0 the drug dose att0, andVd is the volume of distri-
bution at steady state, which is set toVd = 52.4 [65].

The total Hb level at timet is proportional to the concentra-
tion of erythrocytesR(t):

Hb(t) = MCH · R(t), (15)

whereR(t) is the plasma concentration of RBCs and MCH de-
notes the mean corpuscular Hb concentration [66], chosen as

MCH =

{

2.7 g · (1011cells
)−1 for men.

2.4 g · (1011cells
)−1 for women.

(16)

The complete system of delay differential equations (DDE) that
describes the cell dynamics in each compartment is included

in Appendix A. In addition to endogenous EPO (Ep) and the
mean corpuscolar hemoglobin concentration (MCH), the indi-
vidual response of each patient to darbepoetin alfa is defined
by two other parameters:Cp, a constant that determines the
flow of cells in the first compartment of the model (denoted by
P), andCr, which plays a similar role in the last compartment
(denoted byR) (see Appendix A for more details). These pa-
rameters can be adjusted using clinical and laboratory dataof
patients. Matlab 7.14 (R2012a) was employed to adjust the
parameters and perform simulations. The Matlab DDE solver
dde23 was used to compute the solutions of the system of dif-
ferential equations.

This computational model, as any other model, it is a simpli-
fication of the real problem. It makes two basic assumptions:
first, each patient maintains a stable level of inflammation,and
second, the availability of iron for erythropoiesis is constant.
Generally, these assumptions are not met by all patients during
all treatment. Nevertheless, the model is able to capture the het-
erogeneity in the response to darbepoetin alfa and its long-term
effects, two factors suggested as principal causes of Hb cycling.
Therefore, the model is useful to evaluate the performance of
RL in preventing Hb cycling.

6. Problem formulation using the MDP framework

6.1. Anemia management as a sequential decision-making
problem

The symptoms of anemia and the response to the treatment
often vary depending on several factors, such as the physical
characteristics of the patient (weight, age, sex, etc.) [67], de-
gree of kidney disease [68] or comorbidities [69]. During the
treatment period, the clinical evolution of each patient istypi-
cally monitored by monthly reviews. Each review consists ofa
laboratory test, which measures several variables to assess the
patient’s condition, and the drug prescription until the next re-
view. Therefore, each patient generates a sequence of observa-
tions and treatments of the form [39]

o j
1, t

j
1, o

j
2, t

j
2, · · · , o

j
T , a

j
T , o

j
T+1 (17)

whereo j
k stands for the condition of thej-th patient at monthk,

t j
k stands for the dosaget for the same patient and month, andT
is the duration of the whole treatment.

A sequential decision-making problem can be easily derived
from this set of sequences, where actions (or decisions) cor-
respond to the doses prescribed to each patient in the differ-
ent months (or stages). Before applying any RL method, it is
necessary to define a functions(o1, a1, · · · , ok) that assigns a
state to the patient’s current history and a scalar reward func-
tion ρ(sk, ak, sk+1) that evaluates the transition fromsk to sk+1

after taking the actionak. The result of applying both functions
to (17) is a sequence of states, actions and rewards [39]:

sj
1, a

j
1, r

j
1, s

j
2, a

j
2, r

j
2, · · · , s

j
T , a

j
T , r

j
T (18)

These sequences can be rewritten as a set of transitions
(s, a, r, s′). Then, FQI can be applied to compute a policy that
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selects optimal drug doses (in view of the data available) de-
pending on the patient’s condition.

The rest of this section details the definition of states, actions
and reward function in the context of anemia treatment.

6.2. State and action spaces

The MDP framework assumes that the state transition dy-
namics and the reward distribution has the Markov property,
that is, given the current statesk and actionak, the next state
sk+1 and rewardrk are conditionally independent of all previ-
ous states, actions and rewards [41]. An obvious way of defin-
ing a state representation that holds the Markov property isto
include all past history insk. In practice, this is not feasible
due to two reasons: (i) as stated in Section 3.2.2, the amount
of experience needed to learn useful policies grows exponen-
tially with the number of state dimensions due to the curse of
dimensionality, and (ii) the space required to store experience
would grow indefinitely ask grows. Therefore, the state should
contain enough features to provide a “good summary” of the
past history and, at the same time, it should be as compact as
possible to allow the learning of useful policies from a lim-
ited amount of experience. Despite that RL theory assumes the
Markov property, most practical problems that may not fully
satisfy this condition can be solved successfully by applying
RL methods [41]. For other cases, the MDP framework can be
extended to a more general framework using partially observ-
able MDPs (POMDPs) [70].

In the anemia management problem, the state space of the
MDP was expressed as

s= [Hbk,∆Hbk,DAk,DAk−1,DAk−2,Patientgroup]

whereHbk measures the degree of anemia in the current month
k. ∆Hbk, defined as the difference between the current Hb level
and the previous one, indicates the Hb trend.DAk is the dose
of darbepoetin alfa. Due to the long-term effects of darbepoetin
alfa, Hb at monthk is not only influenced by the last drug dose,
but also by the doses during the two previous months, therefore
DAk−1 andDAk−2 were also included in the state definition. On
the other hand, given that the treatment should be tailored to
the individual characteristics of each patient, information about
such characteristics must be included in the state definition. The
computational model employs four variables that describe each
patient, namely, MCH,Ep, Cp andCr. These variables could
be directly introduced as state variables, however, prior knowl-
edge about the problem was used to reduce the state space di-
mensionality. MCH is a dichotomous variable that depends on
the patient’s gender. Therefore, it was decided to remove this
variable and compute a policy for men and another for women.
The remaining variables (Ep, Cp andCr) were analyzed us-
ing k-means clustering [56]. The objective was to find groups
of patients that respond to the treatment in a similar way and,
then, introducing into the state definition only the information
about the kind of response instead of the patient’s character-
istics directly. Thus, the output of the clustering algorithm,
Patientgroup, also formed part of the state space. The underlying

assumption is that the same treatment will produce a compara-
ble effect in patients with similar characteristics.

Regarding the action space, a set of discretized actions was
used

A = {0, 0.25, 0.50, 0.70,1} µg/kg per week.

These values correspond with the doses that can be adminis-
tered to the patients. It should be noted that these weight-
normalized doses are different for each patient depending on
the body weight. In practice, using a discrete set of doses can
be useful due to the fact that darbepoetin alfa is supplied inpre-
filled syringes and, if the syringe is partially injected, the rest
will be wasted.

6.3. Reward function

The reward function defines the agent’s goal. The aim of
ESA treatment is to maintain Hb levels in a healthy range. Ac-
cording to the European Best Practice Guidelines for the Treat-
ment of Anemia in Chronic Kidney Disease [11], Hb concen-
tration should be>11 g/dl for all patients, and no higher than
12 g/dl for patients with comorbidities such as cardiovascular
disease, diabetes, etc. Thus, the Hb target range used in this
work was [11,12] g/dl. On the other hand, abrupt changes of
Hb should be avoided. Specifically, changes (increments and
decrements) close to 2 g/dl per month increase the risk of car-
diovascular episodes [11].

In order to satisfy both goals, the reward was designed as a
piecewise function that depends on the current Hb levelHbk.
The idea is that whenHbk is close to the target, then the policy
should try to reach the target range in the next month. However,
if the difference betweenHbk and the target is too large, the Hb
change required to reach the target in the next month can be too
abrupt and it should be avoided.

The following bell-shaped reward was employed when
10.5 < Hbk < 12.5:

ρHb(sk, ak) = 1− tanh2

(
∣

∣

∣

∣

∣

Hbk+1 − 11.5
g

∣

∣

∣

∣

∣

· w
)

(19)

w = tanh−1
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whereg = 0.5 is a parameter that controls the slope of the func-
tion. This function assigns a maximum reward whenHbk+1 is
equal to 11.5 g/dl (the center of the target range), and it de-
creases smoothly to zero asHbk+1 differs from 11.5 g/dl, in-
dicating that Hb levels near the target are preferable. Fig.2a
shows the shape ofρHb.

If Hbk ≥ 12.5, the goal was to achieve a decrement of 1 g/dl:

ρ−∆Hb(sk, ak) = 1− tanh2

(
∣

∣

∣

∣

∣

∆Hbk+1 + 1
g

∣

∣

∣

∣

∣

· w
)

(20)

whereg andw are the same as in Eq. (19) and∆Hbk+1 is the
difference of Hb between the current and the next month, i.e,
Hbk+1 − Hbk. Similarly, if Hbk ≤ 10.5, the agent’s goal was to
obtain an increment of 1 g/dl. The complete piecewise reward
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function is given by

ρ(sk, ak) =



















ρHb if 10.5 < Hbk < 12.5
ρ−∆Hb if Hbk ≥ 12.5
ρ+∆Hb if Hbk ≤ 10.5

(21)

Fig. 2 depicts each subfunction separately and the completere-
ward function versusHbk andHbk+1.

7. Experiments

The purpose of the experiments was to assess the proposed
method by comparing the quality of the learned policy with the
popular Q-learning algorithm and with a standard protocol of
dose adjustment. As illustrated in Fig. 3, experiments werecar-
ried out in three stages.

First, the computational model was used to generate the ex-
perience (data) necessary to apply the RL algorithm. Specifi-
cally, 5000 hemodialysis patients treated with darbepoetin alfa
during 30 months were simulated. Second, the data were pro-
cessed in order to obtain a set of states, actions and reward.
Then, a drug administration policy was learned from data using
FQI. For comparison reasons, this learning process was also
carried out using Q-learning. Finally, in the third stage, anew
cohort of 60 patients was simulated in accordance with three
treatment strategies: the policy learned using FQI, the policy
learned using Q-learning, and the treatment recommended in
the protocol.

7.1. Experience

The computational model was used to generate a data set that
mimics the medical data gathered during common clinical prac-
tice. The model uses four parameters (MCH,Ep, Cr andCp) to
describe the patient’s individual response to anemia treatment.
MCH was chosen as indicated in Eq. (16), while the remain-
ing parameters were adjusted employing data extracted from
the medical records of 128 patients undergoing hemodialysis
and receiving darbepoetin alfa. Data were collected between
January 2008 and December 2010 in three hemodialysis cen-
ters located in Italy. Table 1 shows the baseline characteristics
of patients used to adjust the model parameters, and Table 2
shows a summary of the adjusted parameters.

As the proposed method was applied separately for men and
women (see Section 6.2), the data set was split by gender. Due
to the high level of similarity between the results obtainedin
both groups, the rest of the work is focused only on the men’s
group. After data splitting, the adjusted parameters were avail-
able for 69 male patients. In order to increase the population
size, linear interpolation was applied between the parameters
of each patient and a patient randomly selected among its 10
nearest neighbors. This process allows to generate artificial pa-
tients that are similar to the real ones and, at the same time,it
introduces a certain degree of randomness in order to capture
the variability of the characteristics among different patients.
The process was repeated until the parameters corresponding
to 4931 new patients were generated, making a total of 5000

Table 1: Baseline characteristics of the population used toad-
just the model parameters.

Characteristic (n= 128)

Age (y) 58.53± 15.15
Sex (% male) 53.91
Height (m) 1.62± 0.09
Weight (kg) 67.97± 12.61
Treatment

Darbepoetin alfa (µ/kg/week) 0.29± 0.17
Iron IV (mg/week) 34.74± 32.08

Laboratory data
Hemoglobin (g/dl) 11.80± 1.16
Ferritin (ng/ml) 430.90± 178.96
Serum albumin (g/dl) 4.09± 0.29
Phosphate (mg/dl) 4.52± 1.03
Leukocytes (cells/mm3) 6584.1± 1260.9

Data are means± SD.

Table 2: Summary information on the model parameters.

Parameters Value (mean± SD)

Ep 0.3588± 0.0753
Cr 0.1372± 0.0520
Cp 0.2014± 0.0640

patients. Then, patients’ progress over time was simulateddur-
ing 30 months of treatment2. The dose of darbepoetin alfa
administered during each month was randomly selected among
the discrete setA, which introduced a high variability of doses.
If all patients had followed an specific treatment protocol,the
learned policy would be strongly biased by that protocol. Inthe
actual case, physicians’ prescriptions are based on clinical pro-
tocols and in their own experience, therefore it is common to
find different doses for patients with similar conditions. Never-
theless, in general, doses prescribed by physicians are closer to
the optimal ones, which facilitates the learning process.

Simulations generated a total of 5000× 30 = 150000 ob-
servations and treatments. Due to the randomness of the treat-
ment, in some observations the Hb level was greater than 20
g/dl. These data were removed because they represent unreal-
istic situations. After this restriction, the data set consisted of
138011 observations.

7.2. Learning

The data generated in the previous stage were used as input
of the learning algorithms FQI and Q-learning. To this end,
the sequences of observations and treatments were transformed
into a set of transitions (s, a, r, s′) following the methodology
introduced in Section 6. Some of the state variables were ex-
tracted using the clustering algorithmk-means. The rest of this

2Given that the prevalence of CKD is between 0.1% and 0.2% of the total
population, the size of the simulated population is typicalfrom a region with
about 5 million inhabitants. On the other hand, patients areoften treated for
extended periods of time due to the chronic nature of CKD, however, 30 months
was enough the generate the amount of data required to learn useful policies
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Figure 2: Reward function. Subfigures (a) and (b) represent the piecewise reward as three separate subfunctions. Function (a) is
applied when 10.5 < Hbk < 12.5 and it varies depending onHbk+1. Functions (b) are applied whenHbk ≤ 10.5 (continuous green
line) or Hbk ≥ 12.5 (dashed red line) and they vary depending on∆Hbk+1. Finally, (c) represents the complete reward function
versusHbk+1 andHbk.

section discusses some practical issues ofk-means, FQI and Q-
learning.

7.2.1. k-means
The k-means algorithm employed in the clustering analysis

starts with an initial estimation ofq centroids and then uses an
iterative method to optimize the cluster quality. Typically, the
number of clustersq is selected empirically. In this work, the
clustering analysis was repeated using values ofq from 3 until
10. For each value ofq, the obtained clusters were analyzed us-
ing silhouette plots [71]; finally,q = 5 was selected as the most
suitable because it maximizes the within-cluster compactness
and the separability among clusters.

7.2.2. Fitted Q iteration
FQI is based on an iterative procedure and the designer must

decide when to stop the iterations. The algorithm starts with an
arbitrary approximation of the optimal Q-function that is im-
proved at each iteration. Thus, the number of iterations should
be enough to allow convergence to the optimal Q-function.
Convergence can be measured in terms of distance between
consecutive approximations of the Q-function, defined as

dist(Q̂n, Q̂n−1) =

∑

(s,a)∈Si×A

(

Q̂n(s, a) − Q̂n−1(s, a)
)2

#(Si × A)
(22)
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Figure 4: Fitted Q iteration convergence measured as the dis-
tance between̂Qn andQ̂n−1 versus number of iterations.

whereSi × A are the state-actions pairs contained in the set of
transitions [33].

Fig. 4 shows the convergence of FQI versus the number of
iterations, where it can be observed that the approximated Q-
function remains almost stable after 35 iterations. In viewof
this, the number of iterations was fixed to 40. On the other
hand, the discount factorγ was empirically set to 0.9, this value
was enough to incorporate the long-term effects of each dose in
the optimization process.
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Figure 3: Experiments were carried out in three stages. First, the computational model was used to simulate a cohort of patients
that are treated during a period of time, gathering the records generated by each patient in a database. Secondly, the records were
processed to produce a set of transitions of the form (s, a, r, s′), and then FQI algorithm was applied. For comparison reasons, the
learning process was also repeated using Q-learning. Third, the policies learned from the data were evaluated and compared with a
standard protocol using a new cohort of simulated patients.

Extra-Tree algorithm parameters were chosen following the
procedure described in [33]. The number of trees in the ensem-
ble was set toM = 50, the parameterK was set equal to the
dimension of the input space, i.e,K = 6, and the minimal leaf
size was selected among the valueslmin = [5, 10, 50, 100] using
cross-validation in each iteration of FQI. Experiments showed
that these default values are a good choice [54].

7.2.3. Q-learning
Q-learning is also based on an iterative procedure that es-

timates the optimal Q-function. However, as each transition
(s, a, r, s′) is only used one time, when the number of transitions
is limited the algorithm simply iterates over the complete set of
transitions. Thus, it is not necessary to implement a strategy to
stop the iterative procedure.

The Gaussian RBF network with fixed bases employed to
approximate the Q-function requires the definition of the num-
ber of Gaussian functions, their centers and standard deviations.
This process typically requires trial and error experimentation
with various configurations. The number of functions shouldbe
enough to provide a smooth interpolation over the entire state-
action space. If the Gaussians are too peaked, it will be nec-
essary to employ a very large number of functions to cover the
entire space. On the other hand, if they are too flat, the RBF net-
work will not be flexible enough to approximate abrupt changes
of the Q-function. Thus, it is necessary to reach a compromise
between locality and smoothness.

After experimenting with several configurations, the selected
RBF network architecture employed 4096 Gaussian functions
whose centers were distributed in a regular grid over the state
space. The inputs were normalized to the range [−1, 1] and all
the standard deviations were set toσ = 1.1. The discount fac-
tor was fixed as in the FQI algorithm (γ = 0.9). Additionally,
Q-learning introduces a new parameter that should be tuned:
the learning rateα. A large value ofα usually results in faster
convergence, but when it exceeds a certain critical value, the
algorithm becomes unstable. Fig. 5 shows the convergence of
Q-learning (measured using Eq. (22)) whenα = 0.2. The figure
suggests that Q-learning has not converged after 138011 itera-
tions.

It is worth noting that each iteration of Q-learning (Fig. 5)
employs only a transition of the data set; whereas in FQI

25 50 75 100 125
0
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0.015

0.02

0.025

0.03

Number of iterations (in thousands)

Figure 5: Q-learning convergence measured as the distance be-
tweenQ̂n andQ̂n−1 versus number of iterations.

(Fig. 4) each iteration is based on the complete data set. Hence,
despite the number of iterations shown in both figures, the con-
vergence process of FQI is much larger than in the case of Q-
learning.

7.3. Evaluation

The policy learned with the proposed methodology based in
FQI was evaluated in a cohort of 60 new patients using the
computational model. Similar to Section 7.1, the parameters
corresponding to these patients were generated by linear inter-
polation. The evolution of each patient was simulated during
30 months of treatment using the drug doses indicated by the
RL policy. For comparison purposes, the same cohort of pa-
tients was simulated according to the policy learned with Q-
learning and the treatment recommended by a standard proto-
col. The protocol was extracted from the European Medicines
Agency [72] and it describes the dosage regimen for AranespTM

(a commercial form of darbepoetin alfa) as follows:

• The initial dose for patients on dialysis should be 0.45
µg/kg body weight administered weekly.

• If the increase in Hb is inadequate (less than 1 g/dl in four
weeks) the dose should be increased by approximately
25%.

• The dose must not be increased more frequently than once
every 4 weeks.
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• If the Hb rises more than 2 g/dl in a period of 4 weeks, the
dose should be reduced by 25%.

• If the Hb level is greater than 12 g/dl, the dose should
be reduced by 25%. After this reduction, if the Hb level
continues rising, the treatment should be temporarily inter-
rupted until the level starts to decline, moment in which the
treatment should be resumed with a dose approximately
25% lower than the previous dose.

When the computational model that simulates the patients
is initialized, the level of Hb is determined by the initial
conditions. These conditions are equal for all the patients
(see Appendix A), i.e., at month zero all the patients have the
same Hb level. In order to have a cohort of patients with a
heterogeneous initial state, the 60 patients were treated during
four months with a random treatment before starting the evalu-
ation process. Thus, the protocol recommendation for the ini-
tial dose was never applied because the patients had already
received some previous doses of ESA when beginning the eval-
uation.

8. Results and discussion

This section assesses the proposed methodology by compar-
ing the policy learned using FQI (πFQI ) with the policy learned
using Q-learning (πQ-learning) and extracted from the protocol
(πprotocol). All results shown correspond with the cohort of 60
simulated patients used for validation purposes and 30 months
of treatment.

As a first approach to compare the behavior of the three poli-
cies, the Hb levels obtained with each policy were represented
in a box plot. This kind of representation graphically depicts a
set of data values through their quartiles, allowing to visually
estimate the degree of dispersion and skewness. Fig. 6 shows
the box plot corresponding toπQ-learning, πFQI andπprotocol. In
the three cases the median falls within the desired range of Hb
(indicated by two horizontal dashed lines at 11 and 12 g/dl) and
the Hb levels are approximately symmetrically distributed. The
main difference observed among the three policies is the large
dispersion ofπQ-learning, which means that many of the patients
treated with this policy have Hb levels away from the target
range. In the other two policies there are also Hb levels sub-
stantially different from the target range; however, these values
can be considered outliers (shown as red crosses) from the com-
plete set of observations and are likely due to the initial states
of the patients.

The low performance of Q-learning is probably a conse-
quence of the limited amount of transitions available to estimate
the policy. In principle, both RL algorithms (Q-learning and
FQI) should be able to find similar policies in a given problem.
In fact, other authors found that, given enough data, the policy
learned by Q-learning was superior than the protocol [29, 30].
Nonetheless, a key advantage of FQI is that it makes a more ef-
ficient use of the data, which can be crucial in problems where
obtaining data is a non-trivial task. A second factor that may be
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Figure 6: Box plot representation of the Hb levels correspond-
ing to 60 simulated patients during 30 months of treatment. Pa-
tients were treated according toπQ-learning, πFQI andπprotocol.
The two horizontal lines (dashed black) indicate the Hb target
range.

related with the superiority of FQI is its flexibility to approx-
imate the Q-functions. In Q-learning it is necessary to define
an a priori approximator structure that remains fixed over the
learning process. On the contrary, in each iteration FQI selects
the approximator structure that provides the best approximation
of the current Q-function.

Since FQI outperforms Q-learning considerably, the rest of
this section is focused only on analyzing the differences be-
tween the policy obtained using FQI and the protocol of dose
adjustment.

A limitation of the box plot representation is that the tempo-
ral information is lost. In order to compare the performanceof
the two policies along time, a better approach consists in rep-
resenting the Hb levels during the treatment. Fig. 7 shows this
information forπFQI andπprotocol. For the sake of simplicity,
Fig. 7 represents the Hb of only a subset of 19 patients ran-
domly selected. The figure also includes two horizontal lines
(dashed black) at 11 and 12 g/dl that indicate the target range.
During the first months of treatment, Hb was shifted towards
the target range with either of the two policies. In this sense,
πFQI was more effective thanπprotocol because, in general, it
required less time to reach the target. After seven months of
treatment, several signs of Hb cycling appeared in some of the
patients treated withπprotocol. On the contrary,πFQI was able to
prevent or drastically reduce Hb cycling. As expected, the ex-
treme values of Hb previously shown as outliers in the box plot
are mainly concentrated in the first months of the treatment.

Fig. 8 also shows the variation of Hb over time, but in this
case in terms of the mean (solid lines) and standard deviation
(shadow areas) for the complete group of patients. Again, it
can be observed thatπFQI stabilizes the Hb levels within the
target range whereas the protocol produces oscillations. The
large standard deviation corresponding toπprotocol indicates that
there are patients with dangerous Hb levels in all months. Al-
though the Hb cycling produced byπprotocol diminishes slightly
over time, after 30 months it is still noticeable. Hb variability in
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Figure 7: Hb level evolution during 30 months of treatment for 19 simulated patients randomly chosen from the test group.In (a),
the patients were treated according to the policy learned with the proposed method,πFQI . While in (b) they were treated according
to the policy extracted from the protocol,πprotocol. The two horizontal lines (dashed black) indicate the Hb target range.

patients treated withπFQI was significantly lower (p< 0.0001,
one-tailed paired F-test) than those treated withπprotocol.

A second metric employed to compare both policies was the
number of months or observations in which the patients pre-
sented an adequate Hb level. Fig. 9 presents this information by
means of a bar chart. Five ranges of Hb grouped into three cat-
egories were defined: the categorysuitableincludes the target
range [11,12] g/dl; unsuitableconsists of the two ranges con-
tiguous to the target range, that is, (10,11) and (12,13) g/dl; and
dangerouscontains the rest of Hb levels. Fig. 9 shows two bars
corresponding withπFQI (light gray) andπprotocol (dark gray)
in each one of the five ranges. Ideally, all patient observations
should be within the categorysuitable. When the patients were
treated withπFQI , their Hb level was within the target range
in 82.1% of the observations, which represents an important
improvement compared with the 54.5 % achieved byπprotocol.
The rest of patient observations were mainly located in the cat-
egoryunsuitable, specifically, 11.02% forπFQI and 34.1% for
πprotocol. This percentage indicates thatπprotocol also achieved
a reasonable outcome. Finally, a minor percentage of patient
observations was in the categorydangerous; however, Figs. 7
and 8 shows that these observations corresponds mainly with

the initial months of treatment, when the drug administeredhas
not yet produced any effect.

In addition to stabilizing the Hb level inside the target range,
the treatment must avoid abrupt Hb changes. The difference
betweenπFQI andπprotocol concerning this aspect was negligi-
ble. Both policies were really effective in avoiding Hb changes
greater than 2 g/dl per month, more than 99.5% of state transi-
tions met this condition.

Due to the high costs of darbepoetin alfa, another point to
take into account when comparing both policies is the quan-
tity of drug used. There was a highly significant difference
(p < 0.0001, one-tailed paired t-test) of 5.13% between the
mean dose recommended byπprotocol (0.39 µg/kg/week) and
πFQI (0.37µg/kg/week). Thus, the treatment recommended by
the RL policy not only produced better outcomes but also gen-
erated lower costs.

Finally, a particular case was studied in detail to obtain more
insight into the behavior of each policy. Table 3 shows how the
Hb level of a patient and the dose of drug administered varies
along 15 months of treatment. The goal of this table was to
compare the treatment recommended by both policies in a case
whereπprotocol caused Hb cycling. The months where Hb level
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Time (months)

Figure 8: Mean Hb level (solid lines) and standard deviation
(shaded areas) over time for 60 patients simulated according
πFQI (in green) andπprotocol (in red).
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Figure 9: Comparison of the observed monthly Hb for the pa-
tients simulated followingπFQI andπprotocol during 30 months.
Ideally, all Hb observations should be in the range [11, 12] g/dl.

was within the target range are highlighted in bold. It can be
observed that, in the fifth month,πprotocol started to increase the
darbepoetin dose becauseHb < 11 g/dl, and it continued in-
creasing the dose in months 6 and 7 because the Hb level had
not yet reached the target range. Then, after reaching the tar-
get (month 8), the Hb level continued rising despite drug dose
was decreased (months 9 and 10). This phenomenon is due
to the delay between drug administration and its effects in Hb.
On the other hand, the doses administered byπFQI suggest that
the long-term effects are taken into account. For example, in
months 7 and 8 the dose is maintained constant despite the low
Hb level. In consequence, the Hb level in the next months in-
creases and is stabilized within the target.

The experiments reported in this paper were based on a
computational model that simulates the patients’ responseto
the treatment with darbepoetin alfa. Although the proposed

Table 3: Comparison of the treatment and clinical evolutionof
a patient treated according toπFQI andπprotocol. The Hb levels
within the target range are highlighted in bold.

Month FQI Dose adjustment protocol

Hb
(g/dl)

Drug dose
(µg/kg/week)

Hb
(g/dl)

Drug dose
(µg/kg/week)

1 12.65 0.50 12.65 0.75
2 12.78 0.75 12.91 0.56
3 11.77 0.75 12.43 0.42
4 11.28 0.50 11.36 0.42
5 11.80 0.50 10.44 0.52
6 11.43 0.50 10.13 0.65
7 10.89 0.50 10.57 0.82
8 10.91 0.50 11.52 0.82
9 11.06 0.50 12.72 0.61
10 11.22 0.50 13.50 0.46
11 11.39 0.50 13.14 0.34
12 11.56 0.50 12.11 0.34
13 11.73 0.25 11.24 0.34
14 11.74 0.50 10.90 0.43
15 11.19 0.25 11.00 0.54

methodology is valid for the case of actual patients, certain as-
pects should be modified. The main differences between simu-
lated and real patients are discussed below.

The inclusion of the model parameters (MCH,Ep, Cp, Cr)
in the definition of the state space is likely the most important
difference between applying the proposed system to simulated
and real patients. These parameters, which are related to the
patients’ individual characteristics, are used to find groups of
patients that respond to the treatment in a similar way. In prac-
tice, the parameters cannot be directly measured. One option
would be to adjust them as in the simulated case; however, a
more effective solution is to employ the variables commonly
measured in the monthly reviews which provide the same in-
formation. For example, the level of C-reactive protein, serum
albumin and leukocytes can be used as an indicator of inflam-
mation level. Thus, the clustering analysis should be performed
using those variables as inputs instead of the model parameters.

Some elements of the MDP, such as the reward function and
the discount factor, should be carefully chosen to provide the
desired outcomes. When using a computational model, trial-
and-error procedures can be used to adjust them. On the con-
trary, this approach is not viable in real domains. Thus, despite
the valuable experience gained with simulated patients, the ex-
pertise and advice of physicians are still necessary to design the
MPD in the real case.

Finally, a third issue that should be noticed is the two as-
sumptions made by the model: stable level of inflammation and
constant iron availability. As previously mentioned, these as-
sumptions may are not met in the real case. The only require-
ment to overcome both assumptions is that the clinical data em-
ployed to learn the policy must contain enough examples of
patients in which assumptions are violated, i.e, with variable
levels of inflammation and iron availability.
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9. Conclusions and future work

This work has proposed a methodology based on RL to op-
timize anemia treatment in hemodialysis patients. After formu-
lating the problem using the MDP framework, RL was able to
learn automatically near-optimal treatments from clinical data.
Contrary to other techniques to solve MPDs, RL does not re-
quire a complete knowledge of the system dynamics, a feature
that can be crucial in medical problems. More specifically, the
methodology uses the algorithm FQI, which stands out for its
ability to make an efficient use of data. FQI was combined
with a function approximator based on regression trees in or-
der to deal with the continuous state space and to generalizethe
learned policy to the cases not covered by the data set. The state
variables of the MDP were extracted partly from the laboratory
tests and partly from a clustering analysis of the patient’smain
attributes.

The proposed methodology was evaluated through a compu-
tational model that describes the effect of darbepoetin alfa on
the concentration of Hb. In addition to FQI, the experiments
were also performed using the well-known Q-learning algo-
rithm. A standard protocol of dose adjustment was used for
baseline comparison. The quality of the policy obtained with
Q-learning,πQ-learning was considerably inferior in comparison
to the other two policies (πFQI andπprotocol). When comparing
πFQI andπprotocol, the policy obtained with FQI increased by
27.6% the proportion of patients with an adequate level of Hb
and, at the same time, it reduced the amount of drug used by
5.13%.

The simulation results suggest that the FQI policy can deal
with the long-term effects of darbepoetin alfa and the high vari-
ability in the patient’s response. These features, which are ab-
sent in standard dosing protocols, had been suggested as a ma-
jor cause of Hb cycling. As a result, the proposed methodol-
ogy was more effective than the standard-use tested protocol in
maintaining stable Hb levels and preventing Hb cycling. On
the other hand, the drug is prescribed in a more efficient way
since the treatment achieves better outcomes with less amount
of darbepoetin alfa.

The computational model used in the experiments has several
limitations owing to the assumptions on which it is grounded
and, therefore, does not represent all possible patients. Never-
theless, it reproduces some important difficulties present in ac-
tual cases that may cause Hb cycling. Thus, although prospec-
tive validation is required, experiments have shown the poten-
tial benefits of RL in anemia treatment.

The positive results obtained in this work using simulated pa-
tients have motivated further research in applying the proposed
methodology to actual patients. Currently, a tool for clinical de-
cision support based on FQI is being validated through a clini-
cal evaluation in five hemodialysis centers from three European
countries.

Although this work has been focused in renal anemia, the
methodology can be extended to other types of anemia. For
example, oncology patients who also receive darbepoetin alfa
treatment, or even to other complex problems of drug adminis-
tration such as warfarin therapy to prevent venous thromboem-

bolism. Another interesting line of future research is to include
other optimization aspects in the reward function, in addition to
those related to the patients’ health, like the cost of the treat-
ment.
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Appendix A. Erythropoiesis model

Many mathematical models have been developed to simu-
late the process of erythropoiesis in different physiological sce-
narios [60, 73, 74]. The most common approach is the use of
age-structured models [75–77]. The model presented in this
section is focused in patients undergoing hemodialysis whoare
treated with intravenous darbepoetin alfa. In addition, itincor-
porates the effects of iron availability and level of inflamma-
tion, although both are considered constant. Similar to [59],
the stimulating action of the drug is described through a multi-
compartment model. Three different cell classes or compart-
ments are considered:

• P is the bone marrow concentration of progenitor cells
(BFU-E and CFU-E) and precursor cells (proerythroblast
and basophilic erythroblast) that depend on EPO for their
survival and differentiation to the next compartment.

• M comprises the remaining erythroblasts (polychromatic
and orthochromatophilic) and marrow reticulocytes which
are iron-responsive. As it is assumed that all patients have
sufficient iron available, this compartment only serves as
delay on the differentiation until the next compartment.

• R is the plasma concentration of red blood cells.

The equations governing the evolution of the number of cells
in each population are simply balance equations [59]. Each
compartment of cells is fed by an entering flow of fresh cells
and is emptied by the outgoing flow of differentiated or apop-
totic cells.

The fundamental assumption is that every cell in each popu-
lation lives for the same period of time, which is constant and
denoted byTP for cells P and TR for cells R [59]. This as-
sumption determines the cell elimination rate since the number
of cells that are lost at timet must be equal to the number of
cells that are born at the same time delayed by the appropriate
lifespan. The loss process is modeled by means of weighted av-
erages of the previous day incoming rates in order to take into
consideration that cells actually have different exposition times
to the drug. Such exposition time varies according to their in-
ternal maturity level at the time of the administration.

The flow entering theP compartment depends on the progen-
itors response to the stimulatory effect of erythropoietin. Ac-
cording to [59], this response can be described by the Hill func-
tion H(Etot) := Etot/(E50+Etot), whereEtot, which is defined as
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in Eqs. (13) and (14), represents the total plasma concentration
of EPO, andE50 = 100/Vd. The sensitivityE50 is the half-
maximal effective concentration, a parameter commonly used
as a measure of drug’s potency.

The outgoing flow of theP compartment is also the feeding
flow to theRcompartment delayed byTM, as it is assumed that,
up to a proportionality factor (describing a proliferationactivity
of M cells), as manyM cells asP cells are produced.

At the last stage of their lifespan, RBCs become senescent
and are cleared from the blood. The rate at which RBCs are
cleared is a weighted average of the previous incoming rates.
Such a average is a convex combination with coefficients given
by a Gaussian distribution with mean equal to the RBC mean
lifespan and variance 30. The Gaussian distribution indicates
that the drug effects are stronger onTR-day old cells.

The evolution laws of the compartmentP andR are the fol-
lowing:
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∑
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SP,M,R
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∑
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wheregT j := G(T j − (TP + TM))), G(T) is the Gaussian distri-
bution with meanTR and variance 30 evaluated at timeT, and
SP,M,R is a normalization factor given by

SP,I ,R :=
TP+TM+TR

∑

T j=TP+TM+1

G
(

T j − (TP + TM)
)

=

TR
∑

T j=1

G
(

T j
)

.

In the present study, (TP,TM ,TR) = (9, 4, 70). At the time
t0 of the first administration,P0 = 1 andR0 = 1 (i.e., there
are 1011 cells maturing from classP to R). The remaining pa-
rameters,Ep, Cp andCr, are estimated for each patient. The
solution of the model, given in Eq. (15), is fitted in the least
square sense using the first six Hb levels of each patient mea-
sured through laboratory tests. Then, the model can be used to
simulate the response of that patient to the treatment.

The basic assumptions of the model are that each patient
maintains a stable level of inflammation and that iron availabil-
ity for erythropoiesis is constant. However, dialysis patients of-
ten have multiple comorbidities (such as hypertension, diabetes
or cardiovascular disease) that may produce fluctuating levels
of inflammation and reduce the availability of iron, which lim-
its the usefulness of the model.

On the other hand, when the assumptions are met, the model
is able to reproduce the variability among patients in drug re-
sponse and the long-term effect produced by the drug. Fig. A.10
shows four cases in which the assumptions are reasonably well
met. As it can be observed, in general, the model (continuous
blue line) is able to simulate the Hb level measured by labora-
tory tests (res asterisks).
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Figure A.10: Hb level simulated using the model (blue line)
and measured by laboratory tests (red asterisks) corresponding
to four patients during approximately 26 months of treatment.
In the four cases, model’s assumptions are approximately met.
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