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(O Abstract

N Objective Anemia is a frequent comorbidity in hemodialysis patietitat can be successfully treated by administering

O _erythropoiesis-stimulating agents (ESAs). ESAs dosinguisently based on clinical protocols that often do not actdor

@ the high inter- and intra-individual variability in the jet's response. As a result, the hemoglobin level of sontients oscillates
(/) ‘around the target range, which is associated with multiislesrand side4@ects. This work proposes a methodology based on
= reinforcement learning (RL) to optimize ESA therapy.

Methods RL is a data-driven approach for solving sequential denishaking problems that are formulated as Markov decision
processes (MDPs). Computing optimal drug administraticategies for chronic diseases is a sequential decisidiagaroblem
——=iin which the goal is to find the best sequence of drug doses. svild¥particularly suitable for modeling these problemstdileeir
ability to capture the uncertainty associated with the oune of the treatment and the stochastic nature of the uridgubyocess.
The RL algorithm employed in the proposed methodology isdit) iteration, which stands out for its ability to make #iceent

+ use of data.

(O 'Results The experiments reported here are based on a computathmui! that describes théfect of ESAs on the hemoglobin
A level. The performance of the proposed method is evaluatédampared with the well-known Q-learning algorithm anthva
—istandard protocol. Simulation results show that the perémrce of Q-learning is substantially lower than FQI and tregqeol.

When comparing FQI and the protocol, FQI achieves an incnenfe27.6% in the proportion of patients that are within theyeted
;' range of hemoglobin during the period of treatment. In addjtthe quantity of drug needed is reduced by 5.13%, whidfcates
a more dicient use of ESAs.
N Conclusion Although prospective validation is required, promisiegults demonstrate the potential of RL to become an aligeenat
O) 'to current protocols.

™
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LO) 1. Introduction The response to this kind of drugs is known to have a large
— inter- and intra-interindividual variability due toftrences in
Anemia is a common complication characterized by a repackground characteristics, disease severity, comdigsdind

'>2 duced concentration of hemoglobin (Hb) that occurs in ovegoncurrent medications|[5, 6]. Although there exist protsc

> 90% of patients undergoing hemodialysis [1]. Hemodialysiso help physicians determine the appropriate dose, acfgevi

] is the most common treatment for patients in advanced stag@$aple Hb levels within the target range can be complex and
of chronic kidney disease (CKD), particularly in its endtsta  often requires dose titration. Results from several stusiisy-
commonly referred as end-stage renal disease (ESRD). In ”yi‘est that a phenomenon known as Hb cycling is a common oc-
last years the prevalence of ESRD has increased substantialqrrence in ESA-treated patien& IEV 8]. Hb cycling is define
reaching more than 1000 per million population in most ofys the cyclical, repeated, up and down movement of Hb lev-
the developed countriel [2]. In some countries, such as USAg during ESA treatment. The exact causes of Hb cycling are
and Japan, the current prevalence is over 2000 per milllpn [2 ot yet completely understood; however, a number of passibl
ESRD involves a gradual loss of kidney function over time,reasons have been proposed. Fishbane and Bérns [9] suhygeste
which produces, among other health problems, a poor produgyo ESA management practices as major causes. First, the use
tion of erythropoietin (EPO). This hormone regulates the: re of rigid dose adjustment protocols that do not account fer th
blood cell (RBC) production, a class of cells rich in Hb. Low hjgh heterogeneity in patient response. Second, narrovatb t
Hb levels are associated with heart disease, poorer oger@l  get ranges recommended in clinical guidelines [10, 11]ctvhi
ity of life, and increased mortality [3] 4]. need frequent dose changes. THeet of an ESA dose change

Current standard treatment of anemia consists mainly ofioes not reach a steady state until 70-120 days (RBC lifdspan
the administration of erythropoiesis-stimulating ag€BSAS).

Preprint submitted to Artificial Intelligence in Medicine September 15, 2015


http://arxiv.org/abs/1509.03977v1

When doses are changed frequently, it iiclilt to take into 2. Literaturereview

account the long-termfiects of each dose, and often they are ) . ) o

ignored [12[18]. The link between Hb cycling and the devel- The idea of using a data-driven method to optimize ESA ad-

opment of several diseasés [7] together with the high cost ofinistration is not new. Artificial neural networks have bee

the treatment (e.g., around $2.3 billions per year in USA [2] used by several authors during the last decade to indivitial

justifies the need to improve current protocols. ESA dosed [20-22]. In general, those methods used curréntan
revious Hb levels, ESA doses, and other variables thatitbesc
he patient’s condition, in order to predict the next Hb leWide

Soal of those previous works was to select the optimal ESA

medd|cal telr_[_j;,s, |_rlt1hprove tieatments and mtlrr:lrglzle S'ﬂsoesd dose in order to achieve a given Hb level. This approach ts sui
and costs ] IS WOTK proposes a methodology based Ofy, q only when the optimization horizon is the next time step
reinforcement learning (RL) to optimize ESA therapy. RL is

data-dri hf i 21 decisioki On the contrary, the aim of ESA therapy is the long-term Hb
a data-driven approach for solving sequential deciSIORIGR oo ijization. The same idea has been applied using other ma

problems that are formulated as Markov decision Processes ina learnina techniaues. such as fuzzv loai¢ [23. 2471ps
(MDPs) [15]. Computing optimal drug administration strate g aues, Y logié (25, 24]penp

. . . : - . vector machines [25] or Bayesian networks [26].
gies for chronic diseases is a sequential decision-makiolg-p $[25] y fcs [26]

. . ; _ Model predictive control (MPC) is a method of process con-
lem in which th_e goalis t(.) find the best sequence ofdrug dose§r0| whose main advantage is that it incorporates a finitetim
MDPs are particularly suitable for modeling these probldoms horizon in the optimization process. Gaweda elal [27] sFbw
to their ability to capture the uncertainty associated e that MPC may result in improved anemia management. A ma-
outcome of the treatment and the stochastic nature of therund

. jor difficulty of MPC is the requirement of an accurate system
lying processl_[_deiS]. The standard approach to solve MBPs IJmodel. Even if the system model is available, RL has shown to

dynamic programming (DP); however, the practical appiicat be competitive with MPdﬂS]
of DP is limited because it cannot deal with large-scale prob o, i."the context of anem.ia management was previously

lems and requires full knowledge of the MDP model, includingStudied by Gaweda et aﬂzg] and Martin-Guerrero e@] 30
the transition probability function. In contrast, RL (alseown Both agree in the potential of RL to become an alternative to

as app.roxir-nate dynamic programming (ADP)) uses funCtiorlzurrently used protocols. The algorithm employed in those
approximation to address Iar_ge-s_c_ale problems and _the_d rks was the popular Q-learning_[31]. This algorithm has
sampled from the process_to |m_pI|C|tIy r(_epresent _the t!tmm been widely used in some fields as robotics because it require
functlon [19]. RL can explm_tthemformatmn c_o_ntaln_ed 'm_h little computation and can work in real time. However, Q-
ical records to compute policies of ESA administratioroies learning makes an iigcient use of the data, thus, it is not suit-

to the.ind?vidual charapteristics of each patient. In ddditthe able for problems in which acquiring data is costlyl [32] t&t
optimization process is made over sequences of doseSdnSteé-iteration (FQI)[[3B] is a relatively new RL algorithm theig-
ofisolated doses, which is crucial to include the drug |oewgr nificantly reduces the quantity of data required to learrfulse
effects. policies. Recently there has been a growing interest inyappl
The methodology proposed in this work uses the algorithming FQI to optimize the treatment of several diseases ietud
fitted Q iteration to learn a policy of ESA administrationrfio  HIV/AIDS [& sychiatric disorders [35], epilepsy [36, 37],
a set of medical records. The features employed to define thechizophreni 9] or smoking addiction|[40]. To the au-
MDP model are extracted in part from the laboratory tests anthors’ knowledge, this is the first work that applies FQI te th
in part from a clustering procedure of the patient's main at-optimization of anemia treatment.
tributes. In order to test the methodology, a series of exper
iments has been conducted using a computational model that
simulates the response of the patients. The performance has

been assessed against the algorithm Q-learning and a &fanda gejnforcement learning (RL) is a general class of algorithm

protocol of dose adjustment. in the field of machine learning for solving decision-making
The rest of the paper is organized as follows. Next sectioproblems where decisions are made in stages [41]. Such prob-
provides a brief review of related work in this domain. Sed@  lems are present in a wide range of fields, including openatio
introduces the necessary background in RL and briefly eXFesearcHﬁﬂﬂ, artificial intelligenda@ 45], autdimaon-
plains the algorithms employed in the experiments, nanggly, trol [@], or medicineugb]. The standard RL setting corsist
learning and fitted Q iteration. The latter algorithm makes u an agent (or controller) in an environment (or system). Ekech
of extremely randomized trees, a supervised learning ndethacision (also called action) produces an immediate rewahd T
that is described in Sectidd 4. Sectidn 5 discusses the conagent learns to perform actions in order to maximize the réwa
putational model used in the experiments to simulate pfien collected over time. The goal is defined by the user through
response to ESA. Anemia management formulation using ththe reward function. Contrary to other approaches, RL doés n
MDP framework is presented in Sectidn 6. Experiments carrie rely on a mathematical model of the system, but is based on
out are detailed in Sectidh 7. Sect[dn 8 shows and discusses texperience (or data). The agent obtains experience itiggac
achieved results. Finally, conclusions and proposalsuidhér — with the environment. Fidll1 represents the main RL elements
work are given in Sectio] 9. and how they interact. At each stage or discrete time-ggint

The widespread use of electronic medical records is givin
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A action evaluates the immediatéect of the transition, but it does
state gent not provide information about its long-ternffects. The
reward function is defined by the user and implicitly codi-

fies the goal of the agent. Notice that the reward function
does not describe how to achieve the goal, but the agent

reward .
s must learn how to act from experience.
Environment . . .
L Suppose a patient faring from a certain disease that re-
_ . _ . quires long term treatment with a particular drug. Usudhg
Figure 1: Elements of RL and their flow of interaction.  aim is to administrate a suitable sequence of doses in coder t

control a variable (or several variables) related to thesgvof

the disease. For example, in anemic patients, Hb level thtase

the agent receives the environment’s state, and on that basi measure the degree of anemia. The M.DP framework can be ap-
plied to this problem modeling the patient as the environmen

lects an action. As a consequence of its action, in the rree ti . . . .
. . . In this case, the state should contain all the informatiteveant
step, the agent receives a numerical reward and the envénainm I
to choose a proper treatment. In addition to the current tdve

Volv new . Th nt sel ion in : :
evolves to a new state e agent selects actions deperuiing ﬂb,the state may include other factors that can influencefthe

ter:/eeren;/tlfr;:gm_re nti(f;ﬁte tlrjlse’";g :n??r:ggi;zzttﬁfl%rl]iz agsa;ltggg tfect of the treatment such as the physical characteristittseo
y - ypicaty, g policy patients or their nutritional condition. The set of actiane the

of the interactions with the environment. . .
ossible treatments (or drug doses) that can be admirdstere

The elements of the RL problem can be formalized using th . .
Markov decision processes (MDPs) framework. Next, in Sec-he patient. After each treatment, the patient status eediy

tion[3-1, MDPs are used to formally introduce the basic compoa new state. Th_e new state will be in part a consequence of the
I “treatment, and in part a consequence of other aspects tihat ca

e e o201 Tk AT e conrold byt agent. e forexape e prsofe
' o inflammation or blood losses. If the objective of the treatime
is to maintain the Hb level within a range, the reward functio
can be defined to provide a positive reward when the Hb level
Markov decision processes are a general mathematic@ between the limits of the target range and a negative tewar
framework for modeling sequential decision-making praotde  in otherwise.
An MDP is defined by the following elements: The agent selects actions according to its paticyS — A.
The policy is a function that maps states to actions, i.egéah

o Asetofdates, S: At each discrete time-poirk the envi- - oqipie state of the environment, the policy indicatesitien
ronment occupies a stagg € S. The state usually is com- o+ should be performed:

posed by a vector whose components describe the current

situation of the environment. As time passes, the vector n(s) =a (1)
values evolve in part as consequence of the actions ap-

plied by the agent and in part stochastically. The state cahhe objective of the agent is to learn a policy that maximizes
simply be a variable observed directly from the environ-the sum of rewards received over time, a quantity known as
ment, or a more complex structure such as a set of variteturn. Such a maximizing policy, denoted by, is said to

ables highly processed which combines information aboube optimal. The return usually is computed using the infinite
the current and the past situations of the environfhent  discounted horizon. In such a case, the return for an irsitée

s and under the policy is [47]:

3.1. Markov decision processes

e A set ofactions, A: The agent applies an acti@g € Ain .
each state. The state in the next instait, is influenced .
by the current action. The actions are the mechanism em- X (%) = M Eqiscas {Z AL CRCN] Sk*l)} (2)
ployed by the agent to control or guide the evolution of the k=0
environment. wherey € [0, 1) is the discount factor. This parameter can be
o o ] intuitively interpreted as a way to balance the immediatere
e A transition probability function, P SxAxS — [0,1):  anq future rewards. Future rewards are more relevant for the
After actionay is taken in the current state, the transition -5|culation of the return agapproaches 1.
funct!on g|ves_the probability of the next state, i.e., this 14 find an optimal policy, the agent must explore the environ-
function describes how the state evolves. ment: the probability of attempting new actionsffeient from
those dictated by the policy) must always be non-zero. Other
wise, some areas of the state-action space may never egvisit
and the learning process can become stuck in a local optimum.
The tradeff between greedy action choices and exploration is
LThe only requirement is that the state should contain eninfgimation ~ Necessary for the performance of any RL algorithn [48]. Eher
to fulfill the Markov property (see Secti¢n 6.2 for more disfai exist several strategies to include exploration in the #gen

e Arewardfunction, p : SxAxS — R: Each transition be-
tween states generates a reward = p(Sk, ax, Sk+1) that




behaviour, such as-greedy exploration or Boltzmann explo-  The remaining of this section describes two RL algorithms

ration Ei]. for solving MDPs. On the one hand, the well-known Q-learning
. algorithm @]. Q-learning is probably the most popular RL a
3.2. Solving MDPs gorithm, it has been used in many applications, includirey th

Solving an MDP means to find an optimal policy. Theretreatment of anemia in hemodialysis patie@ , 30]. @nth
are several methods for solving MDPs, which can be groupedther hand, fitted Q iteratioELBS], a more recent algorithat t
into two classes: dynamic programming (DP) and reinforceforms part of the methodology proposed in this paper. Both ar
ment learning (RL). DP methods require knowledge of the fullofiline algorithms, which means that they do not require inter-
MDP model. Since the transition probability functi®rarely  acting with the environment during the learning phase, bt i
is available, this class of methods can only be employed istead can learn a solution using data collected in advare. T
a limited number of practical problems. On the other handdata, or experience, usually is stored as a set of transitibtine
RL methods are completely based on experience, which makésrm (s, a, r, ') sampled from the process. This data set should
them useful when the full MDP model is unknown offdiult ~ be representative of the state-action space, i.e., thaydhon-
to estimate. tain a certain degree of exploration. Given that the agemict

Most RL algorithms use Q-functions (also called utility &un  interact with the environment when RL algorithms are amplie
tions)Q" : SxA — R to find an optimal policy. Given a policy, offline, in such a case itis not necessary to include a exploratio
the Q-function for a particular pais(a) is defined as the ex- strategy.
pected return that is encountered starting frgrraking action

a and thereafter following policy [4€]: 3.2.1. Q-learning
Consider a Q-function approximator denotedbynd pa-
Q(s3) = Esisalp(s 8 5) + yRU(S)) ©) rameterized by d-dimensional vecto. Every possible vector

wheres is the state reached after taking actéim the states. ~ Of parameters provides an approximated representation of a
The Q-function measures the utility (in terms of the expecte corresponding Q-function:
return) of perform each action in each state. A
' o ! . = 6
The optimal Q-function is defined as the best Q-function that QAsa) = Fo(s ) 6)
can be obtained by any policy: where the symbol denotes approximation. In general, the ap-
; _ proximatorF can be nonlinear in the parameters. However, in
Q(sa) = m;axQ”(s, 3) “) some algorithms (e.g., Q-learning) linear approximatoesod-
From the optimal Q-function, an optimal policy can be easilyt€" preferred because they provide better convergencet@nd s
derived choosing in each state the action that maxin@es bility properties [49=51]. A linearly parameterized apgiroa-
tion of the Q-function is expressed as:
7'(9) = argmaxQ'(s.a) (5)

d
where arg maxf(x) stands for the argumenmtthat attains the Fo(s @) = Z #i(sa)f = ¢ (s a)d (7)
maximum value of the functiori(:). In general, for a given =1
Q-function, a policy that maximize® in this way is said to whereg¢(s,a) = [¢1(S a),...,¢d4(S a)] is the vector of basis
be greedy inQ. Therefore, solving an MDP (i.e., finding an functions (also called features [48]) that are combinedgisi
optimal policy) can be done by first findir@’, and then using thed-dimensional vector of paramete&sA common approach
Eq. (3) to compute a greedy policy @r. to define the basis functions consists in using a regularajrid
When MDPs have a small enough number of states and aGaussian radial basis functions (RBFs) spanned over tte sta
tions, Q-functions can be exactly stored in tables with ame e action spacéEL__rSZ]. In such a case, for some state-acion p
try per state-action pair. Unfortunately, many practicadlp  x = (s, @), the vector of basis functions is:
lems contain a very large or infinite (for example when the
. 2 2 2
state space is continuous) number of states; in such a case, j?exp(—nx_ Call ] (_“X_ Call ],...,exp(—”x_ Call ]
functions must be represented approximately by two reason 202 203 20'3
First, suppose that the MDP contaMstates, ifN is very large,
a table withN entries would be intractable due to computationalwhere each RBF is defined by its position or cewtand vari-
and memory limitations. On the contrary, in a typical approx anceo?.
imate representation is only necessary to store a vectdt of ~ The Q-learning algorithm starts with an arbitrary approxi-
parameters, beinM < N. Second, when the state space ismation of the Optimal Q-function, i.e., an arbitrary vecudr
large or continuous, the agent will probably never be eyamil ~ parameterslo. Then, it uses the data from each transition
the same state more than once. Therefore, the experience 48 a. 1, ) to update the parameters using the following
quired from a set of states should be generalized to othiesssta rule:
that have not been seen before. In principle, any function ap
proximation (or regression) method can be used to repr€sent  6j+1=0j + @ |lw1+y n;QX¢T(S<+1, a)o;
functions. However, in practice, some RL algorithms impose
restrictions about the Stl’rl)JCtUI’e of the approximator. ¢ (s ak)ai] #(sea) (9)

T




where the indexj = 1,...,p corresponds with the number resolution (or complexity) of the model so as to reach the bes
of transitions in the data set amdis the learning rate. This biagvariance trade® [33]. Although FQI has been success-
learning rule updates the estimation of the optimal Q-fiamct fully combined with many approximation methods (e.g., neu-
incrementally. Moreover, each update requires little corap  ral networks|{__5t3] or linear regressidn__[39]), a techniquewn

tion and memory resources, which makes possible to apply as extremely randomized treés| 54] has shown better perfor-
learning in real-time. On the other hand, the algorithm@nés  mance than other approach@[ , 36]. Therefore, this tree-
two possible drawbacks: (i) it generally requires many 4tran based method, whose details are introduced in the nexbgecti
sitions to obtain useful policies, and (ii) the function app  was used in the experiments.

imator should be parametric and typically linearly paramet Despite FQI is more datafficient than other RL algorithms,

ized ]. the number of transitions required to learn optimal poticie
grows quickly with the state space dimensionality due to the
3.2.2. Fitted Q iteration “curse of dimensionality”@S]. This feature is common td al

Fitted Q iteration (FQI) is a batch RL algorithm whose mainRL algorithms, including also Q-learning. Thus, reducihg t
feature lies in the way that it handles the experiehck [33}: U number of state variables as much as possible is an important
like incremental algorithms, FQI uses the complete setaof-tr issue. To this end, similarities among patients were esgioi
sitions each time that updates the estimation of the optfpaal by k-means clustering analysis before applying any learning al
function. Although this process involves more computation gorithm (see Sectidd 6) [56].
allows to extract more information from the stored experéen
Consequently, FQI is more dat#fieient than other RL algo- .
rithms. This feature makes FQI a very suitable algorithm in4' Extremely randomized trees

many application domains. For example, in the problem tack- Extremely randomized tree|§[54] are a tree-based ensemble
led here, p_atients are modeled as the environment and _the 39%ethod for supervised classification and regression pnahle
ha_ls to estimate .Opt'mal. d_rug .doses. Acquw_mg EXPETIENCE 1} can be considered as an improved version of the popular tre
this context entails administering a dose, waiting untibkes ensemble method Tree Bagging|[57]. The algorithm developed
effect and measuring the variables that define the new patient compute this kind of ensembles is called Extra-Trees and
condition. T_his process is_ expensive, bOt.h in time and MONEYiie Tree Bagging, it works by building severd\lj trees. A ’
Thus, reduglng the quantity of data required by the algorith key difference between both approaches lies in the sample used
can _be cruc!al. NN . to compute the trees. While Tree Bagging uses a bootstrap sam
G'Vef‘.a fixed setD — ((Se B M Scr1)- | = L....p}of ple, Extra-Trees uses the complete data set to built eagh tre
p transitions and an arbitrary initial Q-functiagy (e.g., equal Similarly to standard regression trees, each tree is coetbos

to zero eyerxwh?r(ha o8 >; A '.:QI Star’{shby |n|t|al|i|r(1)gfan 6|1|p- of decision nodes, where each node contains a split (ordést)
proximationQo of the Q-functionQo, with Qo(s @) = 0forall o, Giipyte. The value where such attribute is split is kmow

(s.8) € SxA. Ittheniterates over the following three steps [33]; as cut-point. In order to define a decision node, Extra-Trees

I.n—n+1 generateX splits by choosindg attributes at random and for
2. Build the training set7S = ({(input,target),j = each attribute a cut-point at random. Then, it calculateDees
1,...,p) based on the functio_1 and on the full set (based on the explained variance) for each ofktheandidate
of transitionsD: splits and selects the split that obtained the maximum score
o This process is repeated until the number of elements in the
input’ = (s, a)) (10)  node is less than the paramelgp, [54]. The algorithm has

three parameters that need to be specified: the nuibef
trees to build the ensemble, the numBeof candidate tests at
each node and the minimal leaf siga,.

target =1} +y mat:iXQn—l(S[Ll, a) (11)

3. Use supervised learning to induce fron® the function
Qn(s a)
. . 5. Erythropoiesismodel under darbepoetin alfa treatment
Qn(s @) = rks1 +y MaxQn-1(Sc1, @) (12)
a - ..
The ability of RL to compute treatment policies was assessed
The iterative process can be stopped simply by establishing through simulations. Experiments were based on a computa-
maximum number of iterations. Another possibility is to fix tional model that describes théfect of darbepoetin alfa on
a threshold valug > 0 and stop the loop when the distance the Hb level. This section presents the main charactesisfic
between two consecutive estimations of the optimal Q-fonct the model in order to provide insight into the tackled clalic

drops below the threshold, i.6Qn — Qn-1| < £ [33]. problem[Appendix_A gives a more detailed description of the
FQI, similarly to other RL algorithms, requires a functigma model.
proximator to represent large or continuous Q-functionswH Several theoretical pharmacodynamic models describiag th

ever, on the contrary to Q-learning, it does not impose any co hematological response tofiirent kinds of ESAs have been
straint on the kind of approximator. In fact, at each itenath  developed during the last decadés| @—63]. The model in-
it is possible to change the approximator in order to adagpt thtroduced in this section is focused in patients undergoing

5



hemodialysis who are treated with intravenous darbepa#itin  in[Appendix_A. In addition to endogenous EPB) and the

a second generation ESA drug. The hematopoietic cell pepulanean corpuscolar hemoglobin concentration (MCH), the-indi
tions are natural examples of biological systems goverryed bvidual response of each patient to darbepoetin alfa is difine
lifespan-based processes of cell proliferatiorffedentiation, by two other parameters€Cp, a constant that determines the
maturation, and senescence. The Hb level is proportional tbow of cells in the first compartment of the model (denoted by
the number of erythrocytes, which are produced primardyfr  P), andCr, which plays a similar role in the last compartment
stem cells in bone marrow. During the process of maturation(denoted byR) (seq Appendix A for more details). These pa-
stem cells undergo a series offdrentiations. When they reach rameters can be adjusted using clinical and laboratory afata
the stage of reticulocyte (immature erythrocytes), thegibbeo  patients. Mrras 7.14 (R2012a) was employed to adjust the
circulate in the blood and, after 1-2 days, these ultimabely parameters and perform simulations. TherMe DDE solver
come mature RBCs (erythrocytes). In patients with CKD, ery-dde23 was used to compute the solutions of the system of dif-
throcyte lifespan is approximately 70-90 de{E [58]. Thecpss  ferential equations.

of erythrocytes production (erythropoiesis) is regulaigdhe This computational model, as any other model, it is a simpli-
hormone EPO, which is produced in the kidneys. Darbepoetification of the real problem. It makes two basic assumptions:
alfa is a synthetic form of EPO that stimulates erythropisies first, each patient maintains a stable level of inflammatiol

by the same mechanism. second, the availability of iron for erythropoiesis is ctamd.

Hb concentration dynamics following the administration of Generally, these assumptions are not met by all patientsglur
darbepoetin can be described through a multi-compartmeratl treatment. Nevertheless, the model is able to capterbelr
model @]. The dfiferent cell types involved in erythropoiesis erogeneity in the response to darbepoetin alfa and its teng-
are grouped into population classes (or compartmentsyacco effects, two factors suggested as principal causes of Hb gyclin
ing to their characteristic properties with respect toriatdion  Therefore, the model is useful to evaluate the performaifice o
with EPO. The number of cells in all compartments depends oRL in preventing Hb cycling.
the plasma concentration of EPO, which consists of the sum of
the naturally produced EP@,p, and the exogenous adminis-

tered EPO (darbepoetin alfa; 6. Problem formulation using the MDP framewor k

6.1. Anemia management as a sequential decision-making

Etot =E+ Ep (13) problem
The rate of endogenous EPO production in the kidney is as- The symptoms of anemia and the response to the treatment
sumed to be constant. often vary depending on several factors, such as the physica

In the case of an intravenous administration, the total arhou characteristics of the patient (weight, age, sex, etcl), [62-
of darbepoetin alfa is injected into a vein within a very ghor gree of kidney disease [68] or comorbidities|[69]. During th
time interval so that, without loss of generality, it can ks a treatment period, the clinical evolution of each patiertlyjs-
sumed that the amount of the exogenous hormone in plasma @ally monitored by monthly reviews. Each review consista of
to, the time when the administration takes place, is exactiaeq laboratory test, which measures several variables to aigises
to the amount of exogenous hormone administered. The resytatient’s condition, and the drug prescription until thetre-
is a sudden rise of the hormone plasma concentration foloweview. Therefore, each patient generates a sequence ofvabser
by an exponential decay described by a first order ordindry di tions and treatments of the forin [39]
ferential equation with a constant elimination rate
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Whereoﬂ( stands for the condition of thith patient at montk,

j .
whereE(t) stands for the concentration of exogenous hormonék stands for the dosadéor ihe same patient and month, dhd

at timet, Do the drug dose &b, andVy is the volume of distri- Is the duratlo_n of th_e _vvhole tr_eatment. . .
bution at steady state, which is seMp= 524 @]_ A sequential decision-making problem can be easily derived

The total Hb level at timé is proportional to the concentra- from th(ljstsetthof dsequences, \.'ghzrf aCt'OES (ct).r dtegls:t;;s{)j_cor
tion of erythrocytesR(t): respond to the doses prescribed to each patient in i

ent months (or stages). Before applying any RL method, it is
Hb(t) = MCH - R(t), (15) necessary to define a functia(o,, ay, - -, 04) that assigns a
state to the patient’s current history and a scalar rewand-fu
whereR(t) is the plasma concentration of RBCs and MCH de-tion p(s, ax, S.1) that evaluates the transition fros to Sc,1
notes the mean corpuscular Hb concentrafioh [66], chosen asafter taking the actioay. The result of applying both functions

N to (I7) is a sequence of states, actions and rewartls [39]:
2.7 g- (10*cells)” for men.

2.49-(10celly™ for women. (16)

MCH = P S
{ Si’ai’rj’ %’aé’r]5... ’S!r’a-Jr’ r-]r (18)
The complete system of delayfidirential equations (DDE) that These sequences can be rewritten as a set of transitions

describes the cell dynamics in each compartment is includes a,r, s'). Then, FQI can be applied to compute a policy that
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selects optimal drug doses (in view of the data available) deassumption is that the same treatment will produce a compara

pending on the patient’s condition. ble dfect in patients with similar characteristics.
The rest of this section details the definition of statespast Regarding the action space, a set of discretized actions was
and reward function in the context of anemia treatment. used

A =1{0,0.25,0.50,0.70, 1} ug/kg per week.

6.2. State and action spaces These values correspond with the doses that can be adminis-

The MDP framework assumes that the state transition dyt.ered to the patientS. It Should be nO'[ed that these We|ght'
namics and the reward distribution has the Markov propertyormalized doses areftérent for each patient depending on
that is, given the current sta and actionay, the next state the body weight. In practice, using a discrete set of doses ca
Se1 and rewardr are conditionally independent of all previ- be useful due to the fact that darbepoetin alfa is suppligrden
ous states, actions and rewarlds [41]. An obvious way of definfilled syringes and, if the syringe is partially injectede trest
ing a state representation that holds the Markov propetty is Will be wasted.
include all past history irs.. In practice, this is not feasible
due to two reasons: (i) as stated in Secfion 3.2.2, the amougt3. Reward function
of experience needed to learn useful policies grows exponen . ] ]
tially with the number of state dimensions due to the curse of The reward f}JnCtlon .defllnes the aggnt’s goal. The aim of
dimensionality, and (ii) the space required to store exme ESA_treatment is to maintain Hb Ie\(els ina hgalthy range. Ac-
would grow indefinitely ak grows. Therefore, the state should €ording to the European Best Practice Guidelines for thatire
contain enough features to provide a “good summary” of thén€nt of Anemia in Chronic Kidney Disease [11], Hb concen-
past history and, at the same time, it should be as compact #&tion should be-11 gdl for all patients, and no higher than
possible to allow the learning of useful policies from a lim- 12 gdl for patients with comorbidities such as cardlovasc_ular_
ited amount of experience. Despite that RL theory assunees ttflisease, diabetes, etc. Thus, the Hb target range usedsin thi
Markov property, most practical problems that may not fully Work was [11,12] ¢gdl. On the other hand, abrupt changes of
satisfy this condition can be solved successfully by apgjyi Hb should be avoided. Specifically, changes (increments and

RL methods([41]. For other cases, the MDP framework can b&eécrements) close to 2dj per month increase the risk of car-

extended to a more general framework using partially obsen/diovascular episode’s [11].
able MDPs (POMDPs) [70]. _ In orQer to sa_tisfy both goals, the reward was designed as a
In the anemia management problem, the state space of tfgecewise function that depends on the current Hb letigl.

MDP was expressed as The idea is that whehlby is close to the target, then the policy

should try to reach the target range in the next month. Howeve
s = [Hby, AHby, DA, DA_1, DA, Patientyoy] if the difference betweeHby and the target is too large, the Hb

change required to reach the target in the next month carobe to

whereHb, measures the degree of anemia in the current montgbrupt and it should be avoided.

k. AHby, defined as the dfierence between the current Hb level  The following bell-shaped reward was employed when

and the previous one, indicates the Hb tremf is the dose 105 < Hby < 125:

of darbepoetin alfa. Due to the long-terifieets of darbepoetin

alfa, Hb at montfk is not o_nly influenced by the last drug dose, oub(Se &) = 1— tank? (’ Hby,1 - 115' _ w) (19)
but also by the doses during the two previous months, thexefo

DA_1 andDA_, were also included in the state definition. On . V0.95

the other hand, given that the treatment should be tailaved t w = tanh (W)

the individual characteristics of each patient, informatbout

such characteristics must be included in the state defmilibe  \whereg = 0.5 is a parameter that controls the slope of the func-
computational model employs four variables that descrémhe  tion. This function assigns a maximum reward whein., is
patient, namely, MCHE p, CpandCr. These variables could equal to 11.5 gil (the center of the target range), and it de-
be directly introduced as state variables, however, pmovK-  creases smoothly to zero &y, differs from 11.5 g, in-
edge about the problem was used to reduce the state space g@licating that Hb levels near the target are preferable. [Hg.
mensionality. MCH is a dichotomous variable that depends 0Bhows the shape @f;p.

the patient's gender. Therefore, it was decided to remoge th  |f Hp, > 125, the goal was to achieve a decrement ofdl:g
variable and compute a policy for men and another for women.

The remaining variable=p, Cp andCr) were analyzed us-

ing k-means cIusterinﬂ‘L’G]. The objective was to find groups p-anb(S &) = 1 - tant?
of patients that respond to the treatment in a similar way, and

then, introducing into the state definition only the infotina ~ whereg andw are the same as in Eq._{19) anéiby,; is the
about the kind of response instead of the patient’s charactedifference of Hb between the current and the next month, i.e,
istics directly. Thus, the output of the clustering algomitt  Hby,; — Hby. Similarly, if Hb < 10.5, the agent’s goal was to
Patientyoup, also formed part of the state space. The underlyingbtain an increment of 1/dl. The complete piecewise reward
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function is given by

PHb if 10.5 < ku <125

Table 1: Baseline characteristics of the population useatito
just the model parameters.

P(S @) =1 p-aHb if Hb, > 125 (22) Characteristic (= 128)
P+AHD if Hb, <105 Age (y) 58.53+ 15.15
Sex (% male) 53.91
Fig.[2 depicts each subfunction separately and the comete Height (m) 1.62+ 0.09
ward function versusib, andHby, 1. Weight (kg) 67.97 12,61
Treatment
Darbepoetin alfay/kg/week) 0.29+ 0.17
. Iron IV (mg/week) 34.74+ 32.08
7. Experiments Laboratory data
Hemoglobin (gdl) 11.80+ 1.16
The purpose of the experiments was to assess the proposed  Ferritin (ngml) 430.90+ 178.96
; ; ; ; Serum albumin (gil) 4.09+ 0.29
method by comparing the quality of the learned policy wité th Phosphate (mg) 4525103

popular Q-learning algorithm and with a standard protodol o

Leukocytes (cellsnm?)

6584.1+ 1260.9

dose adjustment. As illustrated in Hig. 3, experiments ware
ried out in three stages.

First, the computational model was used to generate the ex-
perience (data) necessary to apply the RL algorithm. Specifi Table 2: Summary information on the model parameters.
cally, 5000 hemodialysis patients treated with darbepaafa
during 30 months were simulated. Second, the data were pro-  Parameters
cessed in order to obtain a set of states, actions and reward. g,

Then, a drug administration policy was learned from datagisi Cr

FQI. For comparison reasons, this learning process was also CP
carried out using Q-learning. Finally, in the third stageesv

cohort of 60 patients was simulated in accordance with three

treatment strategies: the policy learned using FQI, théyol
learned using Q-learning, and the treatment recommended
the protocol.

Data are means SD.

Value (meanSD)

0.3588+ 0.0753
0.1372+ 0.0520
0.2014+ 0.0640

P]atients. Then, patients’ progress over time was simuldited
ing 30 months of treatmefit The dose of darbepoetin alfa
administered during each month was randomly selected among
the discrete seA, which introduced a high variability of doses.
If all patients had followed an specific treatment prototiod

The computational model was used to generate a data set tHaarned policy would be strongly biased by that protocothkn
mimics the medical data gathered during common clinicatra actual case, physicians’ prescriptions are based on alipio-
tice. The model uses four parameters (M@, CrandCp)to  tocols and in their own experience, therefore it is common to
describe the patient’s individual response to anemiartreat.  find different doses for patients with similar conditions. Never-
MCH was chosen as indicated in EQ.](16), while the remaintheless, in general, doses prescribed by physicians sserdio
ing parameters were adjusted employing data extracted froftie optimal ones, which facilitates the learning process.
the medical records of 128 patients undergoing hemodglysi Simulations generated a total of 508030 = 150000 ob-
and receiving darbepoetin alfa. Data were collected batweeservations and treatments. Due to the randomness of tte trea
January 2008 and December 2010 in three hemodialysis cement, in some observations the Hb level was greater than 20
ters located in Italy. Tablg 1 shows the baseline charatiesi g/dl. These data were removed because they represent unreal-
of patients used to adjust the model parameters, and Thbleigtic situations. After this restriction, the data set detesl of
shows a summary of the adjusted parameters. 138011 observations.

As the proposed method was applied separately for men and
women (see Sectidn 6.2), the data set was split by gender. DUe2. Learning
to the high level of similarity between the results obtaiied  The data generated in the previous stage were used as input
both groups, the rest of the work is focused only on the men’sf the learning algorithms FQI and Q-learning. To this end,
group. After data splitting, the adjusted parameters weaé-a  the sequences of observations and treatments were traresfor
able for 69 male patients. In order to increase the populatiointo a set of transitionss( a, r, s') following the methodology
size, linear interpolation was applied between the pararset introduced in Sectiof]6. Some of the state variables were ex-
of each patient and a patient randomly selected among its Ifgacted using the clustering algorithemeans. The rest of this
nearest neighbors. This process allows to generate atifiat
tients that are similar to the real ones and, at the same time,
introduces a certain degree of randomness in order to @ptur 2Given that the prevalence of CKD is between 0.1% and 0.2%eofdtal

Al ‘ot ; ; population, the size of the simulated population is typfcain a region with
the Va”ablllty of the characteristics among?drem patients. about 5 million inhabitants. On the other hand, patientsoéien treated for

The process was repeated until the paramgters corresgpndigtended periods of time due to the chronic nature of CKD gwvew 30 months
to 4931 new patients were generated, making a total of 500@as enough the generate the amount of data required to lsaful policies
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c = -if Hb, <10.5

if 10.5 <Hb, <125
- - |——if Hby, >12.5
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Figure 2. Reward function. Subfigures (a) and (b) represenptecewise reward as three separate subfunctions. Bar{adi is
applied when 16 < Hby < 125 and it varies depending diiby, ;. Functions (b) are applied wheétby, < 10.5 (continuous green
line) or Hbx > 125 (dashed red line) and they vary dependingAdtby.1. Finally, (c) represents the complete reward function
versusHby.,.1 andHby.

section discusses some practical issudsmkans, FQI and Q- 06
learning.

7.2.1. k-means

The k-means algorithm employed in the clustering analysis
starts with an initial estimation af centroids and then uses an
iterative method to optimize the cluster quality. Typigathe
number of clusters is selected empirically. In this work, the ; ; ; ; . , :
clustering analysis was repeated using valuesfodm 3 until 5 10 13 o 05 30 3 40
10. For each valuzﬁ, the obtained clusters were analyzed us- Number ofiterations
ing silhouette plots [71]; finallyg = 5 was selected as the most Figure 4: Fitted Q iteration convergence measured as the dis

suitable because it maximizes the within-cluster compssn tance betwee®, andQ,_1 versus number of iterations.
and the separability among clusters.

dist(Qn, Qn—1)

7.2.2. Fitted Q iteration
F.QI is based on an "efa“"e. procedure and_ the de5|gner mu\?VIhereSi x A are the state-actions pairs contained in the set of
decide when to stop the iterations. The algorithm startis aiit transitionsEb]
arbitrary approximation of the optimal Q-function that is-i '
proved at each iteration. Thus, the number of iterationsisho  Fig.[4 shows the convergence of FQI versus the number of
be enough to allow convergence to the optimal Q-functioniterations, where it can be observed that the approximated Q
Convergence can be measured in terms of distance betweg{l'ﬂction remains almost stable after 35 iterations. In vaw
consecutive approximations of the Q_function, defined as this, the number of iterations was fixed to 40. On the other
R R ) hand, the discount factgrwas empirically set to 0.9, this value
A A 2(sa)eSixA (Qn(S a) — Qn-1(s, a)) was enough to incorporate the long-terfieets of each dose in
dist(Qn, Qn-1) = #S X A) (22) " the optimization process.
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Figure 3. Experiments were carried out in three stagest, Firs computational model was used to simulate a cohort tidua
that are treated during a period of time, gathering the dscgenerated by each patient in a database. Secondly, thesegere
processed to produce a set of transitions of the f@m, ¢, s'), and then FQI algorithm was applied. For comparison resdbe
learning process was also repeated using Q-learning. ,th&golicies learned from the data were evaluated and caadpéth a
standard protocol using a new cohort of simulated patients.

Extra-Tree algorithm parameters were chosen following the 003
procedure described in [33]. The number of trees in the ensem 0025 b
ble was set tdM = 50, the parametek was set equal to the
dimension of the input space, i, = 6, and the minimal leaf
size was selected among the valugs = [5, 10, 50, 100] using
cross-validation in each iteration of FQI. Experimentsvebd
that these default values are a good chdick [54]. 0.005

002

0.015

001

dist(Qn, Qn—1)

7.2.3. Q-learnlng ” Numfa(;r of iterati07nss (in lhousarll(()i(l) =
Q-learning is also based on an iterative procedure that es-

timates the optimal Q-function. However, as each tramsitio Figure 5: Q-learning convergence measured as the distance b

(s ar,g)isonly used one time, when the number of transitionstweenQ, andQ,_; versus number of iterations.

is limited the algorithm simply iterates over the completecf

transitions. Thus, it is not necessary to implement a gyete

stop the iterative procedure. . . .
The Gaussian RBF network with fixed bases employed t§Fig.[4) each iteration is based on the complete data setcéien

approximate the Q-function requires the definition of thenau  d€SPite the number of iterations shown in both figures, the co
ber of Gaussian functions, their centers and standardtitevia  Vergence process of FQI is much larger than in the case of Q-

This process typically requires trial and error experiraéon ~ 1€2MiNg.
with various configurations. The number of functions shdadd )
enough to provide a smooth interpolation over the entireesta /-3 Evaluation
action space. If the Gaussians are too peaked, it will be nec- The policy learned with the proposed methodology based in
essary to employ a very large number of functions to cover th&QIl was evaluated in a cohort of 60 new patients using the
entire space. On the other hand, if they are too flat, the RBF necomputational model. Similar to Sectién17.1, the paranseter
work will not be flexible enough to approximate abrupt change corresponding to these patients were generated by lintar in
of the Q-function. Thus, it is necessary to reach a compremispolation. The evolution of each patient was simulated dayrin
between locality and smoothness. 30 months of treatment using the drug doses indicated by the
After experimenting with several configurations, the siddc ~ RL policy. For comparison purposes, the same cohort of pa-
RBF network architecture employed 4096 Gaussian functionients was simulated according to the policy learned with Q-
whose centers were distributed in a regular grid over thee sta learning and the treatment recommended by a standard proto-
space. The inputs were normalized to the range ] and all ~ col. The protocol was extracted from the European Medicines
the standard deviations were sewto= 1.1. The discount fac- Agency [72] and it describes the dosage regimen for Araitésp
tor was fixed as in the FQI algorithny (= 0.9). Additionally,  (a commercial form of darbepoetin alfa) as follows:
Q-learning introduces a new parameter that should be tuned:
the learning rater. A large value ofx usually results in faster
convergence, but when it exceeds a certain critical vahe, t

algorithm becomes unstable. Fig. 5 shows the convergence of If the increase in Hb is inadequate (less tharidl i four

Q-learning (measured using EQ.122)) wher 0.2. The figure weeks) the dose should be increased by approximately
suggests that Q-learning has not converged after 1380kt ite 250%.

tions.
It is worth noting that each iteration of Q-learning (Fig. 5) e The dose must not be increased more frequently than once
employs only a transition of the data set; whereas in FQI every 4 weeks.
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e The initial dose for patients on dialysis should be 0.45
1g/kg body weight administered weekly.



¢ If the Hb rises more than 2/dl in a period of 4 weeks, the 16 F
dose should be reduced by 25%. I

o If the Hb level is greater than 12/d), the dose should
be reduced by 25%. After this reduction, if the Hb level
continues rising, the treatment should be temporarilyinte
rupted until the level starts to decline, momentin which the
treatment should be resumed with a dose approximately
25% lower than the previous dose. st

Hemoglobin (g/dl)
T
|
|
|
|
|
|

When the computational model that simulates the patients 6 . .
is initialized, the level of Hb is determined by the initial Q-learning FQI Protocol
conditions. These conditions are equal for all the patients
(sed Appendix D), i.e., at month zero all the patients hage th Figure 6: Box plot representation of the Hb levels corresbon
same Hb level. In order to have a cohort of patients with dngd to 60 simulated patients during 30 months of treatmeat. P
heterogeneous initial state, the 60 patients were treatadgl ~tients were treated according 4@-eaming: 77FQI @nd protocol-
four months with a random treatment before starting theueval The two horizontal lines (dashed black) indicate the Hbetrg
ation process. Thus, the protocol recommendation for the in range.
tial dose was never applied because the patients had already
received some previous doses of ESA when beginning the eval-
uation.

related with the superiority of FQI is its flexibility to appt-

imate the Q-functions. In Q-learning it is necessary to @efin
8. Results and discussion an a priori approximator structure that remains fixed over th

learning process. On the contrary, in each iteration F@cssl

This section assesses the proposed methodology by comp&€ approximator structure that provides the best appratian
ing the policy learned using FQk{o:) with the policy learned ~ Of the current Q-function.
using Q-learning fg.earning @nd extracted from the protocol ~ Since FQI outperforms Q-learning considerably, the rest of
(7protoco)- All results shown correspond with the cohort of 60 this section is focused only on analyzing thefetiences be-
simulated patients used for validation purposes and 30 msont tween the policy obtained using FQI and the protocol of dose
of treatment. adjustment.

As a first approach to compare the behavior of the three poli- A limitation of the box plot representation is that the tempo
cies, the Hb levels obtained with each policy were represknt ral information is lost. In order to compare the performaote
in a box plot. This kind of representation graphically dépi&  the two policies along time, a better approach consistspn re
set of data values through their quartiles, allowing to ailsu  resenting the Hb levels during the treatment. Elg. 7 shovss th
estimate the degree of dispersion and skewness[JFig. 6 showormation forzrq andsprotocor FOr the sake of simplicity,
the box plot corresponding ®@g-iearning QI 8N protocol 1N Fig.[d represents the Hb of only a subset of 19 patients ran-
the three cases the median falls within the desired rangénof Hdomly selected. The figure also includes two horizontaldine
(indicated by two horizontal dashed lines at 11 and/t@nd  (dashed black) at 11 and 12dyjthat indicate the target range.
the Hb levels are approximately symmetrically distribut€de  During the first months of treatment, Hb was shifted towards
main diference observed among the three policies is the largthe target range with either of the two policies. In this sens
dispersion ofrq.iearning, Which means that many of the patients 7rqi was more #ective thanmprorocol because, in general, it
treated with this policy have Hb levels away from the targetrequired less time to reach the target. After seven months of
range. In the other two policies there are also Hb levels subtreatment, several signs of Hb cycling appeared in someeof th
stantially diferent from the target range; however, these valuegatients treated withprotoco. On the contraryreg was able to
can be considered outliers (shown as red crosses) fromthe co prevent or drastically reduce Hb cycling. As expected, the e
plete set of observations and are likely due to the initialest treme values of Hb previously shown as outliers in the box plo
of the patients. are mainly concentrated in the first months of the treatment.

The low performance of Q-learning is probably a conse- Fig.[d also shows the variation of Hb over time, but in this
guence of the limited amount of transitions available toweste  case in terms of the mean (solid lines) and standard demiatio
the policy. In principle, both RL algorithms (Q-learningcan (shadow areas) for the complete group of patients. Again, it
FQI) should be able to find similar policies in a given problem can be observed thatq, stabilizes the Hb levels within the
In fact, other authors found that, given enough data, thieyol target range whereas the protocol produces oscillatiodse T
learned by Q-learning was superior than the protdal, 30 large standard deviation corresponding §eyocol indicates that
Nonetheless, a key advantage of FQI is that it makes a more efhere are patients with dangerous Hb levels in all months. Al
ficient use of the data, which can be crucial in problems wher¢hough the Hb cycling produced i otoco diminishes slightly
obtaining data is a non-trivial task. A second factor thayima  over time, after 30 months it is still noticeable. Hb varldpin
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Patients treated according to the policy learned using FQI

Hemoglobin (g/dl)

i i i i i j
5 10 15 20 25 30
Time (months)

(@)

Patients treated according to the dose adjustment protocol

Hemoglobin (g/dl)

5 10 15 20 25 30
Time (months)

(b)

Figure 7: Hb level evolution during 30 months of treatmemt1f® simulated patients randomly chosen from the test grivua),
the patients were treated according to the policy learnéidl tve proposed methodrq;. While in (b) they were treated according
to the policy extracted from the protocaoteco. The two horizontal lines (dashed black) indicate the Hpearange.

patients treated witheg, was significantly lower (p< 0.0001,  the initial months of treatment, when the drug administéras|
one-tailed paired F-test) than those treated wiilocol. not yet produced anyfiect.

A second metric employed to compare both policies was the In addition to stabiliziqg the Hb level inside the target_gan
number of months or observations in which the patients preth® freatment must avoid abrupt Hb changes. Tlikewtince
sented an adequate Hb level. Fi. 9 presents this informagio  PetWeentrqi andzprorocol CONCEMNINg this aspect was negligi-
means of a bar chart. Five ranges of Hb grouped into three ca!®- Both policies were reallyfiective in avoiding Hb changes
egories were defined: the categsuitableincludes the target 9reater than 2/gl per month, more than 99.5% of state transi-
range [11,12] gil; unsuitableconsists of the two ranges con- tions met this condition.
tiguous to the target range, that is, (10,11) and (12,A8) and Due to the high costs of darbepoetin alfa, another point to
dangerougontains the rest of Hb levels. Fig. 9 shows two barstake into account when comparing both policies is the quan-
corresponding withreq; (light gray) andrprotcol (dark gray) ity of drug used. There was a highly significantference
in each one of the five ranges. Ideally, all patient obseowati (P < 0.0001, one-tailed paired t-test) of 5.13% between the
should be within the categospitable When the patients were mean dose recommended Byrotocol (0.39 ug/kg/week) and
treated withrrqy, their Hb level was within the target range 7rqi (0.37ug/kg/week). Thus, the treatment recommended by
in 82.1% of the observations, which represents an importarihe RL policy not only produced better outcomes but also gen-
improvement compared with the 54.5 % achievedibyioco. ~ €rated lower costs.

The rest of patient observations were mainly located in #ie ¢~ Finally, a particular case was studied in detail to obtaimeno
egoryunsuitable specifically, 11.02% forrq and 34.1% for  insight into the behavior of each policy. Table 3 shows hosv th
Tprotocol  ThiS percentage indicates thafowcol also achieved  Hb level of a patient and the dose of drug administered varies
a reasonable outcome. Finally, a minor percentage of fatiemlong 15 months of treatment. The goal of this table was to
observations was in the categatgingeroushowever, Figs]7 compare the treatment recommended by both policies in a case
and[8 shows that these observations corresponds mainly withtherer oiocol Caused Hb cycling. The months where Hb level
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I5p- S S R _ Table 3: Comparison of the treatment and clinical evolutbn

W a patient treated according 4@q andmprotocor The Hb levels
within the target range are highlighted in bold.

gb Month FQI Dose adjustment protocol

;§ Hb Drug dose Hb Drug dose

E] (g/dl) (ug/kg/week) (g/dl) (ug/kg/week)

:a:% 1 12.65 0.50 12.65 0.75

o 2 12.78 0.75 12.91 0.56
N 4 3 11.77 0.75 12.43 0.42
4 11.28 0.50 11.36 0.42
7 5 11.80 0.50 10.44 0.52
] : : : : : . 6 11.43 0.50 10.13 0.65
S 0 s 2 P 20 7 10.89 0.50 10.57 0.82
Time (months) 8 10.91 0.50 11.52 0.82
9 11.06 0.50 12.72 0.61
Figure 8: Mean Hb level (solid lines) and standard deviation ﬂ ﬁgg 8'28 gig 8"3‘2
(shaded areas) over time for 60 patients simulated acaprdin =~ 75 1156 050 1211 034
mrqi (in green) andrprotocol (in red). 13 11.73 0.25 11.24 0.34
14 11.74 0.50 10.90 0.43
15 11.19 0.25 11.00 0.54
09 : : :
I Protocol
08 - e 0 RQ
07F methodology is valid for the case of actual patients, cerask
o6k pects should be modified. The mairftdrences between simu-

g lated and real patients are discussed below.

2 05F

E ol The inclusion of the model parameters (MCHp, Cp, Cr)

5 in the definition of the state space is likely the most impatrta
O3 o difference between applying the proposed system to simulated
02f TR and real patients. These parameters, which are relatecto th
T | i S patients’ individual characteristics, are used to find goof

l—| B patients that respond to the treatment in a similar way. &cpr
0 16.10] 1001 [112]  (12.03) 113.16] tice, the parameters cannot be directly measured. Oneroptio
Hemoglobin ranges (g/dI) would be to adjust them as in the simulated case; however, a

more dfective solution is to employ the variables commonly
measured in the monthly reviews which provide the same in-
formation. For example, the level of C-reactive proteimuse
albumin and leukocytes can be used as an indicator of inflam-
mation level. Thus, the clustering analysis should be peréal
using those variables as inputs instead of the model paeasnet

Figure 9: Comparison of the observed monthly Hb for the pa
tients simulated followingrrqr andzprotoco during 30 months.
Ideally, all Hb observations should be in the range 7] g/dl.

was within the target range are highlighted in bold. It can be Some elements of the MDP, such as the reward function and

observed that, in the fifth monthpocol Started to increase the  the discount factor, should be carefully chosen to provie t

darbepoetin dose becausd < 11 gdl, and it continued in- desired outcomes. When using a computational model, trial-

creasing the dose in months 6 and 7 because the Hb level h&#d-error procedures can be used to adjust them. On the con-

not yet reached the target range. Then, after reaching the tdrary, this approach is not viable in real domains. Thuspites

get (month 8), the Hb level continued rising despite drugedos the valuable experience gained with simulated patientsea

was decreased (months 9 and 10). This phenomenon is di&rtise and advice of physicians are still necessary tgdese

to the delay between drug administration and fte@s in Hp. MPD in the real case.

On the other hand, the doses administeredtdy suggestthat  Finally, a third issue that should be noticed is the two as-

the long-term #ects are taken into account. For example, insymptions made by the model: stable level of inflammation and

months 7 and 8 the dose is maintained constant despite the laypnstant iron availability. As previously mentioned, thes-

Hb level. In consequence, the Hb level in the next months insumptions may are not met in the real case. The on|y require_

creases and is stabilized within the target. ment to overcome both assumptions is that the clinical data e
The experiments reported in this paper were based on ployed to learn the policy must contain enough examples of

computational model that simulates the patients’ respémse patients in which assumptions are violated, i.e, with \@eda

the treatment with darbepoetin alfa. Although the proposedevels of inflammation and iron availability.
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9. Conclusions and futurework bolism. Another interesting line of future research is tdule
other optimization aspects in the reward function, in addito
This work has proposed a methodology based on RL to opthose related to the patients’ health, like the cost of teattr
timize anemia treatment in hemodialysis patients. Aftemi@=  ment.
lating the problem using the MDP framework, RL was able to
learn automatically near-optimal treatments from clihdtzta.
Contrary to other techniques to solve MPDs, RL does not reAcknowIedgements

quire a complete knowledge of the system dynamics, a feature rhe authors thank the reviewers from Artificial Intelligenc

that can be crucial in medical problems. More specificalig, t iy vedicine Journal, whose insightful and helpful comments
methodology uses the algorithm FQI, which stands out for it§ere of great value for the preparation of the final manuscrip
ability to make an fficient use of data. FQI was combined

with a function approximator based on regression trees-in or

der to deal with the continuous state space and to genetlaéize Appendix A. Erythropoiesis model
learned policy to the cases not covered by the data set. @tee st
variables of the MDP were extracted partly from the labanato

tests and partly from a clustering analysis of the patientn narios 54]_ The most common approach is the use of

attributes. : :
The proposed methodology was evaluated through a Comp&ge-structured models_[75+77]. The model presented in this

tational model that describes th&ext of darbepoetin alfa on '[Sri(z:ittl(e)(rj] ﬁizﬁﬁgzz%ggjgzgignggtﬁogllfghlenm;ddéﬁ:g%i?fo
the concentration of Hb. In addition to FQI, the experiments P ’

were also performed using the well-known Q-learning algo_porates the feects of iron availability and level of inflamma-

. . ion, although h ar nsider nstant. Simil
rithm. A standard protocol of dose adjustment was used foto ’ "?” oug bOI. are conside e.d €o s?a tS aEd;,[SQ
. . . . : .. the stimulating action of the drug is described through atimul
baseline comparison. The quality of the policy obtainedhwit .
. . Lo . compartment model. Threeftérent cell classes or compart-
Q-learning,mq.eaming Was considerably inferior in comparison

to the other two policiesteor andaprotoco). When comparing ments are considered:
mEQI and mprotocol, the policy obtained with FQI increased by o P is the bone marrow concentration of progenitor cells
27.6% the proportion of patients with an adequate level of Hb  (BFU-E and CFU-E) and precursor cells (proerythroblast
and, at the same time, it reduced the amount of drug used by  and basophilic erythroblast) that depend on EPO for their
5.13%. survival and diferentiation to the next compartment.

The simulation results suggest that the FQI policy can deal
with the long-term &ects of darbepoetin alfa and the high vari- ® M comprises the remaining erythroblasts (polychromatic

Many mathematical models have been developed to simu-
late the process of erythropoiesis ifitdirent physiological sce-

ability in the patient's response. These features, whiehadr and orthochromatophilic) and marrow reticulocytes which
sent in standard dosing protocols, had been suggested as ama are iron-responsive. As it is assumed that all patients have
jor cause of Hb cycling. As a result, the proposed methodol- ~ Suficient iron available, this compartment only serves as

ogy was more fiective than the standard-use tested protocol in ~ delay on the dferentiation until the next compartment.
maintaining stable Hb levels and preventing Hb cycling. On
the other hand, the drug is prescribed in a mdfeient way
since the treatment achieves better outcomes with lessrmou  The equations governing the evolution of the number of cells
of darbepoetin alfa. in each population are simply balance equations [59]. Each
The computational model used in the experiments has severebmpartment of cells is fed by an entering flow of fresh cells
limitations owing to the assumptions on which it is groundedand is emptied by the outgoing flow offférentiated or apop-
and, therefore, does not represent all possible patierdge™  totic cells.
theless, it reproduces some importartidulties present in ac- The fundamental assumption is that every cell in each popu-
tual cases that may cause Hb cycling. Thus, although prespefation lives for the same period of time, which is constant an
tive validation is required, experiments have shown thepot denoted byTp for cells P and Tr for cells R [@]. This as-
tial benefits of RL in anemia treatment. sumption determines the cell elimination rate since thelem
The positive results obtained in this work using simulatad p of cells that are lost at timemust be equal to the number of
tients have motivated further research in applying thepsed  cells that are born at the same time delayed by the apprepriat
methodology to actual patients. Currently, a tool for dalide-  lifespan. The loss process is modeled by means of weighted av
cision support based on FQI is being validated through &clin erages of the previous day incoming rates in order to take int
cal evaluation in five hemodialysis centers from three Eeaop  consideration that cells actually havéfdrent exposition times
countries. to the drug. Such exposition time varies according to their i
Although this work has been focused in renal anemia, théernal maturity level at the time of the administration.
methodology can be extended to other types of anemia. For The flow entering th& compartment depends on the progen-
example, oncology patients who also receive darbepo€tn alitors response to the stimulatorffect of erythropoietin. Ac-
treatment, or even to other complex problems of drug adminiscording to Eb], this response can be described by the Hilt{fu
tration such as warfarin therapy to prevent venous thrommsoe tion H(Ei) := Eot/(Eso + Eior), WhereEy, which is defined as
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e Ris the plasma concentration of red blood cells.



in Egs. [IB) and{14), represents the total plasma condimtra
of EPO, andEsg = 100/Vy. The sensitivityEsg is the half-

maximal dfective concentration, a parameter commonly usec

as a measure of drug’s potency.

The outgoing flow of thé®> compartment is also the feeding
flow to theRcompartment delayed By, as it is assumed that,
up to a proportionality factor (describing a proliferatactivity
of M cells), as man cells asP cells are produced.

At the last stage of their lifespan, RBCs become senescel
and are cleared from the blood. The rate at which RBCs ar
cleared is a weighted average of the previous incoming.rate:

Such a average is a convex combination withfioents given

by a Gaussian distribution with mean equal to the RBC meal

lifespan and variance 30. The Gaussian distribution irdica
that the drug ffects are stronger ohr-day old cells.
The evolution laws of the compartmetandR are the fol-
lowing:
Etot(t)
Pt)=C 7Pt
0= Eatd
Tp
Eot(t — Tj)
-C t—T;
PTr Z Eso + Etot(t — T)) P )
Etot(t = (Tp+Twm))
R(t)=C Pt—(Tp+T
® "Eso+ Etor(t — (Tp + Tw)) (t=(Te+Tw))
Cr Tp+Tu+Tr Etot(t - TJ) P(t T )
T = = 7 T ru—1j
SPMR 54,1 E50+ Ew(t=T)) :

wheregr; := G(Tj - (Tp + Tw))), G(T) is the Gaussian distri-
bution with meanT g and variance 30 evaluated at timhieand
SpmR IS @ normalization factor given by

Tp+TM+TR TR
Sp,|’R:= Z G(T] —(Tp+TM)) = ZG(T])
Tj=Tp+Tu+1 Tj=1

In the present study;Te, Tm, Tr) = (9,4,70). At the time
to of the first administrationPy = 1 andRy = 1 (i.e., there
are 106* cells maturing from clasP to R). The remaining pa-
rametersEp, Cp andCr, are estimated for each patient. The
solution of the model, given in Eq_(IL5), is fitted in the least

square sense using the first six Hb levels of each patient mea-

sured through laboratory tests. Then, the model can be osed
simulate the response of that patient to the treatment.

The basic assumptions of the model are that each patienf4]

maintains a stable level of inflammation and that iron abéia
ity for erythropoiesis is constant. However, dialysis pats of-
ten have multiple comorbidities (such as hypertensiometis
or cardiovascular disease) that may produce fluctuatingldev
of inflammation and reduce the availability of iron, whicinii
its the usefulness of the model.

On the other hand, when the assumptions are met, the mod

is able to reproduce the variability among patients in dietg r
sponse and the long-terrfiect produced by the drug. FIg. Al10

shows four cases in which the assumptions are reasonally wel8]
met. As it can be observed, in general, the model (continuous
blue line) is able to simulate the Hb level measured by labora

tory tests (res asterisks).
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Figure A.10: Hb level simulated using the model (blue line)
and measured by laboratory tests (red asterisks) corrdspmpn

to four patients during approximately 26 months of treatmen
In the four cases, model’'s assumptions are approximately me
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