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Abstract  

Objective: This work builds upon the concept of matching a person’s weight, height and age to 

their overall body shape to create an adjustable three-dimensional model. A versatile and accurate 

predictor of body size and shape and ligament thickness is required to improve simulation for 

medical procedures.  A model which is adjustable for any size, shape, body mass, age or height 

would provide ability to simulate procedures on patients of various body compositions.  

Methods: Three methods are provided for estimating body circumferences and ligament 

thicknesses for each patient. The first method is using empirical relations from body shape and 

size. The second method is to load a dataset from a magnetic resonance imaging scan (MRI) or 

ultrasound scan containing accurate ligament measurements. The third method is a developed 

artificial neural network (ANN) which uses MRI dataset as a training set and improves accuracy 

using error back-propagation, which learns to increase accuracy as more patient data is added. The 

ANN is trained and tested with clinical data from 23088 patients. 

Results: The ANN can predict subscapular skinfold thickness within 3.54mm, waist circumference 

3.92cm, thigh circumference 2.00cm, arm circumference 1.21cm, calf circumference 1.40cm, 

triceps skinfold thickness 3.43mm. Alternative regression analysis method gave overall slightly 

less accurate predictions for subscapular skinfold thickness within 3.75mm, waist circumference 

3.84cm, thigh circumference 2.16cm, arm circumference 1.34cm, calf circumference 1.46cm, 

triceps skinfold thickness 3.89mm.  

for male or female patients aged 8-85. These calculations are used to display a 3D graphics model 

of the patient’s body shape using OpenGL and adjusted by 3D mesh deformations.  

Conclusions: A patient-specific epidural simulator is presented using the developed body shape 

model, able to simulate needle insertion procedures on a 3D model of any patient size and shape. 

The developed ANN gave the most accurate results for body shape, size and ligament thickness. 

The resulting simulator offers the experience of simulating needle insertions accurately whilst 

allowing for variation in patient body mass, height or age. 

Keywords Body Shape, Deformation model, Patient-specific, Human Model, 

Epidural, Simulation. 

1 Introduction 

The patient’s body shape makes a difference to the way medical procedures are 

performed. Medical simulators have become increasingly popular in recent years. 

Anatomical 3D models have been incorporated into practice for various procedures such 

as epidural needle insertion, surgical techniques such as laparoscopy, dentistry, and 

urethral catheterisation. Medical simulators often contain a manikin on which the 

procedure is performed which generally represents an average body mass but does not 

change for patients of different size. The procedures can be performed the same way each 
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time which does not encapsulate procedural variation due to varying body mass of 

patients. 

In reality, there is a great deal of variations between different patients’ sizes and body 

shapes; a point that has become ever so more prominent due to the recent obesity 

epidemic. These patient variations greatly affect many anaesthetic and surgical 

procedures, such as epidural needle insertion for which a longer Tuohy needle may be 

required for the morbidly obese to traverse additional adipose tissue. Anaesthetists find 

that successful insertion of an epidural catheter is much harder in overweight and obese 

parturients due to difficulties in locating the midline of the spine during palpation [1-3]. 

The Mediseus epidural simulator attempted to encapsulate patient variety with two 

options for obese or normal size, but recent studies suggest that is not enough to represent 

the continuous nature of patient variation [4]. Modelling for a patient’s body mass index 

(BMI) is important since obesity is rising to an epidemic level and the Health Survey for 

England (HSE) showed that in England 26.1% of all adults were obese in 2010. To 

address these issues, an adaptable human body shape model is required. A model which is 

adjustable for any size, shape, body mass, age or height would provide ability to simulate 

procedures on patients of various body compositions.  

Previous related studies include an isomorphic polygon model for describing human body 

shape [5]. A relationship between BMI and waist-to-hip ratio (WHR) was proposed [6]. 

Research into modelled clothing has stretched garments to fit onto 3D human models of 

various body shapes using skeleton-driven volumetric deformation [7]. Moreover, body 

water volume (BWV) has been estimated from anthropometric measurements [8-10]. 

Measurements of the human body are often taken by clinicians to provide information on 

body composition by analysing various metrics. These include circumferences of waist, 

thighs, hips, BMI derived from body mass and height, WHR or BWV [11]. Body shape 

descriptors such as apple, pear, hourglass and banana are often used to describe the visual 

shape caused by varying proportions of the patient’s musculoskeletal configuration. All 

of these are useful to determine various aspects of body composition. Also gender should 

be taken as an input to a body shape model because males and females with equal weight 

and height may have different average body circumferences. This work aims to 

implement such a body shape model. 

A patient-specific epidural simulator has been created based on measurements and 

developed empirical relations using the body shape model, ligament thickness model and 

graphic visualisation. This provides a patient-specific epidural simulator, able to 

reconstruct any body shape from patient measurements to provide a more complete 

scenario in which to learn and practice the epidural procedure. All information describing 

the shape of the patient’s body and ligaments is visualized in 3D using OpenGL with a 
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3D mesh. Deformations are applied to the body shape mesh changing the shape to match 

any particular patient. The increased variation of patient-specific simulation provides a 

learning tool that offers a better training experience for anaesthetists. This can increase 

skill levels, improve progression along the learning curve, reduce the number of failed 

insertions and reduce the risk of harm to patients. 

 

The presented model takes standard anthropometric patient data of body mass, height and 

age as inputs. Empirical formulae are then developed to calculate body circumferences, 

total body water (TBW), and WHR for the patient’s body. A novel anatomical model of 

spinal ligaments in the back is then developed for epidural training.  Whilst detailed 

models for other body parts such as pelvis are available [12], no quantitative anatomical 

model of the ligaments in the back exists in the literature. The ligament model can adjust 

in size and thickness to match any patient. This includes all layers that the epidural needle 

passes through during insertion such as skin, subcutaneous fat, supraspinous ligament, 

interspinous ligament, ligamentum flavum before finally reaching the epidural space. 

Layer thickness and density are important for epidural simulation because in vivo, each 

tissue layer causes a different level of force on the needle which is sensed by the operator. 

This haptic feedback helps guide the epiduralist to ’feel’ the ligaments to successfully 

carry out the procedure. 

 

Two main problems are tackled in this paper: (1) To generate 3D visualisation of body 

shape to match measurements of a patient’s body mass, height, body shape and age. (2) 

To accurately calculate thickness of modelled spinal ligaments, bone, fat and skin for 

patients of any size and shape. Novel aspects of this work include the 3D visualisation of 

body shape adjustable to match any patient size and shape based on clinical metrics, the 

anatomical model of ligaments of the back for epidural insertion which adjust in size and 

shape, and the collection of clinical body shape metrics into one system. These are 

combined into the first patient-specific epidural insertion simulator for any body shape 

and size. 

2 Methods 

For each patient a set of standard anthropometric measurements are taken. The 

measurements are inputs to the mathematical model: m (body mass, kg), h (height, cm), 

including a (age, years) and s (sex, male/female). Also, a qualitative description of body 

shape (Apple, Pear, Hourglass or Banana) and number of weeks pregnant are taken if 

applicable. These are chosen because they are easily achievable yet descriptive 

anthropometric data. 
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Formulae are then applied to calculate the BMI, TBW, fat mass, fat-free mass and to 

estimate the circumferences of waist, hip, thigh, calf and arm. Thicknesses of ligaments in 

the back are also calculated including all layers that the epidural needle passes through. 

These are thickness (mm) of skin, subcutaneous fat, supraspinous ligament, interspinous 

ligament, ligamentum flavum and epidural space. 

Finally a graphical visualisation is displayed using the body shape estimations to generate 

a visual model matching the shape and size of the patient’s body. 

2.1 Body shape empirical relation formulae 

BMI is a standard parameter and is calculated using the existing Eq. 1. It is notable that 

height has more effect on BMI than body mass. Halving body mass halves BMI whereas 

halving height quadruples BMI. The same BMI cut-offs are used for both men and 

women who have different body compositions and due to this BMI underestimates 

adiposity in women [13].  

 

    
 

  
        (1) 

where BMI = Body Mass Index, m = body mass (kg), h = height (m). 

 

TBW is predicted by Eq. 2 based on the female Watson formula [10]. Alternative 

methods do exist but are less accurate [14] such as taking 58% of the body mass, the 

Hume-Weyers formula [8] or the Chertow formula [15]. TBW increases linearly with 

height and body mass but in males decreases with age. Low TBW indicates dehydration 

which dries the skin and causes organs to shrink which could affect needle insertion. 

 

           (        )  (        )    (2) 

where TBW = total body water. 

 

Fat mass (FM) is calculated directly from BMI by Eq. 3 which is based on [14]. Fat-free 

mass (FFM) is the remainder of body mass when fat mass is subtracted, given in Eq. 4. 

Fat mass as percentage of body mass is given by (FM*100/m). Women have larger 

quantities of subcutaneous fat deposits than men, and women carry subcutaneous fat in 

their gluteal region; men carry most of their fat in the abdominal region. In obesity, there 

is a higher level of ectopic fat accumulating within cells of non-adipose tissue. 

 

   (          )              (3) 

                (4) 

where FM = fat mass (kg), FFM = fat free mass (kg) 
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Body Cell Mass (BCM) is given by Eq. 5, calculated from the fat-free mass [14]. BCM 

can be given as a percentage of body mass, by (BCM / m * 100). 

 

    (          )              (5) 

where BCM = body cell mass (kg) 

 

Waist and hip circumferences grow at different rates because BMI is positively correlated 

with WHR [6]. An additive model of fat deposition is used where fat is deposited at a 

constant rate on fixed musculoskeletal frames whose waist-to-hip proportions vary from 

one individual to the next. Therefore as BMI increases, the difference between waist and 

hip size decreases making the body less curvaceous and the WHR increases, by Eq. 6. 

 

    
(                  )

(                  )
      (6) 

 

Body descriptors (Apple, Pear, Hourglass, Banana) can be simulated by adjusting the 

body circumferences to effectively shift mass between body parts. This is calculated by 

moving proportions of total area from one area to another. An Apple patient has greater 

proportion of area on hip and waist, less on arm and calf, whereas thighs will remain 

unaffected. Hourglass will have thinner hip, waist and thighs but larger arms and calves. 

The total area always remains as 100% so the modelled body mass is unaffected by 

changing body descriptor. 

 

Body Adiposity Index (BAI) is used to estimate the amount of body fat without referring 

to body mass measurement, by a standard formula shown in Eq. 7. The model already 

calculates fat mass in Eq. 3 but BAI gives a comparable measure taking into account HC. 

 

    
  

    
          (7) 

where BAI = Body Adiposity Index, HC = Hip circumference (cm) 

 

Five body circumferences for each patient are calculated by comparing patient’s body 

mass to the average body mass for their age. The body circumferences of the model are 

then updated to match the patient by adjusting body circumferences from an average 

woman, data shown in Table 1, from the study [16]. Adipose tissue in overweight women 

collects in the gluteal region [13]. This model adds 75.83% of additional body mass to the 

waist and hips combined because they have the largest proportion of total area, as in 

Table 1. 
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Limb Range 

(cm) 

Circumfer

ence (cm) 

Area 

(cm
2
) 

(%) of 

total area  

Arm 20-45 32.5 84.05 4.65 

Calf 30-45 37.5 111.90 6.19 

Thigh 40-80 55 240.72 13.31 

Waist 60-120 85 574.94 31.81 

Hip 80-130 100 795.77 44.02 

 Total 310 1807.40 100 

Table 1. Body circumferences for an average woman [16]. 

 

A method has been developed to calculate thigh, calf, waist and arm circumferences from 

body mass. Circumferences are treated as circles so their area can be calulated as in 

Figure 1. The areas are assumed proportional to total body volume, which is proportional 

to body mass. Therefore the cross-section arm area for a patient of any body mass is 

calculated by Eq. 8. Finally the geometric relationship between the area and 

circumference of a circle can be used to calculate arm circumference by Eq. 9. The 

equation takes body mass into account through the variable m and also age through am. 

 

 

Figure 1. Relationship of arm circumference to body mass. 

 

       (
 

  
)        (8) 

where A = arm area, am = average body mass for age. 

 

   √           (9) 

where C = circumference. 

 

An equation was developed to calculate body mass gain during pregnancy. The effects of 

pregnancy on body shape are important for epidural simulation. The equation was 

developed as a best fit to match known weight gain information from [17]. Body mass 

gain usually starts around 6 weeks post conception (Figure 2). Body mass increase during 

the following 34 weeks resembles a sigmoid curve [17]. Total net gain by gestational 

week 40 is 12-15 kg [18]. By 6 weeks postpartum half of the net gestational gain is lost. 

By 6-18 months postpartum, body mass is 1-2 kg heavier than pregravid body mass, 



8 

although 20% of women retain more than 5 kg above preconception levels and this occurs 

more frequently in overweight and obese BMI groups. Taking these facts into account, a 

net gestational body mass gain (kg) during pregnancy above pregravid body mass is 

implemented in the model as represented by Eq. 10, the curve of which is visualized in 

Figure 2. (Note that the net weight does not include the child’s weight). 

 

      (
 

       (      )
)         (

     

   
)  (10) 

 

where MG = body mass gain during pregnancy (kg), dc = days since conception (0-280), 

db = days since birth (0-180), sin = sine function. 

 

 

Figure 2. Body mass gain estimation during and after pregnancy. 

2.2 Ligaments thickness estimation 

The thickness of the 5 tissue layers in the back which are penetrated by an epidural needle 

varies between patients. For accurate simulation of the procedure it is required to estimate 

the thicknesses for any patient. Studies have provided average thicknesses of the layers in 

human patients and these data are combined in Table 2, further details are given in our 

previous work [19]. Measurements of human LF thickness from 10 human cadavers were 

3-5mm thick [20]. Also LF was measured by CT images as 2.7-2.9mm at L3-L4 and 3.4-

3.2mm at L5-S1 [21]. MRI studies found LF thickness to be 3-3.5mm in age group 20-29 

[22]. The epidural space is a potential space containing blood vessels, lymphatics and 

nerves, and when the needle enters and injects saline it may open to around 6mm before 

the needle punctures into the dura. Subscapular skinfold thickness calliper gives a reliable 

indication of body fat [23]. Skin thickness can be estimated with a margin of error 

between 3% and 11% [24]. 
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Tissue Layer Thickness 

(mm) 

Depth 

(mm) 

Skin 3 0 

Subcutaneous fat 6 3 

Supraspinous ligament 4 9 

Interspinous ligament 26 13 

Ligamentum flavum 3 39 

Epidural space 6 42 

Dura 15 48 

Table 2. Tissue layers thickness and depth approximation based on porcine [19] and human [20- 

22] measurements. 

 

Two skinfold equations are proposed (Eq. 11 and 12) working on the basis that tissue 

layer thickness is proportional to the radius of the waist. The equations assume that 

thickness increases proportionally to waist to the third power of radius, because fat 

collects in the subcutaneous fat layer so thickness increases faster than body mass 

increase. The value 574.94 used in Equations 11 and 12 is the average waist cross 

sectional area (cm
2
) from Table 1. 

 

   (√
       (

 

  
)

 
   )          (11)  

 

where SS = subscapular skinfold thickness (mm), ar = radius of the average waist 

circumference, (calculated as 13.52809cm), as = mean subscapular skinfold thickness 

(calculated as 16.73mm). 

 

   (√
       (

 

  
)

 
   )          (12) 

 

where TS = triceps skinfold thickness (mm), at = mean subscapular skinfold thickness 

(calculated as 16.52mm). 

 

An equation to calculate subcutaneous fat is proposed based on Table 2 (Eq. 13). 

Subcutaneous fat thickness varies between regions of the body. Eq. 13 predicts 

subcutaneous fat from body fat percentage which is known from Eq. 3. Subcutaneous 
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adipose tissue can be reliably measured by CT scan at the L2-L3 and L4-L5 disc spaces 

[25]. 

 

   
(
  

 
)       

 
        (13) 

where SF = subcutaneous fat thickness (mm). 

 

Epidural space is assumed to remain the same for patients of various size. The depth of 

each ligament or layer is determined by the sum of all previous layer thicknesses. The 

equations give ligament thickness estimations for any patient, but in order to improve the 

accuracy further, MRI was used to collect data from patients so specific measurements 

could be made for each patient 

2.3 MRI dataset for ligament measurements 

A function to load MRI ligament thickness measurements from a saved MRI dataset 

derived from an ongoing clinical trial has been implemented in the simulator software. 

MRI scans of the lumbar region provide clear images showing each of the ligaments in 

the back allowing measurement of all ligament thicknesses with high accuracy. 

Thicknesses are measured in the MRI imaging software by overlaying lines of known 

length onto the MRI image. These measurements can then be saved into a dataset shown 

in Table 3. The simulator software can load the MRI dataset and update each ligament 

thickness with the measurements from MRI. This method allows the simulator to be 

specific for the actual patient with high accuracy. Once the simulator has loaded the MRI 

dataset, ligaments are updated and epidural simulation can proceed using the ligaments of 

thickness matching the measured data. 

 

Known parameters Calculations MRI Measurements 

Body mass Body mass index (BMI) Skin thickness 

Height Total body water (TBW) Subcutaneous fat thickness 

Age Fat mass (FM) Supraspinous ligament thickness 

Gender Fat-free mass (FFM) Interspinous ligament thickness 

 Call mass Ligamentum flavum thickness 

 Waist circumference Epidural space thickness 

 Hip circumference  

 Arm circumference  

 Calf circumference  

 Thigh circumference  
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Table 3. MRI Dataset stored for each patient’s parameters. 

 

The MRI dataset allows accurate measurements of ligament thickness to be made for a 

patient. The lumbar MRI images were obtained for twenty obstetric parturients within 

twenty four hours after their epidural procedure. MRI was taken by experienced 

radiologists at Poole Hospital NHS Foundation Trust. The MRI study was approved by 

National Research Ethics Service (NRES). The MRI images allowed direct measurement 

of the ligament thicknesses for each patient; however, taking MRI images for each 

epidural patient would not be viable in the long term due to the expense of MRI 

procedure. Artificial Neural Networks (ANNs) may offer estimates for patients when 

MRIs are not available, by basing estimates on known data from learnt patient 

measurements. The prediction capability could use known data from previous MRIs but 

could also learn and improve accuracy as new data sets are added over time. 

2.4 ANN for body shape prediction 

An ANN has been implemented aiming to predict the patient’s body circumferences and 

ligament thickness from patient measurements to a greater level of accuracy. Training 

was completed using clinical data from 23088 patients obtained from NHANES [26]. The 

data population contains males and females aged 8 to 85, of all body sizes, with a mixture 

of ethnicities representative of US national sample taken across 15 counties. Self-

identified ethnicity rates include Mexican American 25%, Other Hispanic 3%, Non-

Hispanic White 40%, Non-Hispanic Black 27%, Other Race or Multi-Racial 5%. 

The motivation to use ANN was to gain benefit from learning methods which would 

improve accuracy over time. In the clinical trial each time we obtained a new patient data, 

this is added into the data set so that the accuracy will improve over time. Also for 

regression analysis, this can be run each time a new patient data is added to benefit 

machine learning based on measured data. 

A fully connected feed-forward ANN is used, containing no loops, four inputs, eight 

hidden neurons in one hidden layer and one output. The output which is a single floating 

point value from 0 to 1. The learning mechanism is back-propagation of error. There are 4 

inputs, body mass, height, age, gender; waist circumference was used as an optional 5
th
 

input. Each input consists of up to 100 binary neurons of 1 or 0 to represent the integer 

value inputs. Each input value including height, age and body mass is converted from a 

real integer value into binary before being assigned to each of the input neurons, which 

are either 0 or 1. The network can generate estimates for waist, arm, calf and thigh 

circumferences and thickness of skin, fat, supraspinous, interspinous, ligamentum flavum 

and epidural space. Each output is generated with a separate instance of the ANN. 
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The training process was tested by learning the saddle shape equation z=x
2
-y

2
 shown in 

Figure 3. This equation was chosen for testing because the hyperbolic paraboloid contains 

nonlinear curvature in simultaneous dimensions. During training the weights of links 

between neurons adapt to the calculated error in the presence of input patterns, applied 

backward from the network output layer through to the input layer. The test resulted into 

a trained network with output closely resembling the saddle shape (Figure 3) and the 

achieved performance was within 0.51% mean error. 

 

 

Figure 3. ANN learning equation z = x
2 
- y

2
. 

 

The ANN was then trained and tested using clinical data from 23088 patients. We 

combined four bi-annual databases from NHANES [26] to create a larger dataset 

spanning eight years 1999-2006. The data contains a wide range of body shapes, waist 

circumference varies from 32-175cm, ages from 8-85. Pregnant patients were excluded 

from this because due to their changing body shapes, the ANN would need to be trained 

separately. Patients with incomplete data were excluded. This data was ideal for learning 

body shape because it includes circumferences of waist, thigh, arm and calf plus two 

skinfold thicknesses from triceps and subscapular which provides measurement of tissue 

layer thickness. 

The data was collected by trained clinicians following a set protocol to ensure body 

circumferences were measured the same way with each patient. Arm circumference is 

measured with tape measure lightly around the arm not compressing the skin, with 

muscle un-flexed, on the widest part of bicep, perpendicular to arm’s long axis. More 

details are in [26]. 
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2.5 Regression analysis for predicting body circumferences 

As an alternative comparison to ANN, a regression analysis was completed to 

predict the body circumferences. The regression was done separately for each of the body 

circumferences; arm, thigh, calf, waist, subscapular and triceps skinfold thicknesses. 

The same polynomials were used for regression analysis as were used with the 

ANN inputs: age, gender, body mass and height. During all analyses the p-values for each 

independent variable (age, gender, mass, height) was very small (0.003) which confirms 

there is a relationship between all variables and the outputs, so the null hypothesis (that 

there is no correlation) can be rejected and this shows that these variables do impact 

quality. The R-square values were all >0.8 and <0.9 except for skin thicknesses which 

were 0.6, and these R-square values show the regression found a good fit to the data. The 

Normal Probability plots confirmed that the data set is approximately normally 

distributed. 

Regression analysis identified the intercepts and coefficients for each predicted 

circumference as shown in Table 4. These values were used to generate the predictions. 

For example, calf circumference was predicted by regression analysis using the form 

shown in equation 14. 

 

                                         (14) 

where a is age, g is gender, m is body mass (Kg), h is height (cm). 

 

  Calf Arm Waist Thigh Subscap Triceps 

Intercept 21.02599 24.23286 89.1709 36.25606 31.7848 31.81561 

Age (years) -0.02784 0.004286 0.160655 -0.08985 0.021936 -0.0271 

Gender 1.187849 -0.07414 -0.37736 1.997937 3.175824 7.647241 

Mass (Kg) 0.229066 0.277902 0.831422 0.400678 0.427857 0.36313 

Height (cm) -0.00695 -0.08193 -0.3911 -0.08038 -0.29912 -0.30426 

Table 4. Intercepts and coefficients for polynomials from regression analysis. 

 

3 Results 

The clinical data from NHANES was used to train the ANN -the demographics section 

gave information on patient gender and age and body examination measurements section 

gave information on body circumference, weight and height [26]. Data was divided into a 

training set of 11000 patients and an unseen test data set of 12088 patients. These 

numbers were chosen to keep the training set big enough to spot patterns in the data 
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whilst providing comprehensive accuracy assessment. Generally test sets of 10% are 

enough to indicate accuracy. Initially a subset 10% of the data was used for k-fold cross-

validation to estimate the performance of the predictive model on the independent dataset. 

K-fold validation gives the advantage that all observations are used for both training and 

validation, and each observation is used for validation exactly once. ANN inputs were 

age, body mass, height and gender. Twenty five training cycles were completed with the 

11000 patient training set. After each training cycle neuron outputs advanced closer to the 

measured clinical data. Figure 4 shows the ANN before, during and after training with 

clinically measured data. 

 

 

Figure 4. ANN training with clinical data from 23088 patients learning to predict waist 

circumference. 

 

The accuracy of waist circumference predictions by the ANN grew successively more 

accurate on each training cycle as shown in the learning curve (Figure 5). 

 

 

Figure 5. ANN learning curve for waist circumference using clinical data. 

 

Subsequently, the ANN was trained to predict thigh, calf and arm circumference, and 

skinfold thickness. For each, a graph was generated to visualize output predictions for the 

entire range of patient body masses and heights (Figure 6). This demonstrates the effect 
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of body mass and height on calf circumference and shows that the ANN has learnt the 

relationship. It shows that body mass is positively correlated with calf circumference. 

Subscapular skin thickness is negatively correlated with height (Figure 7) and thigh 

circumference positively correlated with body mass (Figure 8). 

The ANN has been extended to predict ligament thicknesses using the data from MRI. 

The MRI scans of the lumber region show accurate thicknesses of all ligaments in the 

back. Each time a new MRI image is taken, it is added to the training set. The ANN trains 

on the MRI dataset, to learn the relationship between ligament thickness and patient 

measurements. 

 

Figure 6. ANN prediction of calf circumference accurate to 1.40cm. Trained with 23088 patients 

clinical data. 

 

Figure 7. ANN predictions for subscapular skinfold thickness with mean accuracy within 

3.54mm. 
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Figure 8. ANN predictions for thigh circumference with mean accuracy within 2.0cm. 

3.1 Regression analysis results 

The graph in Figure 9 shows the predictions for calf circumference given the intercepts 

and coefficients from Table 4. This graph for regression analysis provides a comparison 

to ANN in Figure 6 which shows similar predictions for calf circumference. 

 

 

Figure 9. Regression analysis predictions for calf circumference for various patients. 

 

Additional results from regression analysis showed that gender strongly affects skinfold 

thickness in both triceps and subscapular, see Table 4. This shows that men have on 

average 3.1mm thinner skinfold in subscapular and 7.6mm thinner skinfold in triceps 

thickness which is more than three quarters of a centimeter. This was double checked 

from the NHANES statistics and found to be correct. This identified gender-based skin 

thickness change is a new finding which could significantly affect the feeling of epidural 

procedures between men and women and affects depth to epidural space. 
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3.1 Accuracy comparison of ANN, regression and equations 

The overall accuracy of the fully trained ANN has been assessed in comparison to the 

body circumference equations (Eqs. 8-12) and regression analysis. An unseen test set 

containing clinical data from 12088 patients was used. The resulting accuracy comparison 

is shown in Table 5.  

For all of the estimations, the ANN produced better results than the equations, with up to 

54% less error. BMI was used as an additional assessment parameter which shows that 

lower errors (0.69%) are achievable by the ANN where a strong mathematical 

relationship exists. 

The comparison of regression analysis to the ANN predictions showed close accuracy. 

Overall, the ANN gave higher accuracy predictions for six of the seven metrics. 

Regression analysis improved upon ANN accuracy for waist circumference by 0.6mm. 

The ANN performed best for arm circumference, showing 1.33mm more accuracy than 

regression. 

 

 Developed Eq. (1) ANN (2) Regression (3) Difference (3) – (2) 

Waist  5.69% (7.19cm) 3.10% (3.92cm) 3.036% (3.84cm) 1.56cm 

Thigh  4.77% (3.39cm) 2.81% (2.00cm) 3.034% (2.16cm) 1.03cm 

Arm  3.60% (1.75cm) 2.48% (1.21cm) 2.74% (1.34cm) 0.78cm 

Calf  4.90% (2.01cm) 3.40% (1.40cm) 3.54% (1.46cm) 0.64cm 

Triceps  16.35% (7.18mm) 7.80% (3.43mm) 8.84% (3.89mm) 1.62mm 

Subscap  11.80% (4.93mm) 8.46% (3.54mm) 8.96% (3.75mm) 1.42mm 

BMI 0.00% (0) 0.69% (0.46) 0.945% (0.63)  

Table 5. Error comparison of ANN, regression analysis and equations with clinical data. 

 

When the ANN prediction was too high, often the regression analysis prediction was also 

too high. This was also true when too low. Therefore the mean difference (Table 5) 

between the ANN output and the regression output was relatively low, usually less than 

half of the error of either approach from the actual data. This confirms that the two 

methods produce similar predictions. Since the two methods are independent this 

suggests that these results may have reached close to the limit for prediction accuracy 

based on these polynomials. This could be due to genetics of each patient varying which 

is not captured in measured data. Also some clinician errors during measurement must 

play some part including changing position of tape measures between patients, or inter-

operator variation. 

Table 6 shows the standard deviations of prediction values compared to the clinical data. 

The regression analyses consistently produced lower standard deviation than ANN, 
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although on average regression errors were higher than ANN. This may be explained by 

the regression producing more tightly clustered predictions, as shown in Fig. 10-14. 

 Developed Eq. ANN Regression Analysis 

Waist  5.728791 3.337018 3.101206 

Thigh  2.796388 1.911915 1.364146 

Arm  1.280478 1.123327 0.917455 

Calf  1.455131 1.255632 1.214296 

Table 6. Standard deviations of the predicted values from three different methods 

 

Graphs were generated to display a comparison between the actual data, the trained ANN 

predictions, regression analysis and the equation estimates, shown in Figures 10-14, for 

calf, waist, arm and thigh circumference and subscapular skinfold for all 23088 patients. 

 

 

Figure 10. Comparison of calf circumference predictions. 

 

 

Figure 11. Comparison of waist circumference predictions. 
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Figure 12. Comparison of arm circumference predictions. 

 

 

Figure 13. Comparison of thigh circumference predictions. 

 

 

Figure 14. Comparison of subscapular skinfold thickness predictions. 

 

Trend lines are shown on the regression analysis graphs. The best fit were polynomial 

order two trend lines for the circumferences and exponential trend line for skinfold.  

The ANN predictions are clustered close to the clinical data. ANN accuracy was further 

improved by enlarging training set to 20000 patients and decreasing test set to 3088. Also 

the ANN error is reduced if the inputs included decimal places, which they currently do 

not, although this may increase ANN computation time. One issue that was identified 

with ANN output was that it is sensitive to gaps in the data. For morbidly obese patients 

with body mass over 130kg ANN predictions are poor because there were so few such 

obese patients that the data was insufficient to train the network over 130kg. This lack of 
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data problem also caused the drop in Figure 7 for patients under 131cm tall, because there 

were very few patients in this low height category. However these errors are relatively 

insignificant because these extreme categories only contain about 0.1% of total patients. 

This problem did not affect regression analysis. The equation estimates retain their 

accuracy even with body masses over 130kg. The equation estimates are linear curves 

because they are based on body mass but not height. The equation curve is close to the 

centre of the real data and shows a curve similar to the real data. 

3.2 Body shape visualisation using mesh deformation 

The previous sections have provided methods to describe body shape and ligament 

thickness, this enables a 3D model to be created to resemble any patient body shape. The 

body shape model is displayed using a 3D mesh rendered with OpenGL. The challenge of 

body shape visualization is to ensure that the body shape visualized is a true likeness to a 

patient of that body shape in vivo. Therefore the methods used to convert body shape data 

into a 3D model are critical. 

Initially a 3D mesh of a female body is used, which was based on average population 

statistics. The average height and body mass of Japanese 18 to 30 years old are 171.4 cm 

and 63.3 kg [27]. A study of 4243 women in the United States of America [28] suggests 

that body mass and BMI tend to increase until around the age of 50 and subsequently 

decrease as shown in Table 7. A separate study matches closely [16] which found 

women’s average body mass to be 67.5 – 73.6 kg, height 161 – 168 cm, BMI 25.8 - 28.4. 

The data in Table 7 was used to generate an average female mesh as shown in Figure 15. 

 

Age Body mass 

(kg) 

Height (cm) BMI 

Kg/m
2 

20-29 71.1 162.8 26.8 

30-39 74.1 163.0 27.9 

40-49 76.5 163.4 28.6 

50-59 76.9 162.3 29.2 

60-74 74.9 160.0 29.2 

75+ 66.6 157.4 26.8 

Table 7. Mean body mass, height and BMI of American population between 1999-2002 [28] 

 



21 

 

Figure 15. Initial polygon mesh of average female body shape. 

 

An input allows the user to enter basic patient data, the software estimate body size and 

shape and numerical results are shown on screen (Figure 16). The 3D model is then 

deformed to match the body shape calculations. Two methods are available to generate 

results, either the formulae are used to estimate body size and shape and numerical results 

are shown on screen or alternatively the ANN can be used to generate numerical 

estimates. The 3D model is then deformed to match the body shape and a rendered 3D 

model is shown on screen, on which epidural can be performed [29]. The deformation is 

achieved using the circumference predictions. Algorithms were developed to expand or 

contract each specific circumference of the body to match predicted values. The 

algorithms apply vertex buffer objects (VBOs) to quickly deform many vertex positions 

throughout the model to ensure capability for real-time deformation. Waist deformation is 

limited to affect solely the waist and surrounding area. Arm circumference is applied to 

both arms equally primarily on upper arms. Thigh deformation is applied to the area 

above the knee and below waist. 

Alternative methods have been presented in the literature for deforming parameterized 

human body modelling. Body models have be deformed by inputting a number of sizing 

parameters based on 3D scanned data, applying both rigid and elastic deformation [30]. 

Human meshes can be constructed from 3D laser scans and deformed with voxel based 

parameterization utilizing cloud points, used to model clothing [31]. A body modelling 

framework was proposed applying whole body scans from 250 subjects and a statistical 

analysis to correlate several aspects of body shape [32]. Body model shapes can be 

controlled by parameters learned directly from statistical human body model from 3D 

scans [33]. Nonlinear optimization has also been applied to extrapolate statistically 

inferred body shapes to match measurement data [34]. 
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Figure 16. Screen data for entering basic patient data 

  

It is possible to input additional fields if they are known, for example waist 

circumference. Any extra data overrides the software estimation. The model allows user 

to input number of days of pregnancy since conception from 0–280. The output from 

pregnancy model is demonstrated in Figure 17. The whole body experiences growth but 

the majority is around the bump area. 

 

 

Figure 17. Model of body shape during a) before conception, b & c) after 40 weeks gestation  

 

3.3 Needle insertion simulator 

The 3D mesh model was incorporated into an epidural simulator to provide the ability to 

perform epidural needle insertions on patients of any body mass, height or body shape 

(Figure 18). The simulator uses the software estimator to visualize a representation of any 
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patient from their anthropometric measurements. The model provides depths and 

thicknesses for the tissue layers and ligaments around the lumbar and thoracic vertebrae 

which were incorporated into the needle insertion simulation. 

  

 

Figure 18. Epidural simulator for patients of any body mass, height or shape. 

 

The developed epidural simulator contains a virtual reality environment allowing the 

needle to be inserted at various vertebral levels. Haptic force feedback in 3-DOF is based 

on measurements from the needle insertion trial conducted on a porcine model [29]. The 

developed simulator provides 3-DOF haptic feedback of needle insertion. Quantifying the 

adjustment of haptic feedback according to BMI can provide simulation of obese patients 

which are considered to be difficult. The size and shape of ligaments and vertebrae and 

the force required for the needle to traverse each tissue layer changes according to patient 

body shape [25]. 

4 Discussions 

In this work three methods for creating a parametric model of human body shape and 

ligament thickness have been discussed. The first is to use the empirical relationships 

from equations, the second option is to automatically update the model based on 

measurements from MRI or ultrasound datasets from the actual patient and the third 

method is to use ANN to predict body shape and ligament thickness followed by 

regression analysis on existing data for accuracy comparison. The network gives better 

accuracy which was trained with 23088 patients. It can further learn by loading data from 

MRI datasets into a measurement database. The database contains ligament 

measurements of every patient whose MRI dataset has been loaded into the system. The 

database is continually growing, so ANN predictions will get more accurate over time. 
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The main difficulty of body shape estimation from anthropometrical data is to ensure the 

visualized body is similar in shape to the real patient. The solution proposed in this work 

is to develop equations to quantify predictions for body shape, circumferences and body 

mass gain during pregnancy. The quality criterion for skin and ligament thickness 

modelling was initially to produce results with higher accuracy. Achieved results from 

ANN have accuracy within 3.54mm, sufficient to produce a model of ligament thickness 

for epidural simulation with regard to training needs and the needs for implementing the 

approaches for clinical environments. Advantages of the model include visualisation of a 

general representation of external visual body shape and ability to adjust ligament 

thicknesses to match specific patients which may be useful for simulating intricate 

clinical procedures like epidurals. 

There are some issues causing complexity to body shape estimation, for example in 

morbidly obese patients, fat tissue can collect in different parts of the body for each 

patient. Musculoskeletal proportions may vary between two patients of the same body 

mass and height. It is not always possible to measure or predict such aspects but this 

implementation gives a closest approximation based on all known measured data. We are 

currently conducting a clinical trial which will provide data from MRI and US for the 

exact thicknesses of ligaments from pregnant women of various BMI categories. The 

MRI data will allow accurate in-vivo measurement of the depths and thicknesses of the 

ligaments. This would provide measured data useful for further refinement of the model 

for estimating body shape and ligament thickness and for simulating various medical 

procedures. 

 

5 Glossary 

Bioelectrical impedance BIA 

Body Adiposity Index  BAI 

Body Cell Mass  BCM  kg 

Body Mass Index  BMI  kg/m
2
 

Body Water Volume  BWV  Litres 

Computed Tomography  CT 

Epidural Space   ES  mm 

Fat Free Mass   FFM  kg 

Fat Mass   FM  kg 

Height    H  cm 

Hip circumference   HC  cm 

Interspinous Ligament  ISL  mm 
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Lean Body Weight  LBW  kg 

Ligamentum Flavum  LF  mm 

Magnetic Resonance Imaging MRI 

Skeletal Muscle Volume  SMV  kg 

Subcutaneous Fat  SF  mm 

Waist Circumference  WC  cm 

Waist to Hip Ratio  WHR 
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