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Abstract

Introduction: The counting and classification of blood cells allows for the
evaluation and diagnosis of a vast number of diseases. The analysis of white
blood cells (WBCs) allows for the detection of acute lymphoblastic leukaemia
(ALL), a blood cancer that can be fatal if left untreated. Currently, the mor-
phological analysis of blood cells is performed manually by skilled operators.
However, this method has numerous drawbacks, such as slow analysis, non-
standard accuracy, and dependences on the operator’s skill. Few examples
of automated systems that can analyse and classify blood cells have been
reported in the literature, and most of these systems are only partially devel-
oped. This paper presents a complete and fully automated method for WBC
identification and classification using microscopic images.

Methods: In contrast to other approaches that identify the nuclei first,
which are more prominent than other components, the proposed approach
isolates the whole leukocyte and then separates the nucleus and cytoplasm.
This approach is necessary to analyse each cell component in detail. From
each cell component, different features, such as shape, colour and texture, are
extracted using a new approach for background pixel removal. This feature
set was used to train different classification models in order to determine
which one is most suitable for the detection of leukaemia.

Results: Using our method, 245 of 267 total leukocytes were properly
identified (92% accuracy) from 33 images taken with the same camera and
under the same lighting conditions. Performing this evaluation using dif-
ferent classification models allowed us to establish that the support vector
machine with a Gaussian radial basis kernel is the most suitable model for the
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identification of ALL, with an accuracy of 93% and a sensitivity of 98%. Fur-
thermore, we evaluated the goodness of our new feature set, which displayed
better performance with each evaluated classification model.

Conclusions:The proposed method permits the analysis of blood cells au-
tomatically via image processing techniques, and it represents a medical tool
to avoid the numerous drawbacks associated with manual observation. This
process could also be used for counting, as it provides excellent performance
and allows for early diagnostic suspicion, which can then be confirmed by a
haematologist through specialised techniques.

Keywords: Image processing, Microscopic image segmentation, Cell
analysis, White blood cell detection, Leukaemia classification

1. Introduction

The observation of blood cells from microscopic images allows for the
evaluation and diagnosis of many diseases. Leukaemia is a blood cancer that
can be detected through the analysis of white blood cells (WBCs) or leuko-
cytes. There are two types of leukaemia: acute and chronic. According to
the French-American-British (FAB) classification model [1], acute leukaemia
is classified into two subtypes: acute lymphoblastic leukaemia (ALL) and
acute myeloid leukaemia (AML). Here, we consider only ALL, which affects
a group of leukocytes called lymphocytes. ALL primarily affects children and
adults over 50 years of age. The risk of developing ALL is highest in children
younger than 5 years of age, and it declines and begins to rise again after age
50. Due to its rapid expansion into the bloodstream and vital organs, ALL
can be fatal if left untreated [2]. Therefore, early diagnosis of this disease
is crucial for a patients’ recovery, especially for children. Diagnosis of ALL
is based on the morphological identification of lymphoblasts by microscopy
and the immunophenotypic assessment of lineage commitment and develop-
mental stage by flow cytometry [3]. The observation of blood samples by
skilled operators is one diagnostic procedure available to initially recognise
different diseases. Human visual inspection is tedious, lengthy and repeti-
tive, and it suffers from the presence of a non-standard precision because it
depends on the operator’s skill; these disadvantage limit its statistical relia-
bility. Various systems for the automatic quantification of blood cells exist
on the market that count the numbers of different types of cells within a
blood smear. These counters use flow cytometry to measure the physical



characteristics and chemical properties of the blood cells using a light de-
tector that uses fluorescence or electrical impedance to identify cell types.
Although the results of quantification are very precise, the instrument does
not detect morphological abnormalities of the cells; therefore, a subsequent
complementary blood analysis via the microscope is required. The use of
image processing techniques can help count the cells in human blood to pro-
vide information about cell morphology. These techniques require only one
image, making them less expensive. Moreover, they are more scrupulous in
providing more accurate standards. The main goal of this work is to anal-
yse microscopic images to provide a fully automatic procedure to support
medical activity. This procedure will count and classify WBCs affected by
ALL. Thus, the main contribution of this work is the development of a fully
automated system for the detection and segmentation of WBCs. After the
feature extraction step, the detected WBCs can be recognised as suffering
from ALL or not. The various phases of the proposed method are shown in
Fig. 1. The method is presented in detail in the following sections, and it
is applied to two sample images (with a scale factor of 0.30) and compared
with other approaches described in the literature. The paper is organised
as follows: after presenting background and related works in Section 2, Sec-
tion 3 describes the identification of the leukocytes. This step includes the
identification and separation of grouped leukocytes and terminates with an
image cleaning, which removes all of the abnormal components from the im-
age. The second step selects the nucleus and cytoplasm of each leukocyte
(Section 4). The third step deals with the feature extraction (Section 5).
The last phase aims to the classify WBCs (Section 6). The database used
and the experimental evaluation of our system are presented in Section 7.
Section 8 is devoted to conclusions and potential future directions.

2. Background and related works

A typical blood image usually consists of three components: red blood
cells (erythrocytes), leukocytes, and platelets. Leukocytes are easily identi-
fiable, as their nucleus appears darker than the background. However, the
analysis and the processing of data related to the WBCs are complicated
due to wide variations in cell shape, dimensions and edges. The generic
term leukocyte refers to a set of cells that are quite different from each other
(Fig. 2). Leukocyte cells containing granules are called granulocytes, and
they include neutrophils, basophils and eosinophils. Cells without granules
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Figure 1: Diagram of the proposed method; from blood image to ALL classification via
the identification of WBCs (see text for details).

are called mononuclear, and they include lymphocytes and monocytes. Thus,
we can distinguish between these cells according to their shape or size, the
presence of granules in the cytoplasm and the number of lobes in the nucleus.
The lobes are the most substantial part of the nucleus, and thin filaments
connect them to each other. Neutrophils are mainly present in human blood
at a percentage ranging between 50 and 70%, and they range in size form
10-12 microns. They are distinguishable due to the number of lobes present
in the nucleus, which can range from 1 to 6 according to the cell maturation.
Basophils represent only 0-1% of all lymphocytes in human blood, and they
have a diameter of approximately 10 microns. Generally, basophils have an
irregular, plurilobated nucleus that is obscured by dark granules. Eosinophils
are present at 1-5% in human blood, and they are round, 10-12 microns in
size, and have a nucleus with two lobes. Eosinophils differ from other WBCs
due to the presence of granules, which include para-crystalline structures in
the shape of a coffee bean. Lymphocytes are very common in human blood,
with a percentage of 20-45% and a size of 7-15 microns. They are charac-
terised as having a rounded nucleus and a poor cytoplasm. Monocytes are
the most voluminous WBCs, with a diameter of 12-18 microns, and they
represent 3-9% of circulating leukocytes. Their nucleus is large and curved,
often in the shape of a kidney. Furthermore, lymphocytes suffering from
ALL, called lymphoblasts, have additional morphological changes that incre-
ment with increasing severity of the disease. In particular, lymphocytes are
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Figure 2: (Top) A comparison between different types of WBCs: neutrophils, basophils,
eosinophils, lymphocytes and monocytes. (Bottom) A comparison between lymphocytes
suffering from ALL: a healthy lymphocyte, followed by lymphoblasts classified as L1, L2
and L3, respectively, according to the FAB [1].

regularly shaped and have a compact nucleus with regular and continuous
edges, whereas lymphoblasts are irregularly shaped and contain small cav-
ities in the cytoplasm, termed vacuoles, and spherical particles within the
nucleus, termed nucleoli [4] (Fig. 2).

According to the literature, few examples of automated systems that are
able to analyse and classify WBCs from microscopic images, and the existing
systems are only partially automated. In particular, a considerable amount
of work has been performed to achieve leukocytes segmentation. For exam-
ple, Madhloom [5] developed an automated system to localise and segment
WBC nuclei based on image arithmetical operations and threshold opera-
tions. Sinha [6] and Kovalev [7] attempted to differentiate the five types of
leukocytes in cell images. Sinha used k-means clustering on the HSV colour
space for WBCs segmentation and different classification models for cell dif-
ferentiation. Kovalev first identified the nuclei and then detected the entire
membrane by region growing techniques. Few papers sought to achieve ro-
bust segmentation performance under uneven lighting conditions. However,
a study by Scotti [8], used a low-pass filter to remove background, differ-
ent threshold operations and image clustering to segment WBCs. Moreover,
other authors proposed methods for automated disease classification. In par-
ticular, Piuri [9] proposed an approach based on edge detection for WBC
segmentation, and they used morphological features to train a neural net-
work to recognise lymphoblasts. Halim [10] proposed an automated blast



counting method to detect acute leukaemia in blood microscopic images that
identifies WBCs through a thresholding operation performed on the S com-
ponent of the HSV colour space, followed by morphological erosion for image
segmentation. Although the results of this study seem very encouraging,
there is no method to determine the optimum threshold for segmentation,
and no feature or classifiers were presented. Mohapatra [11] investigated
the use of an ensemble classifier system for the early diagnosis of ALL in
blood microscopic images. The identification and segmentation of WBCs re-
alised through image clustering followed by the extraction of different types
of features, such as shape, contour, fractal, texture, colour and Fourier de-
scriptors, from the sub-image. Finally an ensemble of classifiers is trained to
recognise ALL. The results of this method were good, but they were obtained
by using a proprietary dataset, so the reproducibility of the experiment and
comparisons with other methods are not possible.

3. Leukocytes identification

In contrast to other reported methods, our method does not require sep-
arate steps of pre-processing and segmentation; it uses pre-processing steps
inserted among the various stages of segmentation to make the latter sim-
pler and more robust. Other methods aim first to identify the nuclei, which
are more prominent than other components [5], and then to detect the en-
tire membrane (i.e., by region growing [7, 12, 13]). In contrast, our method
detects the membrane first, in order to separate the adjacent cells more ac-
curately.

3.1. WBC detection

WBC identification consists of several phases:

- Conversion from RGB to CMYK colour model

- Histogram equalization or contrast stretching operations
- Segmentation by threshold using Zack algorithm

- Background removal operation

WBC identification was made possible by conversion to the CMYK colour
model. In fact, leukocytes are more contrasted in the Y component of CMYK
colour model because the yellow colour is present in all elements of the im-
age, except leukocytes (Fig. 4 shows two examples). Redistribution of image

6



1200 —

1000

B00

E00

400

200

1 1
200 250 300

bmin bmax

Figure 3: Example Zack algorithm.

grey levels is necessary to make the subsequent segmentation process easier.
Then, a histogram equalization or contrast stretching can be used (see Fig. 4).
Segmentation is achieved using an automatically calculated threshold. Many
threshold techniques have been described in the literature [14, 15]. Here,
we use the threshold value based on the triangle method or Zack algorithm
[16]. The triangle method is applied to the image histogram (h), resulting
in a straight line that connects the highest histogram value (h[bnq.|) and
the lowest histogram value (h[b,i,]), where by,4, and by, indicate the values
of the grey levels where the histogram h[z]| reaches its maximum and mini-
mum, respectively. Then, the distance (d) between the marked line and the
histogram values between b,,;, and b,,., is calculated. The intensity value
where the distance (d) reaches its maximum defines the threshold value (see
Fig. 3).

This algorithm is particularly effective when the histogram displays clear
valleys between high and weak peaks present in the Y component histograms
generated from leukocytes and red blood cells. The threshold results are
displayed in Fig. 4. The complement image is then calculated to obtain
WBCs on a dark background.

To improve our results, we removed the image background. Some ap-
proaches for background extraction have been described in the literature.
For example, Scotti [8] used a collection of images to estimate background
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Figure 4: Top to bottom: original blood sample images, Y component images, histogram
equalization results and segmentation results.



pixels, while other approaches have a very high computational cost that is
unnecessary for this application. The proposed approach involves the use of
an automatic threshold to the original grey level image or along the green
component of the RGB colour space. The threshold value is calculated again
using the triangle method. Fig. 5 shows how the result may not be accurate
in all aspects. For example, the centre of red blood cells can be detected
as background. However, this does not preclude the achievement of effective
background removal because our goal is to preserve only the WBCs present in
the image. Background removal can be performed using simple arithmetical
operations. Obviously, the background removal process does not produce a
clean result for the whole image. To clean up the image, we used area open-
ing [17, 18], which allows us to delete all of the objects with a size smaller
than the structuring element. The structuring element used has a circular
shape, and its size is calculated based on the average size of the objects in
the image (see Fig. 5).

3.2. Identification and separation of grouped leukocytes

An important problem for the analysis of blood images is the presence of
adjacent cells and in this case, the presence of leukocyte agglomerates. Only
in this phase we can detect and separate leukocyte agglomerates, because in
the previous phase we produced an image containing only the WBCs. This
process can be summarised in the following basic steps:

- Agglomerate identification through roundness analysis
- Distance transform image calculation

- Watershed segmentation operation

- Watershed line refining

Several methods can be used to verify the presence of adjacent leukocytes
[14]. In this work, we used the roundness value because we were able to
identify the presence of adjacent cells through the analysis of shape, which
is, in the absence of anomalies, almost round. Roundness (1) is a measure
of circularity (area-to-perimeter ratio) that excludes local irregularities and
can be obtained as the ratio of the area of an object to the area of a circle
with the same perimeter of the convex hull of the object:

4 % 1 * area
Roundness = : 5 (1)
convex _perimeter
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Figure 5: Top to bottom: grey level images, background identification results and back-

ground removal results.
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Figure 6: Leukocytes identified as grouped.

Roundness equals 1 for a circular object and is less than 1 for an object
that departs from circularity; this measure is relatively insensitive to irregu-
lar boundaries. We observed that a roundness value of 0.80 can be used to
adequately discriminate single leukocytes from groups of leukocytes, so we
adopted this value as the threshold. Connected components with a round-
ness value greater than the threshold are classified as individual leukocytes,
and they proceed directly to the next step of the analysis, while connected
components having a roundness value smaller than the threshold are clas-
sified as grouped leukocytes and proceed to the separation process. This
process creates two different images, and only the image containing grouped
leukocytes (Fig. 6) is taken into account. In some cases, this image may be
empty, so the phase of separation of the leukocytes will not take place.

Many approaches have been proposed to separate adjacent cells, some of
which are included in the process of segmentation, while others are specifi-
cally dedicated to separating overlapping cells. For example, the approaches
used by Sinha and Ramakrishnan [6] and Kovalev [7] utilise sub-images ex-
tracted from the original image by cutting a square around the previously
segmented nucleus. Then, assuming that each sub-image has a single WBC,
clustering around the nucleus is performed using shape and colour informa-
tion. The proposed approach is divided into two parts. The first part utilises
the method proposed by Lindblad [19], which uses the distance transform
[20]. A watershed segmentation [21] is then applied to the distance trans-
form to yield a rough separation between adjacent leukocytes. In this way,
the separation tends to be inaccurate because it uses the distance transform
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Figure 7: Two original blood sample sub-images and their respective watershed results.

Figure 8: Local maxima image and final separation results.

as a form delimiter. Thus, it only performs well in the presence of adjacent
leukocytes with a nearly rounded shape, but it does not perform well in the
presence of multiple complex forms, as displayed in the last image of Fig. 7.

Therefore, a second part is needed to refine the contours extracted through
the watershed transform. Then, all of the pixels of the component under ex-
amination that are located at a distance not greater than a predetermined
value from the watershed line are taken into consideration. These pixels are
used to derive the deepest concavity for which the line of exact separation
must pass. Therefore, by exploiting the information regarding the points
of concavity and the points of maximum image in grey tones, it is possible
to obtain a cutting line that best fits the contour of the leukocytes. Fig. 8
illustrates the final separation of two adjacent leukocytes, and Fig. 9 shows
the final separation results for the whole sample image.

3.3. Image cleaning

Image cleaning requires the removal of all of the leukocytes located on
the edge of the image and all abnormal components (non leukocytes), which
prevents errors in the later stages of the analysis process. Cleaning the image
edge is a simple operation, whereas the removal of abnormal components is
a more complex process because it is necessary to determine the number of
leukocytes present in the image. First, the size of the area and the size of the
convex area are computed for each leukocyte. The size of the area is used

12



Figure 9: Final separation results and image cleaning results.

to calculate the mean area, which is necessary to determine and eliminate
components with irregular dimensions. For example, a very small area might
indicate the presence of an artefact that was not removed. Alternatively, a
very large area may indicate the presence of adjacent leukocytes that were
not adequately. The area and convex area are then used in combination
to calculate the solidity value, which we used to discriminate the abnormal
component. Solidity measures the density of an object. Solidity is defined as
the ratio of the area of an object to the area of a convex hull of the object:

Solidity = B — (2)
conver_area
A solidity value of 1 signifies a solid object, and a value less than 1 signifies
an object with an irregular boundary (or containing holes). The solidity value
used for the threshold is calculated directly from the image containing only

the individual leukocytes, and when this image is empty, a default value of
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0.90 is used. In this case, the default value was identified by experimental
results indicating that a solidity value equal to 0.90 adequately discriminates
abnormal components; thus, we used this value as the threshold. All objects
with a solidity value below the threshold are discarded. In fact, a solidity
value below the threshold indicates the presence of artefacts that were not
adequately removed. Fig. 9 shows the final results after border cleaning and
the removal of abnormal components.

4. Nucleus and cytoplasm selection

Once the leukocytes have been identified, we can proceed to the second
segmentation level, which selects for the nucleus and cytoplasm. This step
can be simplified by performing an automatic image crop using the bounding
box size, which is the smallest rectangle that completely contains a connected
component, to isolate a single leukocyte in each sub-image (Fig. 10). An-
other border cleaning operation is necessary to preserve only the WBC under
examination. By definition, the leukocyte nucleus is inside the membrane,
making it possible to further simplify this step by cropping the entire portion
of the image outside the leukocyte under examination (Fig. 10). This proce-
dure allows for more robust nucleus selection because it completely excludes
artefacts of the selection. The nucleus selection approach takes advantage
of Cseke’s [22] observations, which demonstrated that WBC nuclei are more
in contrast on the green component of the RGB colour space. However, in
this colour space, the threshold operation described by Otsu [23] does not
produce clean results, especially in the presence of granulocytes, because
granules are selected erroneously as part of the nucleus. To avoid this issue,
the binary image obtained from the green component is combined with the
binary image obtained from the a* component of the CIELab colour space
via a threshold operation. The mask obtained allows us to clearly extract the
leukocyte nucleus. Finally, to obtain the cytoplasm, a subtraction operation
is performed between the binary image containing the whole leukocyte and
the image containing only the nucleus (Fig. 10).

5. Feature extraction

In this phase, the goal is to transform the images into data and then to
extract information reflecting the visual patterns that pathologists refer to,
while simultaneously extracting the descriptors that are most relevant to the
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Figure 10: Left to right: grey level sub-image, binary sub-image, whole leukocyte sub-
image, nucleus sub-image and cytoplasm sub-image.

subsequent classification process. To this end, we extracted three different
types of descriptors from the previously calculated sub-images: shape fea-
tures, colour features and texture features. Starting from binary sub-images
of the nucleus and cytoplasm, we extracted shape descriptors, such as area,
perimeter, convex area, convexr perimeter, major axis, minor axis and ori-
entation. These measures are also used to calculate elongation, eccentricity,
rectangularity, compactness, convezity, roundness (1) and solidity (2). Elon-
gation (3) measures how an object is elongated. Eccentricity (4) is the ratio
of the distance between the foci of the ellipse and its major axis length; this
value is between 0 and 1. Rectangularity (5) represents how rectangular a
shape is (i.e., how well it fills its minimum bounding box). Compactness (6)
is defined as the ratio between the area of an object and the arca of a circle
with the same perimeter; the maximum value is 1 for a circle. Convexity (7)
is the relative amount that an object differs from a convex object, and this
value represents the ratio of the perimeter of an object’s convex hull to the
perimeter of the object itself; the value is 1 for a convex object and less than
1 if the object is not convex, such as an object with an irregular boundary.
These measures can be defined as:

minoraxris
Elongation =1 — ———— (3)
majorarts

V/ (majoraxis® — minorazis?)

FEccentricity = - - (4)
majoraxis
area
Rectangularity = , . . . (5)
majoraxis * minoraris
4 xII % area
Compactness = ———— (6)

perimeter?
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Figure 11: The binary image of the nucleus and the result of the extraction of the number
of lobes obtained through iterative erosion and through ultimate erosion.

PETTMELET conven

Convexity = (7)

where minorazxis and majorazis are the width and the height, respectively,
of the bounding box (i.e. the smallest rectangle containing the shape). We
added two specific measures to these classical measures to analyse leukocytes:
the ratio between the area of the cytoplasm and the nucleus and the number
of nuclear lobes. To extract the number of nuclear lobes, Scotti [8] pro-
posed an approach using repeated erosions until the correct number of lobes
is reached. In a similar manner, our approach makes use of the ultimate
erosion of the binary image [17, 18], which consists of the regional maxima
of the Euclidean distance transform of the complement of the binary images
( Fig. 11). Notably, the number of lobes remains unchanged.

The main disadvantage of shape features is that they are susceptible to
errors in segmentation. Thus, these descriptors are used together with re-
gional descriptors, which are less susceptible to errors. Among these are
colour descriptors, which are the most discriminatory features of blood cells.
The colour descriptors used are mean, standard deviation, smoothness, skew-
ness, kurtosis, uniformity and entropy, which are calculated from sub-images
in shades of grey. These descriptors are extracted from images in shades
of grey, from which the entire portion of the image outside the leukocyte
under examination was cropped. As was observed with previous segmenta-
tions, removing the outer portion of the image does not improvement the
extracted feature. In fact, even pixels set to zero are considered when calcu-
lating feature values that are very different from the real ones. To overcome
this problem, we used a new method for calculating the feature that uses
the previously calculated binary mask, allowing us to calculate the number
of background pixels and discard them from the histogram (Fig. 12) and the
calculation of the features themselves. Table 1 demonstrates that feature

perimeter
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Figure 12: Cropped image histograms before and after the background pixel removal
process.

Mean Standard deviation Smoothness Skewness Kurtosis Uniformity Entropy

23,89 41,12 0,0253 1,5093 3,7708 0,3837 3,5006
14,005 26,599 0,0107 2,6114 9,9624 0,3832 3,2066
9,599 20,278 0,0062 3,6318 19,3476 0,4521 2,693
14,26 28,26 0,0121 2,7642 10,6452 0,4067 3,1306
7,64 16,599 0,0042 4,2961 27,9502 0,4712 2,5044
10,68 24,341 0,0090 3,5394 16,6557 0,4480 2,8034
13,35 31,074 0,0146 3,0688 11,8181 0,4451 2,83
10,39 24,44 0,0091 3,6075 16,8258 0,4459 2,7165
Mean Standard deviation Smoothness Skewness Kurtosis Uniformity Entropy
62,52 44,835 0,0299 0,0672 1,6173 0,0142 6,6484
36,44 31,989 0,0154 1,5918 4,6788 0,0276 5,8443
29,05 26,06 0,0103 2,6247 9,9489 0,0348 5,38
39,1 34,907 0,0183 1,6456 4,5183 0,0236 5,9884
24,14 21,72 0,0072 3,4348 15,872 0,0425 5,0643
32,06 33,058 0,0165 2,099 6,5707 0,0301 5,6592
39,79 42,7298 0,0273 1,4854 3,7196 0,0321 5,6916
30,954 33,7949 0,0172 2,0716 6,3014 0,0436 5,346

Table 1: Colour features extracted before and after the background pixel removal process.

values change significantly after background pixel removal.

This approach allows for the extraction of chromatic features not only
for whole WBCs but also for the nucleus and the cytoplasm, for 21 colour
descriptors.

However, the descriptors based only on histograms frequently have draw-
backs, as they do not provide information regarding the mutual position of
the pixels. Some objects have a repeating pattern as the primary visual

17



characteristic, so it is necessary to consider both the intensity distribution
and the position of the pixels having a similar grey level, as indicated by
Haralick [24]. Then, we evaluated the descriptors applied to the grey level
co-occurrence matrix (GLCM) calculated starting from sub-images in grey
level. The following descriptors are evaluated: autocorrelation, contrast,
correlation, cluster prominence, cluster shade, dissimilarity, energy, entropy,
homogeneity, maximum probability, sum of squares (variance), sum average,
sum variance, sum entropy, difference variance, difference entropy, informa-
tion measure of correlationl, information measure of correlation2, inverse
difference normalised and inverse difference moment normalised. These fea-
tures are calculated for angles of 0, 45, 90 and 135 degrees.

Also these features are extracted from the images in grey tones for which
the outer portion of the membrane has been cut off, and it is again necessary
to exclude from the calculation of the features all of those pixels belong
to the background. However, in this case, the binary mask is not used to
calculate the number of pixels equal to zero; rather, it is used to determine
the occurrences of adjacent pixels of value (0,0). Thus, given the nature of
the GLCM, we must subtract the value in cell (0,0) of the GLCM calculated
from the binary image from the value in the cell (0,0) in the GLCM calculated
from the image in shades of grey. The result of this operation yield feature
values that are very different from the previous ones (Fig. 13).

The total number of extracted features is 131: 30 shape descriptors, 21
colour descriptors and 80 texture descriptors.

6. Classification

Previously [25], the classification process was carried out using only 50 fea-
tures using the support vector machine (SVM) classifier because this model
is particularly suitable for binary classification problems for which the sepa-
ration between classes depends on a large number of variables. In [25], the
SVM was used with the standard configuration suggested by Hsu, Chang,
and Lin in [26], providing SVM novices with a recipe to rapidly obtain ac-
ceptable results. However, the proposed approach is not good enough in
some situations. In this work, the number of features is even higher, so we
decided to test the SVM with the most common kernel: linear (L), quadratic
(Q), polynomial (P) and Gaussian radial basis (R). For each kernel function,
the parameters were tuned using optimization techniques in order to find the
maximum accuracy value. The parameters obtained were as follows: for the

18



>13a 2 8 5121426 4[7]0][2[4 0 O
4 8 8§ 6| 6 4 4 11 8 3 2 2 6
=151 |4 |2/ 1|5 & [106]5]8 & 8 2
5| o[1 2|04/ 1]2 5569 5 4 4
o 2|3 2[00/ 2 1 46 9 2 6 4 3
st ol1 3|00/ 1[0 46|56 2 4 &8

0o 114 a4.1/0 5|6|4|4 4 8 4
1 1 4 202 1 5 2 4 3 8 4 8
272 815/ 4|6 4]7]0[2|4 0 0
4 | 8 8§ | 6| 6|4 411118312 2 6
s 512 6| 2|7/ 2[4 47521 0 0 1
> 4/3 5|3 0/ 4 4 8 5 5 4 4 5 5
| o1 4|12/ 1[5 5 |10/5|6 & 6 2
5|5 2|0 |4 1|2 5|5|6|9 5 4 4
o 2|3 2{0/0/2/1 4/6 9 2 6 4 3
ol o1 al0]o/ 1[0 4[6|[5|6 2 4 8
0 112 4 1/0 5|6 |4|4 4 & 4
1 1 4 2 2 1 5 2 4 I3 8 4 8

Figure 13: Grey level co-occurrence matrix for angles of 0, 45, 90 and 135 degrees before
and after the (0,0) occurrence removal process.

L kernel, ¢ = le-2; for the Q kernel, ¢ = 1e2; for the P kernel ¢ = le4 with
polynomial order 3; and for the R kernel, ¢ = 1lel and v= lel. To evalu-
ate the goodness of SVM models, the results were compared to k-Nearest
Neighbour (k-NN) [27] using the Euclidean distance measure with different
values of k, Naive Bayes (NB) [28], [29] by a Gaussian (G) and kernel data
distribution (K) and Decision Trees [30]. In addition to the type of algo-
rithm used to induce the model, the performance of a model also depends
on the size of the training and the test set. In particular, as the size of the
training and the test sets decrease, the performance of the model depends on
their specific composition, resulting in higher variance. Therefore, given the
small size of the dataset used, the performance of the models is evaluated
using a k-fold, cross-validation, re-sampling technique. Considering k = 10,
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the whole dataset is randomly divided into 10 folds. The cross-validation
process is repeated 10 times, using a different sub-sample as the validation
data for testing the model and the remaining k-1 sub-samples as the training
data each time. Finally, the 10 performances from the folds are averaged
to achieve a single estimation. Once the estimate of instances predicted by
the model of classification is obtained, it is possible to evaluate performance
by comparing with the real class of instances, which, in this case, compares
the class predicted by the classification model for a certain WBC with the
class assigned to it by an expert haematologist. In a binary problem, as in
our case, the instances are subdivided in positive and negative. For this par-
ticular problem, we defined the instances as positive when the WBCs were
affected by leukaemia and negative when the WBCs were not suffering from
leukaemia, and based on this definition, we calculated the accuracy value.
Although accuracy is the most widely used metric, it considers each class of
equal importance. Often, as in our case, it is more appropriate to use a met-
ric that places the most importance on the correct classification of positive
instances (we want to be sure to correctly classify WBCs with leukaemia).
For this purpose, the sensitivity value is used.

7. Experimental evaluation

7.1. Image database

One problem we encountered while testing of our method was the absence
of publicly available datasets. In fact, many authors tested their system with
only a few sample images, or with their own datasets, which are not publicly
available. Thus, we could not directly compare our findings with the results
obtained by various proposed systems, limiting the reproducibility of the in-
novations proposed by similar systems. This is also the main reason why
this study focused on ALL. Here, we used the acute lymphoblastic leukaemia
image database ALL-IDB proposed by Donida Labati [4]. ALL-IDB is a
public image dataset of peripheral blood samples from normal individuals
and leukaemia patients, and it contains the relative supervised classification
and segmentation data. These samples were collected by the experts at the
M. Tettamanti Research Centre for childhood leukaemia and haematological
diseases, Monza, Italy. The ALL- IDB database has two distinct versions:
in the first version (ALL-IDB1) can be used for both testing the segmenta-
tion capability of algorithms, as well as the classification systems and image
pre-processing methods, and the second version (ALL-IDB2) is a collection
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Figure 14: Original images from the ALL-IDB1

of cropped areas of interest from normal and blast cells that belong to the
ALL-IDB1 dataset, so it can be used only for testing the performance of
classification systems. In both versions of the dataset, each image has an
associated text file containing the coordinates of the centroid of each can-
didate lymphoblast, which was manually labelled by a skilled operator and
can be used as a ground truth. ALL-IDB1 (the version that we used for
testing) includes 108 images in JPG format with 24-bit colour depth. Most
of the images in this dataset were captured with an optical laboratory mi-
croscope at different magnifications, ranging from 300 to 500, coupled with
a Canon PowerShot G5 camera (resolution is 2592x1944). The remaining
images were acquired with a microscope at a constant magnification, cou-
pled with an Olympus C2500L camera (resolution is 1712x1368). Images
belonging to the ALL-IDB1 are shown in Fig. 14.

7.2. Results

There are many differences among the images in ALL-IDB1 in terms
of resolution, magnification and lighting (Fig. 14). Therefore, testing was
carried out using a subset of 33 images acquired from the same camera and
under the same lighting conditions, so we could evaluate the performance of
the proposed method for the detection and classification steps. In the early
stages of the analysis we properly individuated 245 of 267 leukocytes, for an
average accuracy of 92% (Fig. 15). The performance of the proposed method
for WBC identification (shown in detail in Table 2) is excellent in most
cases. The worst results were achieved in images with significant overlapping
between leukocytes, which are difficult for human experts.

From sub-images containing individual leukocytes, we extracted a classi-
fication vector with a size of 1x245 and two different feature matrices, one
with a size of 131x245 containing the previously described features and one
with a size of 50x245 containing features used in previous work [25]. Using
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Image  Manual count Auto count Accuracy

Imagel 9 5 55%
Image2 10 10 100%
Image3 12 11 91%
Image4 7 4 57%
Imageb 24 19 79%
Image6 18 18 100%
Image7 7 7 100%
Image8 17 16 94%
Image9 7 7 100%
Imagel0 12 12 100%
Imagell 15 12 80%
Imagel2 12 12 100%
Imagel3 10 7 70%
Imagel4 5 3 60%
Imagel5 17 17 100%
Imagel6 16 16 100%
Imagel7 3 3 100%
Imagel8 8 8 100%
Imagel9 12 12 100%
Image20 2 2 100%
Image21 3 3 100%
Image22 5 5 100%
Image23 6 6 100%
Image24 4 4 100%
Image25 3 3 100%
Image26 5! ) 100%
Image27 3 3 100%
Image28 2 2 100%
Image29 4 4 100%
Image30 3 3 100%
Image31 2 2 100%
Image32 2 2 100%
Image33 2 2 100%

Table 2: Performance of the proposed method for WBCs identification.
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4 colour feature [25] 7 colour feature 21 colour feature

Classifier ACC SD ACC SD ACC SD
SVM-L 0,788 0,006 0,839 0,01 0,856 0,006
SVM-Q 0,787 0,009 0,858 0,02 0,813 0,018
SVM-P 0,793 0,009 0,801 0,016 0,83 0,01
SVM-R 0,792 0,009 0,87 0,006 0,884 0,006
k-NN  k=100,779 0,006 k=6 0,847 0,01 k=30,871 0,006

NB-G 0,759 0,002 0,758 0,004 0834 0,006
NB-K 0,793 0,004 0824 0,005 0844 0,006

tree 0,718 0,008 0813 0,011 0866 0,014
Mean 0,776 0,006 0813 0,010 0,852 0,007

Table 3: Experimental results using chromatic features: accuracy (ACC) and standard
deviation (SD) are reported.

the same classifier, we aimed to demonstrate not only how the features pro-
posed in this work are better but also that the new feature extraction process
for chromatic and texture features increases the overall accuracy. First, we
selected and tested only chromatic features. Then, we selected and tested
texture features. Finally, we calculated the overall accuracy achieved with
the new set of features. In all cases, the performance of the models was
evaluated using a 10-fold Cross-Validation.

In the first case, for the 131x245 feature matrix, we selected seven chro-
matic features for whole WBC and all 21 chromatic features for whole WBC,
nucleus and cytoplasm, whereas for the 50x245 feature matrix, we selected
all four (the only ones present) chromatic features [25]. Table 3 displays the
experimental results and (for the Nearest Neighbour model only the best
results are shown).

In the second case, for the 131x245 feature matrix, we selected 80 texture
features, whereas for the 50x245 feature matrix, we selected 16 texture feature
[25]. Table 4 displays the experimental results (for the Nearest Neighbour
model only the best results are shown).

In general, the chromatic and texture feature proposed in this work are
more discriminant, and the new feature extraction process increases the over-
all accuracy of the process; in particular for the texture feature, which reached
an accuracy of 0.906 vs. 0.773 for the previous method of feature extraction.

Finally, we compared the whole feature matrix (131x245 and 50x245) to
show the accuracy achieved with the new feature set. Table 5 displays the
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16 texture feature [25] 80 texture feature

Classifier ACC SD ACC SD
SVM-I, 0,755 0,01 0887 0,03
SVM-Q 0,753 0,008 0,858 0,011
SVM-P 0,741 0,008 0,856 0,009
SVM-R 0,747 0,01 0,906 0,011

NN k=90,701 001  k=100,724 0,014
NB-G 0,773 0,004 0,852 0,002
NB-K 0,771 0,003 0,864 0,002
tree 0,74 0,028 0,806 0,019
Mean 0,747 0,011 0844 0,00

Table 4: Experimental results using texture features: accuracy (ACC) and standard de-
viation (SD) are reported.

Feat matrix 50x245 Feat matrix 131x245

old feature set [25] new feature set
Classifier ACC SD ACC SD
SVM-L 0894 0009 0901 0,006
SVM-Q 0,887 0,011 0,9 0,005

SVM-P 0,895 0,011 0,901 0,007
SVM-R 0,906 0,007 0,932 0,008
kNN  k=180,749 0,006 k=190,755 0,009

NB-G 0,809 0,005 0,85 0,003
NB-K 0,854 0,004 0,885 0,006
tree 0,87 0,015 0,863 0,02
Mean 0,36 0,01 0,873 0,009

Table 5: Experimental results using different feature set: accuracy (ACC) and standard
deviation (SD) are reported.

experimental results (for the Nearest Neighbour model only the best results
are shown).

Even for this example, the performance of the classification models ben-
efited from the new feature set, reaching an accuracy of 0.932 using the
SVM-R classification model vs. 0.906 using the previous set of features. Ad-
ditionally, it is important to note that the decision to test the SVM classifier
using different configurations and compare the results to each other and with
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other classifiers allowed us to identify models based on different kernels that
are suitable for this application. In all cases, our accuracy was above 0.9,
while in our previous work [25], the accuracy achieved by the SVM classifier
with a standard configuration reached a maximum value of 0.75. Moreover,
the sensitivity value obtained in the test phase using the SVM classifier was
never below 0.95 and reached a maximum value of 0.987 with the SVM-R
classifier. The results obtained are comparable to those obtained by Deore
[31], one of the few authors who used the ALL-IDB to test their method of
image processing for the identification and classification of leukocytes with
leukaemia. In fact, at the end of the classification stage, their accuracy value
reached 0.9363. Unfortunately, this work does not provide any detail about
the segmentation method used for WBCs, nor does it provide an accuracy
value for their identification, so it is not possible to determine the number of
samples used to train the classifier.

8. Conclusions

Here, we propose an innovative method for the automatic identification
and classification of leukocytes using microscopic images, providing an au-
tomated procedure to support the recognition of ALL. Our results indicate
that the proposed method is able to efficiently identify the WBCs present in
an image and to properly classify leukoblasts with great accuracy. We have
also proposed a new method for feature extraction from a cropped image
that is excellent both for chromatic and texture features, and it can be used
for feature extraction in many fields and for many applications.

The next step for this work will include further development of the iden-
tification phase. These improvements are necessary to increase the accuracy
of counting WBCs and increase the overall accuracy of segmentation because
accurate segmentation leads to a more robust extraction of shape features,
which is essential for this type of problem. Moreover, it will be important to
study and analyse the use of new features that may be decisive for this type of
analysis. Then, the selection of the most discriminatory features will provide
the highest level of accuracy. Further development of the proposed method
could affect the separation of adjacent leukocytes, which is of considerable
importance to account for all leukocytes in the image.

The proposed method for WBC identification also showed good results
for images taken with different cameras and in different lighting conditions
(Fig. 15). The decision to perform the test using only 33 images acquired
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from the same camera and with the same illumination conditions was made
because the extracted features are strictly related to the image resolution and
lighting. To expand the size of the dataset and provide a greater number of
useful examples to the classification model in the training phase, a feature
extraction method that accounts for differences between images, avoids de-
scriptors that are heavily dependent on image resolution and illumination,
and scales and converts images into a representation that is less influenced
by such characteristics is necessary. Finally, to increase the level of overall
accuracy, the use of a multi-class classification model for the identification of
various types of leukocytes and lymphoblasts is required.

In conclusion, the automatic method proposed in this study represents a
rapid and low-cost technique to clarify ALL suspicion, complementary to im-
munophenotypic assessment of lineage commitment and developmental stage
by flow cytometry. Further prospective studies are required to validate the
sensibility and specificity of this method, especially in different lightning and
resolution conditions.
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Figure 15: Original blood images after the leukocyte identification process (border high-
lighted).
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