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Abstract

Background. Cooperative robotics is receiving greater acceptance because
the typical advantages provided by manipulators are combined with an intu-
itive usage. In particular, hands-on robotics may benefit from the adaptation
of the assistant behavior with respect to the activity currently performed by
the user. A fast and reliable classification of human activities is required,
as well as strategies to smoothly modify the control of the manipulator. In
this scenario, gesteme-based motion classification is inadequate because it
needs the observation of a wide signal percentage and the definition of a rich
vocabulary.

Objective. In this work, a system able to recognize the user’s current activity
without a vocabulary of gestemes, and to accordingly adapt the manipula-
tor’s dynamic behavior is presented.

Methods and Material. An underlying stochastic model fits variations in the
user’s guidance forces and the resulting trajectories of the manipulator’s end-
effector with a set of Gaussian distribution. The high-level switching between
these distributions is captured with hidden Markov models. The dynamic of
the KUKA light-weight robot, a torque-controlled manipulator, is modified
with respect to the classified activity using sigmoidal-shaped functions. The
presented system is validated over a pool of 12 näive users in a scenario
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that addresses surgical targeting tasks on soft tissue. The robot’s assistance
is adapted in order to obtain a stiff behavior during activities that require
critical accuracy constraint, and higher compliance during wide movements.
Both the ability to provide the correct classification at each moment (sample
accuracy) and the capability of correctly identify the correct sequence of
activity (sequence accuracy) were evaluated.

Results. The proposed classifier is fast and accurate in all the experiments
conducted (80% sample accuracy after the observation of ∼ 450 ms of sig-
nal). Moreover, the ability of recognize the correct sequence of activities,
without unwanted transitions is guarenteed (sequence accuracy ∼ 90% when
computed far away from user desired transitions). Finally, the proposed
activity-based adaptation of the robot’s dynamic do not lead to a not smooth
behavior (high smoothness, i.e. normalized jerk score < 0.01).

Conclusion. The provided system is able to dynamic assist the operator dur-
ing cooperation in the presented scenario.

Keywords: activity recognition, cooperative robotics, context-awareness

1. Introduction

Cooperatively controlled robotic assistants are receiving greater accep-
tance in several application domains (e.g. industrial, medical) because of the
advantages coming from the human agent involved in the control loop [1].
In hands-on robotic surgery, the surgeon moves tools fixed to the manipu-
lator’s end-effector by direct application of forces on the robot’s links [2],
achieving increased accuracy and safety during the operations, e.g. in reti-
nal surgery [3] and orthopedic surgery [4]. Thus, hands-on controlled robots
take advantage of the human decision making process and experience com-
bining safety and intuitiveness with the enhancement strategies provided by
the robot (e.g. hand tremor rejection or fatigue reduction) [5]. In assistive
and rehabilitation robotics, for instance, the use of a manipulator proved to
enhance post-trauma therapies [6]. The human user is often tightly coupled
to the robotic device [6] and the use of the manipulator could provide ac-
tive patient assistance in task-specific arm movement completion [7, 8] or
guidance for a paretic arm during particular constrained movements [9]. In
particular, the cooperative control approach in rehabilitation was proven to
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enable patients to train in an active, variable and more natural way, with
more physiological muscle activity [10].

To know how and when to provide the most appropriate level of assis-
tance (e.g. in terms of adaptation of control strategy) is advisable in order to
provide a more versatile robotic assistant and to get the best performances
from the shared human-robot cooperation [11–13]. For example, during sur-
gical brain cortex mapping procedures, the manipulator compliance can be
adapted in order to damp the tool motion near the patient while maintaining
highly compliant behavior elsewhere [14]. Conversely, in robot-aided gait re-
habilitation, the robot assistance can be modified on the basis of the patient
influence on the control, e.g. trigger leg movement whether a relevant muscle
activity is detected [10].

In order to select the most suitable assistance at each moment it is nec-
essary to infer the user’s current activity/intention from raw input signals,
online and in real-time [15]. In fact, effective human-robot interaction should
avoid explicit UI mechanisms to change the assistant behavior [16]. Thus, a
robot should be able to recognize the user’s non-verbal cues [17], involving a
degree of awareness of its surrounding [16].

Machine-learning algorithms are exploited in the field of assistive robotics
to provide intuitive control of prosthesis (e.g. to predict switching between
multiple functions of a powered artificial limb [6]) or to infer the user’s inten-
tion of motion (e.g. to coordinate walking support exoskeletons for paraple-
gia patients [18]). They have also shown potential application in pre-surgical
analysys, in order to classify different types of epilepsy in a fully automatic
way [19].

In robotic surgery applications, intention-awareness has been addressed in
order to distinguish whether a specific action, e.g. the violation of an active
constraint [1], is intentionally performed, thus modifying the manipulator
behavior when the action is intended, e.g. allowing the user violation [20].
Conversely, during surgical targeting tasks, activity recognition and online
segmentation of the procedures into simple subtasks could allow to modify the
modulation of the robot compliance with respect to the currently performed
activity [12, 21].

A well-known approach to activity recognition is based on hidden Markov
models (HMMs) [22]. HMMs are double-stochastic generative processes in
which the observable output data is considered to be produced by a random
variable taking values in a finite state space. Because of the very rich model’s
mathematical structure, HMMs are successfully applied to speech recogni-
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tion [22], handwriting [23], gesture recognition [24, 25] as well as motion
classification [26–28].

Based on the assumption that human motion actions can be split into
a set of primitives (called gestemes [12]), high-level complex activities are
considered to be produced by a temporal sequence of those primitives. The
need to provide a complete set of gestemes have pointed out limitations in
this approach, leading to an offline segmentation of performed tasks [12].
Furthermore, attempts to perform online classification were proved to be
reliable (i.e. accuracy of ∼ 80%) only when observing a large percentage of
the signal, i.e. more than 60% [29]. Finally, once a fast and robust recognition
of the current surgeon’s activity is provided, a robotic system able to adapt
its behavior to the user’s intention should include a strategy to smoothly
switch among different control modalities [30].

In this work recognition of surgeon’s activities during hands-on robotic
surgery is aimed, to accordingly adapt the manipulator’s behavior in order to
augment the safety and intuitiveness of the cooperation. An online algorithm
is presented, able to provide a robust and real-time recognition of surgeon’s
activities without the need to define gestemes. The underlying stochastic
model [31, 32] fits the increments in the user’s guidance forces and the re-
sulting trajectory of the manipulator with the components of a Gaussian
mixture model (GMM). The high-level switching between the different com-
ponents is captured using a set of continuous HMMs, one for each activity.
This is a more structured apprach with respect, e.g. to a black-box approach
based on deep feedforward and recurrent neural networks to model processes
with unknown states number and information length in time. Furthermore
recurrent neural networks stability is not granted.

The provided classification is then exploited to trigger different dynamic
behaviors of a torque-controlled manipulator. A strategy to switch among
different behaviors is also presented, that modulates the robot stiffness and
damping according to the user’s activity.

The remainder of the paper is structured as follows. In Section 2, first
the stochastic model used to describe user’s actions is described, then the
classification algorithm used to discriminate online among the activities is
presented. In Section 3 the scenario and the selected modeled activities
are described together with a strategy to smoothly modify the control of the
assistant manipulator. Experimental evaluation of both the classifier and the
adaptive robot control is presented in Section 4, encompassing a validation
protocol over a pool of twelve näive users. Finally, results are presented in
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Section 5 and discussed in Section 6.

2. Recognition of surgeon’s activity

2.1. Activity model

Surgeon’s activity during hands-on robotic surgery can be described by
human cartesian driving forces (f) and resulting manipulator’s cartesian end-
effector trajectory (x), expressed as vectors of n-samples over time (t =
1, . . . , n), i.e. f = (f1, . . . , fn) and x = (x1, . . . ,xn). Both f and x are
dependent on the current activity, thus they can be combined in a sequence
of n 6-dimensional vectors dt [31], i.e.

d = (d1, . . . ,dn) =

(
x
f

)T
(1)

that describes the user’s action on the manipulator during cooperation.
The vector d can be expressed by a sequence of increments with respect

to the current user’s action, [32], i.e.

dt = dt−1 + ∆dt. (2)

Vector ∆dt represents the increment at time t and is modeled as

∆dt = Tzt +
√

Czt ·wt (3)

thus being the emission of a 6-dimensional Gaussian distribution (low-level
model) labeled zt ∈ {1, . . . ,M} with Tzt mean and Czt covariance. Vector
wt is the sample of a zero-mean and identity covariance Gaussian random
vector. Equation 2 is a switched-dynamical system of type d

dt
qt = fzt(t),

[33], with fzt ≡ ∆dt and ∆t considered unitary, thus it is fully characterized
by M Gaussian distributions defined by the T = (T1, . . . ,TM) and C =
(C1, . . . ,CM) matrices, one at the time producing the current increment
∆dt.

At higher-level, the temporal sequence of low-level models z = (z1, . . . , zn)
is considered as the sample of a Markov chain (high-level model) in which
each state represents one of the M low-level models. Thus, each activity
a ∈ {1, . . . , A} is characterized by one M -states continuous HMM λa =
{πa,Ba,T,C} in which the state emission probability density parameters
are in fact the T and C matrices, πa represents the prior probability of each
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Figure 1: Representation of the two-level stochastic model that describes the user’s ac-
tivities. A set of Gaussian distributions that fit the increments in the user’s guidance
are identified in the low-level. The different switching pattern among the low-level distri-
butions is characteristic of each activity and represent its high-level model. Moreover, a
sequence of activities is represented.

state of the HMM and Ba is the transition matrix that characterize the
low-level models switching for the activity a, i.e. p(z|a) = p(z|Ba, πa).

This two-level hierarchical stochastic model is described in Figure 1.

2.2. Model training

The model is trained using a set of labeled data (i.e. it is known a
priori which activity generated the data) produced by all the activities a ∈
{1, . . . , A} to be modeled.

In the first step, the parameters T and C describing the low-level models
are estimated. The hypothesis made in this phase is that all the activities
share the same models, that is the T and C matrices describe the state
emission probability densities of all the HMMs [31, 32]. In such a way, the
M low-level models can be considered as the components of an M -mixtures
GMM with parameters θ = {T̂, Ĉ}. Thus the algorithm presented in [34]
was used to estimate the parameters of θ from increments computed directly
over the complete set of training data, i.e.

∆dt = dt − dt−1. (4)

The algorithm also selects the optimal number M of components for the
GMM (i.e. the number of low-level models) in an unsupervised way, anni-
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hilating redundant components starting from an initialization with an over-
estimated number of Gaussians.

In the second phase, the high-level models of the activities are obtained
training one continuous HMM for each activity a. Since the emission prob-
ability density parameters are known from the low-level models estimate,
the transition matrix Ba is simply obtained using a modified version of the
Baum-Welch algorithm in which the emission parameters of each state z are
imposed to T̂z and Ĉz [29, 31, 32].

2.3. Classification algorithm

In order to provide online recognition of performed activities, the classifier
must deal with incomplete set of data. For each new lot of data d∗ ⊂ d the
class-conditional likelihood, i.e. p(d∗|θ,Ba), is computed for all the trained
HMMs using a forward-backward recursion [35], as reported in Appendix.
The current activity is then selected as

â = argmax
a

(
p(d∗|θ,Ba)

)
(5)

The classification algorithm is implemented in C/C++ language inside
the Robot Operating System2 (ROS). Every iteration, the class-conditional
likelihood of each activity is computed over data buffered in an array with
first in first out (FIFO) logic [31]. This algorithm uses a fixed windowing
(FW) strategy for the data buffer, i.e. the length of the buffered data is
chosen a priori and kept fixed.

Determining the size of the data buffer is non-trivial: classification per-
formed over arrays with fixed size leads to a trade-off between reliable clas-
sification during continuous activities (i.e. wide size of the buffer) and fast
response to sudden transitions (i.e. short size of the buffer) [31, 36]. To
address this problem, an adaptive windowing (AW) algorithm was imple-
mented, that automatically increases the size of the buffer when the new
available samples statistically reflects the already present ones, and shrinks
it when a change is detected.

Because of the double-stochastic nature of HMMs, the proposed algo-
rithm addresses window adaptation using a double-sided buffer. Both in-
coming data from the manipulator and class-conditional likelihood signals

2www.ros.org, Accessed: 23 May 2016
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Algorithm 1 Adaptive windowing classification

1: procedure
2: initialize Sd, Sll
3: declare Sll[1, . . . , A][. . .]
4: declare ll[1, . . . , A]
5: loop:
6: read d∗

7: Sd ← Sd ∪ {d∗}
8: procedure Classification
9: for each a ∈ {1, . . . , A} do

10: ll[a]← p(Sd|θ,Ba, πa)
11: endfor
12: Sll ← Sll ∪ {ll}
13: â← argmax

a
(ll)

14: procedure Window Adaptation
15: for each a ∈ {1, . . . , A} do
16: SB ← Sll[a][1], . . . , Sll[a][1− ρN ]
17: SA ← Sll[a][1− ρN + 1], . . . , Sll[a][N ]
18: µA ← mean(SA), µB ← mean(SB)
19: σB ← std(SB)
20: if |µA − µB| > ε · σB then
21: Sd ← d∗

22: break
23: endif
24: endfor
25: provide â, sizeof(Sd) to system
26: goto loop.
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are buffered in stacks named Sd and Sll respectively. The basic idea is that a
drift detected in the likelihood signal of one activity should reflect a change
in the probability that the current data are generated by the activity a. In
order to detect such a drift, the class-conditional likelihood is computed ev-
ery iteration and appended to Sll buffer. The likelihood buffer is then split
into two sub-windows SA and SB large ρN and (1−ρ)N samples respectively,
being N the size of Sll and ρ the split fraction. Whenever the newest sam-
ples window SA shows statistical difference with respect to the buffered SB
population of likelihood, Sd is flushed (but d∗ is maintained). The test used
to find statistical difference between the two sub-windows simply checks the
following condition:

|µA − µB| > ε · σB (6)

where µA and µB are the sample mean of SA and SB and σB is the standard
deviation of SB. This test is based on the fact that µA−µB tends to a normal
distribution for large window sizes [36]. The complete algorithm is reported
in Algorithm 1.

3. Adaptation of robot’s behavior

Hands-on guidance can be managed using a Cartesian torque-based impedance
approach in order to exploit the high compliant dynamic behavior of flexible
manipulators [37]. Desired Cartesian forces are thus computed as

f = KP · (xd − x) + DP · (ẋd − ẋ) (7)

where KP and DP are the Cartesian stiffness and damping matrices of the
manipulator arm (translational (P) component), x and xd are the current and
desired position of the control point at the robot end-effector respectively.
A virtual fixture is applied to the rotational component in order to keep the
end-effector orientation fixed. The dynamic of the robot is compensated with
a feed-forward model-based torque controller, taking into account gravity and
Coriolis-centrifugal terms.

Different stiffness and damping parameters allow to change the manipu-
lator behavior, e.g. high resistance to user’s guidance vs. great compliance,
thus allowing different level of assistance.

In particular, in order to achieve high targeting accuracy, the damping
characteristic of the manipulator can be modulated with respect to the dis-
tance from the desired target [38, 39]. Considering KP and DP isotropic
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and diagonal, thus completely defined with one scalar parameter KP and
DP , the space variable (SV) damping criterion [14] computes the DP value
(KP is nil) as a function of the distance between the current position of the
control point and the known position of the surgical target (xT ), i.e.

DP (
∥∥x− xT

∥∥) = DP + (D̄P −DP )
1

1 + eβ‖x−xT ‖−m
(8)

where ‖‖ denotes the Euclidean norm operator, DP and D̄P are the lower
and upper boundaries of the damping parameter, m is the spatial threshold
that defines the radius of the isotropic sphere around the target in which the
damping is steepest and β defines the damping change rate in the sigmoid
function.

3.1. Scenario and robot state machine

We identifies four main activities performed by the surgeon, during which
different levels of assistance are preferable:

• approaching: when approaching the patient’s brain; the robot dy-
namic is modulated with the SV criterion based on the distance from
the specific target of interest (null stiffness KP = 0 N/m, varying
damping DP = 0÷ 30 Ns/m), in order to increase its damping behav-
ior (thus applying more resistance to the user’s interactive force) where
high precision is required for the instrument’s positioning.

• leaving: when leaving the patient’s brain after the approaching is con-
cluded; the robot is required to be as compliant as possible in order not
to resist to the user’s guidance, thus it is controlled in gravity compen-
sation (null stiffness KP = 0 N/m, null damping DP = 0 Ns/m).

• wandering: when the manipulator is moved in the surgical area with-
out a specific target, e.g. for the initial positioning or for the reposition-
ing due to encumbrance issue; the robot is required to be very compliant
in order to minimize the execution time and the surgeon’s fatigue, thus
it is controlled in gravity compensation (null stiffness KP = 0 N/m,
null damping DP = 0 Ns/m).

• idle: when the manipulator is in a resting configuration; the robot
is required to be stiff enough to maintain the configuration in case of
unwanted interaction with the surgeon, thus it is controlled with fixed
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Figure 2: Scheme of the finite state machine to adapt the robot dynamic behavior during
targeting tasks on soft tissues. The four states of the FSM represent the four activities
performed by the surgeon identified for the brain cortex mapping procedure, i.e. idle,
wandering, approaching and leaving. The three different transitions (T1−3) between states
are also shown.
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Figure 3: Sigmoid function used to vary the manipulator dynamics over time. Pi and Pf

represent the initial (current state/activity) and final (desired state/activity) values of the
dynamic characteristics respectively, t0 is the time in which the transition is triggered, t̄
is the time interval from t0 when the modulation reaches its middle value (sigmoidal flex)
and α represents the variation speed (sigmoid steepness)

dynamic parameters (stiffness KP = 100 N/m and damping KD = 30
Ns/m).

The online recognition of the current activity performed by the surgeon
(cfr. Paragraph 2.3) triggers the transition between the different states, which
allows for the smooth modulation of the robotic dynamic parameters in a
safe and controlled way during guidance and robot’s motion. In particular,
configurable time-varying sigmoidal functions were implemented to vary the
stiffness (KP (t)) and damping (DP (t)) characteristics of the manipulator, i.e.

KP (t) = KPi
+

(KPf
−KPi

)

1 + e−α(|t−t0|−t̄)
(9)

DP (t) = DPi
+

(DPf
−DPi

)

1 + e−α(|t−t0|−t̄)
(10)

where i and f subscribes represents the initial (current state/activity) and
final (desired state/activity) values of the dynamic characteristics respec-
tively, t0 is the time in which the transition is triggered, t̄ is the time interval
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from t0 when the modulation reaches its middle value (sigmoidal flex) and
α represents the variation speed (sigmoid steepness). The sigmoidal-shaped
function is represented in Figure 3

The finite state machine (FSM) implemented to manage the system con-
trol behavior is shown in Figure 2. It has to be noted that the FSM is not
fully-connected; in particular, the transitions from approaching to idle or
wandering are not allowed for safety reasons: user’s small correction around
the target at the end of the approaching phase would be recognized as random
movements, i.e. would trigger an unwanted wandering behavior. Following
this approach, only small movements are allowed to the user in a region near
to the POIs, i.e. at the and of the approaching phase. At the same time,
some degree of motion of the manipulator should be recognized in the wan-
dering or leaving activities before switching into the approaching phase to
robustly recognize the intention of the user to move linearly towards a target.

Three different transitions among the four activities were implemented
to smoothly switch between with different degrees of criticality due to con-
temporary presence of the human guidance during the controlled dynamic
modulation, i.e.

• T1: transitions towards the idle activity; the damping is modulated
from the current value (DPi

= 0 Ns/m) to the maximum value (DPf
=

30 Ns/m) and the stiffness is modulated from the minumum value
(KPi

= 0 N/m) to the maximum value (DPf
= 100 N/m).

• T2: transitions towards wandering and leaving, the damping is modu-
lated from the current value to the minimum value (DPf

= 0 Ns/m).

• T3: transitions towards the approaching activity; the damping is mod-
ulated from the minimum value (DPi

= 0 Ns/m) to the current SV
value (DPf

= DP · |x− xT |), computed online based on the actual po-
sition of the control point acquired during the transition trigger. The
target xT is previously acquired and considered known.

The supervisor FSM was implemented in C/C++ language inside the
ROS and ORoCoS3 frameworks.

3www.orocos.org, Accessed: 25 May 2016
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4. Experimental evaluation

The chosen application scenario is soft tissue targeting during surgical
intervention. A custom made surgical probe was attached to a light-weight
robot 4+ (LWR4+, Kuka, Augsburg), a 7 degrees-of-freedom (DoFs) manip-
ulator. The robot is guided through a 3D printed spherical handle placed
at the end-effector. The guidance forces (f) applied at the end-effector are
estimated from the external torques measured by the manipulator’s joint
torque sensors. The resulting trajectory of the end-effector (x) is obtained
from the joint encoders. The control schema presented in reference [38] set
the damping coefficient of the robot as a nonlinear function of the distance
between the robot and the target, which was pre-operatively planned and
intra-operatively registered using the robotic manipulator. Once the robot
gets close to the target, only accurate and small movements are expected, so
the damping is set to high. During the presented experimental trials, this
control was deployed in a real-time environment with a control loop frequency
of 200 Hz, though a Xenomai4 patched Linux kernel. The experimental setup
is represented in Figure 4.

4.1. Classifier training

The model θ and each HMM were obtained from a dataset of 30 trials for
each activity a ∈ {idle, wandering, leaving, approaching} (A = 4) performed
by one expert user, recorded (200 Hz) and off-line processed.

4.2. Design of the experiments

Twelve näive users (age 22(2), height 174(11) cm) were asked to parte-
cipate to the experiments. Every user was previously informed about the
nature of the experimental session and gave his/her consent. During each
trial, the users were standing and guiding the robot without elbow support.
A trial supervisor assisted the experiments and labeled the correct user’s ac-
tivity at each time, which was orally communicated by each user, in order to
provide ground-truth. The exact time of activity switching was provided by
the supervisor by means of a keyboard input in response to the user’s vocal
command.

Each user performed 3 experiments:

4www.xenomai.org, Accessed: 25 May 2016
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Figure 4: Experimental setup. The LWR4+ manipulator is guided through a 3D printed
handle towards a set of targets on a brain phantom. User’s Cartesian driving forces are
recorded in the end-effector reference frame.
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Experiment 1: assessment of the user-supervisor reaction time. Each user
was instructed to give a sequence of 12 switching commands, randomly chosen
between the possible activities, and to simultaneously press the space-bar on
a keyboard. At the same time, the trial supervisor pressed the space-bar on
another keyboard in response to the user’s command. The time lag between
the two button pressing was computed. This preliminary experiment was
aimed at measuring the latency between the vocal command given by the
user and the supervisor reaction when signaling the activity transition. This
experiment did not involve the use of the manipulator.

Experiment 2: targeting task with fixed activity sequence. Each user was
asked to perform 12 targeting tasks towards 12 arbitrary targets on a brain
phantom following a predefined sequence of activities (i.e. idle-wandering-
approaching-idle-leaving-wandering-idle). The proposed protocol includes 5
allowed and 1 denied transition in the robot control FSM for each trial. A
vocal command was given by the user every time he/she switched between
two activities, with a consequent keyboard input from the trial supervisor.

Experiment 3: targeting task with free activity sequence. The users was asked
to perform 12 targeting tasks towards 12 arbitrary targets on the brain phan-
tom, without a specific sequence of activities. They were anyway asked to
signal activities switching by means of vocal commands. The ground-truth
is provided by keyboard input from the supervisor in order to know the
switching time, and by posterior off-line labeling of the switched activities.

During Experiment 2 and 3, the following algorithms were run on a dual-
core Intel Xeon@2.66 GHz:

• AW classifier, as described in Paragraph 2.3. The algorithm was run
at 20 Hz over a variable-size buffer with maximum size fixed at 150
samples (750 ms, N = 150). The window adaptation algorithm uses
a split percentage of 5% (ρ = 0.05) with a confidence interval of 99%
(ε = 3). The output of the classifier was used to trigger the robot
control FSM.

• FW classifier, the state-of-the-art classification algorithm that uses
fixed-size buffer [31]. The algorithm was run at 20 Hz over a 50 samples
long buffer in order to reach a trade-off between classification reliability
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and fast responses. This algorithm was only used to validate the pro-
posed AW classifier and thus its output do not trigger any transition
in the robot control FSM.

The output of the two algorithms was recorded both sample-by-sample
and in terms of activity transitions. In particular, each transition was labeled
with respect to the ground-truth: every transition in the ground-truth signal
was identified and considered against a time-window [ttransition, t̄latency] a-
round the transition time ttransition, being t̄latency the maximum classification
latency found in the current user’s trial. Each classification is labeled as:
correct if contained in the time-window and with final state equal to the
ground-truth signal; unseen if no transition was found in the time-window.
Every transition that do not follow these rules is labeled as error. The
labeling procedure is represented in Figure 5

Moreover, the robot behavior was continuously adapted during Experi-
ments 2 and 3 with respect to the current detected activity following what
described in Section 3. Data regarding the current position of the surgical
probe attached to the manipulator and user’s guidance forces were recorded
(200 Hz).

4.3. Classifier validation indexes

In order to evaluate the AW proposed classifier, the following performance
indexes were computed for both AW and FW:

• sample accuracy (Asample) [12], computed as the percentage of samples
in the classification that share the same label with the ground-truth.

• sequence accuracy (Asequence) [12], computed as

Asequence =
Tcorrect

Tclassified + Tunseen
(11)

where Tcorrect are the model transitions correctly identified, Tclassified
are all the provided classification transitions and Tunseen are the missed
transitions. This index directly evaluates the ability of the classifier to
identify the correct sequence of transitions, without misclassification of
missed transitions.
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Figure 5: Labeling procedure for computing the Asequence index. The red solid line repre-
sents the ground-truth signal, the blue dashed line represents the classifier output while the
green dotted lines show the time-window used in the labeling procedure. Each transition
found outside that time-window is labeled as error and do not enter in the computation
of the index.

• latencies of classification (tlatency), computed as the time between the
ground-truth transition and the classifier reaction. The results are
un-biased from the supervisor’s reaction time computed during Exper-
iment 1. An example of latencies is shown in Figure 6.

Because of the uncertainty that can happen during activity transitions
(e.g. accelerations, decelerations, change of force direction, etc.) two more
performance indexes are also computed, that do not consider errors during
the transition window. These indexes assume that the classification during a
transition cannot be considered reliable, thus validating the algorithm away
from those time windows:

• sample accuracy during continuous activities (Acsample), computed like
the sample accuracy but discarding the samples contained in the tran-
sition latency interval.

• sequence accuracy during continuous activities (Acsequence), computed
like the sequence accuracy but not considering the transitions contained
in the transition latency interval.

The median and interquartile range (25-75 %) values of each index were
computed among users and results were compared using a Kruskal-Wallis
test with Bonferroni correction (pvalue < 0.05).
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Figure 6: Example of transition latency tlatency. The red solid line represents the ground-
truth activity switching while the blue dashed line represents the classifier response.

4.4. Adaptive control validation indexes

In previous publications we already demonstrated the stability and safety
of the adaptive controller approach. In order to evaluate the smoothness of
the robot dynamic behaviour changes, we computed the following index:

• Normalized jerk score (NJS) [40], computed as the root mean square
integral jerk, i.e. third discrete derivative of the end-effector trajectory
x:

NJS =

√√√√1

2

2t̄∑
t=t0

∥∥∥(d3x

dt3

)i∥∥∥2T 5

L2
(12)

where T and L are normalized factors, respectively equal to the trajec-
tory duration and the trajectory length. L is computed as the discrete
integral of the averaged (10 samples) position of the end-effector tra-
jectory x.

The NJS index of the guided robotic motion during the different allowed
transitions was compared to the trajectory smoothness during each specific
activity, except for the idle activity in which no motion of the manipulator
occurs. The median and quartiles (25%, 75%) values of the NJS index were
computed among users.

5. Results

5.1. Model training

The algorithm used to analyze the data describing the different activities
fitted the increments with a mixture of 24-components Guassians (M =
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Figure 7: Results of the model fitting for the four identified activities. The transition
matrix Ba of each trained HMM is represented in Figure, where the intensity of each
block represents the transition probability between two states (white means probability
equal to 1.0, black means probability equal to 0.0)

24). The transition matrices describing the different HMMs are reported
in Figure 7. The idle activity is the emission of a zero-increment Gaussian
distribution. The approaching matrix is similar to a diagonal matrix, i.e. the
linear motion occurring when approaching the tissue can be assumed to be
produced by a single Gaussian. Conversely, both the leaving and wandering
activity matrices are more sparse, due to the random nature of the two
movements.

5.2. Classifier Validation

Experiment 1. The assessment in the delay between the vocal command of
the user and the keyboard reaction of the supervisor showed median values
∼ 300 ms for each user.

Experiments 2 and 3. The proposed classifiers performed in a similar way (no
statistically significant differences, Figure 8) to the state-of-the-art FW algo-
rithm in terms of Asample, thus guaranteeing a high overall accuracy (∼ 80%)
during the complete set of trials. The AW algorithm performed slightly bet-
ter in terms of median value (∼ 82% vs. ∼ 79% for experiment 2 and ∼ 78%
vs. ∼ 70% for experiment 3). Moreover, the AW algorithm performed better
in terms of Asequence in both Experiments (∼ 60% vs. ∼ 20%, statistically
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Figure 8: Results of Asample (a) and Asequence (b) for both AW and FW algorithms.
The proposed AW performed better than the state-of-the-art algorithm in terms of both
indexes. Results are shown in terms of median and interquartile range (IQR). Horizontal
lines represent statistically significant differences.

significant difference), thus strongly increasing the reliability of the identified
sequence. AW has different performances during experiment 2 and 3 (∼ 70%
vs. ∼ 60% median values, statistically significant difference).

In terms of latencies (tlatency, Figure 9), the proposed algorithm performed
worse than the state-of-the-art FW (∼ 450 ms vs. ∼ 250 ms, statistically
significant difference) during experiment 2. Conversely, during experiment
3, the proposed AW algorithm have similar performances (∼ 420 ms vs. ∼
450 ms, no statistically significant difference). Moreover, the AW algorithm
strongly reduce the variability of the tlatency index (inter-quartile range of
∼ 300 ms vs. ∼ 800 ms).

In terms of Acsample index (Figure 10a), thus not considering the transition
windows during the compute, the AW algorithm performed better than the
state-of-the-art FW algorithm in all the Experiments (statistically significant
difference). In particular, the AW algorithm guaranteed ∼ 90% and ∼ 80%
accuracy during experiment 2 and 3 respectively (no statistically significant
difference), while the accuracy provided by the FW algorithm was ∼ 80% and
∼ 73% during experiment 2 and 3 respectively (no statistically significant
difference). Moreover, the FW algorithm shows similar results compared
to the Asample index (Figure 8a, median values of ∼ 80% and ∼ 75% for
Experiments 2 and 3 respectively in both indexes) whereas the AW algorithm
shows increased performance.

With respect to the Acsequence index, both the AW and FW algorithm show
increased performance (with respect to the Asequence index). In particular,
AW performed better in both experiments (∼ 90% vs. ∼ 65% and ∼ 80%
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Figure 9: Results of tlatency for both AW and FW algorithms. The proposed AW performed
similarly to the state-of-the-art algorithm. Results are shown in terms of median and
interquartile range (IQR). Horizontal lines represent statistically significant differences.

Figure 10: Results of Ac
sample (a), Ac

sequence (b) for both AW and FW algorithms. The
proposed AW performed better than the state-of-the-art algorithm in terms of both in-
dexes. Results are shown in terms of median and interquartile range (IQR). Horizontal
lines represent statistically significant differences.

vs. ∼ 67% median values for Experiments 2 and 3 respectively, statistically
significant differences).

These results are summarized in Table 2.
In Table 2 the activity switching probabilities recorded during the ex-

periment 3 (targeting tasks without a predefined sequence of activities) are
reported. The values are based on the user’s feedback regarding the current
performed activities, thus not involve errors in classification. It can be noted

22



Table 1: Summary of the classification accuracy of both AW and FW during experiment
2 and 3. Results are reported in terms of median values.

Asample Asequence Acsample Acsequence
Experiment 2

FW ∼0.79 ∼0.20 ∼0.80 ∼0.65
AW ∼0.82 ∼0.60 ∼0.90 ∼0.90

Experiment 3
FW ∼0.70 ∼0.19 ∼0.73 ∼0.67
AW ∼0.78 ∼0.50 ∼0.80 ∼0.80

Table 2: Transition matrix during experiment 3. In Table the percentage of switching
between activities performed by the users during the free sequence trial is represented.
Only transitions are considered, thus the diagonal is imposed to 0.

to

approaching leaving wandering idle

approaching 0 0.0123 0.1790 0.8086
leaving 0.1894 0 0.5985 0.2121

wandering 0.5421 0.0579 0 0.4000fr
om

idle 0.1441 0.3517 0.5042 0

how the idle and approaching activities have a well-defined target activity
(approaching switching to idle in 80% of the cases, idle switching to wan-
dering in 50% of the transitions), whereas the wandering activity has almost
equally distributed transition.

5.3. Adaptive control validation

Motion smoothness during transitions and states is reported in Figure 11,
while in Table 3 the quantitative results are summarized. The NJS indexes
of the states (median value below 0.03) resulted comparable to the one of the
considered transitions (median value below 0.04) except for the transitions
from/to idle activity. In the latter, although the smoothness is reduced (me-
dian NJS value around 0.1 and 0.05 when switching to idle from wandering
and leaving respectively) due to the switch between damping and high stiff-
ness control, the order of magnitude of the NJS index is the same, thus still
limited. Also, the high NJS variability in the transition wandering-idle (IQR
above 0.08) indicates how its smoothness is affected by the user’s execution
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Figure 11: Results of the NJS index computed on the allowed transitions from the initial
activities (rows) to the final activity (columns) among users. Values highlighted with
dashed lines represents the NJS computed during the execution of a continuous activity,
while the not allowed transitions are shown with a crossed symbol. Quantitative results
are summarized in Table 3

during start/stop procedures.
The NJS index computed in the approaching state confirms that the SV

variable damping controller allows for smooth guidance comparable to the
smoothness performance of the gravity compensations controller, i.e. highest
transparent/compliant controller.

6. Discussions

This work presents a system for robotic adaptive assistance which could
be applied in several Human-Robot cooperative scenarios. In particular is
focused on the assistance to surgeons during soft tissue targeting tasks. Be-
cause of the need to online recognize intended activities, the system must be
highly accurate (e.g. 80% accuracy) while maintaining a low latency response
to not degrade the interactivity of the user experience (the trade-off of which
is reported to be around 700 ms [41]). Classification based on sequences
of primitives is not suitable: the classification accuracy hits 80% only when
observing more than 60% of the signal [29], which implies a latency possibly
in the order of some seconds. Moreover, these results were obtained training
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Table 3: Median values of NJS index result computed on the allowed transitions from the
initial activities (rows) to the final activity (columns) among users. Values not reported
are considered negligible or related to transition not allowed (n.a.).

to

approaching leaving wandering idle

approaching ∼0.02 - ∼0.02 ∼0.005 - ∼0.005 - n.a.
leaving - - - ∼0.03 -∼0.04

wandering - - - ∼0.05 -∼0.05fr
om

idle - - ∼0.2 -∼0.2 -

the primitives on the same person that would have then performed the task
[29]. Our classifier manages to accurately classify activities with a latency
of ∼ 450 ms in median, and to be operator independent. The difference be-
tween the proposed approach and the literature make an actual experimental
comparison not possible, since the other reported approaches does not satisfy
the given requirements for the interaction.

The presented algorithm addresses gesteme-free activity classification (with-
out the need to define a vocabulary of gestemes). Surgeon’s activities are
modeled with a set of Gaussian distributions (low-level models) and the
switching between these models is represented with different HMMs (high-
level models). The classification is performed on data buffered in array with
variable size in order to avoid typical trade-off between reliability and fast
response. The behavior of the torque-controlled manipulator is adapted ac-
cordingly to the current detected activity. The presented system can be
applied in real scenarios with a clear utility: improve the operators perfor-
mance and increase the patient safety and surgery quality.

The system was tested over a pool of twelve näive users. Each user was
asked to perform targeting gestures over a brain phantom first following a
predefined sequence of activities and then following a self-paced sequence.
During the experiments, a trial supervisor labeled each performed activity
with respect to the user’s vocal feedback to provide ground-truth, while the
time of activity switching was known by means of keyboard input from the
supervisor. The time lag between the user’s vocal command and the super-
visor reaction was previously assessed for each user and resulted comparable
to the human reaction time (∼ 300 ms, [42]). The proposed protocol is dif-
ferent from other works with similar scope, e.g. in [12] the user’s feedback
was given using a pedal, where it was stated that the usage of an external
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device during the cooperation could be distracting for the user. The vocal
command used allows each user to concentrate on the task, but can involve
delays between the command uttering and the actual switch in the activity
that are not measurable.

The proposed gesteme-free classifier was validated against a state-of-the-
art classification algorithm that uses fixed size buffer (FW). The performance
of the two algorithms were assessed in terms of ability of providing the cor-
rect classification at each moment (sample accuracy). The Asample index is
strongly affected by the algorithms reaction time: the higher the latency,
the more samples in the classification will not correspond to the provided
ground-truth during transitions. In fact, an algorithm able to fast react to
activity transitions without guaranteeing reliability (i.e. with misclassifica-
tion during continuous activities) will obtain a high Asample result. For this
reason, also the reliability of that classification was evaluated, i.e. ability to
provide the correct sequence of activities without misclassification (sequence
accuracy). Moreover, the reaction to both the algorithms to sudden activity
transitions was measured (latency).

Experimental results showed that the proposed AW algorithm is accurate
(∼ 80% sample accuracy) and reliable (sequence accuracy over 60%). FW
showed faster response during experiment 2 (median values of ∼ 250 ms vs.
∼ 450 ms) but worse reliability. This is related to the small buffer used by
FW (50 samples, fixed windowing), that allows fast response but is sensitive
to small changes in the guidance data. Conversely, during experiment 3 the
AW algorithm performed similarly to FW in terms of latencies (median values
∼ 450 ms), obtaining an almost 10% increase in the Asample performance.
Since the method is used to assist the surgeon and not to substitute him or
her, the obtained recognition ratio mean than 80 times over 100 the assistance
is provided, while in the remaining 20 the system works almost as a non
assisting device, i.e. a standard hands on robot. It must be noted that this
is the result obtained so far, but further improvements are possible by. e.g.
allowing the user to trigger a different behaviour before the current transition
is completed.

Both the algorithms are affected by activity transitions: accelerations
and decelerations during activity switching lead to misclassification during
the transition window that eventually converge to the correct classification
when the user’s guidance stabilizes. This is confirmed when the transition
windows are not considered: AW and FW showed increased performances.
In particular, AW performed better leading to a ∼ 90% accuracy in both
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Experiments 2 and 3 and both indexes. These results are comparable with
state-of-the-art offline classifiers based on gestemes, e.g. [12] where peg-in-
hole tasks performed with the JHU Steady Hand were segmented with sample
accuracy of the same order of magnitude.

The classification errors during transitions do not lead to a not smooth
behavior of the manipulator, as demonstrated by results of the NJS index. In
fact, only transition from/to idle activity showed a reduced smoothness due
to the users stopping/accelerating strategy. In particular, the wandering-
approaching, approaching-leaving and wandering-leaving transitions showed
NJS value negligible. These results are endorsed by the users sequence choices
during experiment 3 (switching probabilities represented in Table 2), where
the highlighted transitions resulted to be the most addressed. Moreover,
these probabilities could be used in order to provide a different way of trig-
gering transitions: if an identified transition has high-probability it can be
immediately executed, waiting for more information in case of transitions
with low probability.

The main limitation of this work was the number of modeled activities.
Our surgical model is based of four surgery activities (a state machine with
idle, leaving, wandering and approaching statuses): in order to express the
complexity of a surgery, the number of recognized activity should increase.
We expect that the training phase would be longer, but still the different
activities would be correctly classified. As said, this paper is a proof of
concept for online gesture classification and robot behaviour adaptation. A
more complex surgical scenario or other non-surgical scenarios could possibly
be modeled with a wider set of activities, thus leading to a more in-depth
segmentation of the surgical procedure. Other critical aspects not addressed
were the duration of the time-varying transition in the robot dynamic behav-
ior. In particular, some users pointed out that fast switching between two
activities before a transition was completed lead to a not intuitive behavior
of the manipulator, e.g. increasing of the stiffness while trying to trigger a
wandering compliant behavior. Moreover, the application of the SV damp-
ing criterion [14] during approaching was based on a target known a priori.
The implementation of a target prediction algorithm could overcome this
limitation, applying the SV maximum damping around the identified user’s
current target. It would be also possible to define some task oriented be-
haviour of the robot. This can be achieved adding more states on the finite
states machine. Also, the implemented control does not allow the user to
exploit also rotations of the end-effector of the manipulator: in our surgical
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scenario, the robot is assisting the surgeon in achieving precise alignment on
pre-operatively defined target points, therefore the orientation is not affect-
ing the results accuracy. Indeed (e.g. in case of straight electrodes insertion)
the orientation also could be included and this would be straightforward in
our current implementation. Finally, the inclusion in the system of a force-
feedback enhancement criterion can further increase the surgeon confidence
in the task [43].

7. Conclusions

This paper presented the first results of a system to provide a gesteme-
free adaptive assistance to surgeon’s during hands-on controlled cooperation
in surgical robotics. The system was proven to correctly classify the current
user’s action (classification accuracy of ∼ 80% after ∼ 450 ms), adapting the
manipulator behavior accordingly to a set of identified activities. Validation
encompassed targeting gesture trials in a simulated surgical scenario. Future
works may include implementation of target prediction in order to better
apply space variable damping criteria, as well as a validation phase involving
expert and/or novice surgeons. Additionally, trajectory identification during
approaching phase may be accomplished in order to modulate the stiffness
ellipsoid of the manipulator, for example addressing human-like behavior.

Appendix A. Model’s likelihood

Given a sequence of observation O = {O1, . . . , OT} and a known sequence
of states Q = {q1, . . . , qT} of a Model λ, the probability of observing the
sequence O produced by the states sequence Q is

P (O|Q, λ) =
T∏
t=1

P (Ot|qt, λ) (A.1)

Considering the state sequence Q as unknown, the probability of observ-
ing simultaneously O and Q is

P (O,Q|λ) = P (O|Q, λ) · P (Q|λ) (A.2)

and thus the posterior probability of O given the model (i.e. the model
likelihood) can be computed as the probability of the observation sequence
to be produced by all the possible sequence of states, i.e.
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P (O|λ) =
∑
∀Q

P (O|Q, λ) · P (Q|λ) (A.3)

Considering a N -states continuous HMM λ = {A,B, π}, the elements
describing the model have the following significance: A[N ×N ] is the transi-
tion matrix containing the probability of switching between the model’s state;
π[N × 1] is the prior probability of being in one of the N states; B[N × 1] is
the set of probability distributions that characterize the emission of the n-th
model state, i.e.

P (Oi|qj, λ) = bj(Oi) (A.4)

P (qi|qj, λ) = aij (A.5)

P (qi|λ) = πi (A.6)

The probability of observing Ot and be in state qt = Si at time t, i.e.
αt(i) = P ({O1, . . . , Ot}, qt = Si), can thus be computed by recursively solving

αt=1(i) = πi · bi(O1) (A.7)

αt+1(j) = bj(Ot+1) ·
N∑
i=1

αt(i) · aij (A.8)

Equations A.7-A.8 are the so-called foward recursion and its termination
has the following meaning

αT (i) = P ({O1, . . . , OT}, qT = Si|λ) (A.9)

thus leading to simply compute the observation sequence likelihood as

P (O|λ) =
N∑
i=1

αT (i) (A.10)
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[13] A. Lüdtke, D. Javaux, F. Tango, R. Heers, K. Benglere, C. Ronflé-
Nadaud, Designing dynamic distributed cooperative human-machine
systems, Work 41 (Supplement 1) (2012) 4250–4257.

[14] E. Beretta, E. De Momi, F. R. y Baena, G. Ferrigno, Adaptive hands-on
control for reaching and targeting tasks in surgery, International Journal
of Advanced Robotic Systems 12 (2015) 50.

[15] K. Hauser, Recognition, prediction, and planning for assisted teleoper-
ation of freeform tasks, Autonomous Robots 35 (4) (2013) 241–254.

[16] S. A. Green, M. Billinghurst, X. Chen, G. Chase, Human-robot collab-
oration: A literature review and augmented reality approach in design.

[17] O. C. Schrempf, U. D. Hanebeck, A. J. Schmid, H. Worn, A novel ap-
proach to proactive human-robot cooperation, in: Robot and Human
Interactive Communication, 2005. ROMAN 2005. IEEE International
Workshop on, IEEE, IEEE, 2005, pp. 555–560.

31



[18] K. Suzuki, G. Mito, H. Kawamoto, Y. Hasegawa, Y. Sankai, Intention-
based walking support for paraplegia patients with robot suit hal, Ad-
vanced Robotics 21 (12) (2007) 1441–1469.

[19] Y. Kassahun, R. Perrone, E. De Momi, E. Berghöfer, L. Tassi,
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